JP2005000953A - Structure for branching runner and metallic mold for casting - Google Patents

Structure for branching runner and metallic mold for casting Download PDF

Info

Publication number
JP2005000953A
JP2005000953A JP2003167654A JP2003167654A JP2005000953A JP 2005000953 A JP2005000953 A JP 2005000953A JP 2003167654 A JP2003167654 A JP 2003167654A JP 2003167654 A JP2003167654 A JP 2003167654A JP 2005000953 A JP2005000953 A JP 2005000953A
Authority
JP
Japan
Prior art keywords
branch
runner
molten metal
hot water
post
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003167654A
Other languages
Japanese (ja)
Inventor
Tsutomu Nakanishi
力 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003167654A priority Critical patent/JP2005000953A/en
Publication of JP2005000953A publication Critical patent/JP2005000953A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure for branching a runner with which flowing-in timing of molten metal into the plurality of runners after branching, can be adjusted more reliably than the conventional one, and a metallic mold for casting, having such runner branching structure. <P>SOLUTION: The runner branching structure is provided with the runner 101 before branching, the plurality of runners 102,103 after branching, branched from the runner 101 before branching and a molten metal basin 150 for adjusting the flowing-in timing of the molten metal into the plurality of runners 102,103 after branching. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、金属鋳造に用いる湯道分岐構造体および湯道分岐構造を備えた鋳造用金型に関する。
【0002】
【従来の技術】
従来の湯道分岐構造においては、分岐前湯道から複数の分岐後湯道への溶湯の流量を均一にするために、分岐前湯道の中央に分岐点を配置するなど、分岐点の位置調整が行われている(例えば、特許文献1参照)。図5は、従来の湯道分岐構造体の要部概念図であり、図6は従来の湯道分岐構造を備えた多点ゲート金型の概念図である。
【0003】
図5において、湯道分岐部200は、分岐前湯道201、分岐後湯道202および分岐後湯道203からなり、分岐点204は、分岐前湯道201の中心線205上に配置されている。また、分岐後湯道202と分岐後湯道203とは、中心線205に対して対称な形状を有する。このような構造により、分岐後湯道202および203に流入する溶湯量の均一化を図るとともに、溶湯の流入タイミングを揃える工夫がなされている。
一方、分岐後湯道202および203への溶湯の流入タイミングが揃わない金型では、分岐点204の位置を中心線205からずらすことにより、溶湯の流入タイミングの均一化が図られている。
【0004】
【特許文献1】
特開2000−117392号公報(第4頁、図1)
【0005】
【発明が解決しようとする課題】
従来の湯道分岐部200では、分岐前湯道201内での溶湯の速度分布が、分岐後湯道202および203への溶湯の流入タイミングを決定している。しかし、図5(a)に矢印で示すように、溶湯の速度分布206は、成形毎に変化する。そのため、速度差xに応じて、分岐後湯道202および203への溶湯の流入タイミングに、図5(b)に示すような差207を生じる。
【0006】
このような流入タイミングの差により、図6に示すような複数の湯道分岐部を有する従来の多点ゲート金型等では、溶湯がゲート208a〜dへ到達するまでの時間に差を生じる。特に、薄肉成形品を鋳造する際に、複数のゲート208a〜dに溶湯が流入するタイミングに差が生じた場合、最初に溶湯が流入したゲート208a付近で溶湯の凝固が進み、最後にゲート208bに溶湯が流入したときにはゲート208aが凝固した材料で塞がれてしまい、キャビティ250内へ溶湯の良好な充填状態が得られないという問題が生じる。
【0007】
また、最初に溶湯が流入したゲート208aが塞がれるまでに最後のゲート208bに溶湯が到達したとしても、各ゲート付近で溶湯の温度に差が生じてしまうため、やはり良好な充填が得られない場合がある。
【0008】
本発明は、上記問題を鑑みたものであり、複数の分岐後湯道への溶湯の流入タイミングを従来よりも確実に調整することが可能な湯道分岐構造体およびそのような湯道分岐構造を有する鋳造用金型を提供するものである。
【0009】
【課題を解決するための手段】
本発明は、分岐前湯道、前記分岐前湯道から分岐する複数の分岐後湯道、および前記複数の分岐後湯道への溶湯の流入タイミングを調整する湯溜り部を備える湯道分岐構造体に関する。
【0010】
本発明は、また、分岐前湯道、前記分岐前湯道から分岐する複数の分岐後湯道、および前記複数の分岐後湯道への溶湯の流入タイミングを調整する湯溜り部を備え、前記複数の分岐後湯道の末端に位置する複数のゲートと一つ以上のキャビティを有する鋳造用金型に関する。前記金型には、多数個取り金型や複数のゲートを有する1個取り金型が含まれる。
【0011】
前記湯道分岐構造体および鋳造用金型において、前記湯溜り部は、前記分岐前湯道における溶湯の進行方向に突出する前記分岐前湯道の延長部からなり、前記延長部の突出方向に垂直な断面は、前記分岐前湯道と同一または前記分岐前湯道よりも大きいことが好ましい。
【0012】
本発明によれば、分岐前湯道から流れてくる溶湯は、分岐後湯道へ流入する前に一度湯溜り部に入ることになる。湯溜り部の先端まで到達した溶湯は、直進することができず先端で滞留する。つまり、湯溜り部は、分岐前の溶湯が持つ速度のばらつきが、分岐後の湯流れに影響を及ぼすことを防止する。
【0013】
湯溜り部に滞留した溶湯は、圧力により分岐後湯道に押し出される。この圧力は分岐後の各湯道に均等に作用するため、分岐後湯道へ溶湯が流入するタイミングと溶湯速度もまた同一になる。これにより、湯道内での溶湯の速度分布が成形毎に変化しても、分岐後の各湯道へ溶湯を同時に流入させることが可能となり、複数のゲートに同時に溶湯を流入させることが可能となる。この結果、多数個取り金型や、複数のゲートを有する1個取り金型において、良好な充填が可能となる。
【0014】
実際の成形における湯道内の溶湯速度は、約数m/sから数百m/sといった高速であることから、湯道内での溶湯の流れは乱流であり、直線方向の速度成分以外に、湯道進行方向に対して法線方向の速度成分も併せ持つ。従って、分岐点の進行方向上に設けた湯溜り部に溶湯が滞留する前にも、分岐後湯道へ溶湯が流入する。しかしながら、直進方向の速度成分と比較して法線方向の速度成分は非常に小さいため、各ゲートへの溶湯の到達タイミングを均一化するという本発明の目的には、特に影響がない。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
図1は、本発明の実施の形態にかかる湯道分岐構造体の要部概念図である。
【0016】
図1より、湯道分岐部100は、分岐前湯道101、分岐後湯道102、分岐後湯道103および分岐後湯道102、103への溶湯の流入タイミングを調整する湯溜り部150からなる。湯溜り部150は、分岐前湯道101における溶湯の進行方向に突出するように設けられている。湯溜り部150の高さhは10mm以上であることが好ましい。
【0017】
かかる構成によれば、分岐前湯道101から流れてくる溶湯は湯溜り部150に流入する。そして、溶湯が湯溜り部150に流入して直進できなくなった時点で、分岐前湯道101内には圧力がかかる。湯溜り部150に滞留した溶湯は、圧力により押し出され、分岐後湯道102および103へ流入が開始される。
図1(a)に矢印で示すように、溶湯の速度分布106は、流入する溶湯の速度ごとに異なるが、湯溜り部150を設けることにより、分岐前湯道101内での速度分布106のばらつきをなくすことができる。その結果、図1(b)に示すように、分岐後湯道102および103への流入タイミングに差を生み出すことを防止できるとともに、同じ速度で溶湯を流入させることが可能になる。
【0018】
図1では、分岐後湯道102および103を分岐前湯道101に対して直角方向に設けたが、この角度は任意である。また、分岐点104を通過後の湯道を2分岐とし、分岐後湯道102および103を設けたが、湯道は3分岐以上としてもよい。
【0019】
図2および3は、断面積の異なる湯溜り部を有する湯道分岐部の要部概念図である。図2および3において、図1と同じ構成については同じ符号を用いて説明を省略する。
図2は、湯溜り部301の断面形状が分岐前湯道101よりも小さい場合を示し、図3は、湯溜り部302の断面形状が分岐前湯道101よりも大きい場合を示す。
【0020】
図2より、湯溜り部301の断面形状が分岐前湯道101よりも小さい場合、分岐前湯道101から流れてくる溶湯の一部が湯溜り部301に入りきれず、直接、分岐後湯道102および103へ流入する。このため分岐前湯道101を通過するときの溶湯の速度分布が、分岐後湯道102および103内への流入タイミング差303となり、同時流入が得られない場合がある。
【0021】
一方、図3より、湯溜り部302の断面形状が分岐前湯道101よりも大きい場合、分岐前湯道101から流れてくる溶湯を、湯溜り部302に流入させて、分岐後湯道102および103への流入タイミングを揃えることができる。
従って、分岐前湯道101から流れてくる溶湯を確実に湯溜り部へ流入させるために、湯溜り部の断面形状は分岐前湯道101よりも大きい方がよい。
【0022】
上述したように、湯溜り部302の断面形状は、分岐前湯道101の断面形状よりも大きい方が好ましいが、湯溜り部302と分岐前湯道101の断面形状は同一であってもよい。
【0023】
図4は、本発明の湯道分岐構造を備えた多点ゲート金型の概念図である。図4において、図1と同じ構成については同じ符号を用いて説明を省略する。
【0024】
多点ゲート金型は、分岐前湯道における溶湯の進行方向に突出する湯溜り部150および501を設けている。湯道分岐点104から次の分岐点401までの湯道102および103の長さは同一である。また、湯道分岐点401から各ゲート108a〜dまでの湯道402〜405も同一の長さである。この構成により、溶湯を同時に同じ速度で、キャビティ250内に流入させることができ、良好な成形品を得ることが可能となる。
【0025】
上述した鋳造用金型は、1個のキャビティに複数のゲートから溶湯を充填させる構造としているが、複数のゲートを用いて複数のキャビティに溶湯を充填させる構造としてもよい。
【0026】
【発明の効果】
本発明によれば、湯道分岐構造体が分岐前湯道における溶湯の進行方向に突出する湯溜り部を備えたので、複数の分岐後湯道への溶湯の流入タイミングを揃えることができる。また、このような湯道分岐構造を備えた鋳造用金型を構成することにより、良好な成形品を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる湯道分岐構造体の要部概念図である。
【図2】断面積の小さい湯溜り部を有する湯道分岐部の要部概念図である。
【図3】断面積の大きい湯溜り部を有する湯道分岐部の要部概念図である。
【図4】本発明の湯道分岐構造を備えた多点ゲート金型の概念図である。
【図5】従来の湯道分岐構造体の要部概念図である。
【図6】従来の湯道分岐構造を備えた多点ゲート金型の概念図である。
【符号の説明】
100、200 湯道分岐部
101、201 分岐前湯道
102、103、202、203、402、403、404、405 分岐後湯道
104、204、401 分岐点
106、206 速度分布
108、208 ゲート
150、301、302、501 湯溜り部
205 中心線
250 キャビティ
207、303 流入タイミング差
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a runner branch structure used for metal casting and a casting mold having the runner branch structure.
[0002]
[Prior art]
In the traditional runner branch structure, the branch point is located at the center of the pre-branch runner in order to make the flow rate of molten metal from the pre-branch runner to the multiple post-branch runners uniform. Adjustment is performed (for example, refer to Patent Document 1). FIG. 5 is a conceptual diagram of a main part of a conventional runner branch structure, and FIG. 6 is a conceptual diagram of a multipoint gate mold having a conventional runner branch structure.
[0003]
In FIG. 5, the runner branch portion 200 includes a pre-branch runner 201, a post-branch runner 202, and a post-branch runner 203, and a branch point 204 is disposed on the center line 205 of the pre-branch runner 201. Yes. The post-branch runner 202 and the post-branch runner 203 have a symmetrical shape with respect to the center line 205. With such a structure, the amount of the molten metal flowing into the runners 202 and 203 after branching is made uniform, and a device for aligning the molten metal inflow timing is devised.
On the other hand, in the mold in which the molten metal inflow timing into the post-branch runners 202 and 203 is not uniform, the molten metal inflow timing is made uniform by shifting the position of the branch point 204 from the center line 205.
[0004]
[Patent Document 1]
JP 2000-117392 A (page 4, FIG. 1)
[0005]
[Problems to be solved by the invention]
In the conventional runner branch section 200, the melt velocity distribution in the pre-branch runner 201 determines the inflow timing of the melt into the post-branch runners 202 and 203. However, as indicated by arrows in FIG. 5A, the molten metal velocity distribution 206 changes with each molding. Therefore, according to the speed difference x, a difference 207 as shown in FIG. 5B is generated in the inflow timing of the molten metal into the post-branch runners 202 and 203.
[0006]
Due to such a difference in inflow timing, in the conventional multi-point gate mold having a plurality of runner branch portions as shown in FIG. 6, there is a difference in the time until the molten metal reaches the gates 208a to 208d. In particular, when casting a thin molded product, if there is a difference in the timing at which the molten metal flows into the plurality of gates 208a to 208d, solidification of the molten metal proceeds near the gate 208a where the molten metal first flows, and finally the gate 208b. When the molten metal flows into the gate, the gate 208a is clogged with the solidified material, and there is a problem that the molten metal cannot be satisfactorily filled into the cavity 250.
[0007]
Even if the molten metal reaches the last gate 208b before the gate 208a into which the molten metal first flows is closed, a difference in the temperature of the molten metal occurs in the vicinity of each gate, so that satisfactory filling can be obtained. There may not be.
[0008]
The present invention has been made in view of the above problems, and a runner branch structure capable of more reliably adjusting the inflow timing of the molten metal into the plurality of post-branch runners than before, and such a runner branch structure. A casting mold having the following is provided.
[0009]
[Means for Solving the Problems]
The present invention relates to a runner branch structure comprising a pre-branch runner, a plurality of post-branch runners branched from the pre-branch runner, and a hot water reservoir for adjusting the inflow timing of the molten metal to the plurality of post-branch runners About the body.
[0010]
The present invention also includes a pre-branch runner, a plurality of post-branch runners that branch from the pre-branch runner, and a hot water reservoir that adjusts the inflow timing of the molten metal to the plurality of post-branch runners, The present invention relates to a casting mold having a plurality of gates and one or more cavities positioned at the ends of a plurality of post-branch runners. The mold includes a multi-cavity mold and a single-cavity mold having a plurality of gates.
[0011]
In the runner branch structure and the casting mold, the hot water pool portion includes an extension portion of the pre-branch runway that protrudes in the traveling direction of the molten metal in the pre-branch runway, and in the protruding direction of the extension portion. The vertical cross section is preferably the same as or larger than the pre-branch runner.
[0012]
According to the present invention, the molten metal flowing from the pre-branch runner enters the hot water pool once before flowing into the post-branch runner. The molten metal that has reached the tip of the hot water pool cannot stay straight and stays at the tip. That is, the hot water reservoir prevents the variation in speed of the molten metal before branching from affecting the hot water flow after branching.
[0013]
The molten metal staying in the hot water reservoir is pushed out to the runner after branching by pressure. Since this pressure acts equally on each runner after branching, the timing at which the melt flows into the runner after branching and the melt speed are also the same. As a result, even if the velocity distribution of the molten metal in the runway changes from one molding to another, it is possible to simultaneously flow the molten metal into each runner after branching, and it is possible to flow molten metal into multiple gates simultaneously. Become. As a result, satisfactory filling is possible in a multi-cavity mold or a single-cavity mold having a plurality of gates.
[0014]
Since the melt speed in the runway in actual molding is as high as about several m / s to several hundred m / s, the flow of the melt in the runway is turbulent, and besides the linear velocity component, It also has a velocity component in the normal direction relative to the runner direction. Accordingly, the molten metal flows into the post-branch runner before the molten metal stays in the hot water reservoir provided in the traveling direction of the branch point. However, since the velocity component in the normal direction is very small compared with the velocity component in the straight traveling direction, there is no particular influence on the object of the present invention to make the arrival timing of the molten metal to each gate uniform.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of a main part of a runner branch structure according to an embodiment of the present invention.
[0016]
As shown in FIG. 1, the runner branching section 100 includes a pre-branch runner 101, a post-branch runner 102, a post-branch runner 103, and a hot water reservoir 150 that adjusts the inflow timing of the molten metal to the post-branch runners 102, 103. Become. The hot water reservoir 150 is provided so as to protrude in the traveling direction of the molten metal in the pre-branch runway 101. The height h of the hot water reservoir 150 is preferably 10 mm or more.
[0017]
According to this configuration, the molten metal flowing from the pre-branch runner 101 flows into the hot water reservoir 150. Then, when the molten metal flows into the hot water reservoir 150 and cannot go straight, pressure is applied in the pre-branch runway 101. The molten metal staying in the hot water reservoir 150 is pushed out by pressure, and starts flowing into the runners 102 and 103 after branching.
As shown by arrows in FIG. 1A, the molten metal velocity distribution 106 differs depending on the velocity of the molten metal flowing in, but by providing the hot water reservoir 150, the velocity distribution 106 in the pre-branch runner 101 is Variations can be eliminated. As a result, as shown in FIG. 1 (b), it is possible to prevent a difference in the inflow timing to the runners 102 and 103 after branching and to allow the molten metal to flow at the same speed.
[0018]
In FIG. 1, the post-branch runners 102 and 103 are provided in a direction perpendicular to the pre-branch runner 101, but this angle is arbitrary. Moreover, although the runner after passing through the branch point 104 has two branches and the post-branch runners 102 and 103 are provided, the runner may have three or more branches.
[0019]
2 and 3 are main part conceptual views of a runner branch portion having a hot water pool portion having a different cross-sectional area. 2 and 3, the same components as those in FIG.
FIG. 2 shows a case where the cross-sectional shape of the hot water reservoir 301 is smaller than the pre-branch runner 101, and FIG. 3 shows a case where the cross-sectional shape of the hot water reservoir 302 is larger than the pre-branch runner 101.
[0020]
From FIG. 2, when the cross-sectional shape of the hot water reservoir 301 is smaller than the pre-branch runner 101, a part of the molten metal flowing from the pre-branch hot spring 101 cannot enter the hot water reservoir 301, and the hot water directly after the branch. It flows into the roads 102 and 103. For this reason, the velocity distribution of the molten metal when passing through the pre-branch runner 101 becomes the inflow timing difference 303 into the post-branch runners 102 and 103, and simultaneous inflow may not be obtained.
[0021]
On the other hand, from FIG. 3, when the cross-sectional shape of the hot water reservoir 302 is larger than that of the pre-branch runner 101, the molten metal flowing from the pre-branch runner 101 is caused to flow into the hot water reservoir 302 and the post-branch runner 102. And the inflow timing to 103 can be made uniform.
Therefore, in order to ensure that the molten metal flowing from the pre-branch runner 101 flows into the puddle portion, the cross-sectional shape of the puddle portion should be larger than that of the pre-branch runner 101.
[0022]
As described above, the cross-sectional shape of the hot water reservoir 302 is preferably larger than the cross-sectional shape of the pre-branch runner 101, but the cross-sectional shapes of the hot water reservoir 302 and the pre-branch runner 101 may be the same. .
[0023]
FIG. 4 is a conceptual diagram of a multi-point gate mold having the runner branch structure of the present invention. In FIG. 4, the same components as those in FIG.
[0024]
The multi-point gate mold is provided with hot water reservoirs 150 and 501 that protrude in the molten metal traveling direction in the pre-branch runner. The lengths of the runners 102 and 103 from the runner branch point 104 to the next branch point 401 are the same. Also, the runners 402 to 405 from the runner branch point 401 to the gates 108a to 108d have the same length. With this configuration, the molten metal can flow into the cavity 250 at the same speed at the same time, and a good molded product can be obtained.
[0025]
The casting mold described above has a structure in which a single cavity is filled with molten metal from a plurality of gates, but a plurality of gates may be used to fill a plurality of cavities with molten metal.
[0026]
【The invention's effect】
According to the present invention, since the runner branch structure includes the hot water reservoir that protrudes in the traveling direction of the melt in the pre-branch runner, the inflow timing of the melt into the plurality of post-branch runners can be made uniform. Moreover, a favorable molded product can be obtained by comprising the casting die provided with such a runner branch structure.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a main part of a runner branch structure according to an embodiment of the present invention.
FIG. 2 is a conceptual diagram of a main part of a runner branch portion having a hot water reservoir portion having a small cross-sectional area.
FIG. 3 is a conceptual diagram of a main part of a runner branch having a hot water reservoir having a large cross-sectional area.
FIG. 4 is a conceptual diagram of a multi-point gate mold having a runner branch structure according to the present invention.
FIG. 5 is a conceptual diagram of a main part of a conventional runner branch structure.
FIG. 6 is a conceptual diagram of a multi-point gate mold having a conventional runner branch structure.
[Explanation of symbols]
100, 200 Runner branch 101, 201 Before branch 102, 103, 202, 203, 402, 403, 404, 405 After branch 104, 204, 401 Branch point 106, 206 Speed distribution 108, 208 Gate 150 , 301, 302, 501 Hot water reservoir 205 Center line 250 Cavity 207, 303 Inflow timing difference

Claims (3)

分岐前湯道、前記分岐前湯道から分岐する複数の分岐後湯道、および前記複数の分岐後湯道への溶湯の流入タイミングを調整する湯溜り部を備える湯道分岐構造体。A runner branch structure comprising: a pre-branch runner, a plurality of post-branch runners that branch from the pre-branch runner, and a hot water reservoir that adjusts the inflow timing of the molten metal to the plurality of post-branch runners. 前記湯溜り部は、前記分岐前湯道における溶湯の進行方向に突出する前記分岐前湯道の延長部からなり、前記延長部の突出方向に垂直な断面は、前記分岐前湯道と同一または前記分岐前湯道よりも大きい請求項1記載の湯道分岐構造体。The hot water pool portion includes an extension portion of the pre-branch runway that protrudes in the direction of the molten metal in the pre-branch runner, and a cross section perpendicular to the protruding direction of the extension portion is the same as the pre-branch runway or The runner branch structure according to claim 1, which is larger than the pre-branch runner. 分岐前湯道、前記分岐前湯道から分岐する複数の分岐後湯道、および前記複数の分岐後湯道への溶湯の流入タイミングを調整する湯溜り部を備え、前記複数の分岐後湯道の末端に位置する複数のゲートと一つ以上のキャビティを有する鋳造用金型。A plurality of post-branch runners, comprising a pre-branch runner, a plurality of post-branch runners that branch from the pre-branch runner, and a hot water reservoir that adjusts the inflow timing of molten metal to the plurality of post-branch runners A casting mold having a plurality of gates and one or more cavities located at the ends of the mold.
JP2003167654A 2003-06-12 2003-06-12 Structure for branching runner and metallic mold for casting Pending JP2005000953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003167654A JP2005000953A (en) 2003-06-12 2003-06-12 Structure for branching runner and metallic mold for casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003167654A JP2005000953A (en) 2003-06-12 2003-06-12 Structure for branching runner and metallic mold for casting

Publications (1)

Publication Number Publication Date
JP2005000953A true JP2005000953A (en) 2005-01-06

Family

ID=34093407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003167654A Pending JP2005000953A (en) 2003-06-12 2003-06-12 Structure for branching runner and metallic mold for casting

Country Status (1)

Country Link
JP (1) JP2005000953A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056168A1 (en) * 2010-10-13 2013-03-07 Mitsubishi Heavy Industries, Ltd. Die-casting die
JP2013204122A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Forming dies for metal powder injection molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130056168A1 (en) * 2010-10-13 2013-03-07 Mitsubishi Heavy Industries, Ltd. Die-casting die
US8757242B2 (en) * 2010-10-13 2014-06-24 Mitsubishi Heavy Industries, Ltd. Die-casting die
EP2628556A4 (en) * 2010-10-13 2018-01-03 Mitsubishi Heavy Industries, Ltd. Die-casting die
JP2013204122A (en) * 2012-03-29 2013-10-07 Seiko Epson Corp Forming dies for metal powder injection molding

Similar Documents

Publication Publication Date Title
JP4691051B2 (en) Manufacturing method of die casting and die casting mold
CN102166811B (en) Mold for injection molding
JP2005000953A (en) Structure for branching runner and metallic mold for casting
CN110899630B (en) Aluminum alloy casting mold capable of improving casting defects
JP3626046B2 (en) Molded product and its casting mold
CN108621377A (en) Injection mold, casting of electronic device and its processing method
CN205853268U (en) The flow passage structure of a kind of plastic mould and plastic mould
JPH08323817A (en) Mold for injection molding synthetic resin product and injection molding method using the mold
JPH07116807A (en) Air vent block
CN202212559U (en) Die-casting mold pPouring system of die-casting mold
WO2017169490A1 (en) Injection mold, injection molding method, and molded article
Sikora et al. Some problems of polymer flow in injection mold
JP2001047478A (en) Injection molding method, injection molding machine and injection-molded article
RU2756838C2 (en) Cup of an asymmetric shape for casting slabs and metallurgical plant for casting metal that includes it
JP2005035242A (en) Resin molding device, manufacturing method for resin molded article, and resin molded article
JPH0514822Y2 (en)
JP3816816B2 (en) Metal casting mold
CN214236208U (en) Refractory lining of casting mould
JPH10305458A (en) Injection molding mold and molded product
JP2008062400A (en) Mold
JP2980915B2 (en) Casting equipment
KR940001269Y1 (en) Package molding die
CN110475631A (en) Casting device
SU1113206A1 (en) Gating system
JP2890735B2 (en) Casting mold