JP2005000119A - Material for adsorbing microorganism - Google Patents

Material for adsorbing microorganism Download PDF

Info

Publication number
JP2005000119A
JP2005000119A JP2003169241A JP2003169241A JP2005000119A JP 2005000119 A JP2005000119 A JP 2005000119A JP 2003169241 A JP2003169241 A JP 2003169241A JP 2003169241 A JP2003169241 A JP 2003169241A JP 2005000119 A JP2005000119 A JP 2005000119A
Authority
JP
Japan
Prior art keywords
microorganism
adsorbing
microorganisms
blood
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003169241A
Other languages
Japanese (ja)
Other versions
JP2005000119A5 (en
JP4329421B2 (en
Inventor
Cohen Jonathan
コーエン ジョナサン
Takashi Miwa
敬史 三和
Mayumi Fukuyama
真弓 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003169241A priority Critical patent/JP4329421B2/en
Publication of JP2005000119A publication Critical patent/JP2005000119A/en
Publication of JP2005000119A5 publication Critical patent/JP2005000119A5/ja
Application granted granted Critical
Publication of JP4329421B2 publication Critical patent/JP4329421B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Medicinal Preparation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material effective for selectively and exclusively adsorbing and removing microorganisms from a solution containing a number of proteins and cells such as blood and provide a blood cleaning column, a wound covering material and a septicemia treating device produced by using the material. <P>SOLUTION: The microorganism removing material having an albumin adsorption ratio of ≤10%, a leukocyte adsorption ratio of ≤30% and a microorganism removing ratio of ≥40% in blood can be produced by introducing a functional group capable of forming a hydrogen bond such as urea bond and amide bond to a material having a microscopic porous structure on the surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は微生物吸着用材料および該材料を用いた液体処理方法に関する
【0002】
【従来の技術】
微生物の吸着材料としては、活性炭、シリカゲル、ゼオライトなどの多孔性粒状材料、合成高分子あるいはセルロースなどの天然高分子を基材としたイオン交換体、キトサンやハイドロキシアパタイトあるいは陰イオンと陽イオンを混合することにより生じる水難溶性物質が知られている。例えば、特許文献1(特開2000−14380号公報で)はリン酸緩衝液中に塩化カルシウムを添加したときに生じるリン酸カルシウムが微生物の吸着体になり得ることが示されている。また、特許文献2(特開平9−136030号公報)ではハイドロキシアパタイトにより構成される吸着材に微生物を含む水性媒体を接触させて吸着により微生物あるいは微生物を含むタンパク質を濃縮し除去することが行われている。
【0003】
【特許文献1】
特開2000−14380号公報
【0004】
【特許文献2】
特開平9−136030号公報
【0005】
【特許文献3】
特開2000−239110号公報
【0006】
【発明が解決しようとする課題】
しかし、前記の従来技術による微生物吸着には次のような課題が残されている。
【0007】
一つは、微生物を選択的に吸着し溶液中から除去する材料ではないこと。そのため、血液中などの多成分の溶液中で用いるとタンパク質や細胞などの有用成分をも除去してしまう、あるいは失活させてしまう。
【0008】
また、イオン交換を利用した吸着では、イオン強度の高い溶液中では結合力が弱められてしまい、夾雑物の影響を受けやすい。また、陰イオンと陽イオンを混合させる系においては、微生物の存在する溶液中に多量の電解質を添加する必要があり、人の体内の微生物除去などには、その毒性が問題となり利用することはできない。また特許文献3(特開2000−239110号公報)に示されているピリジニウム塩基を含む有機基を有する無機微粒子は微生物凝集剤であり、人などの生物の体内での使用はその残留とそれにより生じる副作用の問題があり用いることができない。
【0009】
【課題を解決するための手段】
このような課題を解決するために、本発明は下記のような構成要素を有する。
(1)材料表面に水素結合形成可能な化学構造を有し、且つ、材料表面が微多孔質構造であることを特徴とする微生物吸着用材料。
(2)アルブミンの吸着率が10%以下であり且つ白血球の吸着率が30%以下であることを特徴とする(1)に記載の微生物吸着用材料。
(3)微生物の吸着率が40%以上であることを特徴とする(1)または(2)に記載の微生物吸着用材料。
(4)微生物が連鎖球菌あるいはブドウ球菌であることを特徴とする(1)〜(3)のいずれかに記載の微生物吸着用材料。
(5)(1)〜(4)のいずれかに記載の微生物吸着用材料に液体を接触させることを特徴とする液体からの微生物の除去方法
(6)体液の浄化に用いられることを特徴とする(1)〜(4)のいずれかに記載の微生物吸着用材料。
(7)(1)〜(4)のいずれかに記載の微生物吸着用材料を含んでなる血液浄化カラム。
(8)(1)〜(4)のいずれかに記載の微生物吸着用材料を含んでなる創傷被覆材料。
(9)(1)〜(4)のいずれかに記載の微生物吸着用材料を含んでなる敗血症治療機器。
【0010】
【発明の実施の形態】
本発明における微生物吸着用材料とは、材料表面に微生物を吸着により結合し溶液中より微生物を除去することができる材料を意味する。
【0011】
本発明における微生物吸着用材料は、イオン結合ではなく、水素結合により微生物を吸着することができるよう、表面に水素結合形成可能な官能基を有している。水素結合形成可能な官能基としては尿素結合、チオ尿素結合、アミド結合あるいは1級〜4級アミノ基、水酸基、アルデヒド基、カルボキシル基、メルカプト基、グアニジル基等があげられ、イオン性ではないことがより好適に微生物吸着を行うことを考えると、尿素結合、チオ尿素結合やアミド結合を少なくとも一つ有することが好ましいが、これらの構造に限定されない。水素結合形成可能な官能基に続く構造としては脂肪族、脂環族、芳香族の化合物を好ましく用いることができるがこれらに限定されない。また、水素結合形成可能な基を2つ以上有することがより好ましく、特に、尿素結合、チオ尿素結合、アミド基に続く構造として例えばアミノ基、水酸基等の水素結合形成可能な基を更に有する構造が好ましく用いられる。アミノ基を有する構造としてはアミノヘキサン、アミノオクタン、アミノドデカン、アミノジフェニルメタン、ジアミノメタン、テトラエチレンペンタミン、ポリエチレンイミン等が用いられる。水酸基を有する構造としては、ヒドロキシプロパン、2−エタノールアミン、1,3−ジアミノ−2−ヒドロキシプロパン、グルコース、アガロース、セルロース等が用いられる。
【0012】
また、本発明における微多孔質構造の材料とは、材料表面に微細な多孔あるいは凹凸を有している材料のことをいい、微多孔質構造の材料としては、無機材料や有機材料のいずれもが用いることができる。無機材料としては、金属、セラミックス、シリカゲル、活性炭等が用いられるが、材料表面への官能基の導入の容易さを考えた場合には、有機高分子材料が好ましく用いられる。有機高分子材料としては、ナイロン、ポリスチレン、ポリスルホン、ポリメチルメタクリレート、ポリエチレン、ポリビニルアルコールなどの合成高分子やセルロース、キトサン、キチン等の天然高分子などが好適に用いられる。
【0013】
つまり、単独重合、共重合あるいはブレンドされたこれらの高分子材料に尿素結合あるいは/およびチオ尿素結合あるいは/およびアミド基を導入することが好適に行われる。
【0014】
本発明のいう表面が微多孔質構造を持ち、アルブミン吸着率が10%以下であり且つ白血球の吸着率が30%以下であり微生物の吸着率が40%以上であることを特徴とする水素結合可能な化学構造を有する微生物吸着用材料は、例えば以下のような方法でつくることができる。すなわち、例えばクロロアミドアセトメチル基のような官能基を有するポリスチレン繊維にテトラエチレンペンタミンのようなアミノ化合物を反応させ、続いて4−クロロフェニルイソシアネートのようなイソシアネート化合物を反応させることにより、アミノ基と尿素結合を有する繊維が合成される。このように脂肪族化合物や芳香族化合物に尿素結合を導入する場合には、イソシアネート化合物あるいはイソチオシアネート化合物とアミノ化合物とを反応させる方法を用いることができる。また、脂肪族化合物や芳香族化合物にアミド基を導入する場合には、例えば、酸、酸塩化物あるいは酸無水物とアミノ化合物とを反応させる方法を用いることができる。
【0015】
アルブミンの吸着率はアルブミン濃度が既知の健常ヒト血液40mlを1.5g(乾燥重量)の微生物吸着材料を充填したカラム(長さ4cm、内径0.8cm)に1ml/minの流量で37℃で3時間循環した後、再度アルブミン濃度を測定し、以下の式により吸着率を算出した。
【0016】
吸着率(%)=(循環前の測定値−循環後の測定値)/循環前の測定値*100
アルブミンの測定は富士フィルム社製の富士ドライケム5500にて行った。すなわちアルブミン測定用のスライドであるALB−Pを用いて富士フィルム社のプロトコールに従って測定した。
【0017】
また、白血球の吸着率は、白血球数既知の健常ヒト血液40mlを用いてアルブミン吸着試験と同様の操作を行い、循環前後の白血球数値を上式に用いて吸着率を算出した。白血球数の測定は日本光電社製のCelltacα MEK−6208を用いて、日本光電社のプロトコールに従って行った。
【0018】
微生物の吸着率はTH培地などの微生物培養用の培地に一定量の微生物を添加したもの40mlを用いてアルブミン試験と同様の操作を行い循環前後の微生物数を寒天平板などを使用して測定しその値を上式に用いて吸着率を算出した。
【0019】
イソシアネート化合物あるいはイソチオシアネート化合物としては、例えば、エチルイソシアネート、n−プロピルイソシアネート、エチルイソチオシアネート、ベンジルイソチオシアネート、シクロヘキシルイソシアネート、シクロヘキシルイソチオシアネート、フェニルイソシアネート、クロロフェニルイソシアネート、フルオロフェニルイソシアネート、4,4’ジフェニルメタンジイソシアネート、フェニルイソチオシアネート、クロロフェニルイソチオシアネート1−ナフチルイソチオシアネート等が用いられる。酸塩化物としてはステアロイルクロライド、ベンゾイルクロライド、クロロベンゾイルクロライド等を用いることができ、酸無水物としては無水酢酸、無水コハク酸、無水安息香酸を用いることができる。また、本発明に用いるアミノ化合物のアミノ基としては1級アミノ基、2級アミノ基、3級アミノ基のいずれでも良く、アミノ化合物としては例えばアンモニア、オクチルアミン、1−(3−アミノプロピル)イミダゾール、アミノピリジン、トリス(2−アミノエチル)アミン、ジアミノエタン、ジエチレントリアミン、テトラエチレンペンタミンジプロピレントリアミン、1,2−ビス(2−アミノエトキシ)エタン、ポリエチレンイミン、ポリアリルアミン等を好ましく用いることができる。
【0020】
上記の反応は標準的には反応温度は0℃〜150℃、反応時間は0.1〜24時間で行われる。また、反応溶媒は必ずしも必要ではないが、一般的には溶媒の存在下に行われる。使用しうる溶媒としては、メタノール、エタノール、ヘキサン、トルエン、N,Nジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、Nメチルピロリドン、クロロホルム、テトラヒドロフラン、ジオキサン等が挙げられる。
【0021】
本発明における微生物吸着用材料は血液中の微生物の除去や熱傷創部やアトピー性皮膚炎患部などの感染部位からの微生物除去のような用途に用いることができる。
【0022】
本材料をカラムとして用いる場合には、ビーズ、繊維、中空繊維、糸束、ヤーン、ネット、編み地、織物、不織布等が好ましい。また、本材料は単独での使用のみならず、適当な材料にさらに固定化したり、他材料と混合して一つのカラムあるいは被覆材料として用いることもできる。
【0023】
吸着する微生物としては特に限定されないが本発明者らの知見によれば、大腸菌、緑膿菌、黄色ブドウ球菌、連鎖球菌、酵母、ウイルス、あるいは真菌が臨床的に検出される頻度が高い点で特に本発明にかかる微生物吸着用材料が効果的である。
【0024】
【実施例】
<微生物吸着材料の作製>
ポリエチレン50重量部を島成分とし、ポリスチレン50重量部を海成分とする海島型複合繊維(島数16個)3gを、N−メチロール−α−クロルアセトアミド(NMCAと略記)5.28g(濃度7%)、ニトロベンゼン35.0g、98%硫酸35.0gおよびパラホルムアルデヒド75.9mgからなる混合溶液の中に浸し、15℃で2時間反応させた。繊維を反応液から取り出し、ニトロベンゼンで洗浄した。次に、繊維に付着しているニトロベンゼンをメタノールで洗浄し、N,N−ジメチルホルムアミド(DMFと略記)中に浸漬した。繊維をDMFから取り出し、水洗、真空乾燥して、クロルアセトアミドメチル化担体を得た。この担体に減圧下、蒸着し、表面状態を電子顕微鏡(日本電子(株)JSM−5400LV)で観察した。担体表面全体が編み目構造をもつ筋状の凹凸(凸部の幅が1〜5μm)で覆われているか否かを表1に、観察した写真を図1に示した。
【0025】
上記クロルアセトアミド化担体3gに対して、テトラエチレンペンタミン0.6g、およびtert−ブチルアミン0.7g、トリエチルアミンをDMF100mlに溶解した液に浸漬し、30℃で3時間撹拌しつつ反応させる。その後反応した繊維をDMF1000mlで洗浄し、さらにその繊維を0.2gの4−クロロフェニルイソシアネートを溶解したDMF100mlに添加し、25℃で1時間反応した。その後、DMF1000mlで洗浄し、さらに蒸留水1000mlを用いて洗浄し、 本発明にかかる材料の表面に水素結合形成可能な化学構造を有し且つ材料の表面が微多孔質構造であることを特徴とする微生物吸着用材料を得た。
<微生物吸着試験>
供試菌株としてStreptococcus pyogenes (H305株)(一般名:A群連鎖球菌)およびStaphylococcus aureus(FRI1169株)(一般名:黄色ブドウ球菌)をそれぞれ5×10個/mlに調製した菌液を40ml調製した。実施例1で作製した吸着繊維1.5g(乾燥重量)を充填したカラム(内径0.8cm)に流量1ml/min、37℃で3時間循環し菌の吸着試験を行った。3時間後に菌液中の菌数を測定した。循環液はStreptococcus pyogenes (H305株)の場合はTH培地(Todd−Hewitt broth)をStreptococcus pyogenes (H305株)の場合はNZアミン培地を用いて循環した。コントロールとしてカラムに何も充填せずに液を循環させた実験を行った。
表1に示すように、コントロールではStreptococcus pyogenesとStaphylococcus aureusともに菌数が増加しているのに比較して、吸着材を充填した場合には菌数が低下しており、吸着材が2種の菌を吸着除去したことが示された。
【0026】
また、循環後に吸着材料をカラムより取り出し電子顕微鏡によりその表面を観察した。
図2に示すように繊維表面に連鎖球菌が吸着されていることが確認された
【0027】
【表1】

Figure 2005000119
【0028】
<微生物吸着試験(連鎖球菌感染動物を用いた実験)>
メスのラット(体重:260−320g)の腹腔内にStreptococcus pyogenesを1.7×10個/ml投与し連鎖球菌感染動物を作製した。このラットの頸部動静脈にカテーテルを挿入し、動脈カテーテルより血液をポンプで採りだし、カラムを通過させた後に静脈カテーテルより血液を体内に戻す体外循環を行った。この時、カラムに吸着性能が無い原繊維を充填したカラムを用いて循環させた実験を行った場合をコントロールとした。循環は菌を腹腔内に投与した時から6時間経過した時点で開始し3時間施行した後終了した。その後、24時間観察し生存時間を測定した。
【0029】
図3に示すように、循環開始時点(6時間目)では血液中の菌数にコントロールと吸着体使用群に差は見られなかったが、循環終了時(9時間目)には吸着体治療群で血中菌数の低下が確認された。また、吸着体使用群では体外循環終了後24時間の時点での生存率が向上しており、微生物吸着材料が敗血症機器として使用できることが示された。
<健常人の血液成分の吸着>
健常人より血液を40ml(ヘパリン5unit/ml)採血した。血液中のアルブミン濃度と白血球数を測定後に実施例1で作製した吸着繊維1.5g(乾燥重量)を充填したカラム(内径0.8cm)に流量1ml/min、37℃で3時間循環した。循環後の血液中のアルブミン濃度と白血球濃度を再度測定した。アルブミンの測定は富士フィルム社製の富士ドライケム5500にて行った。すなわちアルブミン測定用のスライドであるALB−Pを用いて富士フィルム社のプロトコールに従って測定した。白血球数の測定は日本光電社製のCelltacα MEK−6208を用いて、日本光電社のプロトコールに従って行った。表2に示すように、循環によるアルブミンの吸着率は2%、白血球の吸着率は27%であることが示された。
【0030】
【表2】
Figure 2005000119
【0031】
【発明の効果】
本発明により、体液中のタンパク質や細胞成分に対する親和性が低く、且つ微生物の吸着性に優れた材料を提供することを可能にした。本発明の材料により、血液や創部浸出液中の微生物を選択的に吸着除去することより、敗血症の治療に有効な血液浄化カラムあるいは創傷被覆材料を提供することを可能にした。
【図面の簡単な説明】
【図1】実施例1の微生物吸着用材料を電子顕微鏡で撮影した図面である。
【図2】実施例1の微生物吸着用材料に菌体を吸着し、電子顕微鏡で撮影した図面である。
【図3】ラットの血中菌数の変化を表す図面である。
【図4】ラットの生存率を表す図面である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microorganism-adsorbing material and a liquid processing method using the material.
[Prior art]
Microbial adsorption materials include porous granular materials such as activated carbon, silica gel, zeolite, ion exchangers based on synthetic polymers or natural polymers such as cellulose, chitosan, hydroxyapatite, or a mixture of anions and cations. A poorly water-soluble substance produced by doing so is known. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2000-14380) shows that calcium phosphate generated when calcium chloride is added to a phosphate buffer can be an adsorbent for microorganisms. In Patent Document 2 (Japanese Patent Laid-Open No. 9-136030), an aqueous medium containing microorganisms is brought into contact with an adsorbent composed of hydroxyapatite, and microorganisms or proteins containing microorganisms are concentrated and removed by adsorption. ing.
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-14380
[Patent Document 2]
JP-A-9-136030 [0005]
[Patent Document 3]
Japanese Patent Laid-Open No. 2000-239110
[Problems to be solved by the invention]
However, the following problems remain in the microorganism adsorption according to the above-described conventional technology.
[0007]
One is that it is not a material that selectively adsorbs microorganisms and removes them from the solution. Therefore, when used in a multi-component solution such as blood, useful components such as proteins and cells are also removed or deactivated.
[0008]
In addition, in the adsorption using ion exchange, the binding force is weakened in a solution having a high ionic strength, and is easily affected by impurities. In addition, in a system in which anions and cations are mixed, it is necessary to add a large amount of electrolyte to the solution in which microorganisms are present. Can not. Moreover, the inorganic fine particle which has the organic group containing the pyridinium base shown by patent document 3 (Unexamined-Japanese-Patent No. 2000-239110) is a microorganism coagulant | flocculant, The use in the body of living organisms, such as a human, is the residue and it There is a problem of side effects that occur and it cannot be used.
[0009]
[Means for Solving the Problems]
In order to solve such a problem, the present invention has the following components.
(1) A material for adsorbing microorganisms, which has a chemical structure capable of forming hydrogen bonds on the material surface, and the material surface has a microporous structure.
(2) The material for adsorbing microorganisms according to (1), wherein the adsorption rate of albumin is 10% or less and the adsorption rate of leukocytes is 30% or less.
(3) The microorganism adsorption material according to (1) or (2), wherein the microorganism adsorption rate is 40% or more.
(4) The microorganism-adsorbing material according to any one of (1) to (3), wherein the microorganism is streptococci or staphylococci.
(5) A method for removing microorganisms from a liquid, wherein the liquid is brought into contact with the microorganism-adsorbing material according to any one of (1) to (4). (6) The method is used for purifying body fluids. The material for adsorbing microorganisms according to any one of (1) to (4).
(7) A blood purification column comprising the microorganism-adsorbing material according to any one of (1) to (4).
(8) A wound dressing material comprising the microorganism adsorbing material according to any one of (1) to (4).
(9) A sepsis treatment device comprising the microorganism adsorbing material according to any one of (1) to (4).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The microorganism-adsorbing material in the present invention means a material capable of binding microorganisms to the material surface by adsorption and removing the microorganisms from the solution.
[0011]
The material for adsorbing microorganisms in the present invention has a functional group capable of forming hydrogen bonds on the surface so that microorganisms can be adsorbed by hydrogen bonds instead of ionic bonds. Examples of functional groups capable of forming hydrogen bonds include urea bonds, thiourea bonds, amide bonds, or primary to quaternary amino groups, hydroxyl groups, aldehyde groups, carboxyl groups, mercapto groups, guanidyl groups, and the like that are not ionic. However, it is preferable to have at least one urea bond, thiourea bond or amide bond, but it is not limited to these structures. As the structure following the functional group capable of forming a hydrogen bond, an aliphatic, alicyclic or aromatic compound can be preferably used, but is not limited thereto. It is more preferable to have two or more groups capable of forming a hydrogen bond, and in particular, a structure further having a group capable of forming a hydrogen bond such as an amino group or a hydroxyl group as a structure following a urea bond, a thiourea bond, or an amide group. Is preferably used. As the structure having an amino group, aminohexane, aminooctane, aminododecane, aminodiphenylmethane, diaminomethane, tetraethylenepentamine, polyethyleneimine, or the like is used. As the structure having a hydroxyl group, hydroxypropane, 2-ethanolamine, 1,3-diamino-2-hydroxypropane, glucose, agarose, cellulose and the like are used.
[0012]
In addition, the material having a microporous structure in the present invention means a material having fine porosity or irregularities on the material surface, and as the material having a microporous structure, both inorganic materials and organic materials are used. Can be used. As the inorganic material, metals, ceramics, silica gel, activated carbon, and the like are used, but organic polymer materials are preferably used in view of the ease of introduction of functional groups onto the material surface. As the organic polymer material, synthetic polymers such as nylon, polystyrene, polysulfone, polymethyl methacrylate, polyethylene, and polyvinyl alcohol, and natural polymers such as cellulose, chitosan, and chitin are preferably used.
[0013]
That is, it is preferable to introduce a urea bond or / and a thiourea bond or / and an amide group into these polymer materials homopolymerized, copolymerized or blended.
[0014]
The surface of the present invention has a microporous structure, the albumin adsorption rate is 10% or less, the leukocyte adsorption rate is 30% or less, and the microorganism adsorption rate is 40% or more. A microorganism-adsorbing material having a possible chemical structure can be produced, for example, by the following method. That is, for example, by reacting an amino compound such as tetraethylenepentamine with a polystyrene fiber having a functional group such as chloroamidoacetomethyl group, and subsequently reacting an isocyanate compound such as 4-chlorophenyl isocyanate, an amino group And fibers having urea bonds are synthesized. Thus, when introducing a urea bond into an aliphatic compound or an aromatic compound, a method of reacting an isocyanate compound or an isothiocyanate compound with an amino compound can be used. Further, when an amide group is introduced into an aliphatic compound or an aromatic compound, for example, a method of reacting an acid, acid chloride or acid anhydride with an amino compound can be used.
[0015]
The adsorption rate of albumin is 37 ml at a flow rate of 1 ml / min in a column (length 4 cm, inner diameter 0.8 cm) filled with 1.5 g (dry weight) of a microorganism-adsorbing material of 40 ml of healthy human blood whose albumin concentration is known. After circulating for 3 hours, the albumin concentration was measured again, and the adsorption rate was calculated by the following equation.
[0016]
Adsorption rate (%) = (Measured value before circulation−Measured value after circulation) / Measured value before circulation * 100
Albumin was measured with Fuji Dry Chem 5500 manufactured by Fuji Film. That is, it measured according to the protocol of Fuji Film Co., Ltd. using ALB-P which is a slide for albumin measurement.
[0017]
Further, the adsorption rate of leukocytes was calculated by performing the same operation as in the albumin adsorption test using 40 ml of healthy human blood whose leukocyte count was known, and using the leukocyte values before and after circulation in the above equation. The white blood cell count was measured according to the Nihon Kohden protocol using Celltacα MEK-6208 manufactured by Nihon Kohden.
[0018]
The adsorption rate of microorganisms is determined by measuring the number of microorganisms before and after circulation using an agar plate etc. by performing the same operation as the albumin test using 40 ml of a microorganism culture medium such as TH medium with a certain amount of microorganisms added. The adsorption rate was calculated using the value in the above equation.
[0019]
Examples of the isocyanate compound or isothiocyanate compound include ethyl isocyanate, n-propyl isocyanate, ethyl isothiocyanate, benzyl isothiocyanate, cyclohexyl isocyanate, cyclohexyl isothiocyanate, phenyl isocyanate, chlorophenyl isocyanate, fluorophenyl isocyanate, and 4,4′diphenylmethane diisocyanate. , Phenyl isothiocyanate, chlorophenyl isothiocyanate 1-naphthyl isothiocyanate and the like are used. As the acid chloride, stearoyl chloride, benzoyl chloride, chlorobenzoyl chloride and the like can be used, and as the acid anhydride, acetic anhydride, succinic anhydride, and benzoic anhydride can be used. In addition, the amino group of the amino compound used in the present invention may be any of a primary amino group, a secondary amino group, and a tertiary amino group. Examples of the amino compound include ammonia, octylamine, and 1- (3-aminopropyl). Preferably, imidazole, aminopyridine, tris (2-aminoethyl) amine, diaminoethane, diethylenetriamine, tetraethylenepentaminedipropylenetriamine, 1,2-bis (2-aminoethoxy) ethane, polyethyleneimine, polyallylamine, etc. are preferably used. it can.
[0020]
The above reaction is typically carried out at a reaction temperature of 0 ° C. to 150 ° C. and a reaction time of 0.1 to 24 hours. In addition, a reaction solvent is not necessarily required, but it is generally performed in the presence of a solvent. Solvents that can be used include methanol, ethanol, hexane, toluene, N, N dimethylformamide, dimethylacetamide, dimethyl sulfoxide, N methylpyrrolidone, chloroform, tetrahydrofuran, dioxane and the like.
[0021]
The microorganism-adsorbing material in the present invention can be used for removing microorganisms in blood and removing microorganisms from infected sites such as burn wounds and atopic dermatitis.
[0022]
When this material is used as a column, beads, fibers, hollow fibers, yarn bundles, yarns, nets, knitted fabrics, woven fabrics, nonwoven fabrics and the like are preferable. Further, the present material can be used not only alone, but also can be further fixed to an appropriate material, or mixed with other materials to be used as one column or coating material.
[0023]
Although it does not specifically limit as microorganisms to adsorb, according to the knowledge of the present inventors, in terms of the high frequency of clinical detection of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Streptococcus, yeast, virus, or fungus. The material for adsorbing microorganisms according to the present invention is particularly effective.
[0024]
【Example】
<Preparation of microorganism-adsorbing material>
3 g of a sea-island type composite fiber (16 islands) containing 50 parts by weight of polyethylene as an island component and 50 parts by weight of polystyrene as a sea component, 5.28 g (concentration 7) of N-methylol-α-chloroacetamide (abbreviated as NMCA). %), 35.0 g of nitrobenzene, 35.0 g of 98% sulfuric acid and 75.9 mg of paraformaldehyde, and reacted at 15 ° C. for 2 hours. The fiber was removed from the reaction solution and washed with nitrobenzene. Next, the nitrobenzene adhering to the fiber was washed with methanol and immersed in N, N-dimethylformamide (abbreviated as DMF). The fiber was taken out from DMF, washed with water, and dried under vacuum to obtain a chloroacetamidomethylated carrier. This carrier was evaporated under reduced pressure, and the surface state was observed with an electron microscope (JEOL Co., Ltd. JSM-5400LV). Table 1 shows whether or not the entire carrier surface is covered with streak-like irregularities having a stitch structure (the width of the convex portion is 1 to 5 μm), and the observed photograph is shown in FIG.
[0025]
To 3 g of the above chloroacetamide carrier, 0.6 g of tetraethylenepentamine, 0.7 g of tert-butylamine and triethylamine are immersed in a solution of 100 ml of DMF and reacted with stirring at 30 ° C. for 3 hours. Thereafter, the reacted fiber was washed with 1000 ml of DMF, and the fiber was added to 100 ml of DMF in which 0.2 g of 4-chlorophenyl isocyanate was dissolved, and reacted at 25 ° C. for 1 hour. Then, it is washed with 1000 ml of DMF, and further washed with 1000 ml of distilled water, and has a chemical structure capable of forming hydrogen bonds on the surface of the material according to the present invention, and the surface of the material has a microporous structure. A material for adsorbing microorganisms was obtained.
<Microbial adsorption test>
Test strain as Streptococcus pyogenes (H305 strain) (common name: A Group A Streptococcus) and Staphylococcus aureus (FRI1169 strain) (common name: Staphylococcus aureus) bacteria solution prepared in 5 × 10 6 cells / ml, respectively 40ml Prepared. The adsorption test of the bacteria was performed by circulating for 3 hours at 37 ° C. at a flow rate of 1 ml / min through a column (inner diameter 0.8 cm) packed with 1.5 g (dry weight) of the adsorption fibers prepared in Example 1. After 3 hours, the number of bacteria in the bacterial solution was measured. In the case of Streptococcus pyogenes (H305 strain), the circulating fluid was circulated using TH medium (Todd-Hewitt broth) and in the case of Streptococcus pyogenes (H305 strain), NZ amine medium. As a control, an experiment was conducted in which the liquid was circulated without filling the column.
As shown in Table 1, in the control, both the number of bacteria in Streptococcus pyogenes and Staphylococcus aureus increased, but when the adsorbent was filled, the number of bacteria decreased, and two adsorbents were used. It was shown that the bacteria were adsorbed and removed.
[0026]
Further, the adsorbent material was taken out of the column after circulation and the surface thereof was observed with an electron microscope.
As shown in FIG. 2, it was confirmed that streptococci were adsorbed on the fiber surface.
[Table 1]
Figure 2005000119
[0028]
<Microbial adsorption test (experiment using Streptococcus-infected animals)>
Streptococcus pyogenes was administered to female rats (body weight: 260-320 g) in the abdominal cavity at 1.7 × 10 7 cells / ml to produce Streptococcus-infected animals. A catheter was inserted into the rat's cervical arteriovenous vein, blood was pumped from the arterial catheter, passed through the column, and then extracorporeally returned to the body through the venous catheter. At this time, a case where an experiment in which the column was circulated using a column filled with fibrils having no adsorption performance was used as a control. Circulation started when 6 hours had passed since the bacteria were administered intraperitoneally and ended after 3 hours. Thereafter, the survival time was measured by observing for 24 hours.
[0029]
As shown in FIG. 3, there was no difference in the number of bacteria in the blood at the start of circulation (6th hour) between the control and adsorbent use groups, but at the end of circulation (9th hour), adsorbent treatment. A decrease in the number of bacteria in the blood was confirmed in the group. In the adsorbent use group, the survival rate at 24 hours after the end of extracorporeal circulation was improved, indicating that the microorganism adsorbent material can be used as a septic device.
<Adsorption of blood components of healthy people>
40 ml of blood (heparin 5 units / ml) was collected from a healthy person. After measuring the albumin concentration and white blood cell count in the blood, it was circulated at 37 ° C. for 3 hours at a flow rate of 1 ml / min through a column (inner diameter 0.8 cm) packed with 1.5 g (dry weight) of the adsorbed fibers prepared in Example 1. The circulating albumin concentration and leukocyte concentration were measured again. Albumin was measured with Fuji Dry Chem 5500 manufactured by Fuji Film. That is, it measured according to the protocol of Fuji Film Co., Ltd. using ALB-P which is a slide for albumin measurement. The white blood cell count was measured according to the Nihon Kohden protocol using Celltacα MEK-6208 manufactured by Nihon Kohden. As shown in Table 2, the albumin adsorption rate by circulation was 2%, and the leukocyte adsorption rate was 27%.
[0030]
[Table 2]
Figure 2005000119
[0031]
【The invention's effect】
According to the present invention, it has become possible to provide a material having low affinity for proteins and cell components in body fluids and having excellent microorganism adsorption. By selectively adsorbing and removing microorganisms in blood and wound exudate with the material of the present invention, it is possible to provide a blood purification column or wound dressing material effective for the treatment of sepsis.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a drawing of a microorganism adsorption material of Example 1 taken with an electron microscope.
FIG. 2 is a drawing in which cells were adsorbed on the microorganism-adsorbing material of Example 1 and photographed with an electron microscope.
FIG. 3 is a drawing showing changes in the number of bacteria in blood in rats.
FIG. 4 is a drawing showing the survival rate of rats.

Claims (9)

材料の表面に水素結合形成可能な化学構造を有し且つ材料の表面が微多孔質構造であることを特徴とする微生物吸着用材料。A material for adsorbing microorganisms, which has a chemical structure capable of forming hydrogen bonds on the surface of the material and has a microporous structure on the surface of the material. アルブミンの吸着率が10%以下であり且つ白血球の吸着率が30%以下であることを特徴とする請求項1に記載の微生物吸着用材料。The material for adsorbing microorganisms according to claim 1, wherein the adsorption rate of albumin is 10% or less and the adsorption rate of leukocytes is 30% or less. 微生物の吸着率が40%以上であることを特徴とする請求項1または2に記載の微生物吸着用材料。The microorganism adsorption material according to claim 1 or 2, wherein the microorganism adsorption rate is 40% or more. 微生物が連鎖球菌あるいはブドウ球菌であることを特徴とする請求項1〜3のいずれかに記載の微生物吸着用材料。The microorganism-adsorbing material according to any one of claims 1 to 3, wherein the microorganism is streptococci or staphylococci. 体液の浄化に用いられることを特徴とする請求項1〜4のいずれかに記載の微生物吸着用材料。The material for adsorbing microorganisms according to any one of claims 1 to 4, which is used for purifying body fluids. 請求項1〜4のいずれかに記載の微生物吸着用材料に液体を接触させることを特徴とする液体からの微生物の除去方法。A method for removing microorganisms from a liquid, wherein the liquid is brought into contact with the microorganism-adsorbing material according to claim 1. 請求項1〜4のいずれかに記載の微生物吸着用材料を含んでなる血液浄化カラム。A blood purification column comprising the microorganism-adsorbing material according to claim 1. 請求項1〜4のいずれかに記載の微生物吸着用材料を含んでなる創傷被覆材料。A wound dressing material comprising the microorganism adsorbing material according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の微生物吸着用材料を含んでなる敗血症治療機器。A sepsis treatment device comprising the microorganism-adsorbing material according to any one of claims 1 to 4.
JP2003169241A 2003-06-13 2003-06-13 Materials for microbial adsorption Expired - Fee Related JP4329421B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003169241A JP4329421B2 (en) 2003-06-13 2003-06-13 Materials for microbial adsorption

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003169241A JP4329421B2 (en) 2003-06-13 2003-06-13 Materials for microbial adsorption

Publications (3)

Publication Number Publication Date
JP2005000119A true JP2005000119A (en) 2005-01-06
JP2005000119A5 JP2005000119A5 (en) 2006-07-27
JP4329421B2 JP4329421B2 (en) 2009-09-09

Family

ID=34094440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003169241A Expired - Fee Related JP4329421B2 (en) 2003-06-13 2003-06-13 Materials for microbial adsorption

Country Status (1)

Country Link
JP (1) JP4329421B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333830A (en) * 2004-05-24 2005-12-08 Toyo Suisan Kaisha Ltd Method for isolating and/or concentrating microorganism, and apparatus for the method
JP2007144028A (en) * 2005-11-30 2007-06-14 Toray Ind Inc Method of manufacturing adsorbing carrier
JP2018104608A (en) * 2016-12-27 2018-07-05 京畿大学校産学協力団 Concrete protective coating material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333830A (en) * 2004-05-24 2005-12-08 Toyo Suisan Kaisha Ltd Method for isolating and/or concentrating microorganism, and apparatus for the method
JP4532165B2 (en) * 2004-05-24 2010-08-25 東洋水産株式会社 Method for separating and / or concentrating microorganisms and apparatus for use in those methods
JP2007144028A (en) * 2005-11-30 2007-06-14 Toray Ind Inc Method of manufacturing adsorbing carrier
JP2018104608A (en) * 2016-12-27 2018-07-05 京畿大学校産学協力団 Concrete protective coating material

Also Published As

Publication number Publication date
JP4329421B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
CN101505858B (en) Use of a colloidal suspension of a cationic polymer to treat a support for medical use
EP2461847B1 (en) Device for eliminating biologically harmful substances from bodily fluids
US8303819B2 (en) Separation material
US20090211976A1 (en) Device for removing bacterial lipopolysaccharides and/or lipoteichoic acids from protein-containing fluids and its use for the treatment of sepsis
WO2006106972A1 (en) Adsorbent and column for extracorporeal circulation
JP3093811B2 (en) Polyvinylidene fluoride resin film and method for producing the same
JP2023130402A (en) Use of hemocompatible porous polymer bead sorbent for removal of endotoxemia-inducing molecules
Liu et al. Alginate/HSA double-sided functional PVDF multifunctional composite membrane for bilirubin removal
JP4329421B2 (en) Materials for microbial adsorption
EP2261271B1 (en) Separation material
CN103751831B (en) Chitosan-containing activated carbon fiber surgical dressing and preparation method thereof
JP2006288571A (en) Adsorbent for cancer treatment and column for extracorporeal circulation
JPS6040863B2 (en) medical adsorbent
JP2009095436A (en) Blood preparation purification material, purification method of the same, and purified blood preparation
CN112588132B (en) Hollow fiber membrane and preparation method thereof
JP2002035118A (en) Column for treating inflammatory disease
JP2005145852A (en) Method of removing antibody agglomerate
JP2007260216A (en) Adsorbent carrier and column for extracorporeal circulation
Bell et al. Endotoxin removal from albumin and saline solutions
CN116159544A (en) Composite material with silk fibroin as raw material, and preparation method and application thereof
JP2004201752A (en) Protein adsorption suppressing material and column using the same
JP2021171747A (en) Nonwoven fabric and erythrocyte-containing biological fluid processing filter
JPS5929197B2 (en) Protein collection method
JP4783970B2 (en) Adsorbent for adsorption of oxidized low density lipoprotein
JPH10168231A (en) Antibacterial antithrombotic material

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090526

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090608

R151 Written notification of patent or utility model registration

Ref document number: 4329421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140626

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees