JPS5929197B2 - Protein collection method - Google Patents

Protein collection method

Info

Publication number
JPS5929197B2
JPS5929197B2 JP52002040A JP204077A JPS5929197B2 JP S5929197 B2 JPS5929197 B2 JP S5929197B2 JP 52002040 A JP52002040 A JP 52002040A JP 204077 A JP204077 A JP 204077A JP S5929197 B2 JPS5929197 B2 JP S5929197B2
Authority
JP
Japan
Prior art keywords
membrane
protein
water
proteins
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52002040A
Other languages
Japanese (ja)
Other versions
JPS5387400A (en
Inventor
健資 鎌田
純 加茂
俊輔 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP52002040A priority Critical patent/JPS5929197B2/en
Publication of JPS5387400A publication Critical patent/JPS5387400A/en
Publication of JPS5929197B2 publication Critical patent/JPS5929197B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明はポリアクリロニトリル又はアクリロニトリルを
主成分とする共重合体からなる限外P過材を吸着材とし
て用いて、蛋白質を含む水溶液から該蛋白質を捕集する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for collecting proteins from an aqueous solution containing proteins using an ultra-P filter material made of polyacrylonitrile or a copolymer mainly composed of acrylonitrile as an adsorbent. It is.

有用な蛋白質、たとえば酵素やある種のホルモンなどを
微量含む水溶液から、これらの蛋白質を捕集し、精製す
る方法として、吸着材による吸着法が存在する。これら
の吸着材としては重金属、硫酸バリウム、ケイ酸および
その塩類、各種の官能基を有するイオン交換体が知られ
ている。しかしながら吸着材によつては、その吸着能が
低かつたり、また逆に強く吸着するため後に続く溶離操
作が困難となる。吸着材に対する蛋白質の吸着機構は明
らかでないが、多くの場合吸着材の有する官能基と一種
の化学的結合によつて吸着される場合と、吸着材の形状
に原因する物理的な吸着とが考えられている。
An adsorption method using an adsorbent exists as a method for collecting and purifying useful proteins, such as enzymes and certain hormones, from an aqueous solution containing trace amounts of these proteins. As these adsorbents, heavy metals, barium sulfate, silicic acid and its salts, and ion exchangers having various functional groups are known. However, some adsorbents have low adsorption capacity, or conversely, adsorb strongly, making subsequent elution operations difficult. The adsorption mechanism of proteins to adsorbents is not clear, but in most cases it is thought that proteins are adsorbed through a kind of chemical bond with the functional groups of the adsorbent, or physically adsorbed due to the shape of the adsorbent. It is being

本発明者らは吸着材の形状と蛋白質の吸着能との関係を
種々検討した結果、アクリロニトリル系重合体の半透膜
もしくは限外沢過膜が蛋白質に対し吸着能(単位重量当
り)が大きく、しかも容易に溶離出来ることを見出し本
発明を完成した。本発明は吸着材を用いて蛋白質を含む
水溶液から蛋白質を捕集する方法において、該吸着材と
してポリアクリロニトリルあるいはアクリロニトリルを
30重量%以上含む共重合体からなる半透膜もしくは限
外沢過材を用いることを特徴とする蛋白質の捕集法であ
る。以下本発明の詳細について述べる。
The present inventors conducted various studies on the relationship between the shape of the adsorbent and the protein adsorption capacity, and found that semipermeable membranes or ultrafiltration membranes made of acrylonitrile polymer have a high adsorption capacity (per unit weight) for proteins. The present invention was completed based on the discovery that it can be easily eluted. The present invention provides a method for collecting proteins from an aqueous solution containing proteins using an adsorbent, in which a semipermeable membrane or an ultrafiltration material made of polyacrylonitrile or a copolymer containing 30% by weight or more of acrylonitrile is used as the adsorbent. This is a protein collection method characterized in that it is used. The details of the present invention will be described below.

本発明の限外沢過材の製造方法は一般に重合体をその溶
剤に溶解して重合体溶液を調整し、適当な形態に賦形し
、その後非溶剤中で凝固又はゲル化させることによつて
得られる。
The method for producing the ultrafiltration material of the present invention generally involves dissolving a polymer in its solvent to prepare a polymer solution, shaping it into an appropriate form, and then coagulating or gelling it in a non-solvent. You can get it.

たとえば平膜状の限外沢過膜の製造法に関しては特開昭
50−90579、特開昭48−86163等に述べら
れている。また中空糸状の限外沢過膜に関しては特開昭
49−6552、特開昭48−57268等に開示され
ている。これらの方法で得られた限外沢過膜は一般に数
十ミクロンから数百ミクロンの厚みを有し、膜内部に互
に連結した空孔を有しているため水をよく通過せしめ▲
過膜として使用される。
For example, methods for manufacturing flat ultrafiltration membranes are described in JP-A-50-90579 and JP-A-48-86163. Hollow fiber ultrafiltration membranes are disclosed in JP-A-49-6552, JP-A-48-57268, and the like. The ultrafiltration membranes obtained by these methods generally have a thickness of several tens of microns to several hundred microns, and have interconnected pores inside the membrane, allowing water to pass through it easily.
Used as a membrane.

即ちこれらの膜を用いて水溶液を沢過すれば、ある溶質
の大きさが膜の孔の孔径より大きければ膜を透過せず、
一方小さな溶質は膜を透過する。従つて膜中の孔径が極
端に大きいものや、また極度に小さいものは溶質分子が
膜中に侵入しにくく、本発明の吸着膜としては不適であ
る。限外f過膜の場合、微小な孔径を有する孔の存在す
る表面層と比較的孔径の大きい孔を有する内部多孔質層
からなり、一概に膜の孔径を規定するのが困難である。
膜の透水速度はこれら表面及び内部層の孔径の大きさを
反映しており、この意味て俵外f過膜の性能は透水速度
でまず規定される。本発明で用いられる限外▲過膜とし
ては、透水定数Lp(7/Cr!I.i.atm)は0
.01以上、0.60以下の範囲が望ましい。また限外
▲過膜の吸着機能を利用する本発明に於ては、表面緻密
層のない膜の方が望ましい。さらに表面緻密層の存在す
る膜では、裏面の多孔質層側から加圧吸着させ、脱着は
緻密層側から加圧して行なうのが効果的である。これら
の限外f過膜はその多孔質構造のために非常に大きな内
部表面積を有し、優れた吸着材として作用する。
In other words, if an aqueous solution is passed through these membranes, if the size of a certain solute is larger than the pore size of the membrane's pores, it will not pass through the membrane;
On the other hand, small solutes pass through the membrane. Therefore, if the pore size in the membrane is extremely large or extremely small, it will be difficult for solute molecules to penetrate into the membrane, making it unsuitable for the adsorption membrane of the present invention. In the case of an ultra-f membrane, it is made up of a surface layer containing pores with a minute pore size and an internal porous layer having pores with a relatively large pore size, and it is difficult to define the pore size of the membrane unconditionally.
The water permeation rate of the membrane reflects the pore size of these surface and inner layers, and in this sense, the performance of the membrane outside the bale is first determined by the water permeation rate. The ultraviolet membrane used in the present invention has a water permeability constant Lp (7/Cr!I.i.atm) of 0.
.. A range of 0.01 or more and 0.60 or less is desirable. Furthermore, in the present invention, which utilizes the adsorption function of the ultraviolet membrane, a membrane without a dense surface layer is preferable. Furthermore, in the case of a membrane in which a surface dense layer exists, it is effective to perform adsorption under pressure from the porous layer side on the back surface, and to perform desorption by applying pressure from the dense layer side. These ultrafon membranes have a very large internal surface area due to their porous structure and act as excellent adsorbents.

たとえばアクリル繊維の表面積は、繊維内部が緻密構造
を有しているため1イ/V以下であるのに対し、これら
の限外▲過膜は数十ml/fの全表面積を有す。吸着材
として優れるためには単に表面積が大きいだけでは意味
をなさない。
For example, the surface area of acrylic fibers is less than 1 I/V due to the dense structure inside the fibers, whereas these ultrafilter membranes have a total surface area of several tens of ml/f. In order to be excellent as an adsorbent, simply having a large surface area is not enough.

即ち吸着材と被吸着物質の間になんらかの相互作用が働
き、よく吸着せねばならない。本発明者らは、この点に
つき鋭意検討した結果、ポリアクリロニトリル又はアク
リロニトリルを30重量%以上含む共重合体が蛋白質に
対し、優れた吸着能を示すことを発見した。しかも吸着
しな蛋白質は酸あるいはアクリル水で容易に溶出するこ
とがわかつた。表面積の大きな限外沢過膜としてセルロ
ースアセテート膜が市販されているが、この膜ではほと
んど蛋白質を吸着しない。限外f過膜を用いての吸着操
作は単に膜を蛋白質水溶液と常圧で接触させても良い。
That is, there must be some kind of interaction between the adsorbent and the substance to be adsorbed to ensure good adsorption. As a result of intensive studies on this point, the present inventors discovered that polyacrylonitrile or a copolymer containing 30% by weight or more of acrylonitrile exhibits excellent adsorption ability for proteins. Moreover, it was found that unadsorbed proteins were easily eluted with acid or acrylic water. Cellulose acetate membranes are commercially available as ultrafiltration membranes with large surface areas, but these membranes hardly adsorb proteins. In the adsorption operation using an ultrafon membrane, the membrane may be simply brought into contact with an aqueous protein solution at normal pressure.

即ち平膜や中空繊維状のものを小片に切断し、原水と攪
拌接触させたり、あるいは平膜をスパイラル状に巻きカ
ラムにつめて原水を流下させる方法も取ることが出来る
。最も効果的なのは、限外沢過膜の一方から原水を加圧
して送り、蛋白質を選択的に吸着せしめ、後に溶出液を
同様に膜の一方あるいは他方から加圧して送り、膜内部
に吸着した蛋白質を溶出させる方法である。中空糸を用
いた場合、膜の支持体が不要となるので後者の方法はさ
らに効果的となる。本発明の膜の吸着能は吸着させるべ
き蛋白質の等電点近傍で大きくなる。
That is, it is possible to cut a flat membrane or hollow fiber into small pieces and bring them into contact with the raw water while stirring, or to wind the flat membrane in a spiral shape and pack it into a column to allow the raw water to flow down. The most effective method is to send raw water under pressure from one side of the ultrafiltration membrane to selectively adsorb proteins, and then send the eluate under pressure from one side or the other of the membrane, allowing the protein to be adsorbed inside the membrane. This is a method to elute proteins. When hollow fibers are used, the latter method becomes even more effective since a membrane support is not required. The adsorption capacity of the membrane of the present invention increases near the isoelectric point of the protein to be adsorbed.

従つて吸着操作はなるべく等電的近傍にPHを調整して
行なうのが望ましい。本発明の膜が特に優れた吸着を示
す蛋白質は分子量が3000以上のものであり、インシ
ユリン、α−キモトリプシン、リゾチーム、ウロキナー
ゼ、アルブミン、グルコース、オキシダーゼ、アミラー
ゼ、アスパラキナーゼなどが挙げられる。1例としてウ
ロキナーゼについて説明する。
Therefore, it is desirable to perform the adsorption operation with the pH adjusted to be as close to isoelectric as possible. Proteins to which the membrane of the present invention exhibits particularly excellent adsorption have a molecular weight of 3000 or more, and include insulin, α-chymotrypsin, lysozyme, urokinase, albumin, glucose, oxidase, amylase, and asparakinase. Urokinase will be explained as an example.

ウロキナーゼは人尿中に微量存在し、血液中のブラスミ
ノーゲンを活性化してフイプリン溶解能を有するブラス
ミンを生成する酵素であり、各種血栓症の治療薬として
広く用いられている。従つて、この酵素を人尿から効率
よく捕集する方法が注目されており、その吸着材の特許
が多数提案されている。アクリル系合成繊維を吸着材と
して用いてウロキナーゼを特異的に分離・精製する方法
が特公昭48−10232号に開示されているが、以下
の実施例で示すとおり、本発明による方法では上記公知
の方法にくらべてウロキナーゼの取得率が数倍大きい。
以下実施例を用いて本発明をさらに詳しく説明する。
Urokinase is an enzyme that exists in trace amounts in human urine and activates blasminogen in the blood to produce blasmin, which has fipurin-dissolving ability, and is widely used as a therapeutic drug for various thromboses. Therefore, methods for efficiently collecting this enzyme from human urine are attracting attention, and many patents have been proposed for adsorbent materials. A method for specifically separating and purifying urokinase using acrylic synthetic fibers as an adsorbent is disclosed in Japanese Patent Publication No. 10232/1982, but as shown in the following examples, the method according to the present invention does not involve the above-mentioned known method. The acquisition rate of urokinase is several times higher than that of the method.
The present invention will be explained in more detail below using Examples.

実施例 1 アクリロニトリル9.1wt%、酢酸ビニル9wt%を
含む共重合体を用いて特開昭5090579号に記載さ
れている方法により、平膜状の限外沢過膜を得た。
Example 1 A flat membrane-like ultraswept membrane was obtained by the method described in JP-A-5090579 using a copolymer containing 9.1 wt% acrylonitrile and 9 wt% vinyl acetate.

この平膜の厚みは120μで、窒素吸着法による表面積
の値は54イ/fであつた。また膜の透水定数Lpは0
.065(y/Cd.mi.atm)であつた。この膜
を5mu角に切断し、新鮮尿中に1y/lの割合で加え
、3時間攪拌した。その後膜状吸着材を集めてブフナー
ロート上に移し水洗した。次に吸着材を4%アンモニア
水溶液と接触させて蛋白質を吸着材から溶離させた。硫
酸アンモニウムを溶出液に加え60%飽和とし、1時間
攪拌を続けた後、静置後生成沈澱物を遠心分離して集め
、少量の水に溶解後透析膜を用いて水に対して透析を行
なつた。得られた蛋白質水溶液のウロキナーゼ活性をP
lOugのフイプリン法(BiOchem.BiOph
ys.Acta24巻278頁)により求めた所、45
00(Urlitノψ蛋白質)であつた。また原料の新
鮮尿の量およびそのウロキナーゼ活性より、取得率を計
算すると95%の取得率であつた。比較例 1 実施例1に於て吸着材として、限外沢過膜のかわりにア
クリル繊維(三菱レイヨン(株)製ボンネル)、硫酸バ
リウム、カルボキシメチルセルロースを用いて同様の実
験を行なつた。
The thickness of this flat membrane was 120 μm, and the surface area value determined by the nitrogen adsorption method was 54 i/f. Also, the water permeability constant Lp of the membrane is 0
.. 065 (y/Cd.mi.atm). This membrane was cut into 5 mu square pieces, added to fresh urine at a ratio of 1 y/l, and stirred for 3 hours. Thereafter, the film-like adsorbent was collected, transferred onto a Buchner funnel, and washed with water. The adsorbent was then contacted with a 4% aqueous ammonia solution to elute the protein from the adsorbent. Ammonium sulfate was added to the eluate to achieve 60% saturation, and stirring was continued for 1 hour. After standing still, the resulting precipitate was collected by centrifugation, dissolved in a small amount of water, and then dialyzed against water using a dialysis membrane. Summer. The urokinase activity of the obtained protein aqueous solution was expressed as P
lOug's fibrin method (BiOchem.BiOph
ys. Acta Vol. 24, p. 278), 45
00 (Urlit no ψ protein). In addition, the acquisition rate was calculated from the amount of fresh urine as a raw material and its urokinase activity, and the acquisition rate was 95%. Comparative Example 1 A similar experiment to Example 1 was conducted using acrylic fibers (Bonnell, manufactured by Mitsubishi Rayon Co., Ltd.), barium sulfate, and carboxymethyl cellulose instead of the ultrafiltration membrane as the adsorbent.

アクリル繊維は繊維を511長に切断したものを用い、
さらにベンゼンメタノール混合液体中に浸漬して油剤を
除去して用いた。硫酸バリウム、カルボキシメチルセル
ロースは粉末状試薬をそのまま使用した。実施例1と同
様にして求めたウロキナーゼ活性及び取得率は表1のご
とくである。表1の中ではアクリル繊維が一番良いが、
実施例1の膜の場合にくらべて取得率およびその純度の
面で劣る。実施例2、比較例2市販されている各種蛋白
質を0.05%になるようイオン交換水に溶解し、溶液
のPHを等電点近傍または酸性域に調整した。
The acrylic fiber was cut into 511 lengths,
The sample was then immersed in a benzene-methanol mixed liquid to remove the oil before use. Barium sulfate and carboxymethyl cellulose were used as powdered reagents as they were. Urokinase activity and acquisition rate determined in the same manner as in Example 1 are shown in Table 1. Acrylic fiber is the best in Table 1,
It is inferior to the membrane of Example 1 in terms of yield and purity. Example 2, Comparative Example 2 Various commercially available proteins were dissolved in ion-exchanged water to a concentration of 0.05%, and the pH of the solution was adjusted to be near the isoelectric point or in the acidic range.

この溶液20m1に実施例1で用いたポリアクリロニト
リル系半透膜および比較のために、市販セルロース、ア
セテート限外沢過膜(Lp=0.055)を5111角
に切断し、100η加え、室温で24時間ゆつくりと撹
拌した。その後膜を取り出し蒸留水で洗浄後、膜に吸着
した蛋白質を吸光光度法により測定し、あらかじめ作成
した検量線によりその定量を行なつた。結果を表2に示
すが、これよりアクリロニトリル系半透膜は蛋白質に対
して優れた吸着能を示すことがわかる。実施例3、比較
例3 アクリロニトリルと共重合可能な他のビニルモノマーを
用いてその組成を変えた種々の共重合体を公知の方法で
合成した。
To 20 ml of this solution was added the polyacrylonitrile semipermeable membrane used in Example 1 and, for comparison, a commercially available cellulose acetate ultrafiltration membrane (Lp=0.055) cut into 5111 squares, 100η, and heated at room temperature. The mixture was gently stirred for 24 hours. Thereafter, the membrane was taken out and washed with distilled water, and the protein adsorbed on the membrane was measured by spectrophotometry, and its quantification was performed using a calibration curve prepared in advance. The results are shown in Table 2, which shows that the acrylonitrile semipermeable membrane exhibits excellent adsorption ability for proteins. Example 3, Comparative Example 3 Various copolymers with different compositions were synthesized by known methods using other vinyl monomers copolymerizable with acrylonitrile.

得られた共重合体を20wt%になるようジメチルホル
ムアミドに溶解し、この溶液をガラス板上へアプリケー
ターで均一な厚みに流延し、あらかじめ用意した20℃
の水中に浸漬してゲル化させた。得られた膜を75℃の
温水中で定長状態で熱処理を行ない、風乾した。風乾し
た膜の表面積を窒素吸着法で測定した。また膜を限外沢
過器に取りつけ、1気圧の圧力で水の透水速度を求めた
。それぞれの膜を用いて実施例2と同様にしてα−キモ
トリプシンの吸着量を求めた。結果を表3に示す。実施
例 4 実施例1で用いたアクリロニトリル共重合体を用いて、
湿式紡糸法により中空糸を製造した。
The obtained copolymer was dissolved in dimethylformamide to a concentration of 20 wt%, and this solution was cast onto a glass plate to a uniform thickness with an applicator, and the solution was poured onto a glass plate at 20°C.
It was immersed in water to form a gel. The obtained film was heat-treated in a constant length state in hot water at 75°C and air-dried. The surface area of the air-dried membrane was measured by nitrogen adsorption method. The membrane was also attached to an ultrafilter, and the water permeation rate was determined at a pressure of 1 atmosphere. Using each membrane, the adsorption amount of α-chymotrypsin was determined in the same manner as in Example 2. The results are shown in Table 3. Example 4 Using the acrylonitrile copolymer used in Example 1,
Hollow fibers were manufactured using a wet spinning method.

中空糸の外径は700μ、内径は500μで、中空糸の
外部より加圧水を送り中空部から得られる水の量を測定
して中空糸膜の透水速度を求めた所、0,085(7/
Cd.mm.atm)であつた。この中空糸を束ねて第
1図に示した中空糸モジユールを作成し、第2図に示し
た装置を用いて人尿中に含まれるウロキナーゼの吸着に
よる捕集を行なつた。以下にその操作の詳細を説明する
。第2図において1の原液タンクに成人男子より採取し
た新鮮な人尿を入れポンプ2でバルブ4を経てモジユー
ル3へ送る。
The outer diameter of the hollow fiber is 700μ and the inner diameter is 500μ.The water permeation rate of the hollow fiber membrane was determined by sending pressurized water from the outside of the hollow fiber and measuring the amount of water obtained from the hollow part, which was 0,085 (7/
Cd. mm. ATM). The hollow fibers were bundled to form the hollow fiber module shown in FIG. 1, and the apparatus shown in FIG. 2 was used to collect urokinase contained in human urine by adsorption. The details of the operation will be explained below. In FIG. 2, fresh human urine collected from an adult male is put into a stock solution tank 1 and sent to a module 3 via a valve 4 by a pump 2.

モジユール内を通過した大部分の尿はバルブ5を経て原
液タンク1へ戻る。この際バルブ5を調節してモジユー
ル内の圧力を一定(常圧以上)に保つ。尿の1部は中空
膜を透過して6,Tのバルブを経て原液タンクへ戻る。
この際に尿中のウロキナーゼが膜に吸着される。このよ
うな循環運転を続行していくと、ウロキナーゼの吸着の
ために、膜の透液速度は次第に減少してくる。透液速度
が初期の透水速度の10%まで低下した時運転を中止し
、原液タンク内の尿を捨て、水を入れる。バルブ4をモ
ジユールと原液タンク側へ切り変え、さらにバルブ7を
モジユール方向のみに切り変える。
Most of the urine that has passed through the module returns to the stock solution tank 1 via the valve 5. At this time, adjust the valve 5 to keep the pressure inside the module constant (at least normal pressure). A portion of the urine passes through the hollow membrane and returns to the stock solution tank via the valve 6, T.
At this time, urokinase in urine is adsorbed to the membrane. As such circulation operation continues, the liquid permeation rate of the membrane gradually decreases due to the adsorption of urokinase. When the liquid permeation rate drops to 10% of the initial water permeation rate, the operation is stopped, the urine in the stock solution tank is discarded, and water is added. Switch the valve 4 to the module and stock solution tank side, and further switch the valve 7 to only the module direction.

しかる後ポンプを作動して水をバルブ7を経てモジユー
ル3へ送り、バルブ6を経て原液タンクへ戻す。この場
合もバルブ6を調節して中空糸内部を一定圧力(常圧以
上)に保つ。ポンプで加圧された水の1部は中空糸内壁
から膜を透過し中空糸外壁へ到達し、中空糸外部へ流出
し、バルブ4,5を経て原液タンクへ戻る。この操作に
より、中空糸内外部に付着した不純物質は除去されモジ
ユールは洗浄される。モジユール内を十分洗浄した後、
原液タンクの水を、ウロキナーゼの溶出液である4%ア
ンモニア水で置き変えて、洗浄運転と同様の操作で運転
し、膜に吸着したウロキナーゼを脱着させた。運転時間
と共に膜の透液速度は回復し、初期の透水速度の90%
になつた時点で循環運転を停止した。得られたウロキナ
ーゼを含む希アンモニア水から実施例1と同様にしてウ
ロキナーゼ溶液を回収した。1.2イの膜面積(中空糸
外表面積)を有するモジユールを用いて30′の尿を処
理することによつて得たウロキナーゼの取得率は95%
であり、その活性は4600(Unit/ワ蛋白量)で
あつた。
Thereafter, the pump is activated to send water through valve 7 to module 3, and through valve 6 back to the stock solution tank. In this case as well, the valve 6 is adjusted to maintain a constant pressure (at least normal pressure) inside the hollow fiber. A portion of the water pressurized by the pump passes through the membrane from the inner wall of the hollow fiber, reaches the outer wall of the hollow fiber, flows out of the hollow fiber, and returns to the stock solution tank via valves 4 and 5. By this operation, impurities adhering to the inside and outside of the hollow fibers are removed and the module is cleaned. After thoroughly cleaning the inside of the module,
The water in the stock solution tank was replaced with 4% ammonia water, which is an eluate for urokinase, and the operation was performed in the same manner as the cleaning operation to desorb the urokinase adsorbed to the membrane. The liquid permeation rate of the membrane recovers as the operating time increases, reaching 90% of the initial water permeation rate.
Circulating operation was stopped when the temperature reached . A urokinase solution was recovered in the same manner as in Example 1 from the obtained dilute ammonia water containing urokinase. The acquisition rate of urokinase obtained by treating 30' urine using a module with a membrane area (hollow fiber outer surface area) of 1.2 I was 95%.
The activity was 4600 (Unit/amount of protein).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は中空糸の限外沢過モジユールの断面図である。 101は中空糸で、102は接着剤、103,104,
105,106はモジユール出入口である。 107はモジユールの外筒である。 第2図は中空糸モジユール(第1図)を使用した蛋白吸
着装置である。 1は原液タンク、2はポンプ、3は中空糸モジユール、
4,5,6,7はバルブである。
FIG. 1 is a cross-sectional view of a hollow fiber ultrasonic module. 101 is a hollow fiber, 102 is an adhesive, 103, 104,
105 and 106 are module entrances and exits. 107 is an outer cylinder of the module. Figure 2 shows a protein adsorption device using the hollow fiber module (Figure 1). 1 is the stock solution tank, 2 is the pump, 3 is the hollow fiber module,
4, 5, 6, and 7 are valves.

Claims (1)

【特許請求の範囲】 1 吸着材を用いて蛋白質を含む水溶液から蛋白質を捕
集する方法に於いて、該吸着材としてポリアクリロニト
リルあるいはアクリロニトリルを30重量%以上含む共
重合体からなる半透膜もしくは限外ろ過材を用いること
を特徴とする蛋白質の捕集法。 2 半透膜もしくは限外ろ過材として膜状物質を使用す
る特許請求の範囲第1項記載の蛋白質の捕集法。 3 半透膜もしくは限外ろ過材として中空糸を使用する
特許請求の範囲第1項記載の蛋白質の捕集法。 4 半透膜もしくは限外ろ過材に対し、蛋白質を含む水
溶液を加圧、接触させた後、半透膜もしくは限外ろ過材
に吸着された蛋白質を脱着する特許請求の範囲第1項記
載の蛋白質の捕集法。
[Scope of Claims] 1. A method for collecting proteins from an aqueous solution containing proteins using an adsorbent, wherein the adsorbent is a semipermeable membrane made of polyacrylonitrile or a copolymer containing 30% by weight or more of acrylonitrile. A protein collection method characterized by using an ultrafiltration material. 2. The protein collection method according to claim 1, which uses a membrane-like substance as the semipermeable membrane or ultrafiltration material. 3. The protein collection method according to claim 1, wherein a hollow fiber is used as the semipermeable membrane or ultrafiltration material. 4. The process according to claim 1, wherein the semipermeable membrane or ultrafiltration medium is contacted with an aqueous solution containing protein under pressure, and then the protein adsorbed to the semipermeable membrane or ultrafiltration medium is desorbed. Protein collection method.
JP52002040A 1977-01-12 1977-01-12 Protein collection method Expired JPS5929197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52002040A JPS5929197B2 (en) 1977-01-12 1977-01-12 Protein collection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52002040A JPS5929197B2 (en) 1977-01-12 1977-01-12 Protein collection method

Publications (2)

Publication Number Publication Date
JPS5387400A JPS5387400A (en) 1978-08-01
JPS5929197B2 true JPS5929197B2 (en) 1984-07-18

Family

ID=11518200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52002040A Expired JPS5929197B2 (en) 1977-01-12 1977-01-12 Protein collection method

Country Status (1)

Country Link
JP (1) JPS5929197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270797U (en) * 1985-10-23 1987-05-06

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63102679A (en) * 1986-10-17 1988-05-07 Green Cross Corp:The Recovery of urokinase
JPH084503B2 (en) * 1987-11-27 1996-01-24 株式会社ミドリ十字 Method for recovering urokinase and urokinase-containing fraction obtained thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270797U (en) * 1985-10-23 1987-05-06

Also Published As

Publication number Publication date
JPS5387400A (en) 1978-08-01

Similar Documents

Publication Publication Date Title
JP4117403B2 (en) Biopolymer isolation and purification method
JP3615785B2 (en) HIV and related material removal materials
Avramescu et al. Adsorptive membranes for bilirubin removal
JPS58116362A (en) Adsorbent composition for blood dialysis
JP2000217575A (en) Adsorbent of physiologically active substance, human blood cell differentiation cell and human cell
JPS5929197B2 (en) Protein collection method
CN115297953A (en) Porous membranes comprising adsorbent particles for improved urea capture
CN109794172B (en) Preparation method of antibacterial hollow fiber membrane for blood purification
JPH0975694A (en) Manufacture of hydrophilic membrane
CN100387320C (en) Chelation type hollow fiber affinity membrane chromatogram, its manufacturing method and use
CN113244901A (en) Adsorption resin-polymer porous membrane and preparation method and application thereof
JPS5929198B2 (en) Protein collection method
CN116943442B (en) Preparation method of ultrafiltration membrane with controllable thickness of humidity sensing small pore layer and ultrafiltration equipment
JPH0611324B2 (en) Porous hollow fiber membrane
JPH0611325B2 (en) Porous hollow fiber membrane
JPS6125566A (en) Porous membrane
JPH06279296A (en) Removal of associated protein from plasma fraction preparation
JPH04348757A (en) Method and device for treating dialyzate
CN106512749A (en) Double-side modified separation membrane for blood purification as well as preparation and use methods of double-side modified separation membrane
Xianfang et al. Supported chitosan-dye affinity membranes and their protein adsorption
JPH07116484A (en) Micro-porous membrane of polyethersulfone and sulfonated polyethersulfone having endotoxin-absorptive power
JPS5893708A (en) Acrylonitrile semipermeable membrane
JP2000309539A (en) Obtaining blood serum from blood plasma
JP5214857B2 (en) Porous substrate
JP2769210B2 (en) Protein purification method