JPH06279296A - Removal of associated protein from plasma fraction preparation - Google Patents

Removal of associated protein from plasma fraction preparation

Info

Publication number
JPH06279296A
JPH06279296A JP5089466A JP8946693A JPH06279296A JP H06279296 A JPH06279296 A JP H06279296A JP 5089466 A JP5089466 A JP 5089466A JP 8946693 A JP8946693 A JP 8946693A JP H06279296 A JPH06279296 A JP H06279296A
Authority
JP
Japan
Prior art keywords
protein
preparation
membrane
average pore
porous polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5089466A
Other languages
Japanese (ja)
Inventor
Nobutsugu Fujita
修嗣 藤田
Hajime Ishikawa
元 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP5089466A priority Critical patent/JPH06279296A/en
Publication of JPH06279296A publication Critical patent/JPH06279296A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To remove associated proteins from plasma fraction preparation where as it was impossible until now, this method enables secured and rapid removal while keeping a high recovery of proteins by a relatively simple method. CONSTITUTION:Associated proteins contained in a preparation are removed by filtering an immunoglobulin preparation for intravenous injection and a fractionated albumin preparation through a porous high polymer membrane having 10 to 30nm average pore diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、血漿分画製剤中から蛋
白質の会合物を除去する方法に関するものである。さら
に詳しくは、主に静脈注射用免疫グロブリン製剤および
分画アルブミン製剤から蛋白質の会合物を有用な蛋白質
とは別に分離する方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for removing protein aggregates from a plasma fractionation preparation. More specifically, it relates to a method for separating an aggregate of proteins mainly from intravenous immunoglobulin preparations and fractionated albumin preparations separately from useful proteins.

【0002】[0002]

【従来の技術】蛋白質溶液中には、複数の蛋白質分子が
非共有結合で結合した会合物が存在している。この会合
物は、蛋白質の不可逆的な変性によって生じており、一
般に容易に解離させることができない。さらに、この会
合物は互いに凝集して、より大きな会合物を作る傾向が
あり、溶液中に白濁や沈殿を生じることもある。
2. Description of the Related Art In a protein solution, there are non-covalently associated associations of a plurality of protein molecules. This aggregate is generated by irreversible denaturation of the protein and generally cannot be easily dissociated. Further, the aggregates tend to aggregate with each other to form larger aggregates, which may result in cloudiness or precipitation in the solution.

【0003】また、生体の免疫力を担う免疫グロブリン
は、蛋白質、菌、ウィルス等を核としてその周囲に結合
し、抗原抗体複合体と呼ばれる巨大な蛋白質会合物を形
作る。
Immunoglobulins, which are responsible for the immunity of the living body, have proteins, bacteria, viruses, etc. as their cores and bind to their periphery to form huge protein aggregates called antigen-antibody complexes.

【0004】蛋白質を主たる成分とする血漿や血漿分画
製剤、あるいは細胞培養医薬品中に存在する蛋白質会合
物は、製剤を人体に静脈注射した際に人体に現われる副
作用の原因のひとつとされている。
[0004] Plasma or plasma fraction preparations containing protein as a main component, or protein-associated products present in cell culture medicines are considered to be one of the causes of side effects that appear in the human body when the preparations are intravenously injected into the human body. .

【0005】例えば、静脈注射用免疫グロブリンの場
合、チアノーゼや血圧低下などのショック様反応や、呼
吸困難などの気道症状、さらに皮疹等が、免疫グロブリ
ン会合物を原因として起こるといわれている。
For example, in the case of immunoglobulin for intravenous injection, it is said that shock-like reactions such as cyanosis and hypotension, respiratory tract symptoms such as dyspnea, and skin rash are caused by immunoglobulin aggregates.

【0006】それ故に、これら会合物を溶液中から除去
する方法は、従来から数多く考案されている。例えば、
多孔質性担体ゲルによるクロマトグラフィー法や、化学
的処理法、吸着剤の添加等である。
Therefore, many methods for removing these aggregates from the solution have been devised. For example,
Chromatographic methods using porous carrier gels, chemical treatment methods, addition of adsorbents, and the like.

【0007】しかし、クロマトグラフィー法の場合、か
なりの会合物除去効果は得られるものの、大量の溶液を
処理することはできず、作業に要する時間も長大にな
る。
However, in the case of the chromatography method, although a considerable effect of removing aggregates can be obtained, it is impossible to process a large amount of solution, and the time required for the work becomes long.

【0008】また、化学的処理方法は大量処理は可能で
あるが、処理に用いた薬品を溶液から除去する必要があ
り、さらには、処理によって有用蛋白質の失活や変性を
招きやすく、有用蛋白質の回収率を低下させることとな
る。
[0008] Further, although the chemical treatment method allows large-scale treatment, it is necessary to remove the chemicals used for the treatment from the solution, and further, the treatment is likely to cause inactivation or denaturation of the useful protein. Will reduce the recovery rate of.

【0009】吸着剤の添加による方法は、会合物の除去
効率が高いとはいえず、さらに、化学的処理と同様に吸
着剤の除去という作業が必要となる。
The method of adding the adsorbent cannot be said to have a high efficiency of removing the associated substances, and further, the work of removing the adsorbent is required as in the chemical treatment.

【0010】さらに、ポリスルホン樹脂より製膜された
限外濾過膜で濾過することによるグロブリン会合物の除
去方法(特公昭62−3815)も考案されているが、
この方法実施後の蛋白質の回収率は40%前後と極めて
低く、また、濾過速度、濾過容量ともに低く、工業的な
有効性が高いとはいえない。
Furthermore, a method for removing aggregates of globulin by filtering with an ultrafiltration membrane formed of polysulfone resin (Japanese Patent Publication No. 62-3815) has been devised.
The recovery rate of the protein after carrying out this method is extremely low at around 40%, and the filtration rate and the filtration capacity are both low, so it cannot be said that the industrial effectiveness is high.

【0011】また、血液から血漿を分離するための膜を
用いても、グロブリン会合物が除去できるともされてい
る(特開昭61−69732)が、この膜による除去効
果は、会合物と孔の大きさの関係に起因するのではな
く、膜素材と会合物との相互作用力による会合物の膜表
面への吸着によるものであると考えられるため、吸着を
起こさせ得る条件(例えば、溶液のpHやイオン強度)
で使用する必要が生じ、わずかな条件の変化で期待され
る除去効果を得られないことが多い。
It is also said that the globulin-associated product can be removed by using a membrane for separating plasma from blood (Japanese Patent Laid-Open No. 61-69732). It is considered that it is not due to the size relationship of the particles, but rather due to the adsorption of the association product on the surface of the film by the interaction force between the film material and the association product. PH and ionic strength)
In many cases, the expected removal effect cannot be obtained with a slight change in conditions.

【0012】加えて、これら従来の方法では、作業中に
菌やウィルス等の微生物が外部から溶液中に混入する危
険性が大きい。医薬品の場合、特にこのことは重大であ
るので、会合物除去の処理をした蛋白質溶液に対して、
これら微生物を不活化または除去する作業が必要となっ
ている。
In addition, in these conventional methods, there is a great risk that microorganisms such as bacteria and viruses are mixed into the solution from the outside during the work. This is particularly important in the case of pharmaceuticals, so for protein solutions that have been treated to remove aggregates,
Work is required to inactivate or remove these microorganisms.

【0013】[0013]

【発明が解決しようとする課題】本発明は、従来の技術
では達成できない血漿分画製剤からの蛋白質会合物除去
を、蛋白質の回収率を高い状態に保ちつつ、確実かつ迅
速に比較的簡便な操作で行う方法を提供する。ここで言
う高い蛋白質回収率とは70%以上、好ましくは80%
以上であることを指す。
DISCLOSURE OF THE INVENTION The present invention is a method for removing protein aggregates from a plasma fractionated preparation, which cannot be achieved by conventional techniques, reliably, quickly and relatively easily while maintaining a high protein recovery rate. Provide a way to do it by operation. The high protein recovery rate referred to here is 70% or more, preferably 80%.
It means that it is above.

【0014】[0014]

【課題を解決するための手段】本発明は、血漿分画製剤
である静脈注射用免疫グロブリンや血清アルブミンの水
溶液を蛋白質性の高分子膜で濾過し、蛋白質会合物を含
まない溶液として回収する方法である。
According to the present invention, an aqueous solution of immunoglobulin for intravenous injection or serum albumin, which is a plasma fractionation preparation, is filtered through a proteinaceous polymer membrane and recovered as a solution containing no protein aggregates. Is the way.

【0015】本発明は、平均孔径が10〜30nmであ
る多孔質性の高分子膜を用いて行われる。
The present invention is carried out using a porous polymer membrane having an average pore size of 10 to 30 nm.

【0016】膜の平均孔径は特に重要である。現在でも
除去すべき会合物の正確な大きさは不明であるため、除
去に適切な平均孔径が存在するかどうかも不明である。
ところが、本発明者らは、平均孔径を異にする一連の多
孔質性高分子膜による会合物の除去性能を検討した結
果、会合物の大きさが20〜30nmというほぼ一定の
領域内に分布していることを見いだし、本発明に至っ
た。したがって、平均孔径が30nmを越えて大きすぎ
る場合、蛋白質会合物は膜を透過してしまい、目的は達
成され得なくなる。逆に平均孔径が10nm以下のよう
に小さすぎると、蛋白質の単分子さえも膜を透過するこ
とができないため、このような平均孔径を有する膜を使
用することはできないのである。
The average pore size of the membrane is of particular importance. Since the exact size of the aggregates to be removed is still unknown, it is not clear whether there is a suitable average pore size for removal.
However, as a result of examining the removal performance of aggregates by a series of porous polymer membranes having different average pore diameters, the present inventors have found that aggregates are distributed within a substantially constant region of 20 to 30 nm. The present invention has been accomplished by discovering what is being done. Therefore, when the average pore size is too large, exceeding 30 nm, the protein-associated product permeates the membrane and the purpose cannot be achieved. On the other hand, if the average pore size is too small, such as 10 nm or less, even a single molecule of the protein cannot pass through the membrane, so a membrane having such an average pore size cannot be used.

【0017】膜の多孔質性とは、膜の一方の面から他方
の面に貫通した孔が、膜面に無数に開口した状態を言
う。この場合、孔は必ずしも直状の管として膜を貫通し
ている必要はなく、膜の内部で屈曲していてもよい。ま
た、いくつかの孔が膜の内部で融合していたり、逆にひ
とつの孔が枝分かれしていてもよく、これらが混在して
いてもよい。
The porosity of the film means a state in which innumerable holes penetrating from one surface of the film to the other surface are opened on the film surface. In this case, the hole does not necessarily have to penetrate the membrane as a straight tube, but may be bent inside the membrane. Also, some holes may be fused inside the membrane, or conversely, one hole may be branched and these may be mixed.

【0018】また、平均孔径とは、膜を貫通する孔の膜
全体としての平均的な管径を、孔の直断面を円として近
似したときの直径として表記される。このような平均孔
径は、膜を通過する液体の透過量を測定することによ
り、間接的に計算することができる。
Further, the average pore diameter is expressed as a diameter obtained by approximating the average tube diameter of the pores penetrating the membrane as the entire membrane as a straight section of the pore as a circle. Such average pore size can be calculated indirectly by measuring the amount of liquid permeation through the membrane.

【0019】なお、本発明において、高分子膜としては
中空糸状、平膜状、チューブ状等、種々の形状を用いる
ことができるが、体積に比して濾過有効膜面積の大きい
中空糸状が有効である。
In the present invention, various shapes such as a hollow fiber shape, a flat membrane shape, and a tube shape can be used as the polymer membrane, but the hollow fiber shape having a large filtration effective membrane area in comparison with the volume is effective. Is.

【0020】さらに、本発明において、使用される高分
子膜の素材としては特に限定されるものではなく、有機
高分子、無機高分子のいずれであってもよい。ただし、
有用蛋白質の回収率を高くするためには、蛋白質を吸着
しやすい性質のあるものや、接触することによって蛋白
質を変性せしめる素材は除外することが望ましい。その
意味において、蛋白質の透過性および非変性性に優れた
銅アンモニア法再生セルロースは好適な素材である。
Further, in the present invention, the material of the polymer film used is not particularly limited and may be either an organic polymer or an inorganic polymer. However,
In order to increase the recovery rate of useful proteins, it is desirable to exclude materials that tend to adsorb proteins and materials that denature proteins by contact. In that sense, the copper-ammonia method regenerated cellulose excellent in protein permeability and non-denaturing property is a preferable material.

【0021】該再生セルロースを素材とする膜のうち、
特にウィルス除去性銅アンモニア法再生セルロース膜が
さらに好適である。この膜で濾過することにより、蛋白
質会合物のみでなくウィルス等の微生物をも効率よく除
去することができる。
Among the membranes made of the regenerated cellulose,
Particularly, a virus-removable copper-ammonia method regenerated cellulose membrane is more preferable. By filtering with this membrane, not only protein-associated substances but also microorganisms such as viruses can be efficiently removed.

【0022】このような高分子膜を用いて蛋白質溶液を
濾過すると、溶液中の蛋白質のうち会合して大きな粒子
となったものは、高分子膜の孔を通過することができ
ず、高分子膜の溶液が流入する方の表面ないしは高分子
膜中の孔の部分に捕捉される。一方、蛋白質のうち会合
していないものは、高分子膜の孔を通過できるので、濾
過された溶液中に回収される。かくして蛋白質溶液から
蛋白質会合物は除去される。
When a protein solution is filtered using such a polymer membrane, the proteins in the solution that associate into large particles cannot pass through the pores of the polymer membrane, and The solution of the membrane is trapped on the surface on the inflow side or in the pores in the polymer membrane. On the other hand, proteins that are not associated with each other can pass through the pores of the polymer membrane and are thus recovered in the filtered solution. Thus, the protein aggregate is removed from the protein solution.

【0023】[0023]

【実施例】【Example】

(実施例1)膜を通過する透過水量から求めた平均孔径
が15nmである銅アンモニア法再生セルロースからな
る有効膜面積3.5cm2 の中空糸膜を準備した。該膜
の製膜は特開昭61−254202号および特開昭61
−274707号によった。
(Example 1) A hollow fiber membrane having an effective membrane area of 3.5 cm 2 made of regenerated cellulose having a copper-ammonia method and having an average pore diameter of 15 nm obtained from the amount of permeated water passing through the membrane was prepared. The film is formed by JP-A 61-254202 and JP-A 61-254202.
-274707.

【0024】一方、ウシ血漿由来のγ−グロブリン乾燥
粉末を0.9%の塩化ナトリウムを含む20mMリン酸
ナトリウム緩衝液(pH7.4)に0.1%溶解したも
のを、蛋白質溶液として準備した。
On the other hand, 0.1% of γ-globulin dry powder derived from bovine plasma was dissolved in 20 mM sodium phosphate buffer (pH 7.4) containing 0.9% sodium chloride to prepare a protein solution. .

【0025】この蛋白質溶液4mlを、上記の中空糸膜
で蛋白質溶液に0.27kgf/m2 の空気圧を加える
ことにより濾過した。なお、濾過に要した時間は170
分であった。
4 ml of this protein solution was filtered through the above hollow fiber membrane by applying an air pressure of 0.27 kgf / m 2 to the protein solution. The time required for filtration is 170
It was a minute.

【0026】このようにして濾過された蛋白質溶液を高
速液体クロマトグラフィーにより分析して、各会合数の
会合物の回収率を求めたところ、表1に示すとおり3分
子以上のγ−グロブリンより成る会合物が除去されてい
た。なお、蛋白質の単分子の量には変化がなかった。
The protein solution filtered in this way was analyzed by high performance liquid chromatography to determine the recovery rate of the associated product at each association number. As shown in Table 1, it is composed of 3 or more molecules of γ-globulin. Aggregates had been removed. There was no change in the amount of protein single molecule.

【0027】[0027]

【表1】 (実施例2および比較例1)平均孔径がそれぞれ15n
m、35nm、40nm、75nmである銅アンモニア
法再生セルロースからなる有効膜面積0.7cm2 の中
空糸膜を、実施例1と同様に準備した。
[Table 1] (Example 2 and Comparative Example 1) Each having an average pore diameter of 15 n
A hollow fiber membrane having an effective membrane area of 0.7 cm 2 and made of cuprammonium regenerated cellulose having m, 35 nm, 40 nm and 75 nm was prepared in the same manner as in Example 1.

【0028】次に、ヒト由来の血清アルブミンを生理的
濃度の食塩水に1%溶解した液を準備し、これを上記の
膜でそれぞれ0.15mlずつ濾過した。なお、濾過時
の空気圧は0.27kgf/cm2 であった。
Next, a solution of human-derived serum albumin dissolved in physiological saline at 1% was prepared, and 0.15 ml of each was filtered through the above membrane. The air pressure during filtration was 0.27 kgf / cm 2 .

【0029】得られた濾液に含まれる蛋白質をポリアク
リルアミドゲル電気泳動で分析した結果を図1に示す。
aは濾過前のアルブミン液、b〜eは順に孔の大きさが
75nm、40nm、35nm、15nmである膜で濾
過を行った後の液を分析したものである。
The protein contained in the obtained filtrate was analyzed by polyacrylamide gel electrophoresis and the results are shown in FIG.
a is an albumin solution before filtration, and b to e are analyzes of solutions after filtration through membranes having pore sizes of 75 nm, 40 nm, 35 nm, and 15 nm in order.

【0030】図1の3つのバンドのうち、は3分子以
上、は2分子のアルブミンから成る会合物であり、
は1分子のアルブミンに相当する。平均孔径が15nm
である膜による濾過を行うと、3分子以上の会合物が完
全に除去できることが明らかである。このとき、会合し
ていないアルブミンの量には全く変化がない。一方、平
均孔径が35nmである孔を有する膜で濾過を行って
も、3分子以上の会合物は全く除去できていなかった。 (比較例2)実施例1と同様の操作を平均孔径8nmの
膜を用いて行った。
Of the three bands shown in FIG. 1, 3 are at least 3 molecules, and 2 are associated molecules consisting of 2 molecules of albumin.
Corresponds to one molecule of albumin. Average pore size is 15nm
It is clear that the association product of 3 or more molecules can be completely removed by performing filtration through the membrane. At this time, there is no change in the amount of albumin that is not associated. On the other hand, even if filtration was carried out using a membrane having pores having an average pore diameter of 35 nm, the association product of 3 molecules or more could not be removed at all. (Comparative Example 2) The same operation as in Example 1 was performed using a membrane having an average pore size of 8 nm.

【0031】この時、表2に示すとおりγ−グロブリン
単分子の回収率は約55%であった。
At this time, as shown in Table 2, the recovery rate of the γ-globulin single molecule was about 55%.

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【発明の効果】本発明を実施することにより、血漿分画
製剤から蛋白質会合物を除去することが可能となる。
EFFECTS OF THE INVENTION By carrying out the present invention, it becomes possible to remove the protein-associated product from the plasma fractionated preparation.

【0034】本発明は、蛋白質溶液を高分子膜で濾過す
るだけであるので、従来の方法に比べてきわめて簡易な
作業として実行できる。また、本発明では、蛋白質会合
物が除去される以外は溶液の組成を全く変化させないで
処理することが可能であるので、添加薬品の除去等の作
業を付け加えて行う必要がない。加えて、蛋白質に何ら
の物理的、化学的な作用を加えないので、有用蛋白質の
失活を伴うこともない。
Since the present invention only filters the protein solution through the polymer membrane, it can be carried out as an extremely simple operation as compared with the conventional method. Further, in the present invention, since the treatment can be performed without changing the composition of the solution except that the protein-associated product is removed, it is not necessary to additionally perform an operation such as removal of an additive chemical. In addition, since no physical or chemical action is applied to the protein, the useful protein is not deactivated.

【0035】さらに、本発明では、高分子膜およびそれ
に付随する器具(膜の支持構造物および溶液を移送する
配管等)と溶液を回収する容器に無菌性が保たれていれ
ば、本発明で適用される高分子膜の微細な孔を、菌類は
もちろんそれよりも小さいウィルス(現在知られている
最小のウィルスの粒子径は約20nmである)でさえ
も、高分子膜によって除去されてしまうため、回収され
た溶液にこれら微生物の不活化および除去等の作業を行
う必要もない。
Furthermore, according to the present invention, if the polymer membrane and its accompanying equipment (membrane supporting structure, piping for transferring the solution, etc.) and the container for collecting the solution are kept sterilized, The fine pores of the applied polymer membrane are removed by the polymer membrane, not only fungi but also smaller viruses (the smallest virus currently known has a particle size of about 20 nm). Therefore, it is not necessary to perform operations such as inactivation and removal of these microorganisms on the recovered solution.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例2および比較例1で得られた濾液に含ま
れる蛋白質をポリアクリルアミドゲル電気泳動で分析し
た結果を示す図表である。
FIG. 1 is a chart showing the results of analyzing the proteins contained in the filtrates obtained in Example 2 and Comparative Example 1 by polyacrylamide gel electrophoresis.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 血漿分画製剤を平均孔径が10〜30n
mである多孔質性の高分子膜で濾過することを特徴とす
る血漿分画製剤中から蛋白質会合物の除去方法。
1. A plasma fractionation product having an average pore size of 10 to 30 n.
A method for removing a protein-associated product from a plasma fractionation preparation, which comprises filtering with a porous polymer membrane of m.
【請求項2】 血漿分画製剤が静脈注射用免疫グロブリ
ン製剤であり、多孔質性の高分子膜の平均孔径が10〜
20nmである請求項1に記載の免疫グロブリン会合物
の除去方法。
2. The plasma fraction preparation is an immunoglobulin preparation for intravenous injection, and the porous polymer membrane has an average pore diameter of 10 to 10.
The method for removing an immunoglobulin-associated product according to claim 1, which has a thickness of 20 nm.
【請求項3】 血漿分画製剤が分画アルブミン製剤であ
り、多孔質性の高分子膜の平均孔径が10〜20nmで
ある請求項1に記載のアルブミン会合物の除去方法。
3. The method for removing albumin aggregates according to claim 1, wherein the plasma fractionation preparation is a fractionated albumin preparation, and the porous polymer membrane has an average pore diameter of 10 to 20 nm.
【請求項4】多孔質性の高分子膜が銅アンモニア法再生
セルロースを素材とするウィルス除去性の高分子膜であ
る請求項1ないし3のいずれかに記載の蛋白質会合物の
除去方法。
4. The method for removing a protein-associated product according to claim 1, wherein the porous polymer film is a virus-removable polymer film made of a copper-ammonia method regenerated cellulose.
【請求項5】 細胞培養により得られた蛋白質製剤を平
均孔径が10〜30nmである多孔質性の高分子膜で濾
過することを特徴とする細胞培養により得られた蛋白質
製剤から蛋白質会合物の除去方法。
5. A protein preparation obtained by cell culture, which is filtered through a porous polymer membrane having an average pore size of 10 to 30 nm to obtain a protein-associated product from the protein preparation obtained by cell culture. Removal method.
【請求項6】 多孔質性の高分子膜が銅アンモニア法再
生セルロースを素材とするウィルス除去性の高分子膜で
ある請求項5に記載の蛋白質会合物の除去方法。
6. The method for removing protein-associated product according to claim 5, wherein the porous polymer film is a virus-removable polymer film made of regenerated cellulose by the cuprammonium method.
JP5089466A 1993-03-25 1993-03-25 Removal of associated protein from plasma fraction preparation Withdrawn JPH06279296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5089466A JPH06279296A (en) 1993-03-25 1993-03-25 Removal of associated protein from plasma fraction preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5089466A JPH06279296A (en) 1993-03-25 1993-03-25 Removal of associated protein from plasma fraction preparation

Publications (1)

Publication Number Publication Date
JPH06279296A true JPH06279296A (en) 1994-10-04

Family

ID=13971494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5089466A Withdrawn JPH06279296A (en) 1993-03-25 1993-03-25 Removal of associated protein from plasma fraction preparation

Country Status (1)

Country Link
JP (1) JPH06279296A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089402A1 (en) * 2003-04-09 2004-10-21 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Process for producing albumin preparation
WO2004089403A1 (en) * 2003-04-09 2004-10-21 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Method of removing albumin aggregate and/or contaminated protein
JP2012102115A (en) * 2004-02-27 2012-05-31 Lab Francais Du Fractionnement & Des Biotechnologies Albumin-purification method including nanofiltration process, and albumin-containing solution and composition for therapeutical use
WO2024058110A1 (en) * 2022-09-12 2024-03-21 旭化成メディカル株式会社 Method for purifying antibody

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004089402A1 (en) * 2003-04-09 2004-10-21 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Process for producing albumin preparation
WO2004089403A1 (en) * 2003-04-09 2004-10-21 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Method of removing albumin aggregate and/or contaminated protein
JPWO2004089402A1 (en) * 2003-04-09 2006-07-06 財団法人化学及血清療法研究所 Method for producing albumin preparation
AU2004228847B2 (en) * 2003-04-09 2010-06-17 Km Biologics Co., Ltd. Process for producing albumin preparation
KR101146946B1 (en) * 2003-04-09 2012-05-22 잇판자이단호진 가가쿠오요비겟세이료호겐쿠쇼 Process for preparing albumin preparations
US8258264B2 (en) 2003-04-09 2012-09-04 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Process for producing albumin preparation
JP2012102115A (en) * 2004-02-27 2012-05-31 Lab Francais Du Fractionnement & Des Biotechnologies Albumin-purification method including nanofiltration process, and albumin-containing solution and composition for therapeutical use
WO2024058110A1 (en) * 2022-09-12 2024-03-21 旭化成メディカル株式会社 Method for purifying antibody

Similar Documents

Publication Publication Date Title
JP4117403B2 (en) Biopolymer isolation and purification method
TWI412394B (en) Purification of proteins
JP6141597B2 (en) Membrane containing sulfone groups for removing protein aggregates
CA1330049C (en) Process for removing pyrogens
JP3615785B2 (en) HIV and related material removal materials
JP6956824B2 (en) Methods for separating biopolymer units and viruses from liquids
US7431842B2 (en) Method of using silicon carbide for removal of adventitious agents
US5219999A (en) Immunoglobulin g and process for the production thereof
CA2084873A1 (en) Process and apparatus for removal of dna and viruses
CA1082625A (en) Pressure-driven affinity sorption membranes
JPH06279296A (en) Removal of associated protein from plasma fraction preparation
JP2003500672A (en) Static separation method using non-porous cellulose beads
JPH11267199A (en) Blood treatment method and device
JPH0260660A (en) Adsorbent for treating body fluid
CA2570956C (en) Method of using silicon carbide for removal of adventitious agents
JPH07133290A (en) New method for removing nucleic acid
US6372510B1 (en) Method for removing unconventional transmissible agents from a protein solution
JPH1057476A (en) Membrane separator
JP2023104650A (en) Method for separating and purifying extracellular vesicles
JP4443309B2 (en) Fibrinogen adsorbent III
JP2000319294A (en) Purification of solution of polymer originating from organism
JPH07116484A (en) Micro-porous membrane of polyethersulfone and sulfonated polyethersulfone having endotoxin-absorptive power
CA3135124A1 (en) Filtration
JP2012214408A (en) Method for refining protein by removing impurity aggregate dispersed in clear liquid
JPH10179732A (en) Whole blood treating device and whole blood treatment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050830

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051006

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124