JP2004537653A - Hydrogen evolution control additive for zinc electrowinning - Google Patents

Hydrogen evolution control additive for zinc electrowinning Download PDF

Info

Publication number
JP2004537653A
JP2004537653A JP2003520877A JP2003520877A JP2004537653A JP 2004537653 A JP2004537653 A JP 2004537653A JP 2003520877 A JP2003520877 A JP 2003520877A JP 2003520877 A JP2003520877 A JP 2003520877A JP 2004537653 A JP2004537653 A JP 2004537653A
Authority
JP
Japan
Prior art keywords
zinc
zinc electrowinning
cpc
electrowinning
glue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2003520877A
Other languages
Japanese (ja)
Inventor
ギエンジ,エロッド・ラジョス
ジャン,ジョーイ・チュン−イエン
エール,クラウス・ハインリヒ
スプリンター,スティーブン
オロマン,コリン・ダブリュ
Original Assignee
マグパワー・システムズ・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マグパワー・システムズ・インコーポレイテッド filed Critical マグパワー・システムズ・インコーポレイテッド
Publication of JP2004537653A publication Critical patent/JP2004537653A/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/16Electrolytic production, recovery or refining of metals by electrolysis of solutions of zinc, cadmium or mercury

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Primary Cells (AREA)

Abstract

セチルピリジニウム塩、塩化セチルピリジニウム(CPC)を、工業用亜鉛電解採取プロセスの水素発生抑制剤(電流効率改善剤)として使用する。(a)アンチモンを含む、(b)アンチモンとにかわを含む、亜鉛電解採取組成物を試験した。濃度0.05mMのCPCを電解採取液に添加すると電流効率はどちらの電解質についても上昇した。Cetylpyridinium salt, cetylpyridinium chloride (CPC), is used as a hydrogen generation inhibitor (current efficiency improver) in an industrial zinc electrowinning process. A zinc electrowinning composition comprising (a) antimony and (b) antimony and glue was tested. When 0.05 mM CPC was added to the electrowinning solution, the current efficiency increased for both electrolytes.

Description

【技術分野】
【0001】
分野
本発明は、亜鉛電着における水素発生を抑制かつ/または電流効率を改善する、亜鉛電解採取のための添加剤、特にセチルピリジニウム系添加剤に関する。
【背景技術】
【0002】
背景
亜鉛電解採取プロセスにおいて亜鉛の析出と平行して起こる寄生水素発生反応を抑制することによりエネルギ効率を高めることは、技術的および工業的に主要な関心事項である。陰極水素発生を最小限に留める1つの方法は、水素発生過電圧を選択的に大きくする、一般的には有機化合物である添加剤を使用することである。マッキノン(Mackinnon)他(Journal of Applied Electrochemistry, Volume 20, pp. 728-736, 1990)およびスコット(Scott)他(Journal of Applied Electrochemistry, Volume 18, pp. 120-127, 1988)は、動物性にかわをアンチモンと組合せて使用すると、添加剤を含まない電解質と比較して、亜鉛電解採取のエネルギ効率が上昇すると述べている。
【0003】
亜鉛電解採取中の水素発生を最小限にするとともに、従来の添加剤と比較して性能が同じまたは向上した添加剤が必要である。
【発明の開示】
【発明が解決しようとする課題】
【0004】
したがって、本発明の目的は、水素発生を最小限にするとともに性能が従来の添加剤と同じまたはより向上した亜鉛電解採取のための改良された添加剤を提供することである。
【課題を解決するための手段】
【0005】
概要
塩化セチルピリジニウム(CPC)、セチルピリジニウム塩を、亜鉛電解採取プロセスにおいて、異なる2つの亜鉛電解採取電解質組成物すなわち1)アンチモンを含む組成物ならびに2)アンチモンおよびにかわ双方を含む組成物の添加剤として試験した。
【0006】
CPC添加剤は、アンチモンの存在下でまたはアンチモンとにかわとの組合せの存在下で最も重要な影響を及ぼし、電流効率をそれぞれ23.2%および7.6%向上させた。さらに、0.05mMのCPCの存在による全セル電圧の上昇はなかった。
【発明を実施するための最良の形態】
【0007】
詳細な説明
方法および装置
工業用の電解採取電解質(溶液)が入った工業用のビーカー試験セルを電源に接続し37℃の水槽の中に置いた。陽極および陰極はそれぞれ鉛およびアルミニウムからなるものであった。研究所から提供されたMSDSシートには、その電解質の組成が、硫酸亜鉛28−34重量%、硫酸マグネシウム9−15g/l(グラム/リットル)およびマンガン1.5−2.5g/lと示されていた。
【0008】
試験セル内の温度が所望の温度の37℃に達した後、450アンペア/m2という電解採取電流密度に相当する定電流0.045Aを、撹拌していない電解質に対し、4時間または20時間印加した。実験終了後、電極アセンブリをガラスビーカーから取出し、蒸留水ですすぎ、陰極の堆積物を注意深く剥がしてデジタルメトラーAE100分析天秤を用い4桁の精度で計量した。試験セルは、有機添加剤の痕跡を除去するために、蒸留水およびアセトンで実験と実験との間にすすいだ。反復も行ない標準偏差を概算した。
【0009】
亜鉛電着電流効率はファラデーの法則に基づいて計算した。
【0010】
【数1】

Figure 2004537653
【0011】
塩化セチルピリジニウム(CPC)(たとえば米国シグマアルドリッチ社(Sigma-Aldrich, U.S.))は以下の構造を有していた。
【0012】
【化1】
Figure 2004537653
【実施例】
【0013】
例1
アンチモンが存在する亜鉛電解採取液
濃度0.04mg/l(ミリグラム/リットル)のアンチモン(Sb)を酒石酸アンチモンカリウムとして亜鉛電解採取電解質に添加した。4時間および20時間の実験双方を行なった。4時間の実験結果は表1に要約されている。
【0014】
電解質にCPC添加剤が存在しない場合、Sbは電流効率に悪影響を及ぼした、すなわち、65.1%(セル番号15)と74.7%(セル番号14)の間であった。CPC添加剤がない場合の平均電流効率は69.9%であった。CPCを添加すると電流効率は平均23.2%上昇した、すなわち、69.9%から93.1%に上昇した。
【0015】
【表1】
Figure 2004537653
【0016】
時間が長い方の(20時間)実験におけるCPCの効果は表2に示されている。CPC添加剤がない場合、セル番号15の電流効率は僅か36.6%であったのに対し、0.05mMのCPCが存在する場合の亜鉛電解採取電流効率は58.9%であった。このように、CPC添加剤がある場合、電流効率は22.3%高い。
【0017】
【表2】
Figure 2004537653
【0018】
例2
アンチモンおよびにかわ双方を含む亜鉛電解採取液
例1と同様の実験を、0.04mg/lのSbおよび10mg/lのにかわ(たとえばニューヨーク州ジョンズタウンのハドソン社(Hudson Industries)の「パールグルー(pearl glue)」)を含む電解質を用いて行なった。4時間および20時間の実験双方を行なった。4時間にわたる実験での亜鉛電解採取電流効率に対するCPC添加剤の効果は表3に示されている。
【0019】
にかわの存在はアンチモンのマイナス効果をある程度最小にし、電流効率は88.9%と90%の間となる。しかしながら、0.05mMのCPCを添加すると電流効率はさらに高まり、CPCがない場合の平均値89.4%から、CPCがある場合は97%となった(表3)。
【0020】
【表3】
Figure 2004537653
【0021】
20時間の実験(表4)は、濃度0.05mMのCPCがセル番号16の電流効率を77.2%から87.3%に引き上げたことを示している。
【0022】
【表4】
Figure 2004537653
【0023】
セル電圧は、電解採取プロセスにおけるもう1つの価値ある重要な数値である。セル電圧の上昇は、必要なエネルギ量の増大、したがって電解採取プロセス効率の低下を示す。表5は、0.05mMのCPCをSbおよびにかわと共に用いると、セル電圧が上昇しないことを示している。
【0024】
【表5】
Figure 2004537653
【0025】
このように、本発明を例示となる実施形態との関連で説明してきたが、この説明は限定的な意味で解釈されることを意図したものではない。本発明の上記例示として挙げた実施形態および他の実施形態の種々の変形も、当業者にとってはこの説明を読めば明らかになるであろう。したがって、前傾の特許請求の範囲が、本発明の範囲に含まれる上記のような変形または実施形態をカバーすることが意図されている。【Technical field】
[0001]
FIELD The present invention relates to an additive for zinc electrowinning, particularly a cetylpyridinium-based additive, which suppresses hydrogen generation and / or improves current efficiency in zinc electrodeposition.
[Background Art]
[0002]
BACKGROUND Enhancing energy efficiency by suppressing parasitic hydrogen evolution reactions that occur in parallel with zinc deposition in zinc electrowinning processes is a major technical and industrial concern. One way to minimize cathodic hydrogen evolution is to use additives, which are typically organic compounds, that selectively increase the hydrogen evolution overpotential. Mackinnon et al. (Journal of Applied Electrochemistry, Volume 20, pp. 728-736, 1990) and Scott et al. (Journal of Applied Electrochemistry, Volume 18, pp. 120-127, 1988) It is stated that when used in combination with antimony, the energy efficiency of zinc electrowinning is increased compared to electrolytes without additives.
[0003]
There is a need for an additive that has the same or improved performance as compared to conventional additives, while minimizing hydrogen evolution during zinc electrowinning.
DISCLOSURE OF THE INVENTION
[Problems to be solved by the invention]
[0004]
Accordingly, it is an object of the present invention to provide an improved additive for zinc electrowinning that minimizes hydrogen evolution and has the same or improved performance as conventional additives.
[Means for Solving the Problems]
[0005]
Overview Cetylpyridinium chloride (CPC), a cetylpyridinium salt, is added to a zinc electrowinning process in two different zinc electrowinning electrolyte compositions: 1) a composition comprising antimony and 2) a composition comprising both antimony and glue. Tested as
[0006]
The CPC additive had the most significant effect in the presence of antimony or the combination of antimony and glue, increasing current efficiency by 23.2% and 7.6%, respectively. In addition, there was no increase in total cell voltage due to the presence of 0.05 mM CPC.
BEST MODE FOR CARRYING OUT THE INVENTION
[0007]
Detailed description
Method and Apparatus An industrial beaker test cell containing an industrial electrowinning electrolyte (solution) was connected to a power source and placed in a 37 ° C water bath. The anode and cathode consisted of lead and aluminum, respectively. The MSDS sheet provided by the laboratory showed that the composition of the electrolyte was 28-34% by weight of zinc sulfate, 9-15 g / l (g / l) of magnesium sulfate and 1.5-2.5 g / l of manganese. It had been.
[0008]
After the temperature in the test cell reaches the desired temperature of 37 ° C., a constant current of 0.045 A, corresponding to an electrowinning current density of 450 amps / m 2, is applied to the unstirred electrolyte for 4 or 20 hours. Applied. At the end of the experiment, the electrode assembly was removed from the glass beaker, rinsed with distilled water, the cathode deposit was carefully peeled off, and weighed using a Digital Mettler AE100 analytical balance with 4-digit accuracy. The test cell was rinsed between experiments with distilled water and acetone to remove traces of organic additives. Iterations were also performed to estimate the standard deviation.
[0009]
The zinc electrodeposition current efficiency was calculated based on Faraday's law.
[0010]
(Equation 1)
Figure 2004537653
[0011]
Cetylpyridinium chloride (CPC) (eg, Sigma-Aldrich, US) had the following structure.
[0012]
Embedded image
Figure 2004537653
【Example】
[0013]
Example 1
Antimony (Sb) having a concentration of 0.04 mg / l (milligram / liter) of zinc electrowinning solution containing antimony was added to the zinc electrowinning electrolyte as antimony potassium tartrate. Both 4 hour and 20 hour experiments were performed. The results of the 4 hour experiment are summarized in Table 1.
[0014]
In the absence of the CPC additive in the electrolyte, Sb adversely affected the current efficiency, ie, between 65.1% (cell number 15) and 74.7% (cell number 14). The average current efficiency without the CPC additive was 69.9%. The addition of CPC increased the current efficiency by an average of 23.2%, ie from 69.9% to 93.1%.
[0015]
[Table 1]
Figure 2004537653
[0016]
The effect of CPC in the longer time (20 hour) experiment is shown in Table 2. Without the CPC additive, the current efficiency of cell number 15 was only 36.6%, while the zinc electrowinning current efficiency in the presence of 0.05 mM CPC was 58.9%. Thus, with the CPC additive, the current efficiency is 22.3% higher.
[0017]
[Table 2]
Figure 2004537653
[0018]
Example 2
A similar experiment as in Example 1 with zinc electrowinning fluid containing both antimony and glue was performed using 0.04 mg / l Sb and 10 mg / l glue (eg, "pearl glue" by Hudson Industries, Johnstown, NY). glue))). Both 4 hour and 20 hour experiments were performed. The effect of the CPC additive on zinc electrowinning current efficiency for the 4 hour experiment is shown in Table 3.
[0019]
The presence of glue minimizes the negative effect of antimony to some extent, and the current efficiency is between 88.9% and 90%. However, when 0.05 mM CPC was added, the current efficiency was further increased, from an average value of 89.4% without CPC to 97% with CPC (Table 3).
[0020]
[Table 3]
Figure 2004537653
[0021]
The 20 hour experiment (Table 4) shows that 0.05 mM CPC increased cell # 16 current efficiency from 77.2% to 87.3%.
[0022]
[Table 4]
Figure 2004537653
[0023]
Cell voltage is another valuable and important value in the electrowinning process. Increasing the cell voltage indicates an increase in the amount of energy required and thus a decrease in the efficiency of the electrowinning process. Table 5 shows that cell voltage does not increase when 0.05 mM CPC is used with Sb and glue.
[0024]
[Table 5]
Figure 2004537653
[0025]
Thus, while the present invention has been described in connection with illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the above-exemplified embodiment of the present invention and other embodiments will become apparent to those skilled in the art upon reading this description. It is therefore intended that the appended claims cover such modifications or embodiments as fall within the scope of the invention.

Claims (9)

改良された亜鉛電解採取の方法であって、セチルピリジニウム塩添加剤を亜鉛電解採取電解質に添加することを含む、改良された亜鉛電解採取の方法。An improved method for zinc electrowinning, comprising adding a cetylpyridinium salt additive to a zinc electrowinning electrolyte. 前記セチルピリジニウム塩はハロゲン化セチルピリジニウムである、請求項1に記載の方法。The method of claim 1, wherein the cetylpyridinium salt is a cetylpyridinium halide. 前記ハロゲン化セチルピリジニウムは塩化セチルピリジニウムである、請求項2に記載の方法。3. The method according to claim 2, wherein the cetylpyridinium halide is cetylpyridinium chloride. 前記塩化セチルピリジニウムは前記亜鉛電解採取の溶液における濃度が0.05ミリモル(mM)である、請求項3に記載の方法。4. The method of claim 3, wherein the cetylpyridinium chloride has a concentration of 0.05 millimolar (mM) in the zinc electrowinning solution. 前記亜鉛電解採取電解質は硫酸亜鉛を含む、請求項1に記載の方法。The method of claim 1, wherein the zinc electrowinning electrolyte comprises zinc sulfate. 前記亜鉛電解採取電解質はアンチモンを含む、請求項1に記載の方法。The method of claim 1, wherein the zinc electrowinning electrolyte comprises antimony. 前記亜鉛電解採取電解質はにかわを含む、請求項1に記載の方法。The method of claim 1, wherein the zinc electrowinning electrolyte comprises glue. 前記にかわは動物性にかわである、請求項7に記載の方法。The method of claim 7, wherein the glue is animal glue. 前記動物性にかわはゼラチンである、請求項8に記載の方法。9. The method of claim 8, wherein said animal glue is gelatin.
JP2003520877A 2001-08-14 2002-08-13 Hydrogen evolution control additive for zinc electrowinning Ceased JP2004537653A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31182501P 2001-08-14 2001-08-14
PCT/CA2002/001250 WO2003016593A2 (en) 2001-08-14 2002-08-13 Hydrogen evolution inhibiting additives for zinc electrowinning

Publications (1)

Publication Number Publication Date
JP2004537653A true JP2004537653A (en) 2004-12-16

Family

ID=23208657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003520877A Ceased JP2004537653A (en) 2001-08-14 2002-08-13 Hydrogen evolution control additive for zinc electrowinning

Country Status (16)

Country Link
US (1) US20050011769A1 (en)
EP (1) EP1417357B1 (en)
JP (1) JP2004537653A (en)
KR (1) KR100599993B1 (en)
CN (1) CN100342061C (en)
AU (1) AU2002322888B2 (en)
BR (1) BR0211933A (en)
CA (1) CA2457071C (en)
DE (1) DE60203301T2 (en)
ES (1) ES2238586T3 (en)
HK (1) HK1075920A1 (en)
MX (1) MXPA04001459A (en)
NO (1) NO20040651L (en)
RU (1) RU2288299C2 (en)
WO (1) WO2003016593A2 (en)
ZA (1) ZA200405167B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100540748C (en) * 2006-06-15 2009-09-16 云南冶金集团总公司 Assembled gelatin additive
CN103993330A (en) * 2014-05-07 2014-08-20 成都理工大学 Zinc electrolysis technology of zinc ammonia complex aqueous solution
CN106676578B (en) * 2015-11-11 2018-09-28 沈阳有色金属研究院 A kind of new and effective joint additive of Zinc electrolysis
CN110512236B (en) * 2019-09-27 2021-05-04 中国科学院长春应用化学研究所 Combined additive and application thereof in zinc electrodeposition
CN115133159A (en) * 2022-09-01 2022-09-30 河南师范大学 Functional aqueous zinc ion battery electrolyte and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028199A (en) * 1974-08-05 1977-06-07 National Development Research Corporation Method of producing metal powder
CA1064852A (en) * 1975-12-31 1979-10-23 Cominco Ltd. Method for evaluating a system for electrodeposition of metals
CA1111125A (en) * 1978-07-05 1981-10-20 Robert C. Kerby Method and apparatus for control of electrowinning of zinc
US4699696A (en) * 1986-04-15 1987-10-13 Omi International Corporation Zinc-nickel alloy electrolyte and process
US4717458A (en) * 1986-10-20 1988-01-05 Omi International Corporation Zinc and zinc alloy electrolyte and process
CN1023818C (en) * 1991-03-19 1994-02-16 昆明工学院 Vacuum distillation zinc extraction method of hot galvanizing residue
US5635051A (en) * 1995-08-30 1997-06-03 The Regents Of The University Of California Intense yet energy-efficient process for electrowinning of zinc in mobile particle beds
US6086691A (en) * 1997-08-04 2000-07-11 Lehockey; Edward M. Metallurgical process for manufacturing electrowinning lead alloy electrodes
CN1065919C (en) * 1998-04-24 2001-05-16 昆明理工大学 Vacuum distillation of hard zinc to extract zinc and to concentrate germanium, indium and silver
US6238542B1 (en) * 1998-09-15 2001-05-29 Thomas Helden Water soluble brighteners for zinc and zinc alloy electrolytes
EP1013799A1 (en) * 1998-12-23 2000-06-28 Half Tone Ltd. Solution and process for the electrodeposition of gold and gold alloys

Also Published As

Publication number Publication date
NO20040651L (en) 2004-04-16
WO2003016593A3 (en) 2003-10-09
AU2002322888B2 (en) 2007-06-21
WO2003016593A2 (en) 2003-02-27
ES2238586T3 (en) 2005-09-01
RU2288299C2 (en) 2006-11-27
BR0211933A (en) 2004-10-26
EP1417357B1 (en) 2005-03-16
US20050011769A1 (en) 2005-01-20
KR100599993B1 (en) 2006-07-13
CN1653209A (en) 2005-08-10
CN100342061C (en) 2007-10-10
ZA200405167B (en) 2005-06-27
DE60203301T2 (en) 2006-04-13
CA2457071A1 (en) 2003-02-27
DE60203301D1 (en) 2005-04-21
EP1417357A2 (en) 2004-05-12
HK1075920A1 (en) 2005-12-30
RU2004107493A (en) 2005-06-10
CA2457071C (en) 2007-05-29
MXPA04001459A (en) 2005-02-17
KR20040044443A (en) 2004-05-28

Similar Documents

Publication Publication Date Title
RU2288524C2 (en) Method and products for improving performance characteristics of batteries/fuel cells
NO20052377L (en) Cells with metal-based anodes for aluminum production
KR102023363B1 (en) Leveling agent for nickel electrolytic plating and nickel electrolytic plating solution containing the leveling agent
NO20061195L (en) Cell for electrolytic recovery of metal with electrolyte cleaner
JPS59111277A (en) Electrolyte for zinc-bromine secondary battery
JP2004537653A (en) Hydrogen evolution control additive for zinc electrowinning
Zhang et al. Cyclic voltammetric studies of the behavior of lead-silver anodes in zinc electrolytes
CN106637231A (en) Aluminum alloy anode suitable for high-resistivity environment and preparation method thereof
JP2010090414A (en) Aluminum-electroplating solution, and plated aluminum film
JP2005248319A (en) Electroplating method of metal using gel electrolyte of organic solvent
JP2001172790A (en) Electroplating bath for nickel plating
AU2002322888A1 (en) Hydrogen evolution inhibiting additives for zinc electrowinning
CN103108995B (en) Nickel pH adjustment method and equipment
JP2982658B2 (en) Method of lowering metal concentration in electroplating solution
JP2002371397A (en) Method for electrodepositing metal by using molten salt of ordinary temperature
US20200332395A1 (en) Corrosion resistant aluminum electrode alloy
CN114486714B (en) Trapezoidal potential acceleration test method for fuel cell metal bipolar plate
Sánchez-Sánchez et al. Calculation of the characteristic performance indicators in an electrochemical process
JP4436553B2 (en) Aluminum alloy for low temperature seawater environmental current anode
Barmi et al. Alternative low-cost composite coated anodes for base metal electrowinning
SU1079701A1 (en) Copper-plating electrolyte
Zhang et al. Effects of antimony (III) on zinc electrodeposition from acidic sulfate electrolyte containing [BMIM] HSO 4
JP2008266739A (en) Lead alloy for lead storage battery, and lead storage battery
Sabri Mass Transport Properties of a Flow-Through Electrolytic Reactor Using Zinc Reduction System‖
RU2164967C1 (en) Bismuth-tin ally precipitation electrolyte

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050811

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071009

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20080930