JP2004533227A - 細胞骨格結合タンパク質 - Google Patents

細胞骨格結合タンパク質 Download PDF

Info

Publication number
JP2004533227A
JP2004533227A JP2002578407A JP2002578407A JP2004533227A JP 2004533227 A JP2004533227 A JP 2004533227A JP 2002578407 A JP2002578407 A JP 2002578407A JP 2002578407 A JP2002578407 A JP 2002578407A JP 2004533227 A JP2004533227 A JP 2004533227A
Authority
JP
Japan
Prior art keywords
polynucleotide
seq
polypeptide
sequence
amino acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002578407A
Other languages
English (en)
Inventor
ハファリア、エープリル・ジェイ・エイ
タング、トム・ワイ
ユエ、ヘンリー
カーン、ファラ・エイ
アイソン、クレイグ・エイチ
ボーグン、マライア・アール
ワレン、ブリジット・エイ
ダガン、ブレンダン・エム
サンガベル、カビサ
ホンチェル、シンシア・ディー
アジムザイ、ヤルダ
エリオット、ビッキー・エス
バーフォード、ニール
ディング、リー
ユエ、ヒュイビン
ベチャ、シャニア
エマーリング、ブルック・エム
リチャードソン、トマス・ダブリュ
リー、ソー・ユーン
バンドマン、オルガ
ラル、プリーティ・ジー
リー、サリー
ギーツェン、キンバリー・ジェイ
チョーラ、ナリンダー・ケイ
グリフィン、ジェニファー・エイ
リー、アーンスティーン・エイ
スウォーナカール、アニータ
リング、ヒュイジュン、ジィー
ジョーンズ、カレン・アン
Original Assignee
インサイト・ゲノミックス・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インサイト・ゲノミックス・インコーポレイテッド filed Critical インサイト・ゲノミックス・インコーポレイテッド
Publication of JP2004533227A publication Critical patent/JP2004533227A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/04Drugs for skeletal disorders for non-specific disorders of the connective tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Abstract

本発明はヒトの細胞骨格結合タンパク質(CSAP)、およびCSAPを同定しコードするポリヌクレオチドを提供する。本発明はまた、発現ベクター、宿主細胞、抗体、アゴニストおよびアンタゴニストをも提供する。本発明はまた、CSAPの異常発現に関連する疾患を診断、治療または予防する方法をも提供する。

Description

【技術分野】
【0001】
本発明は、細胞骨格結合タンパク質の核酸配列及びアミノ酸配列に関する。本発明はまた、これらの配列を利用した細胞増殖異常、ウイルス感染症、および神経系疾患の診断・治療・予防に関する。本発明はさらに、細胞骨格結合タンパク質の核酸配列及びアミノ酸配列の発現における外来性化合物の効果についての評価に関する。
【背景技術】
【0002】
細胞内の成分の移動は細胞の構造と機能を維持するために必須である。タンパク質や膜結合細胞小器官などの細胞成分は、明確な経路を通って特定の細胞内区画に輸送される。細胞内輸送機構は、分子の動きを誘導するためのトラックの役割を果たす繊維状の高分子である微小管を利用している。分子輸送は微小管関連のモータータンパク質であるキネシンとダイニンによって駆動される。これらのタンパク質はATP加水分解によって得られるエネルギーを使って微小管に沿って一方向に移動し、積荷分子を特定の行く先に輸送する。
【0003】
細胞骨格は、細胞形状、構造及び運動を媒介するタンパク質線維の細胞質内ネットワークである。この細胞骨格は細胞膜を支え、細胞小器官や他の要素が細胞質内で移動するトラックを形成する。細胞骨格は動的な構造をしており、それによって細胞が種々の形状をとり有向性移動が行えるようになっている。主要細胞骨格線維には微小管、ミクロフィラメント、および中間径フィラメントが含まれる。ミオシン、ダイニン及びキネシンを含むモータータンパク質は、線維の移動または線維に沿った移動を駆動する。モータータンパク質であるダイニンは、膜小胞の形成を駆動する。補助タンパク質または関連タンパク質は線維の構造または活性を変更し、細胞骨格の膜アンカーは線維を細胞膜に結合する。
【0004】
微小管および関連タンパク質
チューブリン
直径約24nmの細胞骨格線維である微小管は細胞内で複数の役割を果たしている。束になった微小管は繊毛や鞭毛を形成し、両者は細胞膜の鞭状の伸長であり、繊毛は上皮上の物質を一掃するのに必要で、鞭毛は精子の遊泳に必要である。赤血球や血小板の微小管の辺縁領域は、これらの細胞の柔軟性の維持に重要である。細胞小器官、膜小胞及びタンパク質は、微小管のトラックに沿って細胞内で輸送される。例えば、微小管は神経細胞軸索の中を通っており、細胞体と神経末端の間で物質や膜小胞の双方向の輸送を可能にしている。神経末端にこれらの小胞を供給できないと、神経のシグナル伝達が妨げられる。微小管はまた、細胞分裂中の染色体運動にとっても重要である。安定な微小管集団と短命な微小管集団の両方が細胞内に存在する。
【0005】
微小管は、GTPを結合するチューブリンタンパク質サブユニットからなる高分子である。各々のサブユニットは、α-チューブリンおよびβ-チューブリンのヘテロ二量体で、それぞれ複数のイソ型が存在する。GTPの加水分解は、微小管の末端へのチューブリンサブユニットの付加に関連する。サブユニットはヘッドとテイルどうしが相互作用してプロトフィラメントを形成し、プロトフィラメントは側面どうしが相互作用して微小管を形成する。微小管は極性があり、一端はαチューブリン、他端はβチューブリンで環状になっており、両端でアセンブリの速度が異なる。11または15のプロトフィラメント微小管も見られるが、一般に各微小管は13のプロトフィラメントから構成される。繊毛と鞭毛はダブレット微小管を含んでいる。微小管は、中心体または微小管形成中心(MTOC)として知られている特殊構造体から成長する。微小管形成中心は一つまたは二つの中心小体を含んでおり、三つ組の微小管の風車配列になっている。基底小体は繊毛または鞭毛の基部に位置する形成中心であり、1つの中心小体を含む。MTOCに存在するγチューブリンは、αとβのチューブリンへテロ二量体の重合の核形成に重要であるが、微小管には重合しない。ペリセントリン(pericentrin)タンパク質はMTOCに見られ、微小管のアセンブリに関与している。
【0006】
微小管結合タンパク質
微小管結合タンパク質(MAP)は微小管のアセンブリと安定化に関与している。一つの主要ファミリーの微小管結合タンパク質はアセンブリMAPであり、これらは神経細胞および非神経細胞においても同定される。アセンブリMAPはサイトゾル内の微小管の架橋をも担っている。これらのMAPは、塩基性微小管結合ドメインと酸性プロジェクションドメインの二つのドメインから構成されている。プロジェクションドメインは、膜、中間径フィラメントまたは他の微小管の結合部位である。配列解析に基づいて、アセンブリMAPをタイプIとタイプIIの2つの種類にグループ分け出来る。タイプI MAPにはMAP1AとMAP1Bがあり、微小管で同時精製される大型の線維状分子であり、脳や精巣に多く発現する。タイプI MAPは正に帯電したアミノ酸配列モチーフのいくつかのリピートを含むが、このモチーフは負に帯電したチューブリンを中和して微小管の安定化をもたらす。MAP1AおよびMAP1Bの各々は一つの前駆体ポリペプチドから由来しており、その前駆体ポリペプチドはタンパク分解処理されて、一つの重鎖と一つの軽鎖を形成する。
【0007】
別の軽鎖であるLC3は、16.4 kDaの分子であり、MAP1A、MAP1Bおよび微小管と結合する。LC3はMAP1AまたはMAP1B転写物以外の源泉から合成され、LC3の発現は細胞増殖時のMAP1AおよびMAP1Bの微小管結合活性の調節に重要であり得ることが示唆されている(Mann, S. S. 他 (1994) J. Biol. Chem. 269:11492-11497)。
【0008】
MAP2a、MAP2b、MAP2c、MAP4 および Tauを含むタイプ II MAPは、微小管結合ドメインに3コピーないし4コピーの18残基配列を有することが特徴である。MAP2a、MAP2b、およびMAP2cは樹状突起のみに見られ、MAP4は 非神経細胞性細胞に見られ、Tauは神経細胞の軸索と樹状突起に見られる。TauのmRNAの選択的スプライシングによってTauタンパク質の複数のアイソフォームが存在するようになる。アルツハイマー疾患、ピック病、進行性核上性麻痺、大脳皮質基底核変性症、および17番染色体に連鎖する家族性前頭側頭部痴呆症とパーキンソン病のような神経変性疾患ではTauのリン酸化が変更されている。Tauリン酸化が変更されることによって微小管網が破壊され、神経細胞内Tau凝集の形成が生じる(Spillantini, M.G. および Goedert, M. (1998) Trends Neurosci. 21:428-433)。
【0009】
原形質リンカータンパク質(CLIP-170) はエンドサイトーシス小胞を微小管に連結する。また、CLIP-170 は微小管の終末をアクチンケーブルに連結することにより、指向性の細胞運動に寄与している可能性がある(Goode, B.L. 他 (2000) Curr. Opin. Cell Biol. 12:63-71)。CLIP-170タンパク質はCAP-Glyドメインのコピーを2つ持っているが、このドメインはいくつかの細胞骨格タンパク質に見られる約42残基の保存されたグリシンリッチなドメインである(Prosite PDOC00660 CAP-Gly ドメインシグネチャ)。
【0010】
STOP(stable tubule only polypeptide)は、別の微小管結合タンパク質で、安定性を調節するカルモジュリン制御タンパク質である(Denarier, E. 他 (1998) Biochem. Biophys. Res. Commun. 24:791-796)。長距離にわたって伝導性の接続を維持するために、神経細胞は軸索樹状突起の伸長に依存しており、その軸索樹状突起の伸長は微小管によって支持されている。STOPタンパク質は微小管ネットワークを安定化する機能をもつ。STOPタンパク質は軸索微小管と結合し、また神経内にも豊富にある(Guillaud, L. 他 (1998) J. Cell Biol. 142:167-179)。STOPタンパク質は正常の神経突起の形成に必要であり、in vitroで低温、カルシウム、または薬剤によって起こされ得る解離に対し微小管を安定させることが観察されている(Margolis, R.L. 他 (1990) EMBO 9:4095-502)。
【0011】
ミクロフィラメントおよび関連タンパク質
アクチン
直径約7〜9nmの細胞骨格フィラメントであるミクロフィラメントは、細胞移動、細胞形状、細胞接着、細胞分裂及び筋収縮に重要である。ミクロフィラメントの集合と解離によって、細胞はその形態を変えることが可能になる。ミクロフィラメントは、真核細胞で最も豊富な細胞内タンパク質であるアクチンが重合したものである。ヒト細胞は、アクチンの6つのアイソフォームを有する。三つのαアクチンが異なった種類の筋肉にあり、非筋肉性βアクチンおよび非筋肉性γアクチンは非筋肉細胞にあり、また他のγアクチンは腸の平滑筋細胞にある。単量体形のアクチンであるG-アクチンは、ATPからADPへの加水分解を伴って、極性をもつ螺旋形のF-アクチンフィラメントに重合する。アクチンフィラメントは、会合して束及びネットワークを形成し、原形質膜を支持して細胞形状を決定するようなフレームワークを提供する。これらの束及びネットワークは、細胞膜に接続されている。筋肉細胞では、収縮する間にアクチンを含む細いフィラメントが、モータータンパク質ミオシンを含む太いフィラメントに対し滑る。アクチン細胞骨格の一部ではない一連のアクチン関連タンパク質が存在し、むしろ微小管やダイニンに会合する。
【0012】
アクチン結合タンパク質
アクチン結合タンパク質はアクチンフィラメントの架橋、切断および安定化、またアクチン単量体の隔離に関与している。アクチン結合タンパク質のいくつかは複数の機能を有している。アクチンフィラメントの束やネットワークはアクチン架橋タンパク質によって保持されている。これらのタンパク質は各フィラメントに一個づつの合計2つのアクチン結合部位を有する。短い架橋タンパク質は束形成を促進し、他方、長くてより柔軟性のある架橋タンパク質はネットワーク形成を促進する。アクチン相互作用タンパク質(AIP)は、アクチンフィラメント組織の調節に関与する。新規なF-アクチン結合タンパク質であるTARAのような、他のアクチン結合タンパク質は、アクチン細胞骨格組織を調節することによって同様の能力で機能する。アクチン架橋タンパク質のカルモジュリン様カルシウム結合ドメインによって架橋のカルシウム調節が可能となる。グループ I の架橋タンパク質は独特のアクチン結合ドメインを持ち、30 kD タンパク質、EF-1a、ファシン(fascin)やスクルイン(scruin)等が含まれる。グループ II の架橋タンパク質は、7,000-MW アクチン結合ドメインを有し、ビリン(villin)やデマチン(dematin)等が含まれる。グループ III の架橋タンパク質は、1対の26,000MWのアクチン結合ドメインを有し、フィンブリン、スペクトリン、ジストロフィン、ABP120、及びフィラミンがある。
【0013】
切断タンパク質は、アクチンフィラメントを短い断片に切るか、またはその端をブロックすることによって、アクチンフィラメントの長さを調節する。切断タンパク質には、gCAP39、セベリン(severin)(フラグミン(fragmin))、ゲルゾリンおよびビリンが含まれる。キャッピングタンパク質は、アクチンフィラメントの端にキャップを形成し得るが、フィラメントを切断することはできない。キャッピングタンパク質には、CapZ及びトロポモジュリンがある。タンパク質のチモシンとプロフィリンはサイトゾル内でアクチン単量体を隔離し、重合しないアクチンのプールの存在を可能にする。アクチン結合タンパク質のトロポミオシン、トロポニンおよびカルデスモンは筋肉収縮をカルシウムに応答して調節する。
【0014】
微小管とアクチンフィラメントのネットワークは、小胞と細胞小器官の輸送、分裂溝の配置、有向性の細胞遊走、紡錘体の回転、および核の移動などのプロセスで協調する。微小管とアクチンは、小胞、細胞小器官、および細胞運命の決定因子の輸送を協同ですることがあり、または輸送には裏打ちアクチン部位に微小管の端を向かわせることとその部位での微小管の捕捉を含み得る。これらの細胞骨格系は、ミオシン-キネシン複合体、ミオシン-CLIP170複合体、フォルミン相同体(FH)タンパク質、ダイニン、ダイナクチン複合体、Kar9p、コロニン(Coronin)、ERMタンパク質、およびKelchリピート含有タンパク質によって架橋され得る(Goode, B.L. 他 (2000) Curr. Opin. Cell Biol. 12:63-71の概説を参照)。Kelchリピートは、Ring Canalと呼ばれる細胞質内架橋の形成に関与するKelchタンパク質で最初に観察されたモチーフである。種々の哺乳類Kelchファミリータンパク質と他のKelchファミリータンパク質が同定されているKelchリピートドメインは、アクチンとの相互作用を仲介していると考えられている(Robinson, D.N. および L. Cooley (1997) J. Cell Biol. 138:799-810)。
【0015】
ADF/コフィリンは保存された15〜18kDaのアクチン結合タンパク質のファミリーであり、これらのタンパク質は、細胞分裂、エンドサイトーシス、および胚組織の発生で役割を果たすと共に、組織再生、および虚血、酸化的ストレス、または浸透的ストレスのような病状でも役割を果たす。LIMキナーゼ1はADFを下方調節する(Carlier, M.F. 他 (1999) J. Biol. Chem. 274:33827-33830)。
【0016】
コロニン(coronin)はアクチン結合タンパク質であり、ヘテロ三量体Gタンパク質のβサブユニットの配列に類似したWD (Trp-Asp) リピートを5つ持っている。コロニンを欠く粘菌の突然変異体は、細胞移動、細胞質分裂、食作用およびマクロピノサイトーシスなどのアクチン仲介プロセスの全てに障害を示す。ヒトの好中球においては、コロニン1がエンドサイトーシス小胞の周囲にFアクチンと共に集積することから、コロニンが進化的に保存された役割を持っていることが示唆される。他のコロニンタンパク質は、アクチンの重合の促進、アクチンの架橋結合および微小管への結合などの特定の作用を持っている。
【0017】
LIMは、そのモチーフが最初に同定された、Lin-11、lsl-1、およびMec-3の3つの転写因子の頭字語である。LIMドメインは2つのZnフィンガーのモチーフであり、転写因子、シグナル、および細胞骨格結合タンパク質のタンパク質-タンパク質相互作用を仲介する(Roof, D.J. 他 (1997) J. Cell Biol. 138:575-588)。これらのタンパク質は核、細胞質、または両方に分布している(Brown, S. 他 (1999) J. Biol. Chem. 274:27083-27091)。最近、ALP(アクチン結合LIMタンパク質)がαアクチニン-2に結合することが示された(Bouju, S. 他 (1999) Neuromuscul. Disord. 9:3-10)。
【0018】
Frabinタンパク質は、アクチンフィラメント結合タンパク質の別の例である(Obaishi, H. 他 (1998) J. Biol. Chem. 273:18697-18700)。Frabin(FGD1関連F-アクチン結合タンパク質)は1つのアクチンフィラメント結合(FAB)ドメイン、1つのDbl相同(DH)ドメイン、2つのプレックストリン相同(PH)ドメイン、および1つのシステインリッチFYVE(Fab1p、YOTB、Vac1p、およびEEA1(初期エンドソーム抗原1))ドメインをもつ。FrabinはCdc42低分子量Gタンパク質(Cdc42)のGDP/GTP交換活性を示し、無傷の細胞でRac低分子量Gタンパク質(Rac)の活性を間接的に誘導する。Cdc42とRacの活性化によって、Frabinは糸状偽足様のプロセスと葉状偽足様のプロセスの形成を誘導できる(Ono, Y. 他 (2000) Oncogene 19:3050-3058)。
【0019】
Rhoファミリーの低分子量GTP結合タンパク質は、細胞形態変化、接着、および運動を含むアクチン依存性の機能の重要な調節因子である。Rhoファミリーは、Cdc42、Rac、Rhoの3つの主要なサブファミリーから成る。Rhoファミリーメンバーは、GDP/GTP交換因子(GEF)によってGDP結合の非活性型とGTP結合の活性型の間を循環する(Umikawa, M. 他 (1999) J. Biol. Chem. 274:25197-25200)。RhoGEFファミリーはミクロフィラメント組織で重要である。
【0020】
中間径フィラメントおよび関連タンパク質
中間径フィラメント(IF)は直径約10nmの細胞骨格線維であり、ミクロフィラメントと微小管の直径の中間の大きさである。IFは細胞の構造的役割を果たしており、細胞を強化し、組織化する。IFは特に上皮細胞および神経細胞に豊富である。IFは極めて安定であり、ミクロフィラメントや微小管とは異なり、細胞運動には関与しない。
【0021】
哺乳動物では、5つのタイプのIFタンパク質が知られている。I型及びII型のタンパク質は、各々酸性ケラチン及び塩基性ケラチンである。酸性ケラチン及び塩基性ケラチンのヘテロ二量体は、ケラチンIFの構成単位である。ケラチンは、皮膚や角膜などの軟らかい上皮内、爪や髪などの硬い上皮内、及び身体内腔に沿って並ぶ上皮内に豊富にある。ケラチン遺伝子の突然変異は、単純型表皮水疱症、水疱型先天性魚鱗癬様紅皮症(表皮溶解性角質増殖)、非表皮溶解性及び表皮溶解性掌蹠角皮症、シーメンスの水疱性魚鱗癬、先天性爪肥厚症、及び白色海綿母斑を含む上皮の疾病の原因となる。これらの疾病には、重度の皮膚水疱形成の原因となるものもある(Wawersik, M. 他 (1997) J. Biol. Chem. 272:32557-32565、Corden, L.D. および W.H. McLean (1996) Exp. Dermatol. 5:297-307等を参照)。
【0022】
III型のIFタンパク質には、デスミン、グリア線維酸性タンパク質、ビメンチン、およびペリフェリンが含まれる。筋細胞中のデスミンフィラメントは筋線維を束に連結し、収縮中の筋肉中のサルコメアを安定化させる。グリア線維性酸性タンパク質フィラメントは、神経と星状膠細胞を囲むグリア細胞に見られる。ビメンチンフィラメントは血管内皮細胞、ある種の上皮細胞、および線維芽細胞のような間葉細胞に見つけられ、一般に微小管と結合している。ビメンチンフィラメントは、細胞内で核や他の細胞小器官を所定の位置に留める役割を持っている可能性がある。IV型のIFにはニューロフィラメントとネスチンが含まれる。ニューロフィラメントはNF-L、NF-M、およびNF-Hの3つのポリペプチドから構成され、しばしば軸索中の微小管に結合している。ニューロフィラメントは軸索の放射状成長とその直径に関与し、最終的には神経インパルス伝達の速度にも関係する。ニューロフィラメントのリン酸化と代謝の変化は、筋萎縮性側索硬化症、パーキンソン病、およびアルツハイマー病を含む神経変性疾患で観察されている(Julien, J.P. および Mushynski, W.E. (1998) Prog. Nucleic Acid Res. Mol. Biol. 61:1-23)。V型のIFであるラミンは核内で見つかっており、そこで核膜の支持をしている。
【0023】
IF群は、複数の短い非螺旋状リンカーのセグメントが割り込んでいる、中心部のα螺旋棒状領域を有する。この棒状領域はたいてい、非螺旋状の先端(ヘッド)ドメインと終端(テイル)ドメインに挟まれている。中間径フィラメントタンパク質の棒状領域は、会合してコイルドコイル二量体を形成する。極めて順序よい集合過程によって、二量体からIFを生じる。ミクロフィラメントや微小管の集合とは異なり、IF集合にはATPまたはGTPのどちらも必要でない。
【0024】
IF結合タンパク質(IFAP)はIF間の相互作用および他の細胞構造との相互作用を媒介する。IFAPは束状またはネットワークにIFを架橋するか、あるいは原形質膜に架橋する。またIFをミクロフィラメントや微小管細胞骨格に架橋する場合がある。微小管とIFは特に密接に会合している。IFAPには、BPAG1、プラコグロビン、デスモプラキンI、デスモプラキンII、プレクチン(plectin)、アンキリン、フィラグリン (filaggrin)、およびラミンB受容体が含まれる。
【0025】
細胞骨格膜アンカー
細胞骨格線維は特異的タンパク質によって原形質膜に付着している。これらの付着は細胞の形状維持や筋肉収縮にとって重要である。赤血球において、スペクトリン-アクチン細胞骨格は三つのタンパク質、バンド4.1、アンキリンおよびアデュシン(adducing)によって細胞膜に付着される。この付着に欠陥があると、異常な形状の細胞になり、それらの細胞は脾臓によってより急速に分解され、貧血を起こさせる。血小板においては、スペクトリン-アクチン細胞骨格はまた、アンキリンによって膜に結合されており、二番目のアクチンネットワークがフィラミンによって膜に付着されている。筋肉細胞において、タンパク質ジストロフィンはアクチンフィラメントを原形質膜に結合しており、ジストロフィン遺伝子の突然変異によってデュセンヌ型筋ジストロフィーが生じる。
【0026】
接着斑
接着斑は、細胞外マトリックス(ECM)のような基質への細胞の接着に関与する原形質膜の特殊化した構造である。細胞斑は細胞害基質と細胞骨格との間の接続を形成し、細胞形態、細胞運動性、および細胞増殖性のような機能に影響を与える。膜貫通のインテグリン分子が接着斑の基礎を形成する。インテグリンはリガンドに結合すると、原形質膜の面でクラスターを形成する。αアクチニン、タリン、テンシン、ビンキュリン、パキシリン、およびフィラミンのアクチン結合タンパク質のような細胞骨格連結タンパク質がそのクラスター部位に集められる。Rhoファミリータンパク質、Rasファミリータンパク質、接着斑キナーゼ、およびSrcファミリーメンバーのような重要な調節タンパク質もまた集められる。これによって、アクチンフィラメントが再構成され、ストレスファイバーが形成される。これらの細胞内再構成によって、さらに、インテグリン-細胞外マトリックスの相互作用とインテグリンのクラスター化が促進される。このようにして、インテグリンは原形質膜の細胞質内側と細胞外側の両方においてタンパク質複合体の凝集を媒介し、接着斑の形成に至らせる。多くのシグナル伝達応答は、Src、FAK、パキシリン、およびテンシンを含む、種々の接着複合体タンパク質によって仲介される(Yamada, K.M. および B. Geiger, (1997) Curr. Opin. Cell Biol. 9:76-85の概説を参照)。
【0027】
IFはまた細胞骨格膜アンカーによって膜に付着される。核ラミナはラミンB受容体によって核膜の内部表面に付着されている。ビメンチンIFはアンキリンとプレクチンによって原形質膜に付着されている。デスモソームおよびヘミデスモソームの膜接合部によって、臓器と皮膚の上皮細胞が結合されている。これらの膜接合部によって剪断変形力が上皮細胞層全体に分布され、したがって、上皮細胞に強度と硬性が与えられる。上皮細胞のIFはプラコグロビンとデスモプラキンによってデスモソームに付着している。IFをヘミデスモソームに結合するタンパク質はわかっていない。デスミンIFは筋肉においてサルコメアを包囲しており、パラネミン(paranemin)、シネミン(synemin)およびアンキリンによって原形質膜に結合している。
【0028】
アンキリン
細胞骨格と細胞内区画の境界となる脂質膜の間の結合には、スペクトリン、アンキリンおよび膜内在性膜タンパク質が関与している。スペクトリンは細胞骨格の主要な成分であり、足場タンパク質として作用する。同様に、アンキリンはアクチン・スペクトリン部分を膜につなぎ、細胞骨格と膜区画の間の相互作用を調節する作用を持っている。アンキリンの異なるアイソフォームが異なる細胞小器官に対して特異的になっていて、この相互作用に特異性を与えている。アンキリンは調節ドメインも持っていて、この調節ドメインは細胞シグナルに反応して細胞周期および分化中の細胞骨格リモデリングを可能にする(Lambert, S. and Bennett, V. (1993) Eur. J. Biochem. 211:1-6)。
【0029】
アンキリンは3つの基本的な構造成分を持っている。アンキリンのN末端部分は、特異的タンパク質間相互作用に関与するアンキリンリピートである33アミノ酸モチーフの反復からなっている。異なったアンキリンリピートがチューブリン、アニオン交換タンパク質、電位依存性ナトリウムチャネル、Na+/K+-ATPaseおよびニューロファシン(neurofascin)との結合に関与するように、モチーフ内の可変領域は特異的タンパク質結合を担っている。アンキリンモチーフはまた、NF-κ-B、また酵母においては細胞周期タンパク質CDC10、SW14およびSW16のような転写因子で見つかっている。ショウジョバエ(Drosophila)の Notch や線虫(C. elegans)のLIN-12 およびGLP-1のような組織分化に関連するタンパク質にもアンキリン様リピートが含まれている。Lux ら (1990; Nature 344:36-42) によって、アンキリン様リピートは「組込み」アンキリンとして働き、内在性膜タンパク質、チューブリンおよびその他のタンパク質のための結合部位を形成することが示されている。
【0030】
アンキリンの中央ドメインはスペクトリンに結合するために必要である。このドメインは一つの酸性領域(スペクトリンへの結合が主な役目)と一つの塩基性領域からなっている。中央ドメイン内のリン酸化がスペクトリンの結合を調節している可能性がある。C末端ドメインはアンキリンの機能を調節する。C末端除去アンキリン(タンパク質2.2)は構成的に活性なアンキリンとしてふるまい、膜およびスペクトリンとの結合が強くなっている。C末端ドメインはアンキリンファミリのメンバーの間でばらつきがあり、組織特異的な選択的スプライシングによって酸性または塩基性の特徴を示す修飾されたC末端が生成される(Lambert, 前出)。
【0031】
3つのアンキリンタンパク質ANK1, ANK2およびANK3が記述されていて、それぞれ組織特異性と細胞内局在パターンが異なっている。ANK1(赤血球タンパク質2.1)は循環のせん断応力からの赤血球の保護および赤血球独自の両凹円板状の形状の維持に関与している。ANK1の欠損は遺伝性球状赤血球症(HS)などの遺伝性の溶血性貧血およびPerkinje 細胞の欠損を伴う神経変性疾患に関連していると考えられている(Lambert, 前出)。ANK2は主要な神経組織アンキリンである。2つの選択的スプライシング変異体がANK2遺伝子から生成される。成人で発現される脳のアンキリン(brank1)は、N末端および中央ドメインがANK1に類似しているが調節ドメインはまったく異なる。早期の神経形態であるbrank2はスペクトリン結合部位と調節ドメインの間にもう一つのモチーフが追加されている。線虫におけるアンキリン相同体であるunc-44はANK2に類似した選択的スプライス変異体を生成する。unc-44遺伝子の突然変異は軸索の伸長方向に影響する(Otsuka, A.J. 他 (1995) J. Cell Biol. 129:1081-1092)。
【0032】
ANK3は4つのアンキリンアイソフォーム(G100, G119, G120, および G195)からなる。これらは細胞内区画に局在し、小胞輸送に関連していると考えられている。AnkG119 はゴルジ体に結合していて、切断されたN末端ドメインを有し、C末端調節ドメインを欠いている。AnkG120 および AnkG100 はマクロファージの後期エンドリソソームに結合していて、N末端アンキリンリピートを欠いているが、ANK1とANK2に特徴的な調節ドメインとスペクトリン結合ドメインの両方を持っている。 AnkG195 はトランスゴルジネットワーク(TGN)に結合している。これらのアンキリンアイソフォームは、ゴルジ体を通じたタンパク質輸送を仲介している可能性のあるスペクトリン複合体の一部である。 ERからゴルジ体、そしてさらにその先に輸送される小胞に膜タンパク質を選択的に隔離するものとして、スペクトリン・アンキリン・アダプタタンパク質輸送系(SAATA)が提案されている。このモデルにおいてはゴルジ内部、TGNおよび原形質膜輸送にアンキリンアイソフォームを含むSAATSタンパク質成分の交換が関与していて、その役割は小胞積荷の最終目的地を指定して明確にすることである(DeMatteis, M.A. および Morrow, J.S. (1998) Curr. Opin. Cell Biol. 10:542-549)。
【0033】
モータータンパク質
ミオシン関連モータータンパク質
ミオシンは、ATPの加水分解を運動に共役させるアクチン活性ATP分解酵素であり、真核細胞中に見られる。ミオシンは、筋収縮のモーター機能、および食作用や有糸細胞分裂(細胞質分裂)中に行われる細胞内容物の再配列などの細胞内運動のためのモーター機能を提供する。サルコメアと称される骨格筋の収縮単位は、アクチンを含む細いフィラメント及びミオシンを含む太いフィラメントの高度に規則正しい配列から構成される。太いフィラメントと細いフィラメントの間にクロスブリッジが形成され、太いフィラメント内のミオシンヘッドのATP依存性の運動が細いフィラメントを引っ張り、サルコメアを短縮し、それによって筋線維を短縮する。
【0034】
ミオシンは、1または2つの重鎖及びそれに会合する軽鎖を有する。ミオシン重鎖は、アミノ末端モータードメイン即ちヘッドドメインと、軽鎖結合の部位である頚部と、カルボキシル末端テイルドメインとを有する。テイルドメインは、α螺旋コイルドコイルの形成に関与している可能性がある。例えば筋肉組織などに見られるような従来のミオシンは、2つのミオシン重鎖サブユニットを有し、各々が2つの軽鎖サブユニットに会合しており、軽鎖サブユニットは重鎖の頚部領域に結合し調節の役割を果たしている。細胞内運動において機能すると信じられている非従来型のミオシンは、1または2つの重鎖及びそれに会合する軽鎖を含んでいる可能性がある。脊椎動物の約25ミオシン重鎖遺伝子について半分以上が非従来型であるという証拠がある。
【0035】
ダイニン関連モータータンパク質
ダイニンは微小管上で作用する(-)末端方向性モータータンパク質である。細胞質型と軸糸型の2種のダイニンが同定されている。細胞質型ダイニンは細胞質内の微小管に沿って物質の移行を担い、例えば、神経末端から細胞体への輸送やエンドサイトーシス小胞のリソソームへの輸送などに関与する。さらに、ウイルスはしばしば、細胞質型ダイニンを利用して核内に入り込み感染を成功させる(Sodeik, B. 他 (1997) J. Cell Biol. 136:1007-1021)。例えば、単純ヘルペスウイルス1のビリオンタンパク質は細胞質型ダイニンの中鎖と相互作用する(Ye, G.J. 他 (2000) J. Virol. 74:1355-1363)。細胞質内ダイニンはまた、有子分裂にも関与していることが報告されている。軸糸型ダイニンは鞭毛や繊毛の鞭打ち運動に関与する。一つの微小管ダブレット上のダイニンは、隣接する微小管ダブレットに沿って歩く。この滑る力によって、鞭毛または繊毛の鞭打ち運動を起こす屈曲が生じる。ダイニンは1000から2000キロダルトンの間の天然質量を有し、ATPの加水分解によって駆動される力を生じるヘッドが2個ないし3個ある。このヘッドは柄(ストーク)を介して基部ドメインに連結しており、この基部ドメインは極めて異なった数からなる付属の中鎖や軽鎖から構成されている。細胞質型ダイニンはモータータンパク質中で最大で最も複雑である。
【0036】
キネシン関連モータータンパク質
キネシンは、微小管で作用する(+)末端方向性モータータンパク質である。基本型のキネシン分子は、膜結合小胞及び細胞小器官の輸送に関与している。この機能は、ニューロンにおける軸索輸送に特に重要である。キネシンはまた、全ての細胞タイプにおいてゴルジ体から小胞体への小胞の輸送にも重要である。この役割は、これら分泌性オルガネラの同一性及び機能性の維持にとって重大な意味を持つ。
【0037】
キネシンは偏在性で保存されたファミリーの50以上のタンパク質を定義し、1次アミノ酸配列、ドメイン構造、運動速度および細胞機能に基づいた少なくとも8つのサブファミリに分類される。(概説は、Moore, J.D. and S.A. Endow (1996) Bioessays 18:207-219; および Hoyt, A.M. (1994) Curr. Opin. Cell Biol. 6:63-68を参照)。原型のキネシン分子は、2個のポリペプチド重鎖(KHC) と2個のポリペプチド軽鎖(KLC)からなるヘテロ四量体である。KHCサブユニットは通常「キネシン」と呼ばれる。KHCは長さが約1000アミノ酸であり、KLCは長さが約550アミノ酸である。2つのKHCは二量体化して、3つの異なる2次構造領域を有する棒状分子を形成する。キネシン分子の一端は、ATP加水分解及び微小管結合において機能する球状のモータードメインである。キネシンモータードメインは高度に保存され、70%を超える一致率を共有する。モータドメインの先には二量体化を媒介するα螺旋状コイルドコイル領域がある。キネシン分子の他端は、積荷分子に会合する扇形テイルである。テイルは、KHCのC末端と2つのKLCの相互作用により形成される。
【0038】
キネシンのさらに分岐したサブファミリのメンバーはキネシン関連タンパク質(KRP)と呼ばれ、これらの多くは真核生物で有糸分裂の際に機能する(Hoyt、 前出)。いくつかのKRPは、有糸分裂紡錘体の集合に必要である。in vivo およびin vitro 分析ではこれらのKRPは紡錘体を集合する微小管上で力を出し、紡錘体極の分離を生じることが示唆されている。この活性のためには、KRPのリン酸化が必要である。紡錘体が集合できないと、有糸分裂が不成功に終わり染色体異数性が生じる。染色体異数性は癌細胞の特徴である。さらに、あるユニークなKRPであるセントロメアタンパク質Eではヒト有糸分裂染色体の動原体に局在化し、動原体の紡錘体の両極への分離に関与している可能性がある。
【0039】
ダイナミン関連モータータンパク質
ダイナミンは、「分子ピンチ酵素(molecular pinchase)」として機能する大型のGTP分解酵素モータータンパク質で、膜を切断するために使われるメカノケミカル的力を発生する。この活性は、エンドサイトーシスで被覆ピットからクラスリン被覆小胞を形成するのに、また神経細胞のシナプス小胞の生成に重要である。ダイナミンが膜に結合すると、ダイナミンの螺旋状への自己集合をもたらし、その螺旋が平らな膜表面を締め付けてチューブ状にするように作用する。GTPの加水分解はダイナミンポリマーのコンフォメーション変化を誘導し、それが膜チューブを締め付けてその膜チューブの切断と膜小胞の形成をもたらす。GDPと無機リン酸の放出がダイナミンの解離をもたらす。ダイナミンは解離の後、膜から離れるか、または小胞に会合したままで細胞の他の領域に輸送され得る。いくつかのダイナミン関連タンパク質と共に、3つの相同なダイナミン遺伝子が発見されている。保存されたダイナミン領域は、N末端のGTP結合ドメイン、膜に結合する、中心のプレックストリン相同性ドメイン、ダイナミンのGTP分解酵素活性を活性化する可能性のある中心のコイルドコイル領域、および他のタンパク質のSH3ドメインに結合するいくつかのモチーフを含むC末端のプロリンリッチドメインである。いくつかのダイナミン関連タンパク質は、プレックストリン相同性ドメインやプロリンリッチドメインを含まない(McNiven, M.A. (1998) Cell 94:151-154; Scaife, R.M. および R.L. Margolis (1997) Cell. Signal. 9:395-401を参照)。
【0040】
細胞骨格については、Lodish, H. 他 (1995) Molecular Cell Biology Scientific American Books, New York NYで概説されてある。
【0041】
発現プロファイリング
アレイ技術は、単一の多型遺伝子の発現や、多数の関連遺伝子または無関係の遺伝子の発現プロファイルを探求する簡単な方法を提供し得る。単一遺伝子の発現を試験するときは、アレイを用いて或る特定遺伝子又はその変異体の発現を検出する。発現プロファイルを調べると、組織特異的であり、毒性試験でテストする物質によって影響され、シグナル伝達カスケードの一部であり、細胞の生存に基本的に必要な機能を実行する、または特定の遺伝的素因、状態、疾患または障害に特に関連する遺伝子を同定するためのプラットホームをアレイは提供する。
肺癌は米国において男性の癌死の最大の原因であり、女性の癌死の第2番目の原因である。肺癌症例の大部分は喫煙に起因すると考えられており、第三世界におけるタバコ消費の増加から肺癌の蔓延が予想されている。気管支の上皮がタバコの煙に接触すると組織の形態が変化し、それが癌の前兆であると考えられている。肺癌は組織病理学的に異なる4つのグループに分けられる。3つのグループ(扁平上皮細胞癌、腺癌、および大細胞癌)は非小細胞肺癌(NSCLC)として分類されている。4つ目のグループの癌は小細胞肺癌(SCLC)と呼ばれている。NSCLCを全部合わせると全症例中の約70%になり、SCLCは約18%である。肺癌の発生と進行に関する分子生物学および細胞生物学的理解は不完全である。肺癌の発生と進行に伴う遺伝子発現パターンの解析はこの病気の生物学的基盤に対するすばらしい洞察を生み出すだろうし、また診断と治療の改善にもつながるだろう。
新規の細胞骨格結合タンパク質、およびそれらをコードするポリヌクレオチドの発見により、新規の組成物を提供することで当分野の要望に応えることができる。 この新規の組成物は、細胞増殖異常、ウイルス感染症、および神経系疾患の診断・治療・予防において有用であり、また、細胞骨格結合タンパク質の核酸配列及びアミノ酸配列の発現における外来性化合物の影響についての評価にも有用である。
【発明の開示】
【発明の効果】
【0042】
本発明は、総称して「CSAP」、個別にはそれぞれ「CSAP-1」、「CSAP-2」、「CSAP-3」、「CSAP-4」、「CSAP-5」、「CSAP-6」、「CSAP-7」、「CSAP-8」、「CSAP-9」、「CSAP-10」、「CSAP-11」、「CSAP-12」、「CSAP-13」、「CSAP-14」、「CSAP-15」、「CSAP-16」、「CSAP-17」、「CSAP-18」、「CSAP-19」、「CSAP-20」、「CSAP-21」、「CSAP-22」、「CSAP-23」、「CSAP-24」、「CSAP-25」、「CSAP-26」、「CSAP-27」、「CSAP-28」と呼ぶ細胞骨格結合タンパク質である精製されたポリペプチドを提供する。或る実施態様において本発明は、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列からなるポリペプチド、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%が同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片を含む群から選択した単離されたポリペプチドを提供する。 一実施態様では、SEQ ID NO:1-28のアミノ酸配列を含む単離されたポリペプチドを提供する。
【0043】
また、本発明は(a)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を持つポリペプチド、(b)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列との少なくとも90%の同一性を持つ或る天然アミノ酸配列を有するポリペプチド、(c)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を持つポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を持つポリヌクレオチドの免疫原性断片、からなる群から選択した或るポリペプチドをコードする、単離されたポリヌクレオチドを提供する。一実施態様では、該ポリヌクレオチドは、SEQ ID NO:1-28からなる群から選択した或るポリペプチドをコードする。別の実施態様では、ポリヌクレオチドはSEQ ID NO:29-56からなる群から選択される。
本発明は更に、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%が同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片からなる群から選択したポリペプチドをコードするようなポリヌクレオチドと機能的に連結したプロモーター配列を有する組換えポリヌクレオチドを提供する。一実施態様では、本発明は組換えポリヌクレオチドを用いて形質転換した細胞を提供する。別の実施態様では、本発明は組換えポリヌクレオチドを含む遺伝形質転換体を提供する。
また、本発明は、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%が同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片から構成される群から選択したポリペプチドを製造する方法を提供する。 製造方法は、(a)組換えポリヌクレオチドを用いて形質転換した細胞をポリペプチドの発現に適した条件下で培養する過程と、(b)そのように発現したポリペプチドを回収する過程とを有し、組換えポリヌクレオチドはポリペプチドをコードするポリヌクレオチドに機能的に連結したプロモーター配列を有する。
本発明は更に、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%同一である天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片から構成される群から選択されたポリペプチドに特異結合するような単離された抗体を提供する。
【0044】
本発明は更に、(a)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列を有するポリヌクレオチド、(b)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)に相補的なポリヌクレオチド配列、(d)(b)に相補的なポリヌクレオチド配列、および(e)(a)〜(d)のRNA等価物からなる群から選択された単離されたポリヌクレオチドを提供する。一実施態様では、ポリヌクレオチドは少なくとも60の連続したヌクレオチドを有する。
本発明は更に、サンプル中の標的ポリヌクレオチドを検出する方法を提供する。 ここで、標的ポリヌクレオチドは(a)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列を有するポリヌクレオチド、(b)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)に相補的なポリヌクレオチド、(d)(b)に相補的なポリヌクレオチド、および(e)(a)〜(d)のRNA等価物からなる群から選択されたポリヌクレオチドの配列を有する。検出方法は、(a)サンプル中の前記の標的ポリヌクレオチドに相補的な配列を含む、少なくとも20の連続したヌクレオチドを含むプローブを用いて該サンプルをハイブリダイズする過程と、(b)ハイブリダイゼーション複合体の存在・不存在を検出し、複合体が存在する場合にはオプションでその量を検出する過程からなり、プローブと標的ポリヌクレオチドあるいはその断片の間でハイブリダイゼーション複合体が形成されるような条件下で、プローブは標的ポリヌクレオチドに特異的にハイブリダイズする。一実施態様では、プローブは少なくとも60の連続したヌクレオチドを含む。
【0045】
本発明はまた、サンプル中の標的ポリヌクレオチドを検出する方法を提供する。ここで、標的ポリヌクレオチドは、(a)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(b)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列と少なくとも90%の同一性を有する天然のポリヌクレオチド配列を含むポリヌクレオチド、(c)(a)のポリヌクレオチドに相補的なポリヌクレオチド、(d)(b)のポリヌクレオチドに相補的なポリヌクレオチド、および(e)(a)〜(d)のRNA等価物からなる群から選択された配列のポリヌクレオチドを有する。検出方法は、(a)ポリメラーゼ連鎖反応増幅を用いて標的ポリヌクレオチドまたはその断片を増幅する過程と、(b)前記の増幅した標的ポリヌクレオチドまたはその断片の存在・不存在を検出し、該標的ポリヌクレオチドまたはその断片が存在する場合にはオプションでその量を検出する過程を含む。
本発明は更に、有効量のポリペプチドと薬剤として許容できる賦形剤とを含む組成物を提供する。有効量のポリペプチドは、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%の同一性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列の免疫原性断片からなる群から選択される。一実施例では、その組成物は、SEQ ID NO:1-28からなる一群から選択されたアミノ酸配列を含む。 更に、本発明は、機能的CSAPの発現の低下に関連した疾患やその症状の治療方法を提供し、その内にはそのような治療を必要とする患者にこの組成物を投与することが含まれる。
【0046】
本発明はまた、(a)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列との少なくとも90%の同一性を有する天然アミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を持つポリペプチドの免疫原性断片、からなる群から選択したポリペプチドのアゴニストとしての有効性を確認するために、或る化合物をスクリーニングする方法を提供する。スクリーニング方法は、(a)該ポリペプチドを有するサンプルを或る化合物に曝す過程と、(b)サンプル中のアゴニスト活性を検出する過程からなる。別法では、本発明は、この方法によって同定されたアゴニスト化合物と好適な医薬用賦形剤とを含む組成物を提供する。更なる別法では、本発明は、機能的CSAPの発現の低下に関連した疾患やその症状の治療方法を提供し、その内にはそのような治療を必要とする患者にこの組成物を投与することが含まれる。
【0047】
本発明は更に、(a)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を持つポリペプチド、(b)SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列との少なくとも90%の同一性を有する天然アミノ酸配列を持つポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を持つポリペプチドの生物学的活性断片、および(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を持つポリペプチドの免疫原性断片、からなる群から選択したポリペプチドのアンタゴニストとしての有効性につき、或る化合物をスクリーニングする方法を提供する。スクリーニング方法は、(a)該ポリペプチドを含むサンプルを或る化合物に曝す過程と、(b)サンプル中のアンタゴニスト活性を検出する過程からなる。別の一実施態様で本発明は、この方法で同定したアンタゴニスト化合物と薬物として許容し得る賦形剤とを有する組成物を提供する。更なる別法では、本発明は、機能的CSAPの過剰な発現に関連した疾患やその症状の治療方法を提供し、その内にはそのような治療を必要とする患者にこの組成物を投与することが含まれる。
本発明は更に、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチド、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%の同一性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片、または(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片を含む群から選択されたポリペプチドに特異結合する化合物をスクリーニングする方法を提供する。スクリーニング方法は、(a)ポリペプチドを適切な条件下で少なくとも1つの試験化合物と混合させる過程と、(b)試験化合物とのポリペプチドの結合を検出し、それによってポリペプチドに特異結合する化合物を同定する過程とを含む。
本発明は更に、(a)SEQ ID NO:1-28からなる群から選択したアミノ酸配列、(b)SEQ ID NO:1-28からなる群から選択したアミノ酸配列と少なくとも90%の相同性を有する天然のアミノ酸配列を含むポリペプチド、(c)SEQ ID NO:1-28からなる群から選択したアミノ酸配列の生物学的活性断片、または(d)SEQ ID NO:1-28からなる群から選択したアミノ酸配列の免疫原性断片を含むポリペプチドの活性を調節する化合物をスクリーニングする方法を提供する。スクリーニング方法は、(a)ポリペプチドの活性が許容された条件下で、ポリペプチドを少なくとも1つの試験化合物に結合させる過程と、(b)ポリペプチドの活性を試験化合物の存在下で算定する過程と、(c)試験化合物の存在下でのポリペプチドの活性を試験化合物の不存在下でのポリペプチドの活性と比較する過程とを含み、試験化合物の存在下でのポリペプチドの活性の変化は、ポリペプチドの活性を調節する化合物を標示する。
【0048】
更に本発明は、SEQ ID NO:29-56からなる群から選択した或るポリヌクレオチド配列を持つ標的ポリヌクレオチドの発現を改変する効果につき、或る化合物をスクリーニングする一方法を提供する。この方法は、(a)この標的ポリヌクレオチドを有するサンプルを或る化合物に曝露する過程と、(b)この標的ポリヌクレオチドの発現の改変を検出する過程と、(c)可変量のこの化合物の存在下でのこの標的ポリヌクレオチドの発現と、この化合物の不在下での発現とを比較する過程とからなる。
【0049】
本発明は更に、試験化合物の毒性の算定方法を提供する。この方法には、以下の過程がある。(a)核酸群を有する生体サンプルを試験化合物で処理する過程。(b)処理済み生体サンプルの核酸群をハイブリダイズする過程。この過程には、次のようなプローブを用いる。(i)SEQ ID NO:29-56からなる群から選択した或るポリヌクレオチド配列を含むポリヌクレオチド、(ii)SEQ ID NO:29-56からなる群から選択した或るポリヌクレオチド配列との少なくとも90%の同一性を有する天然ポリヌクレオチド配列を含むポリヌクレオチド、(iii)(i)に相補的な配列を持つポリヌクレオチド、(iv)(ii)のポリヌクレオチドに相補的なポリヌクレオチド、(v)(i)〜(iv)のRNA等価物、からなる群から選択した或るポリヌクレオチドの少なくとも20の連続したヌクレオチドからなるプローブである。ハイブリダイゼーションは、前記プローブと生物学的サンプル中の標的ポリヌクレオチドの間に特定のハイブリダイゼーション複合体が形成されるような条件下で発生し、前記標的ポリヌクレオチドは、(i)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド、(ii)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列と少なくとも90%が同一である天然のポリヌクレオチド配列を含むポリヌクレオチド、(iii)(i)のポリヌクレオチドに相補的なポリヌクレオチド、(iv)(ii)のポリヌクレオチドに相補的なポリヌクレオチド、および(v)(I)〜(iv)のRNA等価物からなる群から選択する。或いは、標的ポリヌクレオチドは、上記(i)〜(v)からなる群から選択したポリヌクレオチド配列の断片と、(c)ハイブリダイゼーション複合体の量を定量する過程と、(d)処理した生物学的サンプルのハイブリダイゼーション複合体の量を、非処理の生物学的サンプルのハイブリダイゼーション複合体の量と比較する過程を含み、処理した生物学的サンプルのハイブリダイゼーション複合体の量との差は、試験化合物の毒性を意味する。
【発明を実施するための最良の形態】
【0050】
本発明のタンパク質、ヌクレオチド配列及び方法について説明するが、その前に、説明した特定の装置、材料及び方法に本発明が限定されるものではなく、改変し得ることを理解されたい。また、ここで使用する専門用語は特定の実施例を説明する目的で用いたものに過ぎず、特許請求の範囲にのみ限定される本発明の範囲を限定することを意図したものではないことも併せて理解されたい。
【0051】
請求の範囲及び明細書中で用いている単数形の「或る」及び「その(この)」の表記は、文脈から明らかにそうでないとされる場合を除いて複数のものを指す場合もあることに注意しなければならない。従って、例えば「或る宿主細胞」と記されている場合にはそのような宿主細胞が複数あることもあり、「或る抗体」と記されている場合には単数または複数の抗体、及び、当業者に公知の抗体の等価物等についても言及しているのである。
【0052】
本明細書中で用いる全ての専門用語及び科学用語は、特に定義されている場合を除き、当業者に一般に理解されている意味と同じ意味を有する。本明細書で説明するものと類似あるいは同等の任意の装置、材料及び方法を用いて本発明の実施または試験を行うことができるが、ここでは好適な装置、材料、方法について説明する。本発明で言及する全ての刊行物は、刊行物中で報告されていて且つ本発明に関係があるであろう細胞、プロトコル、試薬及びベクターについて説明及び開示する目的で引用しているものである。本明細書のいかなる開示内容も、本発明が先行技術の効力によってこのような開示に対して先行する権利を与えられていないことを認めるものではない。
【0053】
(定義)
用語「CSAP」は、天然、合成、半合成或いは組換え体など全ての種(特にウシ、ヒツジ、ブタ、マウス、ウマ及びヒトを含む哺乳動物)から得られる実質的に精製されたCSAPのアミノ酸配列を指す。
【0054】
用語「アゴニスト」は、CSAPの生物学的活性を強めたり、模倣する分子を指す。このアゴニストは、CSAPに直接相互作用するか、或いはCSAPが関与する生物学的経路の成分と作用して、CSAPの活性を調節するタンパク質、核酸、糖質、小分子、任意の他の化合物や組成物を含み得る。
【0055】
用語「対立遺伝子変異配列」は、CSAPをコードする遺伝子の別の形を指す。対立遺伝子変異体は、核酸配列における少なくとも1つの突然変異から作製し得る。また、変異RNAまたはポリペプチドからも作製し得る。ポリペプチドの構造または機能は、変異することもしないこともある。遺伝子は、天然の対立遺伝子変異体を全く有しないか、1個若しくは数個の天然の対立遺伝子変異体を有し得る。一般に対立遺伝子変異体を生じさせる通常の突然変異性変化は、ヌクレオチドの自然欠失、付加または置換に帰するものである。これら各変化は、単独或いは他の変化と共に、所定の配列内で1回若しくは数回生じ得る。
【0056】
CSAPをコードする「変異」核酸配列は、様々なヌクレオチドの欠失、挿入、或いは置換が起こっても、CSAPと同じポリペプチド或いはCSAPの機能特性の少なくとも1つを備えるポリペプチドを指す。この定義には、CSAPをコードするポリヌクレオチド配列の正常な染色体の遺伝子座ではない位置での対立遺伝子変異配列との不適当或いは予期しないハイブリダイゼーション、並びにCSAPをコードするポリヌクレオチドの特定のオリゴヌクレオチドプローブを用いて容易に検出可能な或いは検出困難な多型性を含む。コードされたタンパク質も「変異」し得るものであり、サイレント変化を生ぜしめて結果的に機能的に等価なCSAPとなるようなアミノ酸残基の欠失、挿入または置換を含み得る。意図的なアミノ酸置換は、生物学的或いは免疫学的にCSAPの活性が保持される範囲で、残基の極性、電荷、溶解度、疎水性、親水性、及び/または両親媒性についての類似性に基づいて成され得る。例えば、負に帯電したアミノ酸にはアスパラギン酸及びグルタミン酸があり、正に帯電したアミノ酸にはリジン及びアルギニンがある。親水性値が近似している非荷電極性側鎖を有するアミノ酸には、アスパラギンとグルタミン、セリンとトレオニンがある。親水性値が近似している非荷電側鎖を有するアミノ酸には、ロイシンとイソロイシンとバリン、グリシンとアラニン、フェニルアラニンとチロシンが含まれうる。
【0057】
用語「アミノ酸」及び「アミノ酸配列」は、オリゴペプチド、ペプチド、ポリペプチド、タンパク質配列、或いはそれらの任意の断片を指し、天然の分子及び合成分子を含む。「アミノ酸配列」が天然のタンパク質分子の配列を指す場合、「アミノ酸配列」及び類似の用語は、アミノ酸配列を記載したタンパク質分子に関連する完全で元のままのアミノ酸配列に限定するものではない。
【0058】
用語「増幅」は、核酸配列の複製物を作製することに関連する。増幅は通常、当業者によく知られたポリメラーゼ連鎖反応(PCR)技術を用いて行う。
【0059】
用語「アンタゴニスト」は、CSAPの生物学的活性を阻害或いは減弱する分子である。アンタゴニストは、CSAPに直接相互作用するか、或いはCSAPが関与する生物学的経路の成分と作用して、CSAPの活性を調節する抗体、核酸、糖質、小分子、任意の他の化合物や組成物などのタンパク質を含み得る。
【0060】
「抗体」の語は、抗原決定基と結合することができる、そのままの免疫グロブリン分子やその断片、例えばFab,、F(ab')2 及びFv断片を指す。CSAPポリペプチドと結合する抗体は、免疫抗原として、そのままのポリペプチド、または関心のある小ペプチドを含む断片を用いて作製可能である。動物(マウス、ラット、ウサギ等)を免疫化するために用いるポリペプチドまたはオリゴペプチドは、RNAの翻訳、または化学合成によって得られるポリペプチドまたはオリゴペプチドに由来し得るもので、好みに応じてキャリアータンパク質に抱合することも可能である。通常用いられるキャリアーであってペプチドと化学結合するものは、ウシ血清アルブミン、サイログロブリン及びスカシガイのヘモシアニン(KLH)等がある。その結合ペプチドは、動物を免疫化するために用いる。
【0061】
用語「抗原決定基」は、特定の抗体と接触する分子の領域(即ちエピトープ)を指す。タンパク質またはタンパク質断片を用いて宿主動物を免疫化する場合、タンパク質の多数の領域が、抗原決定基(タンパク質の特定の領域または3次元構造)に特異結合する抗体の産生を誘導し得る。抗原決定基は、抗体に結合するための無損傷抗原(即ち免疫応答を誘導するために用いられる免疫原)と競合し得る。
【0062】
用語「アプタマー(aptamer)」は、核酸またはオリゴヌクレオチド分子であって、特定の分子ターゲットに結合する分子を指す。アプタマーはin vitroでの進化プロセスに由来する(例えば、SELEX(Systematic Evolution of Ligands by EXponential Enrichmentの略、試験管内選択法)、米国特許第5,270,163号に記述)。これは、大規模な組み合わせライブラリ群から標的特異的アプタマー配列を選択するプロセスである。アプタマー組成は、2本鎖または1本鎖であってもよく、デオキシリボヌクレオチド、リボヌクレオチド、ヌクレオチド誘導体、または他のヌクレオチド様分子を含み得る。アプタマーのヌクレオチド成分は、修飾された糖基(例えばリボヌクレオチドの2'-OH基が2'-Fまたは2'-NH2で置換し得る)を有することが可能で、そのような糖基はヌクレアーゼへの抵抗性または血液中でのより長い寿命などの望ましい性質に改善し得る。循環系からアプタマーが除去される速度を遅くするために、アプタマーを高分子量キャリアー等の分子に抱合させることができる。アプタマーは、たとえば光活性化または架橋剤によって各々のリガンドと特異的に架橋させることができる。(Brody, E.N. および L. Gold (2000) J. Biotechnol. 74:5-13等を参照)。
【0063】
「intramer」の用語はin vivoで発現されるアプタマーを意味するたとえば、ワクシニアウイルスに基づく或るRNA発現系は、白血球の細胞質内で特定のRNAアプタマーが高レベルで発現するために使用されている(Blind, M. 他 (1999) Proc. Natl Acad. Sci. USA 96:3606-3610)。
【0064】
「spiegelmer」の語はL-DNA、L-RNAその他の左旋性ヌクレオチド誘導体またはヌクレオチド様分子を含むアプタマーを指す。左旋性ヌクレオチドを含むアプタマーは、右旋性のヌクレオチドを含む基質に通常作用する天然の酵素による分解に耐性がある。
【0065】
本明細書において「アンチセンス」は、特定の核酸配列のセンス(コーディング)鎖と塩基対を形成し得る任意の組成物を指す。アンチセンス成分には、DNAや、RNAや、ペプチド核酸(PNA)や、ホスホロチオ酸、メチルホスホン酸またはベンジルホスホン酸等の修飾されたバックボーン結合を有するオリゴヌクレオチドや、2'-メトキシエチル糖または2'-メトキシエトキシ糖等の修飾された糖類を有するオリゴヌクレオチドや、或いは5-メチルシトシン、2-デオキシウラシルまたは7-デアザ-2'-デオキシグアノシン等の修飾された塩基を有するオリゴヌクレオチドがある。アンチセンス分子は、化学合成または転写を含む任意の方法で製造することができる。相補的アンチセンス分子は、ひとたび細胞に導入されたら、細胞が形成した天然の核酸配列と塩基対を形成し、転写または翻訳を妨害する二重鎖を形成する。「負」または「マイナス」という表現は、ある参考DNA分子のアンチセンス鎖を意味し、「正」または「プラス」という表現はある参考DNA分子のセンス鎖を意味する。
【0066】
用語「生物学的に活性」は、天然分子の構造的、調節的、或いは生化学的な機能を有するタンパク質を指す。同様に、用語「免疫学的に活性」または「免疫原性」は、天然或いは組換え体のCSAP、合成のCSAPまたはそれらの任意のオリゴペプチドが、適当な動物或いは細胞の特定の免疫応答を誘発して特定の抗体と結合する能力を指す。
【0067】
「相補(的)」または「相補性」の語は、塩基対形成によってアニーリングする2つの一本鎖核酸の間の関係を指す。例えば、「5'-AGT-3'」は、その相補配列「3'-TCA-5'」との対を形成する。
【0068】
「所定のポリヌクレオチド配列を含む組成物」または「所定のアミノ酸配列を含む組成物」は広い意味で、所定のポリヌクレオチド配列若しくはアミノ酸配列を含む任意の組成物を指す。この組成物には、乾燥製剤または水溶液が含まれ得る。CSAP をコード、若しくはCSAP の断片をコードするポリヌクレオチド配列を持つ組成物は、ハイブリダイゼーションプローブとして使用され得る。このプローブは、凍結乾燥状態で保存可能であり、糖質などの安定化剤と結合させることが可能である。ハイブリダイゼーションにおいては、塩(例えばNaCl)、界面活性剤(例えばドデシル硫酸ナトリウム;SDS)及びその他の構成成分(例えばデンハート液、脱脂粉乳、サケの精子のDNA等)を含む水溶液中にプローブを分散させることができる。
【0069】
「コンセンサス配列」は、不要な塩基を分離するためにDNA配列の解析を繰り返し行い、XL-PCRキット(PE Biosystems,Foster City CA)を用いて5'及び/または3'の方向に伸長され、再度シークエンシングされた核酸配列、またはGELVIEW 断片構築システム(GCG, Madison, WI)またはPhrap (University of Washington, Seattle WA)等の断片構築用のコンピュータプログラムを用いて1つ或いはそれ以上のオーバーラップするcDNAやEST、またはゲノムDNA断片から構築された核酸配列を指す。伸長及び構築の両方を行ってコンセンサス配列を決定する配列もある。
【0070】
用語「保存的なアミノ酸置換」は、元のタンパク質の特性を殆ど変えない置換を指す。即ち、置換によってそのタンパク質の構造や機能が大きくは変わらず、そのタンパク質の構造、特にその機能が保存される。下表は、タンパク質中で元のアミノ酸と置換できて、保存アミノ酸置換と認められるアミノ酸を示している。
【0071】
Figure 2004533227
【0072】
保存アミノ酸置換では通常、(a)置換領域におけるポリペプチドのバックボーン構造、例えばβシートやα螺旋構造、(b)置換部位における分子の電荷または疎水性、及び/または(c)側鎖の大部分を保持する。
【0073】
用語「欠失」は、1個以上のアミノ酸残基が欠如するアミノ酸配列の変化、或いは1個以上のヌクレオチドが欠如する核酸配列の変化を指す。
【0074】
用語「誘導体」は、化学修飾されたポリヌクレオチドまたはポリペプチドを指す。例えば、アルキル基、アシル基、ヒドロキシル基またはアミノ基による水素の置換は、ポリヌクレオチド配列の化学修飾に含まれ得る。ポリヌクレオチド誘導体は、天然分子の生物学的または免疫学的機能を少なくとも1つは保持しているポリペプチドをコードする。ポリペプチド誘導体は、グリコシル化、ポリエチレングリコール化(pegylation)、或いは任意の同様なプロセスであって、誘導起源のポリペプチドの少なくとも1つの生物学的若しくは免疫学的機能を保持するプロセスによって、修飾されたポリペプチドである。
【0075】
「検出可能な標識」は、測定可能な信号を発生し得る、ポリヌクレオチドやポリペプチドに共有結合或いは非共有結合するレポーター分子や酵素を指す。
【0076】
「差次的発現」は少なくとも2つの異なったサンプルを比較することによって決められる、増加(上方調節)、あるいは減少(下方調節)、または欠損遺伝子またはタンパク発現の欠損を指す。このような比較は例えば、治療後サンプルと未治療のサンプルまたは病態のサンプルと正常サンプルの間で行われ得る。
【0077】
「エキソンシャフリング」は、異なるコード領域(エキソン)の組換えを意味する。1つのエキソンがコードされたタンパク質の1つの構造的または機能的ドメインを代表し得るため、安定したサブストラクチャーを再分類することによって、新しいタンパク質が組立てられることが可能であり、新しいタンパク質機能の進化を促進できる。
【0078】
用語「断片」は、CSAPまたはCSAPをコードするポリヌクレオチドの固有の部分であって、その親配列と同一であるがその配列より長さが短いものを指す。断片は、定義された配列の全長から1ヌクレオチド/アミノ酸残基を差し引いた長さよりも短い長さを有し得る。例えば或る断片は、5〜1000の連続したヌクレオチドまたはアミノ酸残基を有し得る。プローブ、プライマー、抗原、治療用分子として、或いはその他の目的のために用いられる断片は、少なくとも5、10、15、20、25、30、40、50、60、75、100、150、250若しくは500の連続したヌクレオチド或いはアミノ酸残基長さであり得る。断片は、分子の特定領域から選択的に選択し得る。例えば、ポリペプチド断片は、所定の配列に示すような最初の250または500アミノ酸(またはポリペプチドの最初の25%または50%)から選択された或る長さの連続したアミノ酸を有し得る。これらの長さは明らかに例として挙げているものであり、本発明の実施例では、配列表、表及び図面を含む明細書に裏付けされた任意の長さであってよい。
【0079】
SEQ ID NO:29-56 の断片は、例えば、この断片を得たゲノム内の他の配列とは異なる、SEQ ID NO:29-56 を明確に同定する固有のポリヌクレオチド配列の領域を含む。SEQ ID NO:29-56のある断片は、例えば、ハイブリダイゼーションや増幅技術、またはSEQ ID NO:29-56を関連ポリヌクレオチド配列から区別する類似の方法に有用である。SEQ ID NO:29-56の断片の正確な長さ及び断片に対応するSEQ ID NO:29-56の領域は、断片に対する意図した目的に基づき当業者が慣例的に決定することが可能である。
【0080】
SEQ ID NO:1-28 のある断片は、SEQ ID NO:29-56のある断片によってコードされる。 SEQ ID NO:1-28 のある断片には、SEQ ID NO:1-28を特異的に同定する固有のアミノ酸配列領域が含まれている。 例えば、SEQ ID NO:1-28 のある断片は、SEQ ID NO:1-28を特異認識する抗体を産出するための免疫原性ペプチドとして有用である。 SEQ ID NO:1-28 のある断片の正確な長さ、及びその断片に対応するSEQ ID NO:1-28 の領域は、断片に対する意図した目的に基づき当業者が慣例的に決定することが可能である。
【0081】
「完全長」ポリヌクレオチド配列とは、少なくとも1つの翻訳開始コドン(例えばメチオニン)、オープンリーディングフレーム及び翻訳終止コドンを有する配列である。「完全長」ポリヌクレオチド配列は、「完全長」ポリペプチド配列をコードする。
【0082】
「相同性」の語は、2つ以上のポリヌクレオチド配列または2つ以上のポリペプチド配列の配列類似性、または配列同一性を意味する。
【0083】
ポリヌクレオチド配列についての用語「一致率」または「一致性%」とは、標準化されたアルゴリズムを用いてアラインメントされる、2つ以上のポリヌクレオチド配列間の一致する残基の百分率のことである。このようなアルゴリズムは、2配列間のアラインメントを最適化するために比較する配列において、標準化された再現性のある方法でギャップを挿入するので、2つの配列をより有意に比較できる。
【0084】
ポリヌクレオチド配列間の一致率は、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれているようなCLUSTAL Vアルゴリズムのデフォルトのパラメータを用いて決定できる。このプログラムは、LASERGENE ソフトウエアパッケージ(一組の分子生物学的分析プログラム)(DNASTAR, Madison WI)の一部である。このCLUSTAL Vは、Higgins, D.G. 及び P.M. Sharp (1989) CABIOS 5:151-153、Higgins, D.G. 他 (1992) CABIOS 8:189-191に記載されている。ポリヌクレオチド配列をペアワイズでアラインメントする際のデフォルトパラメータは、Ktuple=2、gap penalty=5、window=4、「diagonals saved」=4と設定する。「weighted(重み付けされた)」残基重み付け表が、デフォルトとして選択される。一致率は、アラインメントされたポリヌクレオチド配列間の「類似性パーセント」としてCLUSTAL Vによって報告される。
【0085】
或いは、一般的に用いられ且つ自由に入手できる配列比較アルゴリズム一式が、国立バイオテクノロジー情報センター(NCBI)Basic Local Alignment Search Tool(BLAST)から提供されており(Altschul, S.F. 他 (1990) J. Mol. Biol. 215:403-410)、これはメリーランド州ベセスダにあるNCBI及びインターネット(http://www.ncbi.nlm.nih.gov/BLAST/)を含む幾つかの情報源から入手可能である。このBLASTソフトウェア一式には、既知のポリヌクレオチド配列と様々なデータベースの別のポリヌクレオチド配列とのアラインメントに用いられる「blastn」を含む、様々な配列分析プログラムが含まれる。「BLAST 2 Sequences」と呼ばれるツールが入手可能であり、2つのヌクレオチド配列の直接のペアワイズで比較するために用いられる。「BLAST 2 Sequences」は、http://www.ncbi.nlm.nih.gov/gorf/bl2.htmlにアクセスして、対話形式で利用ができる。「BLAST 2 Sequences」ツールは、blastn および blastp(以下に記載)の両方に用い得る。BLASTプログラムは、一般的には、ギャップ及びデフォルト設定に設定された他のパラメータと共に用いる。例えば、2つのヌクレオチド配列を比較するために、デフォルトパラメータとして設定された「BLAST 2 Sequences」ツールVersion 2.0.12(2000年4月21日)を用いてblastnを実行してもよい。デフォルトパラメータの設定例を以下に示す。
【0086】
Matrix:BLOSUM62
Reward for match: 1
Penalty for mismatch: -2
Open Gap:5 及びExtension Gap:2 penalties
Gap x drop-off: 50
Expect: 10
Word Size: 11
Filter:on
【0087】
一致率は、ある定義された配列の全長(例えば特定のSEQ IDナンバーで定義された配列)で測定し得る。或いは、より短い長さ、例えば、定義された、より大きな配列から得られた断片(例えば少なくとも20、30、40、50、70、100または200の連続したヌクレオチドの断片)の長さと比較して一致率を測定してもよい。ここに挙げた長さは単なる例示的なものに過ぎず、表、図及び配列リストを含めた本明細書に記載された配列に裏付けられた任意の配列長さの断片を用いて、一致率を測定し得る長さを説明し得ることを理解されたい。
【0088】
高度の相同性を示さない核酸配列が、それにもかかわらず遺伝子コードの縮重が原因で類似のアミノ酸配列をコードする場合がある。この縮重を利用して核酸配列内で変化を生じさせて、全ての核酸配列が実質上同一のタンパク質をコードするような多数の核酸配列を生成し得ることを理解されたい。
【0089】
ポリペプチド配列に用いられる用語「一致率」または「一致性%」とは、標準化されたアルゴリズムを用いてアラインメントされる2つ以上のポリペプチド配列間の一致する残基の百分率のことである。ポリペプチド配列アラインメントの方法は公知である。保存的アミノ酸置換を考慮するアラインメント方法もある。既に詳述したこのような保存的置換は通常、置換部位の電荷および疎水性を保存するので、ポリペプチドの構造を(したがって機能も)保存する。
【0090】
ポリペプチド配列間の一致率は、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれているようなCLUSTAL Vアルゴリズムのデフォルトのパラメータを用いて決定できる(既に説明したのでそれを参照されたい)。CLUSTAL Vを用いて、ポリペプチド配列をペアワイズアラインメントする際のデフォルトパラメータは、Ktuple=1、gap penalty=3、window=5、「diagonals saved」=5と設定される。PAM250マトリクスが、デフォルトの残基重み付け表として選択される。ポリヌクレオチドアラインメントと同様に、CLUSTAL Vは、アラインメントされたポリペプチド配列対間の「類似率」として一致率を報告する。
【0091】
或いは、NCBI BLASTソフトウェア一式を用いてもよい。例えば、2つのポリペプチド配列をペアワイズで比較する場合、「BLAST 2 Sequences」ツールVersion 2.0.12(2000年4月21日)のblastpをデフォルトパラメータに設定して用い得る。デフォルトパラメータの設定例を以下に示す。
【0092】
Matrix:BLOSUM62
Open Gap:11 及びExtension Gap:1 penalties
Gap x drop-off: 50
Expect: 10
Word Size: 3
Filter:on
【0093】
一致率は、定義された(例えば特定の配列番号で定義された)ポリペプチド配列全体の長さと比較して測定し得る。或いは、より短い長さ、例えばより大きな定義されたポリペプチド配列から得られた断片(例えば少なくとも15、20、30、40、50、70または150の連続した残基の断片)の長さと比較して一致率を測定してもよい。ここに挙げた長さは単なる例示的なものに過ぎず、表、図及び配列リストを含めた本明細書に記載された配列に裏付けられた任意の配列長さの断片を用いて、或る長さであってその長さに対して一致率を測定し得る長さを説明し得ることを理解されたい。
【0094】
「ヒト人工染色体(HAC)」は、約6kb 〜10MbのサイズのDNA配列を含み得る、安定した染色体複製の分離及び維持に必要な全てのエレメントを含む直鎖状の小染色体である。
【0095】
用語「ヒト化抗体」は、もとの結合能力を保持しつつよりヒトの抗体に似せるために、非抗原結合領域のアミノ酸配列が変えられた抗体分子を指す。
【0096】
「ハイブリダイゼーション」とは、所定のハイブリダイゼーション条件下で、ある一本鎖ポリヌクレオチドがある相補的な一本鎖と塩基対を形成するアニーリングのプロセスである。特異的ハイブリダイゼーションは、2つの核酸配列が高い相補性を共有することを示すものである。特異的ハイブリダイゼーション複合体は許容されるアニーリング条件下で形成され、「洗浄」ステップ後もハイブリダイズされたままである。洗浄ステップは、ハイブリダイゼーションプロセスのストリンジェンシーを決定する際に特に重要であり、更にストリンジェントな条件では、非特異結合(即ち完全には一致しない核酸鎖間の対の結合)が減少する。核酸配列のアニーリングに対する許容条件は、本技術分野における当業者が慣例的に決定する。 許容条件はハイブリダイゼーション実験の間は一定でよいが、洗浄条件は所望のストリンジェンシーを得るように、従ってハイブリダイゼーション特異性も得るように実験中に変更することができる。アニーリングが許容される条件は、例えば、温度が68℃で、約6×SSC、約1%(w/v)のSDS、並びに約100μg/mlのせん断して変性したサケ精子DNAが含まれる。
【0097】
一般に、ハイブリダイゼーションのストリンジェンシーは或る程度、洗浄ステップを実行する温度を基準にして表すことができる。このような洗浄温度は通常、所定のイオン強度及びpHにおける特定の配列の融点(Tm)より約5〜20℃低くなるように選択する。このTmは、所定のイオン強度及びpHの条件下で、完全に一致するプローブに標的配列の50%がハイブリダイズする温度である。Tmを計算する式及び核酸のハイブリダイゼーション条件はよく知られており、Sambrook 他 (1989) Molecular Cloning: A Laboratory Manual, 第2版, 1-3巻, Cold Spring Harbor Press, Plainview NYに記載されており、特に2巻の9章を参照されたい。
【0098】
本発明のポリヌクレオチド間の高いストリンジェンシーのハイブリダイゼーションでは、約0.2x SSC及び約0.1%のSDSの存在の下、約68℃で1時間の洗浄過程を含む。別法では、65℃、60℃、55℃、42℃の温度で行う。SSC濃度は、約0.1%のSDS存在下で、約0.1〜2×SSCの範囲で変化し得る。通常は、ブロッキング剤を用いて非特異ハイブリダイゼーションを阻止する。このようなブロッキング剤には、例えば、約100〜200μg/mlのせん断した変性サケ精子DNAがある。特定条件下で、例えばRNAとDNAのハイブリダイゼーションに有機溶剤、例えば約35〜50%v/vの濃度のホルムアミドを用いることもできる。洗浄条件の有用なバリエーションは、当業者には自明であろう。ハイブリダイゼーションは、特に高ストリンジェント条件下では、ヌクレオチド間の進化的な類似性を示唆し得る。このような類似性は、ヌクレオチド及びヌクレオチドにコードされるポリペプチドに対する類似の役割を強く示唆している。
【0099】
用語「ハイブリダイゼーション複合体」は、相補的な塩基間の水素結合によって、形成された2つの核酸配列の複合体を指す。ハイブリダイゼーション複合体は、溶解状態で形成し得る(C0tまたはR0t解析等)。或いは、一方の核酸配列が溶解状態で存在し、もう一方の核酸配列が固体支持体(例えば紙、膜、フィルタ、チップ、ピンまたはガラススライド、或いは他の適切な基板であって細胞若しくはその核酸が固定される基板)に固定されているような2つの核酸配列間に形成され得る。
【0100】
用語「挿入」或いは「付加」は、1個以上のアミノ酸残基或いはヌクレオチドがそれぞれ追加されるアミノ酸配列或いは核酸配列の変化を指す。
【0101】
「免疫応答」は、炎症、外傷、免疫異常症、伝染性疾患または遺伝性疾患に関連する症状を指し得る。これらの症状は、細胞及び全身の防御系に作用し得る種々の因子、例えばサイトカイン、ケモカイン、その他のシグナル伝達分子の発現によって特徴づけることができる。
【0102】
用語「免疫原性断片」は、例えば哺乳動物などの生物に導入すると免疫反応を引き起こす、CSAPのポリペプチド断片またはオリゴペプチド断片を指す。用語「免疫原性断片」はまた、本明細書で開示するまたは当分野で周知のあらゆる抗体生産方法に有用なCSAP のポリペプチド断片またはオリゴペプチド断片を含む。
【0103】
用語「マイクロアレイ」は、基板上の複数のポリヌクレオチド、ポリペプチドまたはその他の化合物の構成を指す。
【0104】
用語「エレメント」または「アレイエレメント」は、マイクロアレイ上に固有の指定された位置を有する、ポリヌクレオチド、ポリペプチドまたはその他の化合物を指す。
【0105】
用語「調節」は、CSAPの活性の変化を指す。例えば、調節によって、CSAPのタンパク質活性、或いは結合特性、またはその他の生物学的特性、機能的特性或いは免疫学的特性の変化が起こる。
【0106】
「核酸」及び「核酸配列」の語は、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチドまたはこれらの断片を指す。「核酸」及び「核酸配列」の語は、ゲノム起源または合成起源のDNAまたはRNAであって一本鎖または二本鎖であるか或いはセンス鎖またはアンチセンス鎖を表し得るようなDNAまたはRNAや、ペプチド核酸(PNA)や、任意のDNA様またはRNA様物質を指すこともある。
【0107】
「機能的に連結した」は、第1の核酸配列と第2の核酸配列が機能的な関係にある状態を指す。例えば、プロモーターがコード配列の転写または発現に影響を及ぼす場合には、そのプロモーターはそのコード配列に機能的に連結している。同一のリーディングフレーム内で2つのタンパク質コード領域を接続する必要がある場合、一般に、機能的に連結したDNA配列は非常に近接するか、或いは連続的に隣接し得る。
【0108】
「ペプチド核酸(PNA)」は、末端がリシンで終わるアミノ酸残基のペプチドのバックボーンに結合した、少なくとも約5ヌクレオチドの長さのオリゴヌクレオチドを含む、アンチセンス分子または抗遺伝子剤を指す。末端のリシンは、この組成に溶解性を与える。PNAは、相補的一本鎖DNAまたはRNAに優先的に結合して転写の伸長を停止するものであり、ポリエチレングリコール化して細胞におけるPNAの寿命を延長し得る。
【0109】
CSAPの「翻訳後修飾」には、脂質化、グリコシル化、リン酸化、アセチル化、ラセミ化、蛋白分解性切断及びその他の当分野で既知の修飾を含まれ得る。これらのプロセスは、合成或いは生化学的に生じ得る。生化学的修飾は、CSAPの酵素環境に依存し、細胞の種類によって異なり得る。
【0110】
「プローブ」とは、同一配列或いは対立遺伝子核酸配列、関連する核酸配列の検出に用いる、CSAPやそれらの相補体、またはそれらの断片をコードする核酸配列のことである。プローブは、単離されたオリゴヌクレオチドまたはポリヌクレオチドであって、検出可能な標識またはレポーター分子に結合したものである。典型的な標識には、放射性アイソトープ、リガンド、化学発光試薬及び酵素がある。「プライマー」とは、相補的な塩基対を形成して標的のポリヌクレオチドにアニーリング可能な、通常はDNAオリゴヌクレオチドである短い核酸である。プライマーは次に、DNAポリメラーゼ酵素によって標的DNA鎖に沿って延長し得る。プライマー対は、例えばポリメラーゼ連鎖反応(PCR)による核酸配列の増幅(及び同定)に用い得る。
【0111】
本発明に用いるようなプローブ及びプライマーは通常、既知の配列の少なくとも15の連続したヌクレオチドを含んでいる。特異性を高めるために長めのプローブ及びプライマー、例えば開示した核酸配列の少なくとも20、25、30、40、50、60、70、80、90、100または150の連続したヌクレオチドからなるようなプローブ及びプライマーを用いてもよい。これよりもかなり長いプローブ及びプライマーもある。表、図面及び配列リストを含む本明細書に裏付けされた任意の長さのヌクレオチドを用いることができるものと理解されたい。
【0112】
プローブ及びプライマーの調製及び使用方法については、Sambrook, J.他 (1989) Molecular Cloning: A Laboratory Manual, 第2版, 1-3巻、Cold Spring Harbor Press, Plainview NY、Ausubel, F.M.他, (1987) Current Protocols in Molecular Biology, Greene Pubi. Assoc. & Wiley-Intersciences, New York NY、Innis他 (1990) PCR Protocols, A Guide to Methods and Applications Academic Press, San Diego CA等を参照されたい。PCRプライマー対は、その目的のためのコンピュータプログラム、例えばPrimer(Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA)を用いるなどして既知の配列から得ることができる。
【0113】
プライマーとして用いるオリゴヌクレオチドの選択は、そのような目的のために本技術分野でよく知られているソフトウェアを用いて行う。例えばOLIGO 4.06ソフトウェアは、各100ヌクレオチドまでのPCRプライマー対の選択に有用であり、オリゴヌクレオチド及び最大5,000までの大きめのポリヌクレオチドであって32キロベースまでのインプットポリヌクレオチド配列から得たものを分析するのにも有用である。類似のプライマー選択プログラムには、拡張能力のための追加機能が組込まれている。例えば、PrimOUプライマー選択プログラム(テキサス州ダラスにあるテキサス大学南西部医療センターのゲノムセンターから一般向けに入手可能)は、メガベース配列から特定のプライマーを選択することが可能であり、従ってゲノム全体の範囲でプライマーを設計するのに有用である。Primer3プライマー選択プログラム(Whitehead Institute/MIT Center for Genome Research(マサチューセッツ州ケンブリッジ)より入手可能)を用いれば、プライマー結合部位として避けたい配列を指定できる「非プライミングライブラリ(mispriming library)」を入力できる。Primer3は特に、マイクロアレイのためのオリゴヌクレオチドの選択に有用である。(後二者のプライマー選択プログラムのソースコードは、それぞれの情報源から得てユーザー固有のニーズを満たすように変更してもよい。)PrimerGenプログラム(英国ケンブリッジ市の英国ヒトゲノムマッピングプロジェクト-リソースセンターから一般向けに入手可能)は、多数の配列アラインメントに基づいてプライマーを設計し、それによって、アラインメントされた核酸配列の最大保存領域または最小保存領域の何れかとハイブリダイズするようなプライマーの選択を可能にする。従って、このプログラムは、固有であって保存されたオリゴヌクレオチド及びポリヌクレオチドの断片の同定に有用である。上記選択方法のいずれかによって同定したオリゴヌクレオチド及びポリヌクレオチドの断片は、ハイブリダイゼーション技術において、例えばPCRまたはシークエンシングプライマーとして、マイクロアレイエレメントとして、或いは核酸のサンプルにおいて完全または部分的相補的ポリヌクレオチドを同定する特異プローブとして有用である。オリゴヌクレオチドの選択方法は、上記の方法に限定されるものではない。
【0114】
本明細書における「組換え核酸」は天然の配列ではなく、2つ以上の配列の離れたセグメントを人工的に組み合わせた配列である。この人為的組合せはしばしば化学合成によって達成するが、より一般的には核酸の単離セグメントの人為的操作によって、例えばのSambrookらの文献(前出)に記載されているような遺伝子工学的手法によって達成する。組換え核酸の語は、単に核酸の一部を付加、置換または欠失した変異核酸も含む。しばしば組換え核酸には、プロモーター配列に機能的に連結した核酸配列が含まれる。このような組換え核酸は、例えばある細胞を形質転換するために使用されるベクターの一部とすることが可能である。
【0115】
或いはこのような組換え核酸は、ウイルスベクターの一部であって、例えばワクシニアウイルスに基づくものであり得る。そのようなワクシニアウイルスは哺乳動物に接種され、その組換え核酸が発現されて、その哺乳動物ないで防御免疫応答を誘導するように使用することができる。
【0116】
「調節因子」は、通常は遺伝子の非翻訳領域に由来する核酸配列であり、エンハンサー、プロモーター、イントロン及び5'及び3'の非翻訳領域(UTR)を含む。調節因子は、転写、翻訳またはRNA安定性を調節する宿主タンパク質またはウイルスタンパク質と相互作用する。
【0117】
「レポーター分子」は、核酸、アミノ酸または抗体の標識に用いられる化学的または生化学的な部分である。レポーター分子には、放射性核種、酵素、蛍光剤、化学発光剤、発色剤、基質、補助因子、阻害因子、磁気粒子及びその他の当分野で既知の成分がある。
【0118】
DNA配列に対する「RNA等価物」とは、基準となるDNA配列と同じ直鎖の核酸配列から構成されるが、窒素性塩基のチミンがウラシルで置換され、糖鎖のバックボーンがデオキシリボースではなくリボースからなる。
【0119】
用語「サンプル」は、その最も広い意味で用いられている。CSAP、CARBOAPをコードする核酸、またはその断片を含むと推定されるサンプルは、体液と、細胞からの抽出物や細胞から単離された染色体や細胞内小器官、膜と、細胞と、溶液中に存在するまたは基板に固定されたゲノムDNA、RNA、cDNAと、組織と、組織プリント等を含み得る。
【0120】
用語「特異的結合」及び「特異的に結合する」は、タンパク質若しくはペプチドと、アゴニスト、抗体、アンタゴニスト、小分子、若しくは任意の天然若しくは合成の結合組成物との間の相互作用を指す。この相互作用は、タンパク質の特定の構造(例えば抗原決定基即ちエピトープ)であって結合分子が認識するものが存在するか否かに依存していることを意味している。例えば、抗体がエピトープ「A」に対して特異的である場合、結合していない標識した「A」及び抗体を含む反応液に、エピトープAを含むポリペプチド或いは結合していない無標識の「A」が存在すると、抗体と結合する標識Aの量が減少する。
【0121】
用語「実質的に精製された」は、自然の環境から取り除かれてから、単離あるいは分離された核酸配列あるいはアミノ酸配列であって、自然に結合している組成物が少なくとも約60%除去されたものであり、好ましくは約75%以上除去、最も好ましくは90%以上除去されたものを指す。
【0122】
「置換」とは、一つ以上のアミノ酸またはヌクレオチドをそれぞれ別のアミノ酸またはヌクレオチドに置き換えることである。
【0123】
用語「基板」は、任意の好適な固体或いは半固体の支持物を指し、膜及びフィルター、チップ、スライド、ウエハ、ファイバー、磁気または非磁気ビード、ゲル、チューブ、プレート、ポリマー、微小粒子、毛細管が含まれる。基板は、壁、溝、ピン、チャネル、孔等、様々な表面形態を有することができ、基板表面にはポリヌクレオチドやポリペプチドが結合する。
【0124】
「転写イメージ」または「発現プロファイル」は、所定条件下での所定時間における特定の細胞の種類または組織による集合的遺伝子発現のパターンを指す。
【0125】
「形質転換(transformation)」とは、外来DNAが受容細胞に導入されるプロセスのことである。形質転換は、本技術分野で知られている種々の方法に従って自然条件または人工条件下で生じ得るものであり、外来性の核酸配列を原核宿主細胞または真核宿主細胞に挿入する任意の既知の方法を基にし得る。形質転換の方法は、形質転換する宿主細胞の種類によって選択する。限定するものではないが形質転換方法には、ウイルス感染、電気穿孔法(エレクトロポレーション)、熱ショック、リポフェクション及び微粒子銃を用いる方法がある。「形質転換された細胞」には、導入されたDNAが自律的に複製するプラスミドとして或いは宿主染色体の一部として複製可能である安定的に形質転換された細胞が含まれる。さらに、限られた時間に一過的に導入DNA若しくは導入RNAを発現する細胞も含まれる。
【0126】
ここで用いる「遺伝形質転換体」とは任意の生物体であり、限定するものではないが動植物を含み、生物体の1若しくは数個の細胞が、ヒトの関与によって、例えば本技術分野でよく知られている形質転換技術によって導入された異種核酸を有する。 核酸の細胞への導入は、直接または間接的に、細胞の前駆物質に導入することによって、計画的な遺伝子操作によって、例えば微量注射法によって或いは組換えウイルスの導入によって行う。別の例においては、レンチウイルスなどの組換えウイルスベクターを感染させることによって核酸を導入できる(Lois, C. 他 (2002) Science 295:868-872)。遺伝子操作の語は、古典的な交雑育種或いは試験管内受精を指すものではなく、組換えDNA分子の導入を指すものである。本発明に基づいて予期される遺伝形質転換体には、バクテリア、シアノバクテリア、真菌及び動植物がある。本発明の単離されたDNAは、本技術分野で知られている方法、例えば感染、形質移入、形質転換またはトランス接合(transconjugation)によって宿主に導入することができる。本発明のDNAをこのような生物体に移入する技術はよく知られており、前出のSambrook ら (1989) 等の参考文献に与えられている。
【0127】
特定の核酸配列の「変異体」は、核酸配列1本全部の長さに対して特定の核酸配列と少なくとも40%の相同性を有する核酸配列であると定義する。 その際、デフォルトパラメータに設定した「BLAST 2 Sequences」ツールVersion 2.0.9(1999年5月7日)を用いてblastnを実行する。このような核酸対は、所定の長さに対して、例えば少なくとも50%、60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%またはそれ以上の相同性を示し得る。或る変異体は、例えば「対立遺伝子」変異体(前述)、「スプライス」変異体、「種」変異体または「多型性」変異体として説明し得る。スプライス変異体は参照分子とかなりの相同性を有し得るが、mRNAプロセッシング中のエキソンの選択的スプライシングによって通常、より多くまたはより少数のヌクレオチドを有することになる。対応するポリペプチドは、追加機能ドメインを有するか或いは参照分子に存在するドメインが欠落していることがある。種変異体は、種によって異なるポリヌクレオチド配列である。結果的に生じるポリペプチドは通常、相互にかなりのアミノ酸相同性を有する。多型性変異体は、与えられた種の個体間で特定の遺伝子のポリヌクレオチド配列中での変異である。多型変異配列はまた、ポリヌクレオチド配列の1つのヌクレオチドが異なる「1塩基多型性」(SNP)も含み得る。SNPの存在は、例えば特定の個体群、病状または病状性向を示し得る。
【0128】
特定のポリペプチド配列の「変異体」は、ポリペプチド配列の1本の長さ全体で特定のポリペプチド配列に対して少なくとも40%の相同性を有するポリペプチド配列として定義される。定義づけには、デフォルトパラメータに設定した「BLAST 2 Sequences」ツールVersion 2.0.9(1999年5月7日)を用いてblastpを実行する。このようなポリペプチド対は、所定の長さに対して、例えば少なくとも50%、60%、70%、80%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%またはそれ以上の配列同一性を示し得る。
【0129】
(発明)
本発明は、新規のヒト細胞骨格結合タンパク質(CSAP)の発見、CSAPをコードするポリヌクレオチド、および、細胞増殖異常、ウイルス感染、および神経系疾患の診断、治療、ならびに予防に対するこれらの組成の使用に基づいている。
【0130】
表1は、本発明の完全長ポリヌクレオチド配列及びポリペプチド配列の命名の概略である。各ポリヌクレオチド及びその対応するポリペプチドは、1つのIncyteプロジェクト識別番号(IncyteプロジェクトID)と相関する。各ポリペプチド配列は、ポリペプチド配列識別番号(ポリペプチドSEQ ID NO)とIncyteポリペプチド配列番号(IncyteポリペプチドID)によって表示した。各ポリヌクレオチド配列は、ポリヌクレオチド配列識別番号(ポリヌクレオチドSEQ ID NO)とIncyteポリヌクレオチドコンセンサス配列番号(IncyteポリヌクレオチドID)によって表示した。列6は本発明のポリペプチドおよびポリヌクレオチド配列に相当する物理的な完全長クローンのIncyte ID 番号を示す。完全長のクローンは列3に示すポリペプチド配列に少なくとも95%の配列同一性を有するポリペプチドをコードする。
【0131】
表2は、GenBankタンパク質(genpept)データベースに対するBLAST分析によって同定されたような、本発明のポリペプチドとの相同性を有する配列を示している。列1および列2はそれぞれ、本発明の各ポリペプチドに対するポリペプチド配列識別番号(ポリペプチド SEQ ID NO:)とそれに対応するIncyte ポリペプチド配列番号(Incyte ポリペプチド ID)を示す。列3は、GenBankの最も近い相同体のGenBankの識別番号(GenBank ID NO :)を示す。列4は、各ポリペプチドとその相同体との間の一致を表す確率スコアを示す。列5は、GenBank相同体の注釈を示し、更に該当箇所には関連する引用文献も示す。 これらを引用することを以って本明細書の一部とする。
【0132】
表3は、本発明のポリペプチドの様々な構造的特徴を示す。列1および列2はそれぞれ、本発明の各ポリペプチドのポリペプチド配列識別番号(SEQ ID NO :)およびそれに対応するIncyte ポリペプチド配列番号(Incyte ポリペプチド ID)を示す。列3は、各ポリペプチドのアミノ酸残基数を示す。列4および列5はそれぞれ、GCG配列分析ソフトウェアパッケージのMOTIFSプログラム(Genetics Computer Group, Madison WI)によって決定された、リン酸化およびグリコシル化の可能性のある部位を示す。列6は、シグネチャ配列、ドメイン、およびモチーフを含むアミノ酸残基を示す。列7は、タンパク質の構造/機能の分析のための分析方法を示し、該当箇所にはさらに分析方法に利用した検索可能なデータベースを示す。
【0133】
表2及び表3は共に、本発明の各々のポリペプチドの特性を要約しており、それらの特性が請求の範囲に記載されたポリペプチドが細胞骨格結合タンパク質であることを確立している。たとえば、SEQ ID NO:1はマウスのc29タンパク質(GenBank ID g3868802) とM1残基からS459残基までで86%同一であることがBasic Local Alignment Search Tool (BLAST)によって示された。(表2参照)。BLAST確率スコアは1.4e-207であり、これは観察されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:1はまた、中間径フィラメントドメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS及びPROFILESCAN解析よりのデータは、SEQ ID NO:1 が中間径フィラメントタンパク質である、さらに実証的な証拠を提供する。SEQ ID NO:3はマウスのKif21a (GenBank ID g6561827) とM1残基からD1107残基までで93%、E470残基からN1614残基までで42%同一(すなわち配列全長において74%同一)であることがBasic Local Alignment Search Tool (BLAST)によって示された。(表2参照)。BLAST確率スコアは配列全長に対して2.3e-199であり、これは観察されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:3はまた、キネシンモータードメインを有するが、これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:3 がキネシンである、さらに実証的な証拠を提供する。別の例として、SEQ ID NO:7はI125残基からT1050残基までラットのアンキリン結合細胞接着分子ニューロファシン(GenBank ID g1842427)と95%の同一性を有することがBasic Local Alignment Search Tool (BLAST)によって決定された。(表2参照)。BLAST確率スコアは0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:7は、フィブロネクチンタイプIIIドメインと免疫グロブリンドメインも有するが、 これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:7 が細胞骨格結合タンパク質である、さらに実証的な証拠を提供する。また他の例として、SEQ ID NO:9はM1残基からD471残基まで、ラットのクロニン関係タンパク質(GenBank ID g15430628)と95%同一であることがBasic Local Alignment Search Tool (BLAST)によって示された。(表2参照)。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:9はまた、WDドメインを有するが、 これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS及びMOTIFS解析よりのデータは、SEQ ID NO:9がクロニンであることをさらに確証する証拠を提供する。別の例において、SEQ ID NO:14はM1残基からR523残基まででヒトのケラチン 6 irs (GenBank ID g6961277) に99%の同一性を有するが、これはBasic Local Alignment Search Tool (BLAST)によって同定される。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:14はまた、中間径フィラメントドメインを有するが、 これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:14 が中間径フィラメントタンパク質(細胞骨格タンパク質の特殊なサブタイプ)である、さらに実証的な証拠を提供する。また他の例として、SEQ ID NO:18は長さが2039残基で、マウスのミオシン含有PDZドメイン(GenBank ID g7416032)とM1残基からA2039残基まで94%同一であることがBasic Local Alignment Search Tool (BLAST)によって示された。(表2参照)。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:18はまた、1つのIQカルモジュリン結合モチーフ、1つのPDZドメイン(別名DHRまたはGLGF)および1つのミオシンヘッド(モータードメイン)を有するが、 これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS、MOTIFS、及びさらなるBLAST解析よりのデータは、SEQ ID NO:18 が細胞骨格結合タンパク質である、さらに実証的な証拠を提供する。また他の例として、SEQ ID NO:26はM1残基からL1715残基まで、ラットのアンキリンリピートリッチ膜貫通タンパク質(GenBank ID g11321435)と92%同一であることがBasic Local Alignment Search Tool (BLAST)によって示された。(表2参照)。BLAST確率スコアは0.0であり、これは観測されたポリペプチド配列アラインメントが偶然に得られる確率を示している。SEQ ID NO:26はまた、11個のアンキリンリピートドメインを有するが、 これは、隠れマルコフモデル(HMM)を基にした保存されたタンパク質ファミリードメインのPFAMデータベースにおいて、統計的に有意な一致を検索して決定された。(表3参照)。BLIMPS、MOTIFS、及びPROFILESCAN解析よりのデータは、SEQ ID NO:26 がアンキリンリピートリッチタンパク質である、さらに実証的な証拠を提供する。多くのアンキリンリピートは、たとえば細胞骨格タンパク質においてタンパク質間相互作用を加減することが知られている。SEQ ID NO:2、 SEQ ID NO:4-6、 SEQ ID NO:8、 SEQ ID NO:10-13、 SEQ ID NO:15-17、 SEQ ID NO:19-25および SEQ ID NO:27-28 については、同様の方法で分析し、注釈を付けた。SEQ ID NO:1-28の解析のためのアルゴリズム及びパラメータが表7で記述されている。
【0134】
表4に示すように、本発明の完全長ポリヌクレオチド配列は、cDNA配列またはゲノムDNA由来のコード(エキソン)配列を用いて、或いはこれら2種類の配列を任意に組み合わせて構築(アセンブリ)した。列1は本発明の各ポリヌクレオチドに対するポリヌクレオチド配列識別番号(ポリヌクレオチドSEQ ID NO)および対応するIncyteポリヌクレオチドコンセンサス配列番号(Incyte ID)、および塩基対の各ポリヌクレオチド配列の長さを示している。列2は、本発明の全長ポリヌクレオチド配列を構築するために使われたcDNA配列および/またはゲノム配列のヌクレオチド開始位置(5')と終了位置(3')を示し、またSEQ ID NO:29-56を同定するための、またはSEQ ID NO:29-56と関連するポリヌクレオチド配列とを区別するための技術(例えば、ハイブリダイゼーション技術または増幅技術)で有用なポリヌクレオチド配列の断片のヌクレオチド開始位置(5')と終了位置(3')を示す。
【0135】
表4の列2で記述されたポリヌクレオチド断片は、具体的にはたとえば組織特異的なcDNAライブラリまたはプールされたcDNAライブラリに由来するIncyte cDNAを指す場合がある。或いは列2の識別番号は、完全長ポリヌクレオチド配列のアセンブリに寄与するGenBank cDNAまたはESTを指す場合もある。さらに、列2のポリヌクレオチド断片は、ENSEMBL(The Sanger Centre、英国ケンブリッジ)データベースから由来した配列(即ち「ENST」命名を含む配列)を同定し得る。或いは、列2で記述されたポリヌクレオチド断片は、NCBI RefSeq Nucleotide Sequence Records データベースから由来する場合もあり(即ち「NM」または「NT」の命名を含む配列)、またNCBI RefSeq Protein Sequence Recordsから由来する場合もある(即ち「NP」の命名を含む配列)。または列で記述されたポリヌクレオチド断片は、「エキソンスティッチング(exon-stitching)」アルゴリズムにより結び合わせたcDNA及びGenscan予想エキソンの両方からなる群を意味する場合がある。例えば、FL_XXXXXX_N1_N2_YYYYY_N3_N4 として同定されるポリヌクレオチド配列はアルゴリズムが適用される配列のクラスターの識別番号がXXXXXXであり、アルゴリズムにより生成される予測の番号がYYYYY であり、(もし存在すれば)N1,2,3..が解析中に手動で編集された可能性のある特定のエキソンであるような「縫合された」配列である( 実施例5参照 )。または、列2のポリヌクレオチド断片は「エキソンストレッチング(exon-stretching)」アルゴリズムにより結び合わせたエキソンの集合を指す場合もある。例えば、FLXXXXXX_gAAAAA_gBBBBB_1_N として同定されるポリヌクレオチド配列は「ストレッチ」配列である。ここでXXXXXXはIncyteプロジェクト識別番号、gAAAAAは「エキソンストレッチング」アルゴリズムを適用したヒトゲノム配列のGenBank識別番号、gBBBBBは一番近いGenBankタンパク質相同体のGenBank識別番号またはNCBI RefSeq 識別番号である。(実施例5を参照。)あるRefSeq配列が「エキソンストレッチング」アルゴリズムのためのタンパク質相同体として使用された場合では、RefSeq識別番号(「NM」、「NP」、または「NT」によって表される)が、GenBank識別(即ち、gBBBBB)の代わりに使用される場合もある。
【0136】
或いは、接頭コードは、手動で編集された構成配列、ゲノムDNA配列から予測された構成配列、または組み合わされた配列解析方法から由来する構成配列を同定する。次の表は、構成配列の接頭コードと、接頭コードに対応する配列分析方法の例を列記する(実施例4と5を参照)。
Figure 2004533227
【0137】
場合によっては、最終コンセンサスポリヌクレオチド配列を確認するために表4に示すような配列の適用範囲と重複するIncyte cDNAの適用範囲が得られたが、それに関連するIncyte cDNA識別番号は示さなかった。
【0138】
表5は、Incyte cDNA配列を用いて構築された完全長ポリヌクレオチド配列のための代表的なcDNAライブラリを示している。代表的なcDNAライブラリは、上記のポリヌクレオチド配列を構築及び確認するために用いられるIncyte cDNA配列によって最も頻繁に代表されるIncyte cDNAライブラリである。cDNAライブラリを作製するために用いた組織及びベクターを表5に示し、表6で説明している。
【0139】
本発明はまた、CSAPの変異体も含む。好適なCSAPの変異体は、CSAPアミノ酸配列に対して、少なくとも約80%、あるいは少なくとも約90%、さらには少なくとも約95%のアミノ酸配列同一性を有し、CSAPの機能的または構造的特徴を少なくとも1つ含む変異体である。
【0140】
本発明はまた、CSAPをコードするポリヌクレオチドを含む。特定の実施例において、本発明は、CSAPをコードするSEQ ID NO:29-56からなる群から選択した配列を含むポリヌクレオチド配列を含む。SEQ ID NO:29-56のポリヌクレオチド配列には、配列表に示したように等価RNA配列をも含むが、そこでは窒素塩基チミンの出現はウラシルに置換され、糖のバックボーンはデオキシリボースではなくリボースで構成される。
【0141】
本発明はまた、CSAPをコードするポリヌクレオチド配列の変異配列を含む。詳細には、このようなポリヌクレオチド配列の変異配列は、CSAPをコードするポリヌクレオチド配列と少なくとも約70%のポリヌクレオチド配列同一性、或いは少なくとも約85%のポリヌクレオチド配列同一性、更には少なくとも約95%ものポリヌクレオチド配列同一性を有する。本発明の或る実施態様では、SEQ ID NO:29-56からなる群から選択されたアミノ酸配列と少なくとも約70%、或いは少なくとも約85%、または少なくとも約95%もの一致率を有するようなSEQ ID NO:29-56からなる群から選択された配列を有するポリヌクレオチド配列の変異配列を含む。上記の任意のポリヌクレオチドの変異体は、CSAPの機能的若しくは構造的特徴を少なくとも1つ有するアミノ酸配列をコードし得る。
【0142】
さらに、或いは別法では、本発明のポリヌクレオチド変異体は、CSAPをコードするポリヌクレオチド配列のスプライス変異体である。スプライス変異体は、CSAPをコードするポリヌクレオチド配列と有意な配列同一性をもつ部分であり得るが、mRNAプロセッシング中のエキソンの異なるスプライシングによって生じるブロックの配列の追加または欠損のため、その変異体は通常、より多くまたはより少数の塩基を有することになる。スプライス変異体は、CSAPをコードするポリヌクレオチド配列とその全長にわたって、約70%以下の、或いは60%以下の、或いは50%以下のポリヌクレオチド同一性を有することがありうるが、スプライス変異体の部分は、CSAPをコードするポリヌクレオチド配列の部分に、少なくとも約70%の、或いは少なくとも約85%の、或いは100%のポリヌクレオチドの配列同一性を有することになる。例えば、SEQ ID NO:31の配列を含むポリヌクレオチドはSEQ ID NO:33の配列を含むポリヌクレオチドのスプライス変異体である。また、別の例においてSEQ ID NO:34の配列を含むポリヌクレオチドはSEQ ID NO:35の配列を含むポリヌクレオチドのスプライス変異体である。上記したスプライス変異配列は何れも、CSAPの機能的或いは構造的特徴の少なくとも1つを有する或るアミノ酸配列をコードし得る。
【0143】
遺伝暗号の縮重により作り出され得るCSAPをコードする種々のポリヌクレオチド配列には、自然発生する任意の既知の遺伝子のポリヌクレオチド配列と最小の類似性しか有しないものも含まれることを、当業者は理解するであろう。したがって本発明には、可能コドン選択に基づく組合せの選択によって産出し得るようなありとあらゆる可能性のあるポリヌクレオチド配列変異体を網羅し得る。これらの組み合わせは、天然のCSAPのポリヌクレオチド配列に適用される標準的なトリプレット遺伝暗号を基に作られ、全てのそのような変異が明確に開示されているとみなす。
【0144】
CSAPをコードするヌクレオチド配列及びその変異配列は一般に、好適に選択されたストリンジェントな条件下で、天然のCSAPのヌクレオチド配列とハイブリダイズ可能であるが、非天然のコドンを含めるなどの実質的に異なった使い方のコドンを有するCSAP或いはその誘導体をコードするヌクレオチド配列を作ることは有利となり得る。宿主が特定のコドンを利用する頻度に基づいて、特定の真核宿主又は原核宿主に発生するペプチドの発現率を高めるようにコドンを選択することが可能である。コードされたアミノ酸配列を変えないで、CSAP及びその誘導体をコードするヌクレオチド配列を実質的に変更する別の理由は、天然の配列から作られる転写物より例えば長い半減期など好ましい特性を備えるRNA転写物を作ることにある。
【0145】
本発明はまた、CSAP及びその誘導体をコードするDNA配列またはそれらの断片を完全に合成化学によって作り出すことも含む。作製後にこの合成配列を、当分野で良く知られた試薬を用いて、種々の入手可能な発現ベクター及び細胞系の何れの中にも挿入可能である。 更に、合成化学を用いて、CSAPまたはその任意の断片をコードする配列の中に突然変異を導入することも可能である。
【0146】
更に本発明には、種々のストリンジェントな条件下で、請求項に記載されたポリヌクレオチド配列、特に、SEQ ID NO:29-56 及びそれらの断片とハイブリダイズ可能なポリヌクレオチド配列が含まれる(例えば、Wahl, G.M.及びS.L. Berger (1987) Methods Enzymol.152:399-407、Kimmel, A.R. (1987) Methods Enzymol. 152:507-511等を参照)。アニーリング及び洗浄条件を含むハイブリダイゼーションの条件は、「定義」に記載されている。
【0147】
DNAシークエンシングの方法は当分野では公知であり、本発明のいずれの実施例もDNAシークエンシング方法を用いて実施可能である。DNAシークエンシング方法には酵素を用いることができ、例えばDNAポリメラーゼ I のクレノウ断片、SEQUENASE(US Biochemical, Cleveland OH)、Taqポリメラーゼ(Applied Biosystems)、熱安定性T7ポリメラーゼ(Amersham, Pharmacia Biotech, Piscataway NJ)を用いることができる。或いは、例えばELONGASE増幅システム(Life Technologies, Gaithersburg MD)において見られるように、ポリメラーゼと校正エキソヌクレアーゼを併用することができる。好適には、MICROLAB2200液体転移システム(Hamilton, Reno, NV)、PTC200サーマルサイクラー(MJ Research, Watertown MA)及びABI CATALYST 800サーマルサイクラー(Applied Biosystems)等の装置を用いて配列の準備を自動化する。次に、ABI 373 或いは 377 DNAシークエンシングシステム(Applied Biosystems)、MEGABACE 1000 DNAシークエンシングシステム(Molecular Dynamics, Sunnyvale CA)または当分野でよく知られている他の方法を用いてシークエンシングを行う。結果として得られた配列を当分野でよく知られている種々のアルゴリズムを用いて分析する(例えば、Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, 7.7ユニット、Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, 856-853ページを参照)。
【0148】
当分野で周知のPCR法をベースにした種々の方法で、部分的なヌクレオチド配列を利用して、CSAPをコードする核酸配列を伸長し、プロモーターや調節エレメントなどの上流にある配列を検出する。例えば、使用し得る方法の1つである制限部位PCR法は、ユニバーサルプライマー及びネステッドプライマーを用いてクローニングベクター内のゲノムDNAから未知の配列を増幅する方法である(例えば、Sarkar, G. (1993) PCR Methods Applic. 2:318-322を参照)。別の方法に逆PCR法があり、これは広範な方向に伸長させたプライマーを用いて環状化した鋳型から未知の配列を増幅する方法である。鋳型は、既知のゲノム遺伝子座及びその周辺の配列を含む制限酵素断片から得る(例えば、Triglia, T. 他 (1988) Nucleic Acids Res. 16:8186を参照)。第3の方法としてキャプチャPCR法があり、これはヒト及び酵母菌人工染色体DNAの既知の配列に隣接するDNA断片をPCR増幅する方法に関与している。(Lagerstrom, M.他(1991) PCR Methods Applic 1:111-119等を参照)。この方法では、PCRを行う前に複数の制限酵素の消化及びライゲーション反応を用いて未知の配列領域内に組換え二本鎖配列を挿入することが可能である。また、未知の配列を検索するために用い得る別の方法については当分野で知られている(Parker, J.D.他 (1991) Nucleic Acids Res. 19:3055-3060等を参照)。更に、PCR、ネステッドプライマー及びPromoterFinderライブラリ(Clontech, Palo Alto CA)を用いてゲノムDNAをウォーキングすることができる。この手順は、ライブラリをスクリーニングする必要がなく、イントロン/エキソン接合部を見付けるのに有用である。全てのPCRベースの方法に対して、市販されているソフトウェア、例えばOLIGO 4.06プライマー分析ソフトウェア(National Biosciences, Plymouth MN)或いは別の好適なプログラムを用いて、長さが約22〜30ヌクレオチド、GC含有率が約50%以上、温度約68℃〜72℃で鋳型に対してアニーリングするようにプライマーを設計し得る。
【0149】
完全長cDNAをスクリーニングする際は、より大きなcDNAを含むようにサイズ選択されたライブラリを用いるのが好ましい。更に、ランダムプライマーのライブラリは、しばしば遺伝子の5'領域を有する配列を含み、オリゴd(T)ライブラリが完全長cDNAを作製できない状況に対して好適である。ゲノムライブラリは、5'非転写調節領域への配列の伸長に有用であろう。
【0150】
市販のキャピラリー電気泳動システムを用いて、シークエンシングまたはPCR産物のサイズを分析し、またはそのヌクレオチド配列を確認することができる。具体的には、キャピラリーシークエンシングは、電気泳動による分離のための流動性ポリマーと、4つの異なるヌクレオチドに特異的であるような、レーザで活性化されるフルオロフォアと、発光された波長の検出に利用するCCDカメラとを有し得る。出力/光の強度は、適切なソフトウェア(Applied Biosystems社のGENOTYPER、SEQUENCE NAVIGATOR等)を用いて電気信号に変換し得る。サンプルのロードからコンピュータ分析及び電子データ表示までの全プロセスがコンピュータ制御可能である。キャピラリー電気泳動法は、特定のサンプルに少量しか存在しないようなDNA小断片のシークエンシングに特に適している。
【0151】
本発明の別の実施例では、CSAPをコードするポリヌクレオチド配列またはその断片を組換えDNA分子にクローニングして、適切な宿主細胞内にCSAP、その断片または機能的等価物を発現させることが可能である。遺伝暗号固有の縮重により、実質的に同じ或いは機能的に等価のアミノ酸配列をコードする別のDNA配列が作られ得り、これらの配列をCSAPの発現に利用可能である。
【0152】
種々の目的でCSAPをコードする配列を変えるために、当分野で一般的に知られている方法を用いて、本発明のヌクレオチド配列を組換えることができる。この目的には、遺伝子産物のクローン化、プロセッシング及び/または発現の調節が含まれるが、これらに限定されるものではない。遺伝子断片及び合成オリゴヌクレオチドのランダムなフラグメンテーション及びPCR再アセンブリによるDNAシャッフリングを用い、ヌクレオチド配列を組み換えることが可能である。例えば、オリゴヌクレオチドを介した部位特異的変異誘導を利用して、新規な制限部位の作製、グリコシル化パターンの変更、コドン優先の変更、スプライス変異体の生成等を起こす突然変異を導入し得る。
【0153】
本発明のヌクレオチドを、MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; 米国特許第5,837,458号; Chang, C.-C. 他 (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. 他 (1999) Nat. Biotechnol. 17:259-264; Crameri, A. 他 (1996) Nat. Biotechnol. 14:315-319)などのDNAシャフリング技術を用いてシャフリングして、CSAPの生物学的または酵素的な活性、或いは他の分子や化合物と結合する能力などのCSAPの生物学的特性を変更或いは改良することができる。DNAシャッフリングは、遺伝子断片のPCRを介する組換えを用いて遺伝子変異体のライブラリを作製するプロセスである。ライブラリはその後、その遺伝子変異体を所望の特性に同定するような選択またはスクリーニングにかける。次にこれらの好適な変異体をプールし、更に反復してDNAシャッフリング及び選択/スクリーニングを行ってもよい。従って、人工的な育種及び急速な分子の進化によって多様な遺伝子が作られる。例えば、ランダムポイント突然変異を有する単一の遺伝子の断片を組み換えて、スクリーニングし、その後所望の特性が最適化されるまでシャッフリングすることができる。或いは、所定の遺伝子を同種または異種のいずれかから得た同一遺伝子ファミリーの相同遺伝子と組み換え、それによって天然に存在する複数の遺伝子の遺伝多様性を、指図された制御可能な方法で最大化させることができる。
【0154】
別の実施例によれば、CSAPをコードする配列は、当分野で周知の化学的方法を用いて、全体或いは一部が合成可能である(例えば、Caruthers. M.H.他(1980)Nucl. Acids Res. Symp. Ser 7:215-223; 及びHorn, T.他(1980)Nucl. Acids Res. Symp. Ser.225-232を参照)。別法として、化学的方法を用いてCSAP自体またはその断片を合成することが可能である。例えば、種々の液相または固相技術を用いてペプチド合成を行うことができる(たとえば、 Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, 55-60ページ; Roberge, J.Y. 他 (1995) Science 269:202204を参照)。自動合成はABI 431Aペプチドシンセサイザ(Applied Biosystems)を用いて達成し得る。更にCSAPのアミノ酸配列または任意のその一部は、直接的な合成の際の変更、及び/または他のタンパク質または任意のその一部からの配列との組み合わせにより、天然のポリペプチド配列を有するポリペプチドまたは変異体ポリペプチドを作製することが可能である。
【0155】
このペプチドは、分離用高速液体クロマトグラフィーを用いて実質的に精製し得る(Chiez, R.M.およびF.Z. Regnier (1990) Methods Enzymol. 182:392-421などを参照)。この合成ペプチドの組成は、アミノ酸分析またはシークエンシングによって確認できる(前出のCreighton, 28-53ページ等を参照)。
【0156】
生物学的に活性なCSAPを発現させるために、CSAPをコードするヌクレオチド配列またはその誘導体を好適な発現ベクターに挿入する。この発現ベクターは、好適な宿主に挿入されたコーディング配列の転写及び翻訳の調節に必要なエレメントを含む。これらのエレメントには、ベクター及びCSAPをコードするポリヌクレオチド配列におけるエンハンサー、構成型及び発現誘導型のプロモーター、5'及び3'の非翻訳領域などの調節配列が含まれる。このような要素は、長さ及び特異性が様々である。特定の開始シグナルによって、CSAPをコードする配列のより効果的な翻訳を達成することが可能である。このようなシグナルには、ATG開始コドンと、コザック配列などの近傍の配列が含まれる。CSAPをコードする配列及びその開始コドン、上流の調節配列が好適な発現ベクターに挿入された場合は、更なる転写調節シグナルや翻訳調節シグナルは必要なくなるであろう。しかしながら、コーディング配列或いはその断片のみが挿入された場合は、インフレームのATG開始コドンを含む外来性の翻訳調節シグナルが発現ベクターに含まれるようにすべきである。外来性の翻訳要素及び開始コドンは、様々な天然物及び合成物を起源とし得る。用いられる特定の宿主細胞系に好適なエンハンサーを含めることで発現の効率を高めることが可能である。(Scharf, D. 他 (1994) Results Probl. Cell Differ. 20:125-162.等を参照)。
【0157】
当業者に周知の方法を用いて、CSAPをコードする配列、好適な転写及び翻訳調節エレメントを含む発現ベクターを作製することが可能である。これらの方法には、in vitro組換えDNA技術、合成技術、及びin vivo遺伝子組換え技術が含まれる(例えば、 Sambrook, J. 他. (1989) Molecular Cloning. A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, 4章及び8章, および16-17章; およびAusubel, F.M. 他. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9章、13章および16章を参照)。
【0158】
種々の発現ベクター/宿主系を利用して、CSAPをコードする配列の保持及び発現が可能である。限定するものではないがこのような発現ベクター/宿主系には、組換えバクテリオファージ、プラスミドまたはコスミドDNA発現ベクターで形質転換させた細菌や、酵母菌発現ベクターで形質転換させた酵母菌など微生物や、ウイルス発現ベクター(例えばバキュロウイルス)に感染した昆虫細胞系や、ウイルス発現ベクター(例えばカリフラワーモザイクウイルス、CaMVまたはタバコモザイクウイルスTMV)または細菌発現ベクター(例えばTiまたはpBR322プラスミド)で形質転換させた植物細胞系、動物細胞系がある。(前出のSambrook、前出のAusubel、Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509、; Engelhard、E.K. ら (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227、Sandig, V. ら (1996) Hum. Gene Ther. 7:1937-1945、Takamatsu, N. (1987) EMBOJ. 6:307-311、;『マグローヒル科学技術年鑑』(The McGraw Hill Yearbook of Science and Technology) (1992) McGraw Hill New York NY, 191-196ページ、Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659、Harrington, J.J. ら (1997) Nat. Genet. 15:345-355等を参照)。レトロウイルス、アデノウイルス、ヘルペスウイルスまたはワクシニアウイルス由来の発現ベクター、または種々の細菌性プラスミド由来の発現ベクターを用いて、ヌクレオチド配列を標的器官、組織または細胞集団へ輸送することができる(Di Nicola, M. 他 (1998) Cancer Gen. Ther. 5(6):350-356、Yu, M. 他 (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344、Buller, R.M. 他 (1985) Nature 317(6040):813-815; McGregor, D.P. 他 (1994) Mol. Immunol. 31(3):219-226、Verma, I.M. 及び N. Somia (1997) Nature 389:239-242等を参照)。本発明は使用される宿主細胞によって限定されるものではない。
【0159】
本発明は使用される宿主細胞によって限定されるものではない。細菌系では、多数のクローニングベクター及び発現ベクターが、CSAPをコードするポリヌクレオチド配列の使用目的に応じて選択可能である。例えば、CSAPをコードするポリヌクレオチド配列の日常的なクローニング、サブクローニング、増殖には、PBLUESCRIPT(Stratagene, La Jolla CA)またはpSPORT1プラスミド(GIBCO BRL)などの多機能の大腸菌ベクターを用いることができる。ベクターのマルチクローニング部位にCSAPをコードする配列を連結反応するとlacZ遺伝子が破壊され、組換え分子を含む形質転換された細菌の同定のための比色スクリーニング法が可能となる。更にこれらのベクターは、クローニングされた配列におけるin vitro転写、ジデオキシのシークエンシング、ヘルパーファージによる一本鎖のレスキュー、入れ子状態の欠失の生成にも有用であろう(例えば、Van Heeke, G. および S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509を参照)。例えば、抗体の産生のためなどに多量のCSAPが必要な場合は、CSAPの発現をハイレベルで誘導するベクターが使用できる。例えば、強力な誘導SP6バクテリオファージプロモーターまたは誘導T7バクテリオファージプロモーターを含むベクターが使用できる。
【0160】
酵母の発現系を使用してCSAPを産出し得る。α因子、アルコールオキシダーゼ、PGHプロモーター等の構成型或いは誘導型のプロモーターを含む多数のベクターが、出芽酵母菌(Saccharomyces cerevisiae またはピキア酵母(Pichia pastoris に使用可能である。更に、このようなベクターは、発現したタンパク質の分泌か細胞内への保持のどちらかを誘導し、安定した増殖のために宿主ゲノムの中に外来配列を組み込む。(例えば、Ausubel, 1995,前出、Bitter, G.A. 他 (1987) Methods Enzymol.153:516-544、及びScorer. C. A. 他 (1994) Bio/Technology 121−181-184.を参照)。
【0161】
植物系を使用してCSAPを発現することも可能である。CSAPをコードする配列の転写は、ウイルスプロモーター、例えば単独あるいはTMV由来のオメガリーダー配列と組み合せて用いられるようなCaMV由来の35Sおよび19Sプロモーターによって促進される(Takamatsu, N. (1987) EMBO J. 6:307311)。或いは、RUBISCOの小サブユニット等の植物プロモーターまたは熱ショックプロモーターを用いてもよい(例えば、Coruzzi, G. 他 (1984) EMBO J. 3 : 1671-1680 ; Broglie, R. 他 (1984) Science 224 : 838-843 ; および Winter, J. 他 (1991) Results Probl. Cell Differ. 17 : 85-105を参照)これらの作製物は、直接DNA形質転換にまたは病原体を媒介とする形質移入によって、植物細胞内に導入可能である。(『マグローヒル科学技術年鑑』(The McGraw Hill Yearbook of Science and Technology) (1992) McGraw Hill New York NY, 191-196ページ等を参照。
【0162】
哺乳動物細胞においては、多数のウイルスベースの発現系を利用し得る。アデノウイルスが発現ベクターとして用いられる場合、後発プロモーター及び3連リーダー配列からなるアデノウイルス転写物/翻訳複合体にCSAPをコードする配列を連結し得る。アデノウイルスゲノムの非必須E1またはE3領域へ挿入することにより、宿主細胞内でCSAPを発現する感染ウイルスを得ることができる(例えば、Logan, J. および T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659を参照)。更に、ラウス肉腫ウイルス(RSV)エンハンサー等の転写エンハンサーを用いて、哺乳動物宿主細胞における発現を増大させ得る。SV40またはEBVをベースにしたベクターを用いてタンパク質を高レベルで発現させることもできる。
【0163】
ヒト人工染色体(HAC)を用いて、プラスミドに含まれ得る断片やプラスミドから発現し得る断片より大きなDNAの断片群を送達することもできる。治療のために約6kb〜10MbのHACsを作製し、従来の輸送方法(リポソーム、ポリカチオンアミノポリマー、またはベシクル)で供給する。(Harrington, J.J他 (1997) Nat. Genet. 15:345-355、Price, C.M. (1993) Blood Rev. 7:127134、Trask, B.J. (1991) Trends Genet. 7:149154等を参照)。
【0164】
哺乳動物系の組換えタンパク質の長期にわたる産生のためには、株化細胞におけるCSAPの安定した発現が望ましい。例えば、発現ベクターを用いて、CSAPをコードする配列を株化細胞に形質転換することが可能である。このような発現ベクターは、ウイルス起源の複製及び/または内在性の発現要素や、同じ或いは別のベクターの上の選択マーカー遺伝子を含む。ベクターの導入後、選択培地に移す前に強化培地で約1〜2日間細胞を増殖させることができる。選択可能マーカーの目的は選択培地への抵抗性を与えることであり、選択可能マーカーが存在することにより、導入された配列をうまく発現するような細胞の成長及び回収が可能となる。安定的に形質転換された細胞の耐性クローンは、その細胞型に適した組織培養技術を用いて増殖可能である。
【0165】
任意の数の選択系を用いて、形質転換細胞株を回収できる。限定するものではないがこのような選択系には、tk単純細胞のために用いられるヘルペスウイルスチミジンキナーゼ遺伝子と、apr細胞のために用いられるアデニンホスホリボシルトランスフェラーゼ遺伝子がある(例えば、Wigler, M. 他 (1977) Cell 11:223-232; 及びLowy, I. 他(1980) Cell 22:817-823を参照)。また、選択の基礎として代謝拮抗物質、抗生物質或いは除草剤への耐性を用いることができる。例えばdhfrはメトトレキセートに対する耐性を与え、neoはアミノグリコシッドネオマイシン及びG-418に対する耐性を与え、alsはクロルスルフロンに対する耐性を、patはホスフィノトリシンアセチルトランスフェラーゼに対する耐性を各々与える( Wigler, M. 他 (1980) Proc. Natl. Acad. Sci. USA 77:35673570; ColbereGarapin, F. 他 (1981) J. Mol. Biol. 150:114 等を参照。)この他の選択可能な遺伝子、例えば、代謝のための細胞の必要条件を変えるtrpB及びhisDは、文献に記載されている(例えばHartman, S.C. および R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051を参照。)可視マーカー、例えばアントシアニン、緑色蛍光タンパク質(GFP;Clontech)、βグルクロニダーゼ及びその基質βグルクロニド、またはルシフェラーゼ及びその基質ルシフェリン等を用いてもよい。これらのマーカーを用いて、トランスフォーマントを特定するだけでなく、特定のベクター系に起因する一過性或いは安定したタンパク質発現を定量することが可能である(Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131等を参照)。
【0166】
マーカー遺伝子発現の存在/不存在によって目的の遺伝子の存在が示唆されても、その遺伝子の存在及び発現の確認が必要な場合もある。例えば、CSAPをコードする配列がマーカー遺伝子配列の中に挿入された場合、CSAPをコードする配列を含む形質転換された細胞は、マーカー遺伝子機能の欠落により同定可能である。または、1つのプロモーターの制御下でマーカー遺伝子がCSAPをコードする配列とタンデムに配置することも可能である。誘導または選択に応答したマーカー遺伝子の発現は通常、タンデム遺伝子の発現も示す。
【0167】
一般に、CSAPをコードする核酸配列を含み且つCSAPを発現する宿主細胞は、当業者によく知られている種々の方法を用いて同定することが可能である。限定するものではないが当業者によく知られている方法には、DNA-DNA或いはDNA-RNAハイブリダイゼーション、PCR法、核酸或いはタンパク質の検出、定量、或いはその両方を行うための膜系、溶液ベース或いはチップベースの技術を含むタンパク質の生物学的検定法または免疫学的検定法がある。
【0168】
特異的ポリクローナル抗体または特異的モノクローナル抗体を用いてCSAPの発現の検出及び計測を行うための免疫学的方法は、当分野で公知である。このような技術の例としては、酵素に結合した免疫吸着剤検定法(ELISA)、ラジオイムノアッセイ(RIA)、フローサイトメーター(FACS)などが挙げられる。CSAP上の2つの非干渉エピトープに反応するモノクローナル抗体を用いた、2部位のモノクローナルベースイムノアッセイ(two-site, monoclonal-based immunoassay)が好ましいが、競合の結合アッセイも用いることもできる。これらのアッセイ及びこれ以外のアッセイは、当分野で公知である(Hampton. R. 他 (1990) Serological Methods, a Laboratory Manual. APS Press. St Paul. MN, Sect. IV、Coligan, J. E. 他 (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY、Pound, J.D. (1998) Immunochemical Protocols, Humans Press, Totowa NJ等を参照)。
【0169】
多岐にわたる標識方法及び抱合方法が、当業者に知られており、様々な核酸アッセイおよびアミノ酸アッセイにこれらの方法を用い得る。CSAPをコードするポリヌクレオチドに関連する配列を検出するための、標識されたハイブリダイゼーションプローブ或いはPCRプローブを生成する方法には、オリゴ標識化、ニックトランスレーション、末端標識化、または標識されたヌクレオチドを用いるPCR増幅が含まれる。別法として、CSAPをコードする配列、またはその任意の断片をmRNAプローブの生成のためのベクターにクローニングすることも可能である。このようなベクターは、当分野において知られており、市販もされており、T7、T3またはSP6等の好適なRNAポリメラーゼ及び標識されたヌクレオチドを加えて、in vitroでRNAプローブの合成に用いることができる。このような方法は、例えばAmersham Pharmacia Biotech、Promega(Madison WI)、U.S. Biochemical等から市販されている種々のキットを用いて実行することができる。検出を容易にするために用い得る好適なレポーター分子或いは標識には、基質、補助因子、インヒビター、磁気粒子のほか、放射性核種、酵素、蛍光剤、化学発光剤、発色剤等がある。
【0170】
CSAPをコードするヌクレオチド配列で形質転換された宿主細胞は、細胞培地でのこのタンパク質の発現及び回収に好適な条件下で培養される。形質転換細胞から製造されたタンパク質が分泌されるか細胞内に留まるかは、使用される配列、ベクター、或いはその両者に依存する。CSAPをコードするポリヌクレオチドを含む発現ベクターは、原核細胞膜及び真核細胞膜を透過するCSAPの分泌を誘導するシグナル配列を含むように設計できることは、当業者には理解されよう。
【0171】
更に、宿主細胞株の選択は、挿入した配列の発現を調節する能力または発現したタンパク質を所望の形に処理する能力によって行い得る。限定するものではないがこのようなポリペプチドの修飾には、アセチル化、カルボキシル化、グリコシル化、リン酸化、脂質化及びアシル化がある。タンパク質の「プレプロ」または「プロ」形を切断する翻訳後のプロセシングを利用して、タンパク質の標的への誘導、折りたたみ及び/または活性を特定することが可能である。翻訳後の活性のための固有の細胞装置及び特徴のある機構を有する種々の宿主細胞(例えばCHO、HeLa、MDCK、MEK293、WI38等)は、American Type Culture Collection(ATCC, Manassas, VA)から入手可能であり、外来タンパク質の正しい修飾及び処理を確実にするように選択し得る。
【0172】
本発明の別の実施例では、CSAPをコードする自然或いは変更された、または組換えの核酸配列を上記した任意の宿主系の融合タンパク質の翻訳となる異種配列に連結させる。例えば、市販の抗体によって認識できる異種部分を含むキメラCSAPタンパク質が、CSAP活性のインヒビターに対するペプチドライブラリのスクリーニングを促進し得る。また、異種タンパク質部分及び異種ペプチド部分も、市販されている親和性基質を用いて融合タンパク質の精製を促進し得る。限定されるものではないがこのような部分には、グルタチオンSトランスフェラーゼ(GST)、マルトース結合タンパク質(MBP)、チオレドキシン(Trx)、カルモジュリン結合ペプチド(CBP)、6-His、FLAG、c-myc、赤血球凝集素(HA)がある。GSTは固定化グルタチオン上で、MBPはマルトース上で、Trxはフェニルアルシンオキシド上で、CBPはカルモジュリン上で、そして6-Hisは金属キレート樹脂上で、同族の融合タンパク質の精製を可能にする。FLAG、c-myc及び赤血球凝集素(HA)は、これらのエピトープ標識を特異的に認識する市販されているモノクローナル抗体及びポリクローナル抗体を用いて、融合タンパク質の免疫親和性精製を可能にする。また、CSAPをコードする配列と異種タンパク質配列との間にあるタンパク質分解切断部位を融合タンパク質が含むように遺伝子操作すると、CSAPが精製の後に異種部分から切断され得る。融合タンパク質の発現及び精製方法は、前出のAusubel (1995) 10章に記載されている。市販されている種々のキットを用いて融合タンパク質の発現及び精製を促進することもできる。
【0173】
本発明の別の実施例では、TNTウサギ網状赤血球可溶化液またはコムギ胚芽抽出系(Promega)を用いてin vitroで放射能標識したCSAPの合成が可能である。これらの系は、T7、T3またはSP6プロモーターと機能的に連結したタンパク質コード配列の転写及び翻訳をカップルさせる。翻訳は、例えば35Sメチオニンのような放射能標識したアミノ酸前駆体の存在下で起こる。
【0174】
本発明のCSAPまたはその断片を用いて、CSAPに特異結合する化合物をスクリーニングすることができる。少なくとも1つまたは複数の試験化合物を用いて、CSAPへの特異的な結合をスクリーニングすることが可能である。試験化合物の例には、抗体、オリゴヌクレオチド、タンパク質(例えば受容体)または小分子が挙げられる。
【0175】
或る実施態様では、このように同定された化合物は、CSAPの天然リガンドに密接に関連し、例えばリガンドやその断片であり、または天然基質や、構造的または機能的な擬態物質(mimetic)、あるいは自然結合パートナーである(Coligan, J.E. 他 (1991) Current Protocols in Immunology 1(2)の5章等を参照)。同様に、化合物は、CSAPが結合する天然受容体、あるいは例えばリガンド結合部位などの少なくとも受容体のある断片に密接に関連する場合がある。何れの場合も、既知の技術を用いてこの化合物を合理的に設計することができる。ある実施態様では、このような化合物に対するスクリーニングには、分泌タンパク質あるいは細胞膜上のタンパク質のいずれか一方としてCSAPを発現する好適な細胞の作製が含まれる。好適な細胞には、哺乳動物、酵母、ショウジョウバエ、または大腸菌からの細胞が含まれる。CSAPを発現する細胞またはCSAPを含有する細胞膜断片を試験化合物と接触させて、CSAPまたは化合物のいずれかの結合、刺激または阻害を分析する。
【0176】
或るアッセイは、単に試験化合物をポリペプチドに実験的に結合させ、蛍光色素、放射性同位体、酵素抱合体またはその他の検出可能な標識によりその結合を検出することができる。例えば、このアッセイは、少なくとも1つの試験化合物を、溶液中のあるいは固体支持物に固定されたCSAPと混合させるステップと、CSAPとこの化合物との結合を検出するステップを含む場合がある。別法では、標識された競合物の存在下での試験化合物の結合の検出及び測定を行うことができる。更にこのアッセイでは、無細胞再構成標本、化学ライブラリまたは天然の生成混合物を用いて実施することができ、試験化合物は、溶液中で遊離させるか固体支持体に固定させる。
【0177】
本発明のCSAPまたはその断片を用いて、CSAPの活性を調整する化合物をスクリーニングすることが可能である。このような化合物には、アゴニスト、アンタゴニスト、部分的アゴニスト、または逆アゴニスト等が含まれる。ある実施態様では、CSAPの活性が許容される条件下でアッセイを実施し、そのアッセイでは少なくとも1つの試験化合物をCSAPと混合し、試験化合物の存在下でCSAPの活性を試験化合物不在下でのCSAPの活性と比較する。試験化合物の存在下でのCSAPの活性の変化は、CSAPの活性を調整する化合物の存在を示唆する。別の実施態様において、試験化合物をCSAPの活性に適した条件下でCSAPを含むin vitroまたは無細胞再構成系と結合させてアッセイを実施する。これらアッセイのいずれかにおいて、CSAPの活性を調整する試験化合物は間接的に結合することが可能であり、試験化合物と直接接触する必要がない。少なくとも1つから複数の試験化合物をスクリーニングすることができる。
【0178】
別の実施態様では、胚性幹細胞(ES細胞)における相同組み換えを用いて動物モデル系内で、CSAPまたはその哺乳動物相同体をコードするポリヌクレオチドを「ノックアウト」する。このような技術は当技術分野において周知であり、ヒト疾患動物モデルの作製に有用である(米国特許第5,175,383号及び第5,767,337号等を参照)。例えば129/SvJ細胞株等のマウスES細胞は初期のマウス胚に由来し、培地で増殖させることができる。このES細胞は、ネオマイシンホスホトランスフェラーゼ遺伝子(neo: Capecchi, M.R. (1989) Science 244:1288-1292)等のマーカー遺伝子で破壊した目的の遺伝子を含むベクターで形質転換する。このベクターは、相同組換えにより宿主ゲノムの対応する領域に組み込まれる。別法では、Cre-loxP系を用いて相同組換えを行い、組織特異的または発生段階特異的に目的遺伝子をノックアウトする(Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. 他 (1997) Nucleic Acids Res. 25:4323-4330)。形質転換したES細胞を同定し、例えばC57BL/6マウス系等から採取したマウス細胞胚盤胞に微量注入する。胚盤胞を偽妊娠メスに外科的に導入し、得られるキメラ子孫の遺伝形質を決め、これを交配させてヘテロ接合性系またはホモ接合性系を作製する。このようにして作製した遺伝子組換え動物は、可能性のある治療薬や毒性薬剤で検査することができる。
【0179】
CSAPをコードするポリヌクレオチドをin vitroでヒト胚盤胞由来のES細胞において操作することが可能である。ヒトES細胞は、内胚葉、中胚葉及び外胚葉の細胞の種類を含む少なくとも8つの別々の細胞系統に分化する可能性を有する。これらの細胞系統は、例えば神経細胞、造血系統及び心筋細胞に分化する(Thomson, J.A. 他 (1998) Science 282:1145-1147)。
【0180】
CSAPをコードするポリヌクレオチドを用いて、ヒト疾患をモデルとした「ノックイン」ヒト化動物(ブタ)または遺伝子組み換え動物(マウスまたはラット)を作製することが可能である。ノックイン技術を用いて、CSAPをコードするポリヌクレオチドのある領域を動物ES細胞に注入し、注入した配列を動物細胞ゲノムに組み込ませる。形質転換細胞を胞胚に注入し、胞胚を上記のように移植する。遺伝子組換え子孫または近交系について研究し、可能性のある医薬品を用いて処理し、ヒトの疾患の治療に関する情報を得る。別の実施態様において、例えばCSAPを乳汁内に分泌するなどCSAPを過剰に発現する哺乳動物近交系は、便利なタンパク質源となり得る(Janne, J. 他 (1998) Biotechnol. Annu. Rev. 4:55-74)。
【0181】
(治療)
CSAPの領域と細胞骨格結合タンパク質の領域との間に、例えば配列およびモチーフの内容における化学的類似性および構造的類似性が存在する。また、CSAPを発現する組織の例には、正常および癌の肺組織と正常および癌の乳房組織があり、また表6に見られる。従って、CSAPは、細胞増殖異常、ウイルス感染、および神経系疾患においてある役割を果たすと考えられる。CSAPの発現または活性の増大に関連する疾患の治療においては、CSAPの発現または活性を低下させることが望ましい。CSDAPの発現または活性の低下に関連する疾患の治療においては、CSAPの発現または活性を増大させることが望ましい。
【0182】
従って、一実施例において、CSAPの発現または活性の低下に関連した疾患の治療または予防のために、患者にCSAPまたはその断片や誘導体を投与することが可能である。限定するものではないが、このような疾患には、たとえば細胞増殖異常としては日光性角化症、動脈硬化、アテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌等の癌があり、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌が含まれる; ウイルス感染症としては、アデノウイルス(急性呼吸疾患、肺炎)、アレナウイルス(リンパ球性脈絡髄膜炎)、ブニャウイルス(ハンタウイルス)、コロナウイルス(肺炎、慢性気管支炎)、ヘパドナウイルス(肝炎)、ヘルペスウイルス(ヘルペス単純ウイルス、水痘・帯状ウイルス、エプスタイン バーウイルス、サイトメガロウイルス)、フラビウイルス(黄熱)、オルソミクソウイルス(インフルエンザ)、乳頭腫ウイルス(癌)、パラミクソウイルス(麻疹、おたふく風邪)、ピコルナウイルス(ライノウイルス、ポリオウイルス、コクサッキーウイルス)、ポリオーマウイルス(BKウイルス、JCウイルス)、ポックスウイルス(痘瘡)、レオウイルス(コロラドダニ熱)、レトロウイルス(ヒト免疫不全ウイルス、ヒトT細胞ウイルス)、ラブドウイルス(狂犬病)、ロタウイルス(胃腸炎)、およびトガウイルス(脳炎、風疹)によって起こされる感染症が含まれ; 神経の疾患としては、癲癇、虚血性脳血管障害、脳卒中、大脳新生物、アルツハイマー病、ピック病、ハンチントン病、痴呆、パーキソン病及びその他の錐体外路障害、筋萎縮性側策硬化及びその他の運動ニューロン障害、進行性神経性筋萎縮症、色素性網膜炎、遺伝性運動失調、多発性硬化症及び他の脱髄疾患、細菌性及びウイルス性髄膜炎、脳膿瘍、硬膜下蓄膿症、硬膜外膿瘍、化膿性頭蓋内血栓性静脈炎、脊髄炎及び神経根炎、ウイルス性中枢神経系疾患、プリオン病(クールー、クロイツフェルト‐ヤコブ病、及びGerstmann-Straussler-Scheinker症候群を含む)、致死性家族性不眠症、神経系性栄養病及び代謝病、神経線維腫症、、結節硬化症、小脳網膜血管芽腫(cerebelloretinal hemangioblastomatosis)、脳3叉神経血管症候群、精神薄弱およびその他の中枢神経系性発達障害、脳性麻痺、神経骨格異常症、自律神経系障害、脳神経障害、脊髄障害、筋ジストロフィー及びその他の神経筋障害、末梢神経疾患、皮膚筋炎及び多発性筋炎、遺伝性、代謝性、内分泌性、及び中毒性の筋疾患、重症筋無力症、周期性四肢麻痺、精神病(気分性、不安性の障害、分裂病性疾患)、季節性障害(SAD)、静座不能、健忘症、緊張病、糖尿病性ニューロパシー、錐体外路性終末欠陥症候群、ジストニー、分裂病性精神障害、帯状疱疹後神経痛、およびトゥーレット病が含まれる。
【0183】
別の実施態様では、CSAPまたはその断片や誘導体を発現し得るベクターを患者に投与して、上記しだけに限られるものではないが疾患を含むCSAPの発現または活性の低下に関連した疾患を治療または予防することも可能である。
【0184】
さらに別の実施態様では、実質的に精製されたCSAPを含む組成物を好適な医薬用キャリアと共に患者に投与して、限定するものではないが上記した疾患を含むCSAPの発現または活性の低下に関連した疾患を治療または予防することも可能である。
【0185】
更に別の実施例では、限定するものではないが上に列記した疾患を含むCSAPの発現または活性の低下に関連した疾患の治療または予防のために、CSAPの活性を調節するアゴニストを患者に投与することも可能である。
【0186】
更なる実施例では、CSAPの発現または活性の増大に関連した疾患の治療または予防のために、患者にCSAPのアンタゴニストを投与することが可能である。限定するものではないが、このような疾患の例には、上記した細胞増殖異常、ウイルス感染症、および神経系疾患が含まれる。一実施態様では、CSAPと特異的に結合する抗体が直接アンタゴニストとして、或いはCSAPを発現する細胞または組織に薬剤を運ぶターゲッティング或いは送達機構として間接的に用いられ得る。
【0187】
別の実施例では、限定するものではないが上に列記した疾患を含むCSAPの発現または活性の増大に関連した疾患の治療または予防のために、CSAPをコードするポリヌクレオチドの相補配列を発現するベクターを患者に投与することも可能である。
【0188】
別の実施例では、本発明の任意のタンパク質、アンタゴニスト、抗体、アゴニスト、相補配列、またはベクターを、別の好適な治療薬と組み合わせて投与することもできる。併用療法で用いる好適な治療薬は、当業者が従来の医薬原理に従って選択し得る。治療薬と組み合わせることにより、上記した種々の疾患の治療または予防に相乗効果をもたらし得る。この方法を用いることにより少量の各薬剤で医薬効果をあげることが可能となり、それによって副作用の可能性を低減し得る。
【0189】
CSAPのアンタゴニストは、当分野で一般的な方法を用いて製造することが可能である。詳しくは、精製されたCSAPを用いて抗体を作ったり、治療薬のライブラリをスクリーニングしてCSAPと特異的に結合するものの同定が可能である。CSAPの抗体も、当分野で一般的な方法を用いて製造することが可能である。このような抗体には、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖、Fab断片、及びFab発現ライブラリによって作られた断片が含まれる。但し、これらに限定されるものではない。中和抗体(即ち二量体の形成を阻害する抗体)は通常、治療用に好適である。(ラクダやラマの)一本鎖抗体は強力な酵素阻害剤である可能性があり、ペプチド擬態の設計および免疫吸着剤およびバイオセンサの開発に有用である可能性がある(Muyldermans, S. (2001) J. Biotechnol. 74:277-302)。
【0190】
抗体の産生のためには、ヤギ、ウサギ、ラット、マウス、ラクダ、ヒトコブラクダ、ラマ、ヒト及びその他のものを含む種々の宿主が、CSAPまたは任意の断片、または免疫原性の特性を備えるそのオリゴペプチドの注入によって免疫化され得る。宿主の種に応じて、種々のアジュバントを用いて免疫応答を高めることもできる。限定するものではないがこのようなアジュバントには、フロイントアジュバントと、水酸化アルミニウム等のミネラルゲルアジュバントと、リゾレシチン、プルロニックポリオル、ポリアニオン、ペプチド、油性乳剤、スカシガイのヘモシニアン、ジニトロフェノール等の界面活性剤とがある。ヒトに用いられるアジュバントの中では、BCG(カルメット‐ゲラン杆菌)及びコリネバクテリウム‐パルバム(Corynebacterium parvum)が特に好ましい。
【0191】
CSAPに対する抗体を誘発するために用いられるオリゴペプチド、ペプチド、または断片は、少なくとも約5個のアミノ酸からなり、一般的には約10個以上のアミノ酸からなるものが好ましい。これらのオリゴペプチド、ペプチドまたは断片は、天然のタンパク質のアミノ酸配列の一部と同一であることが望ましい。CSAPのアミノ酸の短いストレッチは、KLHなどの別のタンパク質の配列と融合し、キメラ分子に対する抗体が産生され得る。
【0192】
CSAPに対するモノクローナル抗体は、培地内の連続した細胞株によって、抗体分子を産生する任意の技術を用いて作製することが可能である。限定するものではないがこのような技術には、ハイブリドーマ技術、ヒトB細胞ハイブリドーマ技術及びEBV-ハイブリドーマ技術がある(Kohler, G. 他 (1975) Nature 256:495-497、Kozbor, D. 他 (1985) .J. Immunol. Methods 81:31-42、Cote, R.J. 他 (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030、Cole, S.P. 他 (1984) Mol. Cell Biol. 62:109-120等を参照)。
【0193】
更に、「キメラ抗体」作製のために発達したヒト抗体遺伝子にマウス抗体遺伝子をスプライシングするなどの技術が、好適な抗原特異性及び生物学的活性を備える分子を得るために用いられる(例えば、Morrison, S.L.他. (1984) Proc. Natl. Acad. Sci. 81:6851-6855; Neuberger, M.S.他. (1984) Nature 312:604-608; Takeda, S.他 (1985) Nature 314:452,454を参照。)別法では、当分野で周知の方法を用いて、一本鎖抗体の産生のための記載された技術を適用して、CSAP特異的一本鎖抗体を生成する。関連特異性を有するがイディオタイプ組成が異なるような抗体を、ランダムな組合せの免疫グロブリンライブラリからチェーンシャッフリングによって産生することもできる(Burton D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137等を参照)。
【0194】
抗体の産生は、リンパ球集団におけるin vivo産生の誘導によって、或いは文献に開示されているように非常に特異的な結合試薬の免疫グロブリンのライブラリまたはパネルのスクリーニングによっても行い得る。(Orlandi, R. 他 (1989) Proc. Natl. Acad. Sci. USA 86: 3833-3837、Winter, G. 他 (1991) Nature 349:293-299等を参照)。
【0195】
CSAPに対する特異的な結合部位を含む抗体も得ることができる。例えば、限定するものではないが、このような断片には、抗体分子のペプシン消化によって作製されるF(ab')2 断片と、F(ab')2 断片のジスルフィド架橋を還元することによって作製されるFab断片とがある。或いは、Fab発現ライブラリを作製することによって、モノクローナルFab断片を所望の特異性と迅速且つ容易に同定することが可能となる(Huse, W.D. 他 (1989) Science 246:1275-1281等を参照)。
【0196】
種々のイムノアッセイを用いてスクリーニングし、所望の特異性を有する抗体を同定することができる。確立された特異性を有するポリクローナル抗体またはモノクローナル抗体の何れかを用いる競合的な結合、または免疫放射線活性の検定ための数々のプロトコルが、当分野では周知である。通常このような免疫学的検定には、CSAPとその特異性抗体との間の複合体の計測が含まれる。二つの非干渉性CSAPエピトープに対して反応性のモノクローナル抗体を用いる、2部位モノクローナルベースのイムノアッセイが一般に利用されるが、競合的結合アッセイも利用することができる(Pound、前出)。
【0197】
ラジオイムノアッセイ技術と共にScatchard分析などの様々な方法を用いて、CSAPに対する抗体の親和性を評価する。親和性を結合定数Kaで表すが、このKaは、平衡状態の下でCSAP抗体複合体のモル濃度を遊離抗体と遊離抗原のモル濃度で除して得られる値である。多数のCSAPエピトープに対して親和性が不均一なポリクローナル抗体試薬のKaは、CSAPに対する抗体の平均親和性または結合活性を表す。特定のCSAPエピトープに単一特異的なモノクローナル抗体試薬のKaは、親和性の真の測定値を表す。Ka値が10〜1012liter/molの高親和性抗体試薬は、CSAP抗体複合体が過酷な処理に耐えなければならないイムノアッセイに用いるのが好ましい。Ka値が10〜10L/molの低親和性抗体医薬は、CSAPが抗体から最終的に活性化状態で解離する必要がある免疫精製(immunopurification)及び類似の処理に用いるのが好ましい(Catty, D. (1988) Antibodies, Volume I: A Practical Approach. IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY)。A Practical Approach, IRL Press, Washington DC; Liddell, J.E. および A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY)。
【0198】
ポリクローナル抗体試薬の抗体価及び結合活性を更に評価して、後に使う或る適用例に対するこのような試薬の品質及び適性を決定することができる。例えば、少なくとも1〜2mg/mlの特異的な抗体、好ましくは5〜10mg/mlの特異的な抗体を含むポリクローナル抗体試薬は一般に、CSAP抗体複合体を沈殿させなければならない処理に用いられる。抗体の特異性、抗体価、結合活性、様々な適用例における抗体の品質や使用に対する指針については、一般に入手可能である。(前出のCattyの文献、同Coligan 他の文献等を参照)。
【0199】
本発明の別の実施例では、CSAPをコードするポリヌクレオチド、またはその任意の断片や相補配列が、治療目的で使用することができる。ある実施態様では、CSAPをコードする遺伝子のコーディング領域や調節領域に相補的な配列やアンチセンス分子(DNA及びRNA、修飾ヌクレオチド)を設計して遺伝子発現を変更することができる。このような技術は当分野では周知であり、センスオリゴヌクレオチド、アンチセンスオリゴヌクレオチド、またはより大きな断片が、CSAPをコードする配列の制御領域から、またはコード領域に沿ったさまざまな位置から設計可能である。(Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJを参照。)
治療に用いる場合、アンチセンス配列を好適な標的細胞に導入するのに好適な任意の遺伝子送達系を用いることができる。アンチセンス配列は、転写時に標的タンパク質をコードする細胞配列の少なくとも一部に相補的な配列を作製する発現プラスミドの形で細胞内に輸送することが可能である(Slater, J.E. 他 (1998) J. Allergy Clin. Immunol. 102(3):469-475; およびScanlon, K.J. 他 (1995) 9(13):1288-1296を参照)。アンチセンス配列はまた、例えばレトロウイルスやアデノ随伴ウイルスベクターなどのウイルスベクターを用いて細胞内に導入することもできる(Miller, A.D. (1990) Blood 76:271、前出のAusubel、Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347等を参照)。その他の遺伝子送達機構には、リポソーム系、人工的なウイルスエンベロープ及び当分野で公知のその他のシステムが含まれる(Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado、R.J.他 (1998) J. Pharm. Sci. 87(11):1308-1315、Morris, M.C. 他 (1997) Nucleic Acids Res. 25(14):2730-2736. 等を参照)。
【0200】
本発明の別の実施例では、CSAPをコードするポリヌクレオチドを、体細胞若しくは生殖細胞の遺伝子治療に用いることが可能である。遺伝子治療を行うことにより、(i)遺伝子欠損症(例えばX染色体鎖遺伝(Cavazzana-Calvo, M. 他 (2000) Science 288:669-672)により特徴付けられる重度の複合型免疫欠損(SCID)-X1の場合)、先天性アデノシンデアミナーゼ(ADA)欠損症に関連する重度の複合型免疫欠損(Blaese, R.M. 他 (1995) Science 270:475-480、Bordignon, C. 他 (1995) Science 270:470-475)、嚢胞性繊維症(Zabner, J. 他 (1993) Cell 75:207-216: Crystal、R.G. 他 (1995) Hum. Gene Therapy 6:643-666、Crystal, R.G. 他 (1995) Hum. Gene Therapy 6:667-703)、サラセミア(thalassamia)、家族性高コレステロール血症、第VIII因子若しくは第IX因子欠損に起因する血友病(Crystal, 35 R.G. (1995) Science 270:404-410、Verma, I.M. および N. Somia (1997) Nature 389:239-242)を治療し、(ii)条件的致死性遺伝子産物を発現させ(例えば制御不能な細胞増殖に起因する癌の場合)、(iii)細胞内の寄生虫(例えばヒト免疫不全ウイルス(HIV)(Baltimore, D. (1988) Nature 335:395-396、Poescbla, E. 他 (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399)、B型若しくはC型肝炎ウイルス(HBV、HCV)、Candida albicans及びParacoccidioides brasiliensis等の真菌寄生虫、並びにPlasmodium falciparum及びTrypanosoma cruzi等の原虫寄生体に対する防御機能を有するタンパク質を発現させることができる。 CSAPの発現若しくは調節に必要な遺伝子の欠損が疾患を引き起こす場合、導入した細胞の好適な集団からCSAPを発現させて、遺伝子欠損によって起こる症状の発現を緩和することが可能である。
【0201】
本発明の更なる実施例では、CSAPの欠損による疾患や異常症は、CSAPをコードする哺乳動物発現ベクターを作製して、これらのベクターを機械的手段によってCSAP欠損細胞に導入することによって治療する。in vivoあるいはex vitroの細胞に用いる機械的導入技術には、(i)個々の細胞内への直接的なDNA微量注射法、(ii)遺伝子銃、(iii)リポソームを介した形質移入、(iv)受容体を介した遺伝子導入、および(v)DNAトランスポゾンの使用がある(Morgan, R.A. および W.F. Anderson(1993)Annu. Rev. Biochem. 62:191-217、Ivics, Z.(1997)Cell 91:501-510; Boulay, J-L. およびH. Recipon(1998)Curr. Opin. Biotechnol. 9:445-450)。
【0202】
CSAPの発現に影響を及ぼし得る発現ベクターには、限定するものではないが、PCDNA 3.1、EPITAG、PRCCMV2、PREP、PVAX、PCR2-TOPOTAベクター(Invitrogen, Carlsbad CA)、PCMV-SCRIPT、PCMV-TAG、PEGSH/PERV (Stratagene, La Jolla CA)、PTET-OFF、PTET-ON、PTRE2、PTRE2-LUC、PTK-HYG (Clontech, Palo Alto CA)が含まれる。CSAPを発現させるために、(i)恒常的に活性なプロモーター(例えば、サイトメガロウイルス(CMV)、ラウス肉腫ウイルス(RSV)、SV40ウイルス、チミジンキナーゼ(TK)、若しくはβ−アクチン遺伝子等)、(ii)誘導性プロモーター(例えば、市販されているT-REXプラスミド(Invitrogen)に含まれている、テトラサイクリン調節性プロモーター(Gossen, M. 及び H. Bujard (1992) Proc. Natl. Acad. Sci. U.S.A. 89:5547-5551; Gossen, M. 他 (1995) Science 268:1766-1769; Rossi, F.M.V. 及び H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456))、エクジソン誘導性プロモーター(市販されているプラスミドPVGRXR及びPINDに含まれている:Invitrogen)、FK506/ラパマイシン誘導性プロモーター、またはRU486/ミフェプリストーン誘導性プロモーター(Rossi, F.M.V. 及び H.M. Blau, 前出)、または(iii)正常な個体に由来するCSAPをコードする内在性遺伝子の天然のプロモーター若しくは組織特異的プロモーターを用いることが可能である。
【0203】
市販のリポソーム形質転換キット(例えばInvitrogen社のPerFect Lipid Transfection Kit)を用いれば、当業者は実験の各パラメータを最適化する努力をさほど要さず、ポリヌクレオチド群を、培養中の標的細胞群に送達し得る。別法では、リン酸カルシウム法(Graham. F.L. 及び A.J. Eb (1973) Virology 52:456-467)若しくは電気穿孔法(Neumann, B. 他 (1982) EMBO J. 1:841-845)を用いて形質転換を行う。初代培養細胞にDNAを導入するためには、標準化された哺乳動物の形質移入プロトコルの修飾が必要である。
【0204】
本発明の別の実施例では、CSAPの発現に関連する遺伝子欠損によって起こる疾患や異常症は、(i)レトロウイルス末端反復配列(LTR)プロモーター若しくは独立したプロモーターのコントロール下でCSAPをコードするポリヌクレオチドと、(ii)好適なRNAパッケージングシグナルと、(iii)追加のレトロウイルス・シス作用性RNA配列及び効率的なベクターの増殖に必要なコーディング配列を伴うRev応答性エレメント(RRE)とからなるレトロウイルスベクターを作製して治療することができる。レトロウイルスベクター(例えばPFB及びPFBNEO)はStratagene社から市販されており、刊行データ(Riviere, I. 他 (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733-6737)に基づいている。上記データを引用することをもって本明細書の一部とする。ベクターは、好適なベクター産生細胞株(VPCL)において増殖され、VPCLは、標的細胞上の受容体に対する親和性を有するエンベロープ遺伝子またはVSVg等の汎親和性エンベロープタンパク質を発現する(Armentano, D. 他 (1987) J. Virol. 61:1647-1650、Bender, M.A. 他 (1987) J. Virol. 61:1639-1646、Adam, M.A. および A.D. Miller (1988) J. Virol. 62:3802-3806、Dull, T. 他 (1998) J. Virol. 72:8463-8471、Zufferey, R. 他 (1998) J. Virol. 72:9873-9880)。Riggに付与された米国特許第5,910,434号(「Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant」)において、レトロウイルスパッケージング細胞株を得るための方法が開示されており、引用することをもって本明細書の一部とする。レトロウイルスベクターの増殖、細胞集団(例えばCD4+ T細胞)の形質導入、及び形質導入した細胞の患者への戻しは、遺伝子治療の分野では当業者に公知の方法であり、多数の文献に記載されている(Ranga, U. 他 (1997) J. Virol. 71:7020-7029、Bauer, G. 他 (1997) Blood 89:2259-2267、Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716、Ranga, U. 他 (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201-1206、Su, L. (1997) Blood 89:2283-2290)。
【0205】
別法では、アデノウイルス系遺伝子治療の送達系を用いて、CSAPの発現に関連する1つ或いは複数の遺伝子異常を有する細胞にCSAPをコードするポリヌクレオチドを送達する。アデノウイルス系ベクターの作製及びパッケージングについては、当業者に公知である。複製欠損型アデノウイルスベクターは、免疫調節タンパク質をコードする遺伝子を膵臓の無損傷の膵島内に導入するために融通のきくことが証明された(Csete, M.E. 他 (1995) Transplantation 27:263-268)。使用できる可能性のあるアデノウイルスベクターは、Armentanoに付与された米国特許第5,707,618号(「Adenovirus vectors for gene therapy」)に記載されており、引用することをもって本明細書の一部とする。アデノウイルスベクターについては、Antinozzi, P.A. 他 (1999) Annu. Rev. Nutr. 19:511-544 及び Verma, I.M. 及び N. Somia (1997) Nature 18:389:239-242も参照されたい。両文献は、引用することをもって本明細書の一部とする。
【0206】
別法では、ヘルペス系遺伝子治療の送達系を用いて、CSAPの発現に関連する1つ或いは複数の遺伝子異常を有する標的細胞にCSAPをコードするポリヌクレオチドを送達する。単純ヘルペスウイルス(HSV)系のベクターは、HSV親和性の中枢神経細胞にCSAPを導入する際に特に有用である。ヘルペス系ベクターの作製及びパッケージングは、当業者に公知である。複製適格性単純ヘルペスウイルス(HSV)I型系のベクターは、レポーター遺伝子を霊長類の眼に送達するために用いられてきた(Liu, X. 他 (1999) Exp. Eye Res.169:385-395)。HSV-1ウイルスベクターの作製についても、DeLucaに付与された米国特許第5,804,413号(「Herpes simplex virus swains for gene transfer」)に開示されており、該特許の引用をもって本明細書の一部とする。 米国特許第5,804,413号には、ヒト遺伝子治療を含む目的のために好適なプロモーターの制御下において細胞に導入される少なくとも1つの外在性遺伝子を有するゲノムを含む組換えHSV d92についての記載がある。上記特許はまた、ICP4、ICP27及びICP22のために除去される組換えHSV系統の作製及び使用について開示している。HSVベクターについては、Goins, W.F. 他 (1999) J. Virol. 73:519-532 及び Xu, H. ら (1994) Dev. Biol. 163:152-161も参照されたい。両文献は、引用をもって本明細書の一部とする。クローン化ヘルペスウイルス配列の操作、巨大ヘルペスウイルスのゲノムの異なった部分を含む多数のプラスミドを形質移入した後の組換えウイルスの産生、ヘルペスウイルスの成長及び増殖、並びにヘルペスウイルスの細胞への感染は、当業者に公知の技術である。
【0207】
別法では、αウイルス(正の一本鎖RNAウイルス)ベクターを用いてCSAPをコードするポリヌクレオチドを標的細胞に送達する。プロトタイプのαウイルスであるセムリキ森林熱ウイルス(Semliki Forest Virus, SFV)の生物学的研究が広範に行われており、遺伝子導入ベクター類はSFVゲノムに基づく(Garoff, H. 及び K.-J. Li (1998) Cun. Opin. Biotech. 9:464-469)。αウイルスRNAの複製中に、通常はウイルスのキャプシッドタンパク質をコードするサブゲノムRNAが作り出される。このサブゲノムRNAは、完全長のゲノムRNAより高いレベルに複製されるため、酵素活性(例えばプロテアーゼ及びポリメラーゼ)を有するウイルスタンパク質に比べてキャプシッドタンパク質が過剰産生される。同様に、CSAPをコードする配列をαウイルスゲノムのキャプシッドをコードする領域に導入することによって、ベクター導入細胞において多数のCSAPをコードするRNAが産生され、高いレベルでCSAPが合成される。通常はαウイルスの感染が数日以内での細胞溶解に関係する一方で、シンドビスウイルス(SIN)の変異体を有するハムスター正常腎臓細胞(BHK-21)の持続的な感染を確立する能力は、αウイルスの溶解複製を遺伝子治療に適用できるように好適に変更可能であることを示唆している(Dryga, S.A. 他 (1997) Virology 228 :74-83)。様々な宿主にαウイルスを導入できることから、様々なタイプの細胞にCSAPを導入することできる。或る集団におけるサブセットの細胞の特定形質導入は、形質導入前に細胞の選別を必要とし得る。αウイルスの感染性cDNAクローンの処置方法、αウイルスのcDNA及びRNAの形質移入方法及びαウイルスの感染方法は、当業者に公知である。
【0208】
転写開始部位由来のオリゴヌクレオチドを用いて遺伝子発現を阻害することも可能である。転写開始部位とは例えば開始部位から数えて約−10と約+10の間である。同様に、三重らせん塩基対の形成方法を用いて阻害が可能となる。三重らせん塩基対形成は、ポリメラーゼ、転写因子または調節分子の結合のために十分に開くような二重らせんの能力を阻害するので、三重らせん塩基対形成は有用である。三重らせんDNAを用いる最近の治療の進歩については文献に記載がある(Gee, J.E. 他 (1994) in: Huber, B.E.and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, NY, 163-177ページ等を参照。)相補配列またはアンチセンス分子もまた、転写物がリボソームに結合するのを阻止することによってmRNAの翻訳を阻止するべく設計することができる。
【0209】
リボザイムは酵素的RNA分子であり、RNAの特異的切断を触媒するためにリボザイムを用いることもできる。リボザイム作用のメカニズムは、相補的標的RNAへのリボザイム分子の配列特異性ハイブリダイゼーションとその後に起こる内ヌクレオチド鎖切断に関与している。例えば、人工的に作製されたハンマーヘッド型リボザイム分子が、CSAPをコードする配列の内ヌクレオチド鎖分解性の切断を特異的且つ効果的に触媒できる可能性がある。
【0210】
任意のRNA標的内の特異的リボザイム切断部位は、GUA、GUU、GUC配列を含めたリボザイム切断部位に対して標的分子をスキャンすることによって先ず同定される。一度同定されると、切断部位を含む標的遺伝子の領域に対応する15〜20リボヌクレオチドの短いRNA配列が、そのオリゴヌクレオチドを機能不全にするような2次構造の特徴をもっていないかを評価することが可能になる。候補標的の適合性の評価も、リボヌクレアーゼ保護アッセイを用いて相補的オリゴヌクレオチドとのハイブリダイゼーションのアクセス可能性をテストすることによって行うことができる。
【0211】
本発明の相補リボ核酸分子及びリボザイムは、核酸分子合成のために当分野でよく知られている任意の方法を用いて作製し得る。任意の方法には、固相フォスフォアミダイト化学合成等のオリゴヌクレオチドを化学的に合成する方法がある。或いは、CSAPをコードするDNA配列のin vitro及びin vivo転写によってRNA分子を産出し得る。このようなDNA配列は、T7やSP6等の好適なRNAポリメラーゼプロモーターを用いて多様なベクター内に取り込むことが可能である。或いは、相補的RNAを構成的或いは誘導的に合成するようなこれらcDNA産物を、細胞系、細胞または組織内に導入することができる。
【0212】
細胞内の安定性を高め、半減期を長くするためにRNA分子を修飾することができる。限定するものではないが可能な修飾には、分子の5'末端、3'末端、あるいはその両方においてフランキング配列を追加したり、分子の主鎖内においてホスホジエステラーゼ結合ではなくホスホロチオネートまたは2' O-メチルを使用したりすることが含まれる。この概念は、PNAの産出に固有のものであり、これら全ての分子に拡大することができる。それには、内因性エンドヌクレアーゼによって容易には認識されないアデニン、シチジン、グアニン、チミン、及びウリジンにアセチル−、メチル−、チオ−及び同様の修飾をしたものの他、非従来型塩基、例えばイノシン、クエオシン(queosine)、ワイブトシン(wybutosine)等を加えることでできる。
【0213】
本発明の更なる実施例は、CSAPをコードするポリヌクレオチドの発現の変化に有効な化合物をスクリーニングする方法を含む。限定するものではないが特異ポリヌクレオチドの発現変化を起こすのに有効な化合物には、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、三重らせん形成オリゴヌクレオチド、転写因子その他のポリペプチド転写制御因子、及び特異ポリヌクレオチド配列と相互作用し得る非高分子化学的実体がある。有効な化合物は、ポリヌクレオチド発現のインヒビターまたはエンハンサーのいずれかとして作用することによりポリヌクレオチド発現を変異し得る。従って、CSAPの発現または活性の増加に関連する疾患の治療においては、CSAPをコードするポリヌクレオチドの発現を特異的に阻害する化合物が治療上有用であり、CSAPの発現または活性の低下に関連する疾患の治療においては、CSAPをコードするポリヌクレオチドの発現を特異的に促進する化合物が治療上有用であり得る。
【0214】
特異ポリヌクレオチドの変異発現における有効性に対して、少なくとも1個から複数個の試験化合物をスクリーニングし得る。試験化合物は、当分野で通常知られている任意の方法により得られる。このような方法には、ポリヌクレオチドの発現を変異させる場合と、既に市販のまたは私的な、天然または非天然の化合物ライブラリから選択する場合と、標的ポリヌクレオチドの化学的及び/または構造的特性に基づく化合物を合理的にデザインする場合と、組合せ的にまたは無作為に生成した化合物のライブラリから選択する場合に有効であることが知られているような化合物の化学修飾がある。CSAPをコードするポリヌクレオチドを含むサンプルは、このようにして得られた試験化合物の少なくとも1つに曝露する。サンプルには例えば、無傷細胞、透過化処理した細胞、無細胞再構成系または再構成生化学系があり得る。CSAPをコードするポリヌクレオチドの発現における変化は、当分野で通常知られている任意の方法でアッセイする。通常、CSAPをコードするポリヌクレオチドの配列に相補的なヌクレオチド配列を有するプローブを用いたハイブリダイゼーションにより、特異ヌクレオチドの発現を検出する。ハイブリダイゼーション量を定量し、それによって1つ若しくは複数の試験化合物に曝露される及び曝露されないポリヌクレオチドの発現の比較に対する基礎を形成し得る。試験化合物に曝露されるポリヌクレオチドの発現における変化の検出は、ポリヌクレオチドの発現を変異する際に試験化合物が有効であることを示している。特異ポリヌクレオチドの発現改変に有効な化合物に対して、例えば分裂酵母(Schizosaccharomyces pombe)遺伝子発現系(Atkins, D. 他 (1999) 米国特許第5,932,435号、Arndt, G.M. 他 (2000) Nucleic Acids Res. 28:E15)またはHeLa細胞等のヒト細胞株(Clarke, M.L. 他 (2000) Biochem. Biophys. Res. Commun. 268:8-13)を用いてスクリーニングを実行する。本発明の特定の実施例は、特異的ポリヌクレオチド配列に対するアンチセンス活性のためのオリゴヌクレオチド(デオキシリボヌクレオチド、リボヌクレオチド、ペプチド核酸、修飾オリゴヌクレオチド)の組み合わせライブラリをスクリーニングすることに関与している(Bruice, T.W. 他 (1997) 米国特許第5,686,242号、Bruice, T.W. 他 (2000) 米国特許第6,022,691号)。
【0215】
ベクターを細胞または組織に導入する多数の方法が利用可能であり、in vivoin vitro及びex vivoの使用に対して同程度に適している。ex vivo治療の場合、ベクターを患者から採取した幹細胞内に導入し、クローニング増殖して同一患者に自家移植で戻すことができる。トランスフェクション、リボソーム注入またはポリカチオンアミノポリマーによる送達は、当分野でよく知られている方法を用いて実行することができる(Goldman, C.K. 他 (1997) Nat. Biotechnol. 15:462-466.等を参照)。
【0216】
上記の治療方法はいずれも、例えば、ヒト、イヌ、ネコ、ウシ、ウマ、ウサギ、サル等の哺乳動物を含めて治療が必要な全ての対象に適用できる。
【0217】
本発明の追加実施例は、通常薬剤として許容できる賦形剤で処方される活性成分を有する組成物の投与に関連する。賦形剤には例えば、糖、でんぷん、セルロース、ゴム及びタンパク質がある。様々な処方が通常知られており、詳細はRemington's Pharmaceutical Sciences(Maack Publishing, Easton PA)の最新版に記載されている。このような組成物は、CSAP、CSAPの抗体、擬態、アゴニスト、アンタゴニスト、またはCSAPのインヒビターなどからなる。
【0218】
本発明に用いられる組成物は、任意の数の経路によって投与することができ、限定するものではないが経路には、経口、静脈内、筋肉内、動脈内、骨髄内、クモ膜下腔内、心室内、肺、経皮、皮下、腹腔内、鼻腔内、腸内、局所、舌下または直腸がある。
【0219】
肺から投与する組成物は、液状または乾燥粉末状で調製し得る。このような組成物は通常、患者が吸入する直前にエアロゾル化する。小分子(例えば従来の低分子量有機薬)の場合には、速効製剤のエアロゾル送達は当分野で公知である。高分子(例えばより大きなペプチド及びタンパク質)の場合には、当該分野において肺の肺胞領域を介しての肺送達が最近向上したことにより、インスリン等の薬剤を実質的に血液循環へ輸送することを可能にした(Patton, J.S. 他, 米国特許第5,997,848号等を参照)。肺送達は、針注射なしに投与する点で優れており、有毒な可能性のある浸透エンハンサーの必要性をなくす。
【0220】
本発明での使用に適した組成物には、所定の目的を達成するために必要なだけの量の活性成分を含有する成分が含まれる。有効投与量の決定は、当業者の能力の範囲内で行う。
【0221】
CSAPまたはその断片を含む高分子を直接細胞内に送達するべく、特殊な形態に組成物が調製されるのが好ましい。例えば、細胞不透過性高分子を含むリポソーム製剤は、細胞融合及び高分子の細胞内送達を促進し得る。別法では、CSAPまたはその断片をHIV Tat-1タンパク質の陽イオンN末端部に結合することもできる。このようにして生成された融合タンパク質は、マウスモデル系の脳を含む全ての組織の細胞に形質導入することがわかっている(Schwarze, S.R. 他 (1999) Science 285:1569-1572)。
【0222】
任意の化合物に対して、先ず細胞培養アッセイ、例えば新生物性細胞の細胞培養アッセイにおいて、あるいは、動物モデル、例えばマウス、ラット、ウサギ、イヌ、サルまたはブタなどにおいて、治療有効量を推定することができる。動物モデルはまた、好適な濃度範囲及び投与経路を決定するためにも用い得る。このような情報を用いて、次にヒトに対する有益な投与量及び投与経路を決定することができる。
【0223】
医学的に効果的な薬用量は、症状や容態を回復させる、たとえばCSAPまたはその断片、CSAPの抗体、CSAPのアゴニストまたはアンタゴニスト、インヒビターなどの活性処方成分の量に関連する。治療有効度および毒性は、細胞培養または動物実験における標準的な薬学手法によって、例えばED50(集団の50%の治療有効量)またはLD50(集団の50%の致死量)統計を計算するなどして判定できる。毒性効果の治療効果に対する投与量の比は、治療指数であり、LD50/ED50比として表すことができる。高い治療指数を示すような組成物が望ましい。細胞培養アッセイ及び動物実験から得られたデータは、ヒトに用いるための投与量の範囲を調剤するのに用いられる。このような組成物が含まれる投与量は、毒性を殆ど或いは全く含まず、ED50を含むような血中濃度の範囲にあることが好ましい。用いられる投与形態、患者の感受性及び投与の経路によって、投与量はこの範囲内で様々に変わる。
【0224】
正確な投与量は、治療が必要な被験者に関する要素を考慮して、現場の医者が決定することになる。効果的なレベルの活性成分を与え、或いは所望の効果を維持するべく、投与量及び投与を調節する。被験者に関する要素としては、疾患の重症度、患者の通常の健康状態、患者の年齢、体重及び性別、投与の時間及び頻度、薬剤の配合、反応感受性及び治療に対する応答等を考慮する。作用期間が長い組成物は、特定の製剤の半減期及びクリアランス率によって3〜4日毎に1度、1週間に1度、或いは2週間に1度の間隔で投与し得る。
【0225】
通常の投与量は、投与の経路にもよるが約0.1〜100,000μgであり、合計で約1gまでとする。特定の投与量及び送達方法に関するガイダンスは文献に記載されており、現場の医者は通常それを利用することができる。当業者は、タンパク質またはインヒビターに対する処方とは異なる、ヌクレオチドに対する処方を利用することになる。同様に、ポリヌクレオチドまたはポリペプチドの送達は、特定の細胞、状態、位置等に特異的なものとなる。
【0226】
(診断)
別の実施例では、CSAPに特異的に結合する抗体が、CSAPの発現によって特徴付けられる疾患の診断、またはCSAPやCSAPのアゴニストまたはアンタゴニスト、インヒビターで治療を受けている患者をモニターするためのアッセイに用いられる。診断目的に有用な抗体は、上記の治療の箇所で記載した方法と同じ方法で調合される。CSAPの診断アッセイには、抗体及び標識を用いてヒトの体液或いは細胞や組織から採取されたものからCSAPを検出する方法が含まれる。この抗体は修飾されたものもされていないものも可能であり、レポーター分子との共有結合または非共有結合で標識化できる。レポーター分子としては広くさまざまな種類が本分野で知られており、また使用可能であるが、そのうちのいくつかは上記で説明されている。
【0227】
CSAPを測定するためのELISA,RIA,及びFACSを含む種々のプロトコルは、当分野では周知であり、変わった或いは異常なレベルのCSAPの発現を診断する元となるものを提供する。正常或いは標準的なCSAPの発現の値は、複合体の形成に適した条件下で、正常な哺乳動物、例えばヒトなどの被験者から採取した体液または細胞とCSAPに対する抗体とを混合させることによって決定する。標準複合体形成量は、種々の方法、例えば測光法で定量できる。被験者、対照、及び疾患生検組織からの各サンプルのCSAPの発現の量が基準値と比較される。標準値と被験者との偏差が疾患を診断するパラメータとなる。
【0228】
本発明の別の実施例によれば、CSAPをコードするポリヌクレオチドを診断のために用いることもできる。用いられることができるポリヌクレオチドには、オリゴヌクレオチド配列、相補的RNA及びDNA分子、そしてPNAが含まれる。このポリヌクレオチドを用いて、疾患と相関し得るCSAPを発現する生検組織における遺伝子の発現を検出し定量する。この診断アッセイを用いて、CSAPの存在の有無、更に過剰な発現を調べ、治療中のCSAP値の調節を監視する。
【0229】
一実施形態では、CSAPまたは近縁の分子をコードする遺伝子配列を含むポリヌクレオチド配列を検出可能なPCRプローブを用いたハイブリダイゼーションによって、CSAPをコードする核酸配列を同定することが可能である。プローブが高度に特異的な領域(例えば5'調節領域)から作られている、或いは特異性のやや低い領域(例えば保存されたモチーフ)から作られているかにかかわらず、そのプローブの特異性、およびハイブリダイゼーション或いは増幅のストリンジェンシーによって、そのプローブが、CSAP、対立遺伝子、または関連配列をコードする自然界の配列のみを同定するかどうかが決まるであろう。
【0230】
プローブはまた、関連する配列の検出に利用され、CSAPをコードする任意の配列と少なくとも50%の配列同一性を有し得る。目的の本発明のハイブリダイゼーションプローブには、DNAあるいはRNAが可能であり、SEQ ID NO:29-56の配列、或いはCSAP遺伝子のプロモーター、エンハンサー、イントロンを含むゲノム配列に由来し得る。
【0231】
CSAPをコードするDNAに対して特異的なハイブリダイゼーションプローブの作製方法には、CSAP及びCSAP誘導体をコードするポリヌクレオチド配列をmRNAプローブの作製のためのベクターにクローニングする方法がある。mRNAプローブ作製のためのベクターは、当業者に知られており、市販されており、好適なRNAポリメラーゼ及び好適な標識されたヌクレオチドを加えることによって、in vitroでRNAプローブを合成するために用いられ得る。ハイブリダイゼーションプローブは、種々のレポーターの集団によって標識され得る。レポーター集団の例としては、32Pまたは35S等の放射性核種、或いはアビジン/ビオチン結合系を介してプローブに結合されたアルカリホスファターゼ等の酵素標識などが挙げられる。
【0232】
CSAPをコードするポリヌクレオチド配列を用いて、CSAPの発現に関連する疾患を診断することが可能である。限定するものではないが、このような疾患には、たとえば細胞増殖異常としては日光性角化症、動脈硬化、アテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌等の癌があり、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌が含まれる; ウイルス感染症としては、アデノウイルス(急性呼吸疾患、肺炎)、アレナウイルス(リンパ球性脈絡髄膜炎)、ブニャウイルス(ハンタウイルス)、コロナウイルス(肺炎、慢性気管支炎)、ヘパドナウイルス(肝炎)、ヘルペスウイルス(ヘルペス単純ウイルス、水痘・帯状ウイルス、エプスタイン バーウイルス、サイトメガロウイルス)、フラビウイルス(黄熱)、オルソミクソウイルス(インフルエンザ)、乳頭腫ウイルス(癌)、パラミクソウイルス(麻疹、おたふく風邪)、ピコルナウイルス(ライノウイルス、ポリオウイルス、コクサッキーウイルス)、ポリオーマウイルス(BKウイルス、JCウイルス)、ポックスウイルス(痘瘡)、レオウイルス(コロラドダニ熱)、レトロウイルス(ヒト免疫不全ウイルス、ヒトT細胞ウイルス)、ラブドウイルス(狂犬病)、ロタウイルス(胃腸炎)、およびトガウイルス(脳炎、風疹)によって起こされる感染症が含まれ; 神経の疾患としては、癲癇、虚血性脳血管障害、脳卒中、大脳新生物、アルツハイマー病、ピック病、ハンチントン病、痴呆、パーキソン病及びその他の錐体外路障害、筋萎縮性側策硬化及びその他の運動ニューロン障害、進行性神経性筋萎縮症、色素性網膜炎、遺伝性運動失調、多発性硬化症及び他の脱髄疾患、細菌性及びウイルス性髄膜炎、脳膿瘍、硬膜下蓄膿症、硬膜外膿瘍、化膿性頭蓋内血栓性静脈炎、脊髄炎及び神経根炎、ウイルス性中枢神経系疾患、プリオン病(クールー、クロイツフェルト‐ヤコブ病、及びGerstmann-Straussler-Scheinker症候群を含む)、致死性家族性不眠症、神経系性栄養病及び代謝病、神経線維腫症、、結節硬化症、小脳網膜血管芽腫(cerebelloretinal hemangioblastomatosis)、脳3叉神経血管症候群、精神薄弱およびその他の中枢神経系性発達障害、脳性麻痺、神経骨格異常症、自律神経系障害、脳神経障害、脊髄障害、筋ジストロフィー及びその他の神経筋障害、末梢神経疾患、皮膚筋炎及び多発性筋炎、遺伝性、代謝性、内分泌性、及び中毒性の筋疾患、重症筋無力症、周期性四肢麻痺、精神病(気分性、不安性の障害、分裂病性疾患)、季節性障害(SAD)、静座不能、健忘症、緊張病、糖尿病性ニューロパシー、錐体外路性終末欠陥症候群、ジストニー、分裂病性精神障害、帯状疱疹後神経痛、およびトゥーレット病が含まれる。変異CSAPの発現を検出するために、患者から採取した体液或いは組織を利用して、CSAPをコードするポリヌクレオチド配列を、サザン法やノーザン法、ドットブロット法、或いはその他の膜系の技術、PCR法と、ディップスティック(dipstick)、ピン(pin)、およびマルチフォーマトのELISA様アッセイ、及びマイクロアレイに使用することが可能である。このような定性方法または定量方法は、当分野で公知である。
【0233】
ある実施態様では、CSAPをコードするヌクレオチド配列は、関連する疾患、特に上記した疾患を検出するアッセイにおいて有用であろう。CSAPをコードするヌクレオチド配列は、標準的な方法で標識化され、ハイブリダイゼーション複合体の形成に好適な条件下で、患者から採取した体液或いは組織のサンプルに加えることができるであろう。好適なインキュベーション期間が経過したらサンプルを洗浄し、シグナルを定量して標準値と比較する。患者のサンプルのシグナルの量が、対照サンプルと較べて著しく変わっている場合は、サンプル内のCSAPをコードするヌクレオチド配列の変異レベルにより、関連する疾患の存在が明らかになる。このようなアッセイは、動物実験、臨床試験における特定の治療効果を推定するため、或いは個々の患者の治療をモニターするために用いることもできる。
【0234】
CSAPの発現に関連する疾患の診断の基準となるものを提供するために、発現の正常すなわち標準的なプロファイルが確立される。これは、ハイブリダイゼーション或いは増幅に好適な条件下で、動物或いはヒトの何れかの正常な被験者から抽出された体液或いは細胞と、CSAPをコードする配列或いはその断片とを結合させることにより達成され得る。実質的に精製されたポリヌクレオチドを既知量用いて行った実験から得た値を正常な被験者から得た値と比較することにより、標準ハイブリダイゼーションを定量することができる。このようにして得た標準値は、疾患の徴候を示す患者から得たサンプルから得た値と比較することができる。標準値からの偏差を用いて疾患の存在を確定する。
【0235】
疾患の存在が確定されて治療プロトコルが開始されると、患者の発現レベルが正常な被検者に観察されるレベルに近づき始めたかどうかを測定するため、ハイブリダイゼーションアッセイを通常ベースで繰り返し得る。連続アッセイから得られた結果を用いて、数日から数ヶ月の期間にわたる治療の効果を示し得る。
【0236】
癌に関しては、個体からの生体組織における異常な量の転写物(過少発現または過剰発現)の存在は、疾患の発生素質を示したり、実際に臨床的症状が現れる前に疾患を検出する方法を提供したりし得る。この種のより明確な診断により、医療の専門家が予防方法または積極的な治療法を早くから利用し、それによって癌の発生または更なる進行を防止することが可能となる。
【0237】
CSAPをコードする配列から設計されたオリゴヌクレオチドのさらなる診断への利用には、PCRの利用が含まれ得る。これらのオリゴマーは、化学的に合成するか、酵素により生産するか、或いはin vitroで産出し得る。オリゴマーは、好ましくはCSAPをコードするポリヌクレオチドの断片、或いはCSAPをコードするポリヌクレオチドと相補的なポリヌクレオチドの断片を含み、最適な条件下で、特定の遺伝子や条件を識別するために利用される。また、オリゴマーは、やや緩いストリンジェント条件下で、近縁のDNA或いはRNA配列の検出、定量、或いはその両方のため用いることが可能である。
【0238】
或る実施態様において、CSAPをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いて、一塩基多型性(SNP)を検出し得る。SNPは、多くの場合にヒトの先天性または後天性遺伝病の原因となるような置換、挿入および欠失である。限定するものではないがSNPの検出方法には、SSCP(single-stranded conformation polymorphism)及び蛍光SSCP(fSSCP)がある。SSCPでは、CSAPをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応(PCR)でDNAを増幅する。DNAは例えば、病変組織または正常組織、生検サンプル、体液その他に由来し得る。DNA内のSNPは、一本鎖形状のPCR生成物の2次及び3次構造に差異を生じさせる。差異は非変性ゲル中でのゲル電気泳動法を用いて検出可能である。fSCCPでは、オリゴヌクレオチドプライマーを蛍光性に標識する。それによってDNAシークエンシング機などの高処理機器でアンプリマー(amplimer)の検出が可能になる。更に、インシリコSNP(in silico SNP, isSNP)と呼ばれる配列データベース分析法は、一般的なコンセンサス配列に配列されるような個々のオーバーラップするDNA断片の配列を比較することにより、多型性を同定し得る。これらのコンピュータベースの方法は、DNAの実験室での調整及び統計モデル及びDNA配列クロマトグラムの自動分析を用いたシークエンシングのエラーに起因する配列の変異をフィルタリングして除去する。別の態様では、例えば高処理MASSARRAYシステム(Sequenom, Inc., San Diego CA)を用いた質量分析によりSNPを検出し、特徴付ける。
【0239】
SNPはヒトの病気の遺伝的基礎を研究するために使える可能性がある。たとえば、少なくとも16個の一般的なSNPがインスリン非依存性の糖尿病と関連付けられている。SNPはまた、嚢胞性線維症、鎌形血球貧血、慢性肉芽腫性疾病等の単一遺伝子病の現れ方の違いを研究するために有用である。たとえば、マンノース結合レクチン(MBL2)の変異体は嚢胞性線維症の肺での有害な現れ方との相関が示されている。SNPはまた、薬理ゲノミックス(命のかかわる毒性など、患者の薬への反応に影響する遺伝的変異体の同定)にも役立つ。たとえば、Nアセチルトランスフェラーゼのある変異体は抗結核薬剤イソニアジドに対する高頻度の末梢神経障害と関連付けられているし、ALOX5のコアプロモーターのある変異体は5リポオキシゲナーゼ経路を標的とする抗喘息薬剤による治療への臨床的反応を弱くする。異なる集団におけるSNPの分布の解析は、遺伝子浮動、突然変異、組換えおよび選択の研究に有用であると共に、集団の起源と移動の調査にも役立つ。(Taylor, J.G. 他 (2001) Trends Mol. Med. 7:507-512; Kwok, P.-Y. and Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. 他 (2001) Curr. Opin. Neurobiol. 11:637-641.)
CSAPの発現を定量するために用い得る別の方法の例としては、ヌクレオチド群の放射標識またはビオチン標識、対照核酸の共増幅(coamplification)、および、標準曲線から得た結果の補間もある。(例えば、 Melby, P.C. 他 (1993) J. Immunol. Methods 159:235-244; Duplaa, C. 他 (1993) Anal. Biochem. 212:229-236を参照。)目的のオリゴマーが種々の希釈液中に存在し、分光光度法または比色反応によって定量が迅速になるような高処理フォーマットのアッセイを行うことによって、複数のサンプルの定量速度を加速することができる。
【0240】
更に別の実施例では、本明細書で記載した任意のポリヌクレオチド配列由来のオリゴヌクレオチドまたはより長い断片を、マイクロアレイにおけるエレメントとして用いることができる。多数の遺伝子の関連発現レベルを同時にモニターする転写イメージング技術にマイクロアレイを用いることが可能である。これについては、以下に記載する。マイクロアレイはまた、遺伝変異体、突然変異及び多型性の同定に用いることができる。この情報を用いることで、遺伝子機能を決定し、疾患の遺伝的根拠を理解し、疾患を診断し、遺伝子発現の機能としての疾病の進行/後退をモニターし、疾病治療における薬剤の活性を開発及びモニターすることができる。特に、患者にとって最もふさわしく、有効的な治療法を選択するために、この情報を用いて患者の薬理ゲノムプロフィールを開発することができる。例えば、患者の薬理ゲノムプロフィールに基づき、患者に対して高度に効果的で副作用を殆ど示さない治療薬を選択することができる。
【0241】
別の実施例では、CSAP、CSAPの断片、CSAPに特異的な抗体をマイクロアレイ上のエレメントとして用いることができる。マイクロアレイを用いて、上記のようなタンパク質−タンパク質相互作用、薬剤−標的相互作用及び遺伝子発現プロフィールをモニターまたは測定することが可能である。
【0242】
或る実施例は、或る組織または細胞タイプの転写イメージを生成するような本発明のポリヌクレオチドの使用に関連する。転写イメージは、特定の組織または細胞タイプにより遺伝子発現の包括的パターンを表す。包括的遺伝子発現パターンは、所定の条件下で所定の時間に発現した遺伝子の数及び相対存在量を定量することにより分析される(Seilhamer 他、米国特許第5,840,484号の「Comparative Gene Transcript Analysis」を参照。これらを引用することを以って本明細書の一部とする)。従って、特定の組織または細胞タイプの転写または逆転写全体に本発明のポリヌクレオチドまたはその補体をハイブリダイズすることにより、転写イメージを生成し得る。或る実施例では、本発明のポリヌクレオチドまたはその補体がマイクロアレイ上のエレメントのサブセットを複数含むような高処理フォーマットでハイブリダイゼーションを発生させる。結果として得られる転写イメージは、遺伝子活性のプロファイルを提供し得る。
【0243】
転写イメージは、組織、株化細胞、生検またはその生物学的サンプルから単離した転写物を用いて生成し得る。転写イメージは従って、組織または生検サンプルの場合にはin vivo、または株化細胞の場合にはin vitroでの遺伝子発現を反映する。
【0244】
本発明のポリヌクレオチドの発現のプロフィールを作製する転写イメージはまた、工業的または天然の環境化合物の毒性試験のみならず、in vitroモデル系及び薬剤の前臨床評価と併せて使用し得る。全ての化合物は、作用及び毒性のメカニズムを暗示する、しばしば分子フィンガープリントまたは毒性シグネチャ(toxicant signatures)と称されるような特徴的な遺伝子発現パターンを惹起する(Nuwaysir, E.F. 他 (1999) Mol. Carcinog. 24:15 3-159、Steiner, S. 及び N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471、該文献は特に引用することを以って本明細書の一部となす)。試験化合物が、既知の毒性を有する化合物のシグネチャと同一のシグネチャを有する場合には、毒性特性を共有している可能性がある。フィンガープリントまたはシグネチャは、多数の遺伝子及び遺伝子ファミリーからの発現情報を含んでいる場合には、最も有用且つ正確である。理想的には、発現のゲノム全域にわたる測定が最高品質のシグネチャを提供する。たとえ、発現が任意の試験された化合物によって変化しない遺伝子があったとしても、それらの発現レベルを残りの発現データを標準化するために使用できるため、それらの遺伝子は重要である。標準化手順は、異なる化合物で処理した後の発現データの比較に有用である。毒性シグネチャの要素に遺伝子機能を割り当てることが毒性メカニズムの解釈に役立つが、毒性の予測につながるシグネチャの統計的に一致させるのに遺伝子機能の知識は必要とされない(例えば2000年2月29日にNational Institute of Environmental Health Sciencesより発行されたPress Release 00-02を参照されたい。これについてはhttp://www.niehs.nih.gov/oc/news/toxchip.htmで入手可能である)。従って、中毒学的スクリーニングの際に毒性シグネチャを用いて、全ての発現した遺伝子配列を含めることは重要且つ望ましいことである。
【0245】
或る実施例では、核酸を含有する生物学的サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。処理した生物学的サンプル中で発現した核酸は、本発明のポリヌクレオチドに特異的な1つ若しくは複数のプローブでハイブリダイズし、それによって本発明のポリヌクレオチドに対応する転写レベルを定量し得る。処理した生物学的サンプル中の転写レベルを、未処理生物学的サンプル中のレベルと比較する。両サンプルの転写レベルの差は、処理されたサンプル中で試験化合物が引き起こす毒性反応を示す。
【0246】
別の実施例は、本発明のポリペプチド配列を用いて組織または細胞タイプのプロテオームを分析することに関連する。プロテオームの語は、特定の組織または細胞タイプでのタンパク質発現の包括的パターンを指す。プロテオームの各タンパク質成分は、個々に更に分析の対象とすることができる。プロテオーム発現パターン即ちプロフィールは、所与の条件下で所与の時間に発現したタンパク質の数及び相対存在量を定量することにより分析し得る。従って細胞のプロテオームのプロフィールは、特定の組織または細胞タイプのポリペプチドを分離及び分析することにより作成し得る。或る実施例では、1次元等電点電気泳動によりサンプルからタンパク質を分離し、2次元ドデシル硫酸ナトリウムスラブゲル電気泳動により分子量に応じて分離するような2次元ゲル電気泳動により分離が達成される(前出のSteiner および Anderson)。タンパク質は、通常クーマシーブルーまたは銀染色液または蛍光染色液などの物質を用いてゲルで染色することにより、分散した、独自の位置にある点としてゲル中で可視化される。各タンパク質スポットの光学密度は、通常サンプル中のタンパク質レベルに比例する。異なるサンプル、例えば試験化合物または治療薬で処理または未処理のいずれかの生物学的サンプルから得られるタンパク質スポットの光学密度を比較し、処理に関連するタンパク質スポット密度の変化を同定する。スポット内のタンパク質は、例えば化学的または酵素的切断とそれに続く質量分析を用いる標準的な方法を用いて部分的にシークエンシングする。スポット内のタンパク質の同一性は、その部分配列を、好適には少なくとも5個の連続するアミノ酸残基を、本発明のポリペプチド配列と比較することにより決定し得る。場合によっては、決定的なタンパク質同定のための更なる配列が得られる。
【0247】
プロテオームのプロファイルは、CSAPに特異的な抗体を用いてCSAP発現レベルを定量することによっても作成可能である。或る実施例では、マイクロアレイ上でエレメントとして抗体を用い、マイクロアレイをサンプルに曝して各アレイエレメントへのタンパク質結合レベルを検出することによりタンパク質発現レベルを定量する(Lueking, A. 他 (1999) Anal. Biochern. 270:103-111、Mendoze, L.G. 他 (1999) Biotechniques 27:778-788)。検出は当分野で既知の様々な方法で行うことができ、例えば、チオールまたはアミノ反応性蛍光化合物を用いてサンプル中のタンパク質を反応させ、各アレイのエレメントにおける蛍光結合の量を検出し得る。
【0248】
プロテオームレベルでの毒性シグネチャも中毒学的スクリーニングに有用であり、転写レベルでの毒性シグネチャと並行に分析するべきである。或る組織の或るタンパク質に対しては、転写とタンパク質の存在量の相関が乏しいこともあるので(Anderson, N.L. 及び J. Seilhamer (1997) Electrophoresis 18:533-537)、転写イメージにはそれ程影響しないがプロテオームのプロフィールを変化させるような化合物の分析においてプロテオーム毒性シグネチャは有用たり得る。更に、体液中の転写物の分析はmRNAの急速な分解のために困難なので、プロテオームのプロフィール作成はこのような場合により信頼し得、情報価値があり得る。
【0249】
別の実施例では、タンパク質を含有する生物学的サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。処理された生物学的サンプル中で発現したタンパク質は、各タンパク質の量を定量し得るように分離する。各タンパク質の量を、未処理生物学的サンプル中の対応するタンパク質の量と比較する。両サンプルのタンパク質量の差は、処理サンプル中の試験化合物に対する反応を示す。個々のタンパク質は、個々のタンパク質のアミノ酸残基をシークエンシングし、これら部分配列を本発明のポリペプチドと比較することにより同定する。
【0250】
別の実施例では、タンパク質を含有する生物学的サンプルを試験化合物で処理することにより試験化合物の毒性を算定する。生物学的サンプルから得たタンパク質は、本発明のポリペプチドに特異的な抗体を用いてインキュベートする。抗体により認識されたタンパク質の量を定量する。処理された生物学的サンプル中のタンパク質の量を、未処理生物学的サンプル中のタンパク質の量と比較する。両サンプルのタンパク質量の差は、処理サンプル中の試験化合物に対する反応を示す。
【0251】
マイクロアレイは、本技術分野で既知の方法を用いて調製し、使用し、そして分析しうる(Brennan, T.M. 他 (1995) の米国特許第5,474,796号、Schena, M. 他 (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619、Baldeschweiler 他の (1995) PCT出願第WO95/251116号、Shalon, D.他の (1995) PCT出願第WO95/35505号、Heller, R.A. 他 (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155、Heller, M.J. 他の (1997) 米国特許第5,605,662号等を参照)。様々なタイプのマイクロアレイが公知であり、詳細については、DNA Microarrays: A Practical Approach, M. Schena, 編集. (1999) Oxford University Press, Londonに記載されている。 該文献は、特に引用することを以って本明細書の一部となす。
【0252】
本発明の別の実施例ではまた、CSAPをコードする核酸配列を用いて、天然のゲノム配列をマッピングするのに有用なハイブリダイゼーションプローブを作製することが可能である。コード配列または非コード配列のいずれかを用いることができ、或る例では、コード配列より非コード配列の方が好ましい。例えば、多重遺伝子ファミリーのメンバー内でのコード配列の保存により、染色体マッピング中に望ましくないクロスハイブリダイゼーションが生じる可能性がある。核酸配列は、特定の染色体、染色体の特定領域または人工形成の染色体、例えば、ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC)、細菌P1産物、或いは単一染色体cDNAライブラリに対してマッピングされる。(例えばHarrington, J.J. 他(1997)Nat. Genet. 15:345-355; Price, C.M.(1993)Blood Rev. 7:127-134; Trask, B.J.(1991)Trends Genet. 7:149-154を参照)。一度マッピングすると、本発明の核酸配列を用いて例えば病状の遺伝を特定の染色体領域の遺伝または制限酵素断片長多型(RFLP)と相関させるような遺伝子連鎖地図を発生させ得る。(例えば、 Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357を参照。)
蛍光in situハイブリッド形成法(FISH)は、他の物理的及び遺伝地図データと相関し得る(前出のHeinz-Ulrich, ら (1995) in Meyers, 965-968ページ.等を参照。)遺伝地図データの例は、種々の科学雑誌あるいはOnline Mendelian Inheritance in Man(OMIM)のウェブサイトに見ることができる。物理的な染色体地図上のCSAPをコードする遺伝子の位置と、特定の疾患との相関性、あるいは特定の疾患に対する素因との相関性は、この疾患と関連するDNAの領域の決定に役立ち得るため、位置を決定するクローニングの作業を促進し得る。
【0253】
確定した染色体マーカーを用いた連鎖分析等の物理的マッピング技術及び染色体標本原位置ハイブリッド形成法を用いて、遺伝地図を拡張することができる。例えばマウスなど別の哺乳動物の染色体上に遺伝子を配置することにより、正確な染色体上の遺伝子座が未知でも、関連するマーカー類をしばしば明らかにし得る。この情報は、位置クローニングその他の遺伝子発見技術を用いて遺伝的疾患を探す研究者にとって価値がある。疾患または症候群に関与する遺伝子が、血管拡張性失調症の11q22-23領域等、特定の遺伝子領域への遺伝的結合によって大まかに位置決めがなされると、該領域にマップされた任意の配列は、更なる調査のための関連遺伝子或いは調節遺伝子を提示している可能性がある。(Gatti, R.A.他 (1988) Nature 336:577-580等を参照。)転座、反転などに起因する、健常者、保有者、罹病者の三者間における染色体位置の相違を検出する場合にも、本発明のヌクレオチド配列を用い得る。
【0254】
本発明の別の実施例では、CSAP、その触媒作用断片或いは免疫原断片またはそのオリゴペプチドを、種々の任意の薬剤スクリーニング技術における化合物のライブラリのスクリーニングに用いることができる。薬剤スクリーニングに用いる断片は、溶液中に遊離しているか、固体支持物に固定されるか、細胞表面上に保持されるか、細胞内に位置することになろう。CSAPと検査する薬剤との結合による複合体の形成を測定してもよい。
【0255】
別の薬剤スクリーニング方法は、目的のタンパク質に対して好適な結合親和性を有する化合物を高い処理能力でスクリーニングするために用いられる(Geysen, 他 (1984) PCT application WO84/03564等を参照。)この方法においては、多数の異なる小さな試験用化合物を固体基板上で合成する。試験用化合物は、CSAP、或いはその断片と反応してから洗浄される。次に、本技術分野でよく知られている方法で、結合したCSAPを検出する。精製したCSAPはまた、上記した薬剤のスクリーニング技術において用いるプレート上で直接コーティングすることもできる。別法では、非中和抗体を用いてペプチドを捕捉し、ペプチドを固体支持物に固定することもできる。
【0256】
別の実施例では、CSAPと特異結合可能な中和抗体がCSAPとの結合について試験用化合物と競合する、競合的薬剤スクリーニングアッセイを用いることができる。このようにして、CSAPと1つ以上の抗原決定因子を共有するどのペプチドの存在をも、抗体を使って検出できる。
【0257】
別の実施例では、将来に開発される分子生物学技術で、現在知られているヌクレオチド配列の特性(限定はされないが、トリプレット遺伝コード、特異的な塩基対相互作用等を含む)に依存しているならば、CSAPをコードするヌクレオチド配列にその新技術を用い得る。
【0258】
更に詳細説明をしなくとも、当業者であれば以上の説明を以って本発明を最大限に利用できるであろう。従って、これ以下に記載する実施例は単なる例示目的にすぎず、いかようにも本発明を限定するものではない。
【0259】
前述した及び以下に記載する全ての特許出願、特許、刊行物は、米国特許出願第60/280,508号、同第60/281,323号、同第60/283,769号、同第60/288,609号、同第60/290,518号、同第60/291,870号、および同第60/294,451号を含め、言及することをもって特に本明細書の一部とする。
【実施例】
【0260】
cDNA ライブラリの作製
Incyte cDNA群の由来は、LIFESEQ GOLDデータベース (Incyte Genomics, Palo Alto CA)に記載されたcDNAライブラリ群である。幾つかの組織はホモジナイズしてグアニジニウムイソチオシアネート溶液に溶解し、他の組織はホモジナイズしてフェノールにまたは変性剤群の好適な混合液に溶解した。混合液の1例であるTRIZOL(Life Technologies)は、フェノールとグアニジンイソチオシアネートとの単相溶液である。結果として得られた溶解物は、塩化セシウムで遠心分離するかクロロホルムで抽出した。イソプロパノールか、酢酸ナトリウムとエタノールか、いずれか一方、或いは別の方法を用いて、溶解物からRNAを沈殿させた。
【0261】
RNAの純度を高めるため、RNAのフェノールによる抽出及び沈殿を必要な回数繰り返した。場合によっては、DNA分解酵素でRNAを処理した。殆どのライブラリでは、オリゴd(T)連結常磁性粒子(Promega)、OLIGOTEXラテックス粒子(QIAGEN, Chatsworth CA)またはOLIGOTEX mRNA精製キット(QIAGEN)を用いて、ポリ(A+) RNAを単離した。別法では、別のRNA単離キット、例えばPOLY(A)PURE mRNA精製キット(Ambion, Austin TX)を用いて組織溶解物からRNAを直接単離した。
【0262】
場合によってはStratagene社へのRNA提供を行い、対応するcDNAライブラリをStratagene社が作製することもあった。そうでない場合は、UNIZAPベクターシステム(Stratagene)またはSUPERSCRIPTプラスミドシステム(Life Technologies)を用いて本技術分野で公知の推奨方法または類似の方法でcDNAを合成し、cDNAライブラリを作製した(前出のAusubel, 1997, 5.1-6.6ユニット等を参照)。逆転写は、オリゴd(T)またはランダムプライマーを用いて開始した。合成オリゴヌクレオチドアダプターを二本鎖cDNAに連結反応させ、好適な制限酵素でcDNAを消化した。殆どのライブラリに対して、cDNAのサイズ(300〜1000bp)選択は、SEPHACRYL S1000、SEPHAROSE CL2BまたはSEPHAROSE CL4Bカラムクロマトグラフィー(Amersham Pharmacia Biotech)、或いは調製用アガロースゲル電気泳動法を用いて行った。 合成オリゴヌクレオチドアダプターを二本鎖cDNAに連結反応させ、好適な制限酵素または酵素でcDNAを消化した。 好適なプラスミドは、例えばPBLUESCRIPTプラスミド(Stratagene)、PSPORT1 プラスミド(Life Technologies)、PCDNA2.1 プラスミド (Invitrogen, Carlsbad CA)、PBK-CMV プラスミド (Stratagene)、PCR2-TOPOTAプラスミド (Invitrogen)、PCMV-ICISプラスミド (Stratagene)、pIGEN (Incyte Genomics, Palo Alto CA)、pRARE (Incyte Genomics)、plNCY(Incyte Genomics)等およびその誘導体である。組換えプラスミドは、Stratagene社のXL1-Blue、XL1-BIueMRFまたはSOLR、或いはLife Technologies社のDH5α、DH10BまたはELECTROMAX DH10Bなど適格な大腸菌細胞に形質転換した。
【0263】
2 cDNA クローンの単離
UNIZAPベクターシステム(Stratagene)を用いたin vivo切除によって、或いは細胞溶解によって、実施例 1のようにして得たプラスミドを宿主細胞から回収した。プラスミドの精製には、下記の少なくとも1つを用いた。すなわちMagicまたはWIZARD Minipreps DNA精製システム(Promega)、AGTC Miniprep精製キット(Edge Biosystems, Gaithersburg MD)、QIAGEN社のQIAWELL 8 Plasmid、QIAWELL 8 Plus PlasmidおよびQIAWELL 8 Ultra Plasmid 精製システム、R.E.A.L. Prep 96プラスミド精製キットのいずれかである。プラスミドは、沈殿させた後、0.1mlの蒸留水に再懸濁して、凍結乾燥して或いは凍結乾燥しないで4℃で保管した。
【0264】
別法では、高処理フォーマットにおいて直接結合PCR法を用いて宿主細胞溶解物からプラスミドDNAを増幅した(Rao, V.B. (1994) Anal. Biochem. 216:1-14)。宿主細胞の溶解及び熱サイクリング過程は、単一反応混合液中で行った。サンプルを処理し、それを384ウェルプレート内で保管し、増幅したプラスミドDNAの濃度をPICOGREEN色素(Molecular Probes, Eugene OR)及びFLUOROSKAN II 蛍光スキャナ(Labsystems Oy, Helsinki, Finland)を用いて蛍光分析的に定量した。
【0265】
3 シークエンシング及び分析
実施例2に記載したようにプラスミドから回収したIncyte cDNAを、以下に示すようにシークエンシングした。cDNAのシークエンス反応は、標準的方法或いは高処理装置、例えばABI CATALYST 800 サーマルサイクラー(Applied Biosystems)またはPTC-200 サーマルサイクラー(MJ Research)をHYDRAマイクロディスペンサー(Robbins Scientific)またはMICROLAB 2200(Hamilton)液体転移システムと併用して処理した。cDNAのシークエンス反応は、Amersham Pharmacia Biotech社が提供する試薬、またはABIシークエンシングキット、例えばABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit(Applied Biosystems)の試薬を用いて準備した。cDNAのシークエンス反応の電気泳動的分離及び標識したポリヌクレオチドの検出には、MEGABACE 1000 DNAシークエンシングシステム(Molecular Dynamics)か、標準ABIプロトコル及び塩基呼び出し(base calling)ソフトウェアを用いるABI PRISM 373または377シークエンシングシステム(Applied Biosystems)か、或いはその他の本技術分野で既知の配列解析システムを用いた。cDNA配列内のリーディングフレームは、標準的方法(前出のAusubel, 1997, 7.7ユニットに概説)を用いて決定した。cDNA配列の幾つかを選択して、実施例8に記載した方法で配列を伸長させた。
【0266】
Incyte cDNA配列に由来するポリヌクレオチド配列は、ベクター、リンカー及びポリ(A)配列を除去し、あいまいな塩基対をマスクすることによって有効性を確認した。 その際、BLAST、動的プログラミング及び隣接ジヌクレオチド頻度分析に基づくアルゴリズム及びプログラムを用いた。次に、IncyteのcDNA配列、またはその翻訳を公共のデータベース(例えばGenBankの霊長類及びげっ歯類、哺乳動物、脊椎動物、真核生物のデータベースと、BLOCKS、PRINTS、DOMO、PRODOM)と、ヒト、ラット、マウス、線虫、出芽酵母(Saccharomyces cerevisiae)、分裂酵母(Schizosaccharomyces pombe)、および鵞口瘡カンジダ(Candida albicans )からの配列を含むPROTEOMEデータベース(Incyte Genomics, Palo Alto CA)、及びPFAM等隠れマルコフモデル(HMM)に基づいたタンパク質ファミリーデータベース並びに、SMART(Schultz 他(1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. 他 (2002) Nucleic Acids Res. 30:242-244)のようなHMMに基づいたタンパク質ドメインデータベースから選択したデータベースに対して問い合わせた(HMMは、遺伝子ファミリーのコンセンサス1次構造を分析する確率的アプローチである。Eddy, S.R. (1996) Cuff. Opin. Struct. Biol. 6:361-365等を参照)。問合せは、BLAST、FASTA、BLIMPS及びHMMERに基づくプログラムを用いて行った。Incyte cDNA配列は、完全長のポリヌクレオチド配列を産出するように構築された。或いは、GenBank cDNA、GenBank EST、ステッチされた配列、ストレッチされた配列またはGenscan予測コード配列(実施例4及び5を参照)を用いてIncyte cDNAの集団を完全長まで伸長させた。Phred、Phrap及びConsedに基づくプログラムを用いて構築し、GenMark、BLAST及びFASTAに基づくプログラムを用いてcDNAの集団をオープンリーディングフレームに対してスクリーニングした。対応する完全長ポリペプチド配列を誘導するべく完全長ポリヌクレオチド配列を翻訳した。或いは、本発明のポリペプチドは完全長翻訳ポリペプチドの任意のメチオニン残基で開始し得る。引き続いて、GenBankタンパク質データベース(genpept)、SwissProt、PROTEOMEデータベース、BLOCKS、PRINTS、DOMO、PRODOM及びProsite等のデータベース、PFAM、INCYおよびTIGRFAM等の隠れマルコフモデル(HMM)に基づいたタンパク質ファミリーデータベース、およびSMARTのようなHMMに基づいたタンパク質ドメインデータベースに対する問合せによって完全長ポリペプチド配列を分析した。完全長ポリヌクレオチド配列はまた、MACDNASIS PROソフトウェア(日立ソフトウェアエンジニアリング, South San Francisco CA)及びLASERGENEソフトウェア(DNASTAR)を用いて分析した。ポリヌクレオチド及びポリペプチド配列アラインメントは、アラインメントした配列と配列の一致率も計算するMEGALIGNマルチシークエンスアラインメントプログラム(DNASTAR)に組み込まれているようなCLUSTALアルゴリズムによって特定されるデフォルトパラメータを用いて作製する。
【0267】
Incyte cDNA及び完全長配列の分析及びアセンブリに利用したツール、プログラム及びアルゴリズムの概略と、適用可能な説明、参照文献、閾値パラメータを表7に示す。用いたツール、プログラム及びアルゴリズムを表7の列1に、それらの簡単な説明を列2に示す。列3は好適な引用文献であり、全ての文献はそっくりそのまま引用を以って本明細書の一部となす。適用可能な場合には、列4は2つの配列が一致する強さを評価するために用いたスコア、確率値その他のパラメータを示す(スコアが高いほど、または確率値が低いほど、2配列間の相同性が高くなる)。
【0268】
完全長ポリヌクレオチド配列群とポリペプチド配列群との構築と分析とに用いた上記プログラム群は、SEQ ID NO:29-56のポリヌクレオチド配列断片群の同定にも利用した。ハイブリダイゼーション技術と増幅技術とに有用な約20〜約4000ヌクレオチドの断片群を、表4の列2に示した。
【0269】
4 ゲノム DNA からのコード配列の同定及び編集
推定上の細胞骨格結合タンパク質は、公共のゲノム配列データベース(例えば、gbpriやgbhtg)においてGenscan遺伝子同定プログラムを実行して初めに同定された。Genscanは、様々な生物からのゲノムDNA配列を分析する汎用遺伝子同定プログラムである(Burge, C. 及び S. Karlin (1997) J. Mol. Biol. 268:78-94、Burge, C. 及び S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354を参照)。プログラムは予測エキソンを連結し、メチオニンから終止コドンに及ぶ構築されたcDNA配列を形成する。Genscanの出力は、ポリヌクレオチド及びポリペプチド配列のFASTAデータベースである。Genscanが一度に分析する配列の最大範囲は、30kbに設定した。これらのGenscan推定cDNA配列の内、どの配列が細胞骨格結合タンパク質をコードするかを決定するために、コードされたポリペプチドをPFAMモデルにおいて細胞骨格結合タンパク質について問合せて分析した。潜在的な細胞骨格結合タンパク質はまた、細胞骨格結合タンパク質として注釈が付けられていたIncyte cDNA配列への相同性を基に同定された。こうして選択されたGenscan予測配列は、次にBLAST分析により公共データベースgenpept及びgbpriと比較した。必要であれば、genpeptからのトップのBLASTヒットと比較することによりGenscan予測配列を編集し、余分なまたは取り除かれたエキソンなどのGenscanにより予測された配列のエラーを修正する。BLAST分析はまた、任意のIncyte cDNAまたはGenscan予測配列の公共cDNA適用範囲の発見に用いられるので、転写の証拠を提供する。Incyte cDNA適用範囲が利用できる場合には、この情報を用いてGenscan予測配列を修正または確認した。完全長ポリヌクレオチド配列は、実施例3に記載された構築プロセスを用いて、Incyte cDNA配列及び/または公共のcDNA配列でGenscan予測コード配列を構築することにより得た。或いは、完全長ポリヌクレオチド配列は編集または未編集のGenscan予測コード配列に完全に由来する。
【0270】
5 c DNA 配列データを使ったゲノム配列データの構築
ステッチ配列( Stitched Sequence
部分cDNA配列は、実施例4に記載のGenscan遺伝子同定プログラムにより予測されたエキソンを用いて伸長させた。実施例3に記載されたように構築された部分cDNAは、ゲノムDNAにマッピングし、関連するcDNA及び1つ若しくは複数のゲノム配列から予測されたGenscanエキソンを含むクラスタに分解した。cDNA及びゲノム情報を統合するべくグラフ理論及び動的プログラミングに基づくアルゴリズムを用いて各クラスタを分析し、引き続いて確認、編集または伸長して完全長配列を産出するような潜在的スプライシング変異体を生み出した。区間全体の長さがクラスタ中の2以上の配列に存在するような配列を同定し、そのように同定された間隔は推移により等しいと考えられた。例えば、1つのcDNA及び2つのゲノム配列に間隔が存在する場合、3つの間隔は全て等しいと考えられる。このプロセスは、無関係であるが連続したゲノム配列をcDNA配列により結び合わせて架橋し得る。このようにして同定された区間を、親配列(parent sequence)に沿って現われるようにステッチアルゴリズムで縫い合わせ、可能な最も長い配列および変異配列を作製する。1種類の親配列に沿って発生した間隔と間隔との連鎖(cDNA−cDNAまたはゲノム配列−ゲノム配列)は、親の種類を変える連鎖(cDNA−ゲノム配列)に優先した。結果として得られるステッチ配列は、BLAST分析により公共データベースgenpept及びgbpriに翻訳されて比較された。Genscanにより予測された不正確なエキソンは、genpeptからのトップのBLASTヒットと比較することにより修正した。必要な場合には、追加cDNA配列を用いるかゲノムDNAの検査により配列を更に伸長させた。
【0271】
ストレッチ配列( Stretched Sequence
部分DNA配列は、BLAST分析に基づくアルゴリズムにより完全長まで伸長された。先ず、BLASTプログラムを用いて、GenBankの霊長類、げっ歯類、哺乳動物、脊椎動物及び真核生物のデータベースなどの公共データベースに対し、実施例3に記載されたように構築された部分cDNAを問い合わせた。次に、最も近いGenBankタンパク質相同体をBLAST分析によりIncyte cDNA配列または実施例4に記載のGenScanエキソン予測配列のいずれかと比較した。結果として得られる高スコアリングセグメント対(HSP)を用いてキメラタンパク質を産出し、翻訳した配列をGenBankタンパク質相同体上にマッピングした。元のGenBankタンパク質相同体に関連して、キメラタンパク質内で挿入または削除が起こり得る。GenBankタンパク質相同体、キメラタンパク質またはその両方をプローブとして用い、公共のヒトゲノムデータベースから相同ゲノム配列を検索した。このようにして、部分的なDNA配列を相同ゲノム配列の付加によりストレッチすなわち伸長した。結果として得られるストレッチ配列を検査し、完全遺伝子を含んでいるか否かを決定した。
【0272】
CSAP をコードするポリヌクレオチドの染色体マッピング
SEQ ID NO:29-56を構築するために用いた配列を、BLAST及びSmith-Watermanアルゴリズムを用いて、Incyte LIFESEQデータベース及び公共のドメインデータベースの配列と比較した。SEQ ID NO:29-56 と一致するこれらのデータベースの配列を、Phrapなどの構築アルゴリズム(表7)を使用して、連続及びオーバーラップした配列のクラスターに組み入れた。スタンフォード・ヒトゲノムセンター(SHGC)、ホワイトヘッド・ゲノム研究所(WIGR)、Genethon等の公的な情報源から入手可能な放射線ハイブリッド及び遺伝地図データを用いて、クラスタ化された配列が前もってマッピングされたかを決定した。マッピングされた配列がクラスタに含まれている場合は、個々の配列番号を含めてそのクラスタの全配列が地図上の位置に割り当てられた。
【0273】
地図上の位置は、ヒト染色体の範囲または間隔として表される。センチモルガン間隔の地図上の位置は、染色体のpアームの末端に関連して測定する。(センチモルガン(cM)は、染色体マーカー間の組換え頻度に基づく計測単位である。平均して、1cMは、ヒト中のDNAの1メガベース(Mb)にほぼ等しい。尤も、この値は、組換えのホットスポット及びコールドスポットに起因して広範囲に変化する。)cM距離は、配列が各クラスタ内に含まれるような放射線ハイブリッドマーカーに対して境界を提供するようなGenethonによってマッピングされた遺伝マーカーに基づく。NCBI「GeneMap'99」(http://www.ncbi.nlm.nih.gov/genemap/)などの公的に入手可能なヒト遺伝子マップおよびその他の情報源を用いて、既に同定されている疾患遺伝子群が、上記した区間内若しくは近傍に位置するかを決定できる。
【0274】
7 ポリヌクレオチド発現の分析
ノーザン分析は、転写された遺伝情報の存在を検出するために用いられる実験技術であり、特定の細胞種または組織からのRNAが結合されている膜への標識されたヌクレオチド配列のハイブリダイゼーションに関与している。(前出のSambrook, 7章、同Ausubel. F.M. 他, 4章及び16章等を参照)。
【0275】
BLASTを適用した類似のコンピュータ技術を用いて、GenBankやLifeSeq(Incyte Genomics)等のcDNAデータベースにおいて同一または関連分子を検索した。ノーザン分析は、多数の膜系ハイブリダイゼーションよりも非常に速い。更に、特定の同一を厳密な或いは相同的なものとして分類するか否かを決定するため、コンピュータ検索の感度を変更することができる。検索の基準は積スコアであり、次式で定義される。
【0276】
【数1】
Figure 2004533227
積スコアは、2つの配列間の類似度及び配列が一致する長さの両方を考慮している。積スコアは、0〜100の規準化された値であり、次のようにして求める。BLASTスコアにヌクレオチドの配列一致率を乗じ、その積を2つの配列の短い方の長さの5倍で除する。高スコアリングセグメント対(HSP)に一致する各塩基に+5のスコアを割り当て、各不適性塩基対に−4を割り当てることにより、BLASTスコアを計算する。2つの配列は、2以上のHSPを共有し得る(ギャップにより隔離され得る)。2以上のHSPがある場合には、最高BLASTスコアの塩基対を用いて積スコアを計算する。積スコアは、断片的オーバーラップとBLASTアラインメントの質とのバランスを表す。例えば積スコア100は、比較した2つの配列の短い方の長さ全体にわたって100%一致する場合のみ得られる。積スコア70は、一端が100%一致し、70%オーバーラップしているか、他端が88%一致し、100%オーバーラップしているかのいずれかの場合に得られる。積スコア50は、一端が100%一致し、50%オーバーラップしているか、他端が79%一致し、100%オーバーラップしているかのいずれかの場合に得られる。
【0277】
或いは、CSAPをコードするポリヌクレオチド配列は、由来する組織に対して分析する。例えば或る完全長配列は、Incyte cDNA配列(実施例3を参照)と少なくとも一部はオーバーラップするように構築される。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各ヒト組織は、以下の生物/組織カテゴリー即ち心血管系、結合組織、消化器系、胎芽構造、内分泌系、外分泌腺、女性生殖器、男性生殖器、生殖細胞、血液及び免疫系、肝、筋骨格系、神経系、膵臓、呼吸器系、感覚器、皮膚、顎口腔系、非分類性/混合性または尿路の1つに分類される。各カテゴリーのライブラリ数を数えて、全カテゴリーの総ライブラリ数で除する。同様に、各ヒト組織は、以下の疾患/病状カテゴリー即ち癌、細胞株、発達、炎症、神経性、外傷、心血管、プール、その他の1つに分類される。 各カテゴリーのライブラリ数を数えて、全カテゴリーの総ライブラリ数で除する。得られるパーセンテージは、CSAPをコードするcDNAの組織特異的および疾患特異的な発現を反映する。cDNA配列およびcDNAライブラリ/組織の情報は、LIFESEQ GOLD データベース(Incyte Genomics, Palo Alto CA)から得ることができる。
【0278】
CSAP をコードするポリヌクレオチドの伸長
完全長のポリヌクレオチド配列もまた、完全長分子の適切な断片から設計したオリゴヌクレオチドプライマーを用いて該断片を伸長させて生成した。一方のプライマーは既知の断片の5'伸長を開始するべく合成し、他方のプライマーは既知の断片の3'伸長を開始するべく合成した。開始プライマーは、長さが約22〜30ヌクレオチド、GC含有率が約50%以上となり、約68〜72℃の温度で標的配列にアニーリングするように、OLIGO 4.06ソフトウェア(National Biosciences)或いは別の適切なプログラムを用いて、cDNAから設計した。 ヘアピン構造及びプライマー−プライマー二量体を生ずるようなヌクレオチドの伸長は全て回避した。
【0279】
配列を伸長するために、選択されたヒトcDNAライブラリを用いた。2段階以上の伸長が必要または望ましい場合には、付加的プライマー或いはプライマーのネステッドセットを設計した。
【0280】
高忠実度の増幅が、当業者によく知られている方法を利用したPCR法によって得られた。 PCRは、PTC-200 サーマルサイクラー(MJ Research, Inc.)を用いて96穴プレート内で行った。反応混合液は、鋳型DNAを有し、また、200 nmolの各プライマーを有する。また、Mg +と(NH42SO4と2−メルカプトエタノールとを含有する反応バッファーと、Taq DNAポリメラーゼ(Amersham Pharmacia Biotech)と、ELONGASE酵素(Life Technologies)と、Pfu DNAポリメラーゼ(Stratagene)とを含有する。プライマー対であるPCI AとPCI Bとに対し、以下のパラメータで増幅した。ステップ1: 94℃で3分間 ステップ2: 94℃で15秒 ステップ3: 60℃で1分間 ステップ4: 68℃で2分間 ステップ5: ステップ2、3、4を20回繰り返す ステップ6: 68℃で5分間 ステップ7: 4℃で保存。 プライマー対T7、SK+に対しては、上記パラメータに代えて以下のパラメータを用いた。 ステップ1: 94℃で3分間 ステップ2: 94℃で15秒 ステップ3: 57℃で1分間 ステップ4: 68℃で2分間 ステップ5: ステップ2、3、4を20回繰り返す ステップ6: 68℃で5分間 ステップ7: 4℃で保存。
【0281】
各ウェルのDNA濃度は、1X TE及び0.5μlの希釈していないPCR産物に溶解した100μlのPICOGREEN定量試薬(0.25(v/v) PICOGREEN; Molecular Probes, Eugene OR)を不透明な蛍光光度計プレート(Corning Costar, Acton MA)の各ウェルに分配してDNAが試薬と結合できるようにして測定する。サンプルの蛍光を計測してDNAの濃度を定量すべく、プレートをFluoroskan II (Labsystems Oy, Helsinki, Finland)でスキャンした。反応混合物のアリコート5〜10μlを1%アガロースミニゲル上で電気泳動法によって解析し、どの反応が配列の伸長に成功したかを決定した。
【0282】
伸長したヌクレオチドは、脱塩及び濃縮して384ウェルプレートに移し、CviJIコレラウイルスエンドヌクレアーゼ(Molecular Biology Research, Madison WI)を用いて消化し、pUC 18ベクター(Amersham Pharmacia Biotech)への再連結反応前に音波処理またはせん断した。ショットガン・シークエンシングのために、消化したヌクレオチドを低濃度(0.6〜0.8%)のアガロースゲル上で分離し、断片を切除し、寒天をAgar ACE(Promega)で消化した。伸長させたクローンをT4リガーゼ(New England Biolabs, Beverly MA)を用いてpUC 18ベクター(Amersham Pharmacia Biotech)に再連結し、Pfu DNAポリメラーゼ(Stratagene)で処理して制限部位のオーバーハングを満たし、大腸菌細胞に形質移入した。形質移入した細胞を選択して抗生物質を含む培地に移し、それぞれのコロニーを切りとってLB/2Xカルベニシリン培養液の384ウェルプレートに37℃で一晩培養した。
【0283】
細胞を溶解して、Taq DNAポリメラーゼ(Amersham Pharmacia Biotech)及びPfu DNAポリメラーゼ(Stratagene)を用いて以下の手順でDNAをPCR増幅した。ステップ1: 94℃, 3分、 ステップ 2: 94℃, 15 秒、ステップ 3: 60℃, 1 分、ステップ 4: 72℃, 2 分、 ステップ 5: ステップ2、3および 4を29回反復する。 ステップ6: 72℃, 5 分、ステップ7: 4℃で保存する。上記のようにPICOGREEN試薬(Molecular Probes)でDNAを定量した。DNAの回収率が低いサンプルは、上記と同一の条件を用いて再増幅した。サンプルは20%ジメチルスルホキシド(1:2, v/v)で希釈し、DYENAMIC エネルギートランスファー シークエンシングプライマー、及びDYENAMIC DIRECT kit(Amersham Pharmacia Biotech)またはABI PRISM BIGDYE ターミネーターサイクル シークエンシング反応キット(Terminator cycle sequencing ready reaction kit)(Applied Biosystems)を用いてシークエンシングした。
【0284】
同様に、上記手順を用いて完全長ポリヌクレオチド配列を検証し、或いはそのような伸長のために設計されたオリゴヌクレオチド及び適切なゲノムライブラリを用いて5'調節配列を得る。
【0285】
CSAP をコードするポリヌクレオチドの一塩基多型の同定
一塩基多型(SNP)として知られる一般的なDNA配列変異体がLIFESEQ データベース(Incyte Genomics)を用いてSEQ ID NO:29-56 において同定された。実施例3に記述したように、同じ遺伝子からの配列を一緒にまとめてクラスター化し、構築した。SNPをその他の配列変異体から区別するために、一連のフィルターからなるアルゴリズムが使用された。予備フィルターは最小Phredクオリティスコア15を要求することによって大多数のベースコールエラーを除去し、配列アラインメントエラーとスプライス変異体、キメラおよびベクター配列の不適正なトリミングによるエラーを除去した。高度染色体解析の自動化手順により、オリジナルのクロマトグラムファイルの中の推定上のSNPの近傍を解析した。クローンエラーフィルターは、統計的に生成されたアルゴリズムを使って、実験室の処理中に入ってくる(逆転写酵素、ポリメラーゼまたは体細胞性突然変異などに起因する)エラーを同定した。クラスタリングエラーフィルターは統計的に生成されたアルゴリズムを使って、近い相同体や偽遺伝子のクラスタリングによるエラーおよび非ヒト配列によるコンタミネーションに起因するエラーを同定した。最後のフィルターセットは免疫グロブリンまたはT細胞受容体で見つかる複製とSNPを除去した。
【0286】
4つの異なるヒトの集団における対立遺伝子頻度を解析するために、ある種のSNPを選択して、高スループットMASSARRAYシステム(Sequenom, Inc.) を使った質量分析で特性を測定した。白人集団は92人(男性46人、女性46人)で、83人がユタ州出身、4人がフランス人、3人がベネズエラ、そして2人がアーミッシュだった。アフリカ人は194人(男性97人、女性97人)からなり、その全てがアフリカ系アメリカ人であった。ラテンアメリカ系集団は324人(男性162人、女性162人)からなり、その全てがメキシコのラテンアメリカ系であった。アジア系集団は126人(男性64人、女性62人)からなり、報告された親の内訳は中国人が43%、日本人が31%、韓国人が13%、ベトナム人が5%、その他のアジア系が8%であった。対立遺伝子頻度は最初に白人集団で解析された。この集団内で対立遺伝子変異を示さなかったSNPはその他3つの集団ではテストしない場合もあった。
【0287】
10 個々のハイブリダイゼーションプローブの標識化及び使用
SEQ ID NO:29-56から導き出されたハイブリダイゼーションプローブを用いて、cDNA、mRNA、またはゲノムDNAをスクリーニングする。約20塩基対からなるオリゴヌクレオチドの標識について特に記載するが、より大きなヌクレオチド断片に対しても事実上同一の手順が用いられる。オリゴヌクレオチドは、OLIGO 4.06ソフトウェア(National Biosciences)等の最新ソフトウェアを用いて設計し、各オリゴマー50pmolと、[γ-32P]アデノシン3リン酸 (Amersham Pharmacia Biotech)250μCiと、T4ポリヌクレオチドキナーゼ(DuPont NEN, Boston MA)を混合することにより標識する。標識したオリゴヌクレオチドは、SEPHADEX G-25超細繊分子サイズ排除デキストラン ビードカラム(Amersham Pharmacia Biotech)を用いて十分に精製する。Ase I、Bgl II、Eco RI、Pst I、Xba1またはPvu II(DuPont NEN)のいずれか1つのエンドヌクレアーゼで消化されたヒトゲノムDNAの典型的な膜ベースのハイブリダイゼーション解析において、毎分107カウントの標識されたプローブを含むアリコットを用いる。
【0288】
各消化物から得たDNAは、0.7%アガロースゲル上で分画してナイロン膜(Nytran Plus, Schleicher & Schuell, Durham NH)に移す。ハイブリダイゼーションは、40℃で16時間行う。 非特異的シグナルを除去するため、例えば0.1×クエン酸ナトリウム食塩水及び0.5%ドデシル硫酸ナトリウムに一致する条件下で、ブロットを室温で順次洗浄する。オートラジオグラフィーまたはそれに代わるイメージング手段を用いてハイブリダイゼーションパターンを視覚化し、比較する。
【0289】
11 マイクロアレイ
マイクロアレイの表面上でアレイエレメントの結合または合成は、フォトリソグラフィ、ピエゾ式印刷(インクジェット印刷、前出のBaldeschweiler等を参照)、機械的マイクロスポッティング技術及びこれらから派生したものを用いて達成することが可能である。上記各技術において基板は、均一且つ非多孔性の固体とするべきである(Schena (1999) 前出)。推奨する基板には、シリコン、シリカ、スライドガラス、ガラスチップ及びシリコンウエハがある。或いは、ドットブロット法またはスロットブロット法に類似のアレイを利用して、熱的、紫外線的、化学的または機械的結合手順を用いて基板の表面にエレメントを配置及び結合させてもよい。通常のアレイは、利用可能な、当業者に公知の方法と機械とを用いて作製でき、任意の適正数のエレメントを有し得る(例えばSchena, M. 他. (1995) Science 270:467-470、Shalon, D.他. (1996) Genome Res. 6:639-645、Marshall, A.及びJ. Hodgson (1998) Nat. Biotechnol. 16:27-31等を参照)。
【0290】
完全長cDNA、発現配列タグ(EST)、またはその断片またはオリゴマーは、マイクロアレイのエレメントと成り得る。ハイブリダイゼーションに好適な断片またはオリゴマーを、レーザGENEソフトウェア(DNASTAR)等の本技術分野で公知のソフトウェアを用いて選択することが可能である。アレイエレメントは、生物学的サンプル中でポリヌクレオチドを用いてハイブリダイズされる。生物学的サンプル中のポリヌクレオチドは、検出を容易にするために蛍光標識またはその他の分子タグに抱合される。ハイブリダイゼーション後、生物学的サンプルからハイブリダイズされていないヌクレオチドを除去し、蛍光スキャナを用いて各アレイエレメントにおいてハイブリダイゼーションを検出する。或いは、レーザ脱離及び質量スペクトロメトリを用いてもハイブリダイゼーションを検出し得る。マイクロアレイ上のエレメントにハイブリダイズする各ポリヌクレオチドの相補性の度合及び相対存在度は、算定し得る。 一実施例におけるマイクロアレイの調整及び使用について、以下に詳述する。
【0291】
組織または細胞サンプルの準備
グアニジニウムチオシアネート法を用いて組織サンプルから全RNAを単離し、オリゴ(dT)セルロース法を用いてポリ(A)+RNAを精製する。各ポリ(A)+RNAサンプルを、MMLV逆転写酵素、0.05pg/μlのオリゴ(dT)プライマー(21mer)、1×第一鎖合成バッファー、0.03unit/μlのRNアーゼ阻害因子、500μMのdATP、500μMのdGTP、500μMのdTTP、40μMのdCTP、40μMのdCTP-Cy3(BDS)またはdCTP-Cy5(Amersham Pharmacia Biotech)を用いて逆転写する。逆転写反応は、GEMBRIGHTキット(Incyte)を用いてポリ(A)+RNA 200 ng 含有の25体積ml内で行う。特異的対照ポリ(A)+RNAは、非コード酵母ゲノムDNAからin vitro転写により合成する。各反応サンプル(1つはCy3、もう1つはCy5標識)は、2.5mlの0.5M水酸化ナトリウムで処理し、85℃で20分間インキュベートし、反応を停止させてRNAを分解させる。サンプルは、2つの連続するCHROMA SPIN 30ゲル濾過スピンカラム(CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA)を用いて精製する。 混合後、2つの反応サンプルは、1mlのグリコーゲン(1mg/ml)、60mlの酢酸ナトリウム及び300mlの100%エタノールを用いてエタノール析出させる。サンプルは次に、SpeedVAC(Savant Instruments Inc., Holbrook NY)を用いて乾燥して仕上げ、14μlの5×SSC/0.2%SDS中で再懸濁する。
【0292】
たとえば、非悪性初代乳房上皮細胞と乳癌細胞株を収穫前に70〜80%コンフルエンスまで成長させた。非悪性初代乳房上皮細胞の遺伝子表現プロファイルが腫瘍の進行のさまざまな段階での乳癌細胞株のそれと比較された。
【0293】
マイクロアレイの準備
本発明の配列を用いて、アレイエレメントを作製する。各アレイエレメントは、クローン化cDNAインサートによりベクター含有細菌性細胞から増幅する。PCR増幅は、cDNAインサートの側面に位置するベクター配列に相補的なプライマーを用いる。30サイクルのPCRによって、1〜2ngの初期量から5μgを超える最終量までアレイエレメントを増幅する。増幅されたアレイエレメントは、SEPHACRYL-400(Amersham Pharmacia Biotech)を用いて精製される。
【0294】
精製したアレイエレメントは、ポリマーコートされたスライドグラス上に固定する。顕微鏡スライドグラス(Corning)は、処理中及び処理後に0.1%のSDS及びアセトン中で超音波処理をかけ、蒸留水で非常に良く洗浄する。スライドグラスは、4%フッ化水素酸(VWR Scientific Products Corporation (VWR), West Chester PA)中でエッチングし、蒸留水中で非常に良く洗浄し、95%エタノール中で0.05%アミノプロピルシラン(Sigma)を用いてコーティングする。コーティングしたスライドガラスは、110℃のオブンで硬化させる。
【0295】
米国特許第5,807,522号で説明されている方法を用いて、コーティングしたガラス基板にアレイエレメントを付加する。 該特許は、引用を以って本明細書の一部となす。平均濃度が100ng/μlのアレイエレメントDNA1μlを高速機械装置により開放型キャピラリープリンティングエレメント(open capillary printing element)に充填する。装置はここで、スライド毎に約5nlのアレイエレメントサンプルを加える。
【0296】
マイクロアレイには、STRATALINKER UV架橋剤(Stratagene)を用いてUV架橋する。マイクロアレイは、室温において0.2%SDSで1度洗浄し、蒸留水で3度洗浄する。リン酸緩衝生理食塩水 (PBS)(Tropix, Inc., Bedford MA)中の0.2%カゼイン中において60℃で30分間マイクロアレイをインキュベートした後、前に行ったように0.2%SDS及び蒸留水で洗浄することにより、非特異結合部位をブロックする。
【0297】
ハイブリダイゼーション
ハイブリダイゼーション反応液は、5×SSC、0.2%SDSハイブリダイゼーション緩衝液にCy3及びCy5標識したcDNA合成産物を各0.2μg含む9μlのサンプル混合体を含めたものである。サンプル混合体は、65℃まで5分間加熱し、マイクロアレイ表面上に等分して1.8cm2 のカバーガラスで覆う。アレイを、顕微鏡用スライドよりわずかに大きい空洞を有する防水チェンバーに移す。チェンバーのコーナーに140μlの5×SSCを加えることにより、チェンバー内部を湿度100%に保持する。アレイを含むチェンバーは、60℃で約6.5時間インキュベートする。アレイは、第1洗浄緩衝液中(1×SSC,0.1%SDS)において45℃で10分間洗浄し、第2洗浄緩衝液中(0.1×SSC)において45℃で10分間各々3度洗浄して乾燥させる。
【0298】
検出
レポーター標識したハイブリダイゼーション複合体は、Cy3の励起のためには488nm、Cy5の励起のためには632nmでスペクトル線を発生し得るInnova70混合ガス10Wレーザ(Coherent, Inc., Santa Clara CA)を備えた顕微鏡で検出する。20×顕微鏡対物レンズ(Nikon, Inc., Melville NY)を用いて、アレイ上に励起レーザ光の焦点を当てる。アレイを含むスライドを顕微鏡のコンピュータ制御のX-Yステージに置き、対物レンズを通過してラスタースキャンする。本実施例で用いた1.8cm×1.8cmのアレイは、20μmの解像度でスキャンした。
【0299】
2つの異なるスキャンで、混合ガスマルチラインレーザは2つの蛍光色素を連続的に励起する。発光された光は、波長に基づき分離され、2つのフルオロフォアに対応する2つの光電子増倍管検出器(PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ)に送られる。アレイと光電子増倍管間に設置された好適なフィルターを用いて、シグナルをフィルターする。用いるフルオロフォアの最大発光の波長は、Cy3では565nm、Cy5では650nmである。装置は両方の蛍光色素からのスペクトルを同時に記録し得るが、レーザ源において好適なフィルターを用いて、蛍光色素1つにつき1度スキャンし、各アレイを通常2度スキャンする。
【0300】
スキャンの感度は通常、既知濃度でサンプル混合体に添加されるcDNA対照種により発生されるシグナル強度を用いて較正する。アレイ上の特定の位置には相補的DNA配列が含まれ、その位置におけるシグナルの強度を重量比1:100,000でハイブリダイゼーション種と相関させる。異なる源泉(例えば試験される細胞及び対照細胞など)からの2つのサンプルを、各々異なるフルオロフォアで標識し、他と異なって発現した遺伝子を同定するために単一のアレイにハイブリダイズする場合には、2つのフルオロフォアで較正するcDNAのサンプルを標識し、ハイブリダイゼーション混合液に各々等量を加えることによって較正を行う。
【0301】
光電子増倍管の出力は、IBMコンパチブルPCコンピュータにインストールされた12ビットRTI-835Hアナログディジタル(A/D)変換ボード(Analog Devices, Inc., Norwood MA)を用いてディジタル化される。ディジタル化されたデータは、青色(低シグナル)から赤色(高シグナル)までの擬似カラー範囲へのリニア20色変換を用いてシグナル強度がマッピングされたようなイメージとして表示される。データは、定量的にも分析される。2つの異なる蛍光色素を同時に励起および測定する場合には、各蛍光体の発光スペクトルを用いて、データはまず蛍光色素間の光学的クロストーク(発光スペクトルの重なりに起因する)を補正する。
【0302】
グリッドが蛍光シグナルイメージ上に重ねられ、それによって各スポットからのシグナルはグリッドの各エレメントに集められる。各エレメント内の蛍光シグナルは統合され、シグナルの平均強度に応じた数値が得られる。シグナル分析に用いるソフトウェアは、GEMTOOLS遺伝子発現分析プログラム(Incyte)である。
【0303】
たとえば、SEQ ID NO:31の成分5504134_HGG3とSEQ ID NO:33の成分5504134_HGG3は非悪性乳腺上皮細胞と乳房癌株の間で示差発現を示すことがマイクロアレイ分析によって実証された。成分5504134_HGG3の発現は乳癌細胞株において少なくとも2倍、変更していた。したがって、SEQ ID NO:31 および SEQ ID NO:33は細胞増殖疾患の診断アッセイにおいて有用である。
【0304】
たとえば、SEQ ID NO:50 はヒトの肺腺癌および扁平上皮細胞癌と正常肺組織の間で示差発現を示すことがマイクロアレイ分析によって実証された。マッチングされた正常および腫瘍発生性肺組織サンプルは英国LiverpoolのRoy Castle Lung Cancer Foundationによって提供された。SEQ ID NO:50の発現は、肺腫瘍組織において、同じ供与者の正常肺組織と比べて少なくとも2分の1に減少した。したがって、SEQ ID NO:50は肺の腺癌および扁平上皮細胞癌の診断アッセイに有用である。
【0305】
12 相補的ポリヌクレオチド
CSAPをコードする配列或いはその任意の一部に対して相補的な配列は、天然のCSAPの発現を検出、低下、または阻害するために用いられる。約15〜30塩基対を含むオリゴヌクレオチドの使用について記すが、これより小さな或いは大きな配列の断片の場合でも本質的に同じ方法を用いることができる。Oligo4.06ソフトウェア(National Biosciences)及びCSAPのコーディング配列を用いて、適切なオリゴヌクレオチドを設計する。転写を阻害するためには、最も独特な5' 配列から相補的オリゴヌクレオチドを設計し、これを用いてプロモーターがコーディング配列に結合するのを阻害する。翻訳を阻害するためには、相補的なオリゴヌクレオチドを設計して、リボソームがCSAPをコードする転写物に結合するのを阻害する。
【0306】
13 CSAP の発現
CSAPの発現及び精製は、細菌若しくはウイルスを基にした発現系を用いて行うことができる。細菌でCSAPが発現するために、抗生物質耐性遺伝子及びcDNAの転写レベルを高める誘導性のプロモーターを含む好適なベクターにcDNAをサブクローニングする。このようなプロモーターには、lacオペレーター調節因子に関連するT5またはT7バクテリオファージプロモーター及びtrp-lac(tac)ハイブリッドプロモーターが含まれるが、これらに限定するものではない。組換えベクターを、BL21(DE3)等の好適な細菌宿主に形質転換する。抗生物質耐性をもつ細菌が、イソプロピルβ−Dチオガラクトピラノシド(IPTG)で誘発されるとCSAPを発現する。真核細胞でのCSAPの発現は、昆虫細胞株または哺乳動物細胞株に一般にバキュロウイスルスとして知られているAutographica californica核多角体病ウイルス(AcMNPV)の組換え型を感染させて行う。バキュロウイルスの非必須の多角体遺伝子を、相同組換え或いは転移プラスミドの媒介を伴う細菌の媒介による遺伝子転移のどちらかによって、CSAPをコードするcDNAと置換する。ウイルスの感染力は維持され、強い多角体プロモーターによって高いレベルのcDNAの転写が行われる。組換えバキュロウイルスは、多くの場合はSpodoptera frugiperda(Sf9)昆虫細胞に感染に用いられるが、ヒト肝細胞の感染にも用いられることもある。後者の感染の場合は、バキュロウイルスの更なる遺伝的変更が必要になる(Engelhard. E. K.他 (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227、Sandig, V. 他 (1996) Hum. Gene Ther. 7:1937-1945.等を参照)。
【0307】
殆どの発現系では、CSAPが、例えばグルタチオンSトランスフェラーゼ(GST)、またはFLAGや6-Hisなどのペプチドエピトープ標識で合成された融合タンパク質となるため、未精製の細胞溶解物からの組換え融合タンパク質の親和性ベースの精製が素早く1回で行うことができる。GSTは日本住血吸虫からの26kDaの酵素であり、タンパク質の活性及び抗原性を維持した状態で、固定化グルタチオン上で融合タンパク質の精製を可能とする(Amersham Pharmacia Biotech)。精製の後、GST部分を特定の操作部位でCSAPからタンパク分解的に切断できる。FLAGは8アミノ酸のペプチドであり、市販されているモノクローナル及びポリクローナル抗FLAG抗体(Eastman Kodak)を用いて免疫親和性精製を可能にする。6ヒスチジン残基が連続して伸長した6-Hisは、金属キレート樹脂(QIAGEN)上での精製を可能にする。タンパク質の発現及び精製の方法は、前出のAusubel(1995)10章、16章に記載されている。これらの方法で精製したCSAPを直接用いて以下の実施例17及び18の、適用可能なアッセイを行うことができる。
【0308】
14 機能的アッセイ
CSAP機能は、哺乳動物細胞培養系において生理学的に高められたレベルでのCSAPをコードする配列の発現によって評価する。cDNAを高いレベルで発現する強いプロモーターを含む哺乳動物発現ベクターにcDNAをサブクローニングする。選択されるベクターには、pCMV SPORTプラスミド(Life Technologies)及びpCR 3.1プラスミド(Invitrogen, Carlsbad CA)が含まれ、どちらもサイトメガロウイルスプロモーターを有する。リポソーム製剤或いは電気穿孔法を用いて、5〜10μgの組換えベクターをヒト細胞株、例えば内皮由来または造血由来の細胞株に一過的に形質移入する。更に、標識タンパク質をコードする配列を含む1〜2μgのプラスミドを同時に形質移入する。標識タンパク質の発現により、形質移入された細胞と形質移入されていない細胞を区別する手段が与えられる。また、標識タンパク質の発現によって、cDNAの組換えベクターからの発現を正確に予想できる。標識タンパク質は、例えば緑色蛍光タンパク質(GFP;Clontech)、CD64またはCD64-GFP融合タンパク質から選択できる。自動化された、レーザー光学に基づく技術であるフローサイトメトリー(FCM)を用いて、GFPまたはCD64-GFPを発現する形質移入された細胞を同定し、その細胞のアポトーシス状態や他の細胞特性を評価する。FCMは、細胞死に先行するか或いは同時に発生する現象を診断する蛍光分子の取込を検出して計量する。このような現象として挙げられるのは、プロピジウムヨウ化物によるDNA染色によって計測される核DNA内容物の変化、前方散乱光と90°側方散乱光によって計測される細胞サイズと顆粒状性の変化、ブロモデオキシウリジンの取込量の低下によって計測されるDNA合成の下方調節、特異抗体との反応性によって計測される細胞表面及び細胞内におけるタンパンク質の発現の変化、及び蛍光複合アネキシンVタンパク質の細胞表面への結合によって計測される原形質膜組成の変化とがある。フローサイトメトリー法については、Ormerod, M. G. (1994) Flow Cytometry Oxford, New York, NY.に記述がある。
【0309】
遺伝子発現におけるCSAPの影響は、CSAPをコードする配列とCD64またはCD64-GFPのどちらかが形質移入された高度に精製された細胞集団を用いて評価することができる。CD64またはCD64-GFPは、形質転換された細胞表面で発現し、ヒト免疫グロブリンG(IgG)の保存領域と結合する。形質転換された細胞と形質転換されない細胞とは、ヒトIgGかCD64に対する抗体のどちらかで被覆された磁気ビードを用いて分離することができる(DYNAL. Lake Success. NY)。 mRNAは、当分野で周知の方法で細胞から精製することができる。CSAP及び目的の他の遺伝子をコードするmRNAの発現は、ノーザン分析やマイクロアレイ技術で分析することができる。
【0310】
15 CSAP に特異的な抗体の作製
ポリアクリルアミドゲル電気泳動法(PAGE;例えば、Harrington, M.G. (1990) Methods Enzymol. 182:488-495を参照)または他の精製技術で実質的に精製されたCSAPを用いて、標準的なプロトコルで動物(ウサギ、マウス等)を免疫化して抗体を作り出す。
【0311】
或いは、レーザGENEソフトウェア(DNASTAR)を用いてCSAPアミノ酸配列を解析し、免疫原性の高い領域を決定する。そして対応するオリゴペプチドを合成し、このオリゴペプチドを用いて当業者によく知られている方法で抗体を生成する。例えばC末端付近或いは隣接する親水性領域等の、適切なエピトープの選択については、当分野で公知である(前出のAusubel, 1995, 11章等を参照)。
【0312】
通常は、長さ約15残基のオリゴペプチドを、Fmocケミストリを用いるABI 431A ペプチドシンセサイザ(Applied Biosystems)を用いて合成し、N-マレイミドベンゾイル-N-ヒドロキシスクシンイミドエステル(MBS)を用いた反応によってKLH(Sigma-Aldrich, St. Louis MO)に結合させて、免疫原性を高める(前出のAusubel, 1995 等を参照)。完全フロイントアジュバントにおいてオリゴペプチド-KLH複合体を用いてウサギを免疫化する。得られた抗血清の抗ペプチド活性及び抗CSAP活性を検査するには、ペプチドまたはCSAPを基板に結合し、1%BSAを用いてブロッキング処理し、ウサギ抗血清と反応させて洗浄し、さらに放射性ヨウ素標識されたヤギ抗ウサギIgGと反応させる。
【0313】
16 特異的抗体を用いる天然 CSAP の精製
天然CSAP或いは組換えCSAPを、CSAPに特異的な抗体を用いるイムノアフィニティークロマトグラフィにより実質的に精製する。イムノアフィニティーカラムは、CNBr-活性化SEPHAROSE(Amersham Pharmacia Biotech)のような活性化クロマトグラフィー用レジンと抗CSAP抗体とを共有結合させることにより形成する。結合後に、製造者の使用説明書に従って樹脂をブロックし、洗浄する。
【0314】
CSAPを含む培養液をイムノアフィニティーカラムに通し、CSAPを選択的に吸着できる条件で(例えば、界面活性剤の存在下において高イオン強度のバッファーで)そのカラムを洗浄する。そのカラムを、抗体とCSAPとの結合を切るような条件で(例えば、pH2〜3のバッファー、或いは高濃度の尿素またはチオシアン酸塩イオンのようなカオトロピックイオンで)溶出させ、CSAPを回収する。
【0315】
17 CSAP と相互作用する分子の同定
CSAPまたは生物学的に活性であるCSAP断片を、125Iボルトンハンター試薬で標識する。(例えば Bolton A.E. および W.M. Hunter (1973) Biochem. J. 133:529-539を参照)。マルチウェルプレートに予め配列しておいた候補の分子を、標識したCSAPと共にインキュベートし、洗浄して、標識したCSAP複合体を有する全てのウェルをアッセイする。様々なCSAP濃度で得られたデータを用いて、候補分子と結合したCSAPの数量及び親和性、会合についての値を計算する。
【0316】
別法では、CSAPと相互作用する分子を、Fields, S.及びO. Song(1989, Nature 340:245-246)に記載の酵母2−ハイブリッドシステムやMATCHMAKERシステム(Clontech)などの2−ハイブリッドシステムに基づいた市販のキットを用いて分析する。
【0317】
CSAPはまた、高処理型の酵母2ハイブリッドシステムを使用するPATHCALLINGプロセス(CuraGen Corp., New Haven CT)に用いて、遺伝子の2つの大きなライブラリによってコードされるタンパク質間の全ての相互作用を決定することができる(Nandabalan, K. 他 (2000) 米国特許第6,057,101号)。
【0318】
18 CSAP 活性の実証
CSAPの微小管運動性アッセイによってモータータンパク質活性を測定できる。このアッセイにおいて、組換えCSAPをグラススライドまたは同様の基板に固定する。ATPおよび細胞質抽出物を含む溶液に入れた、タキソールで安定化されたウシ脳の微小管(市販されている)をスライド面に漑流する。CSAPのモーター活性によって駆動される微小管の運動は、ビデオ光学顕微鏡および画像解析技術を用いて視覚化および定量化できる。CSAPの活性は微小管運動の頻度や速度に直接比例する。
【0319】
あるいは、CSAPのアッセイのためにin vitroでタンパク質フィラメントの形成を測定できる。ポリマー集合のための「臨界濃度」以上の濃度のCSAP溶液を、カーボンでコートされたグリッドに置く。溶液中に好適な核形成部位を供給し得る。グリッドは、0.7%(w/v) の水溶性ウラニルアセテートでネガティブ染色し、電子顕微鏡検査により検査する。約25nm(微小管)、約8nm(アクチン)、または約10nm(中間径フィラメント)のフィラメントが現れると、CSAP活性があることが証明される。
【0320】
別法では、CSAPの活性は、CSAPのタンパク質フィラメントへの結合によって測定される。35S-メチオニンで標識されたCSAPサンプルが好適なフィラメントタンパク質(アクチン、チューブリン、または中間径フィラメントタンパク質)とインキュベーションされ、そのフィラメントタンパク質に対する抗体を用いる免疫沈降によって複合体タンパク質が回収される。その免疫沈降物は、その後、SDSポリアクリルアミドゲル電気泳動で走らせ、結合したCSAPの量が測定される。
【0321】
当業者は、本発明の範囲及び精神から逸脱することなく本発明の記載した方法及びシステムの種々の改変を行い得る。本発明について説明するにあたり特定の好適実施例に関連して説明を行ったが、本発明の範囲が、そのような特定の実施例に不当に制限されるべきではないことを理解されたい。実際に、分子生物学または関連分野の専門家には明らかな、本明細書に記載されている本発明の実施方法の様々な改変は、特許請求の範囲内にあるものとする。
【0322】
(表の簡単な説明)
表1は、本発明の完全長ポリヌクレオチド配列及びポリペプチド配列の命名法の概略を示す。
【0323】
表2は、GenBank識別番号及び本発明のポリペプチドに最も近いGenBank相同体の注釈を示す。各ポリペプチドとそのGenBank相同体が一致する確率スコアも併せて示す。
【0324】
表3は、予測されるモチーフ及びドメインを含む本発明のポリヌクレオチド配列の構造的特徴を、ポリペプチドの分析に用いるための方法、アルゴリズム及び検索可能なデータベースと共に示す。
【0325】
表4は、本発明のポリヌクレオチド配列を構築するために用いたcDNAやゲノムDNA断片を、ポリヌクレオチド配列の選択した断片と共に示す。
【0326】
表5は、本発明のポリヌクレオチドの代表的なcDNAライブラリを示す。
【0327】
表6は、表5に示したcDNAライブラリの作製に用いた組織及びベクターを説明する付表である。
【0328】
表7は、本発明のポリヌクレオチドとポリペプチドの分析に用いたツール、プログラム、アルゴリズムを、適用可能な説明、参照文献及び閾値パラメータと共に示す。
【0329】
【表1】
Figure 2004533227
【0330】
【表2−1】
Figure 2004533227
【0331】
【表2−2】
Figure 2004533227
【0332】
【表3−1】
Figure 2004533227
【0333】
【表3−2】
Figure 2004533227
【0334】
【表3−3】
Figure 2004533227
【0335】
【表3−4】
Figure 2004533227
【0336】
【表3−5】
Figure 2004533227
【0337】
【表3−6】
Figure 2004533227
【0338】
【表3−7】
Figure 2004533227
【0339】
【表3−8】
Figure 2004533227
【0340】
【表3−9】
Figure 2004533227
【0341】
【表3−10】
Figure 2004533227
【0342】
【表3−11】
Figure 2004533227
【0343】
【表3−12】
Figure 2004533227
【0344】
【表3−13】
Figure 2004533227
【0345】
【表3−14】
Figure 2004533227
【0346】
【表3−15】
Figure 2004533227
【0347】
【表3−16】
Figure 2004533227
【0348】
【表3−17】
Figure 2004533227
【0349】
【表3−18】
Figure 2004533227
【0350】
【表3−19】
Figure 2004533227
【0351】
【表3−20】
Figure 2004533227
【0352】
【表4−1】
Figure 2004533227
【0353】
【表4−2】
Figure 2004533227
【0354】
【表4−3】
Figure 2004533227
【0355】
【表4−4】
Figure 2004533227
【0356】
【表4−5】
Figure 2004533227
【0357】
【表4−6】
Figure 2004533227
【0358】
【表4−7】
Figure 2004533227
【0359】
【表4−8】
Figure 2004533227
【0360】
【表4−9】
Figure 2004533227
【0361】
【表4−10】
Figure 2004533227
【0362】
【表4−11】
Figure 2004533227
【0363】
【表4−12】
Figure 2004533227
【0364】
【表5】
Figure 2004533227
【0365】
【表6−1】
Figure 2004533227
【0366】
【表6−2】
Figure 2004533227
【0367】
【表6−3】
Figure 2004533227
【0368】
【表6−4】
Figure 2004533227
【0369】
【表6−5】
Figure 2004533227
【0370】
【表7−1】
Figure 2004533227
【0371】
【表7−2】
Figure 2004533227

Claims (111)

  1. 以下の(a)乃至(f)からなる群から選択した単離されたポリペプチド。
    (a)SEQ ID NO:1-28(配列番号1乃至28)からなる群から選択したアミノ酸配列を含むポリペプチド
    (b) SEQ ID NO:1-3、 SEQ ID NO:5-13、 SEQ ID NO:16-17および SEQ ID NO:19-28からなる群から選択した或るアミノ酸配列と少なくとも90%が同一であるような天然アミノ酸配列を含むポリペプチド
    (c) SEQ ID NO:4、SEQ ID NO:14およびSEQ ID NO:15からなる群から選択した或るアミノ酸配列と少なくとも92%が同一であるような天然アミノ酸配列を含むポリペプチド
    (d)SEQ ID NO:18のアミノ酸配列に対して少なくとも95%が同一であるような天然アミノ酸配列を含むポリペプチド
    (e)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの生物学的活性断片
    (f)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドの免疫原性断片
  2. SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含む、請求項1に記載の単離されたポリペプチド。
  3. 請求項1のポリペプチドをコードする単離されたポリヌクレオチド。
  4. 請求項2のポリペプチドをコードする単離されたポリヌクレオチド。
  5. SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列を含む、請求項4に記載の単離されたポリヌクレオチド。
  6. 請求項3に記載のポリヌクレオチドに機能的に連結したプロモーター配列を含む組換えポリヌクレオチド。
  7. 請求項6に記載の組換えポリヌクレオチドを用いて形質転換した細胞。
  8. 請求項6に記載の組換えポリヌクレオチドを含む遺伝形質転換体。
  9. 請求項1のポリペプチドを生産する方法であって、
    (a)前記ポリペプチドの発現に好適な条件下で、請求項1のポリペプチドをコードするポリヌクレオチドに機能的に連結したプロモーター配列を含む組換えポリヌクレオチドで形質転換される細胞を培養する過程と、
    (b)そのように発現した前記ポリペプチドを回収する過程とからなり、前記組換えポリヌクレオチドが、請求項1に記載の前記ポリペプチドをコードするポリヌクレオチドに機能的に連結したプロモーター配列を含むことを特徴とする方法。
  10. 前記ポリペプチドが、SEQ ID NO:1-28からなる群から選択した或るアミノ酸配列を含むことを特徴とする、請求項9に記載の方法。
  11. 請求項1に記載のポリペプチドと特異結合するような単離された抗体。
  12. 以下の(a)乃至(g)からなる群から選択した単離されたポリヌクレオチド。
    (a)SEQ ID NO:29-56からなる群から選択したポリヌクレオチド配列を含むポリヌクレオチド
    (b)SEQ ID NO:29-31およびSEQ ID NO:33-56からなる群から選択した或るポリヌクレオチド配列に対して少なくとも90%が同一であるような天然ポリヌクレオチド配列を含むポリヌクレオチド
    (c) (b)SEQ ID NO:32のポリヌクレオチド配列に対して少なくとも92%が同一であるような天然ポリヌクレオチド配列を持つポリヌクレオチド
    (d)(a)のポリヌクレオチドに相補的なポリヌクレオチド
    (e)(b)のポリヌクレオチドに相補的なポリヌクレオチド
    (f)(c)のポリヌクレオチドに相補的なポリヌクレオチド
    (g)(a)〜(f)のRNA等価物
  13. 請求項12に記載のポリヌクレオチドの少なくとも60の連続したヌクレオチドを含む単離されたポリヌクレオチド。
  14. 請求項12に記載のポリヌクレオチドの配列を有する標的ポリヌクレオチドをサンプル中から検出する方法であって、
    (a)前記サンプル中の前記標的ポリヌクレオチドに相補的な配列を持つ少なくとも20の連続したヌクレオチドを持つプローブを用いて前記サンプルをハイブリダイズする過程と、
    (b)前記ハイブリダイゼーション複合体の存在・不存在を検出し、該複合体が存在する場合にはオプションでその量を検出する過程、とを含み、前記プローブと前記標的ポリヌクレオチドあるいはその断片との間でハイブリダイゼーション複合体が形成される条件下で、プローブが前記標的ポリヌクレオチドに特異的にハイブリダイズすることを特徴とする方法。
  15. 前記プローブが少なくとも60の連続したヌクレオチドを含むことを特徴とする請求項14に記載の方法。
  16. 請求項12に記載のポリヌクレオチドの配列を有する標的ポリヌクレオチドをサンプル中から検出する方法であって、
    (a)ポリメラーゼ連鎖反応増幅を用いて前記標的ポリヌクレオチドまたはその断片を増幅する過程と、
    (b)前記の増幅した標的ポリヌクレオチドまたはその断片の有無を検出し、該標的ポリヌクレオチドまたはその断片が存在する場合にはオプションでその量を検出する過程を含むことを特徴とする方法。
  17. 請求項1のポリペプチドと、薬剤として許容できる賦形剤とを含むことを特徴とする組成物。
  18. 前記ポリペプチドが、SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むことを特徴とする請求項17に記載の組成物。
  19. 機能的なCSAPの発現の低下に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項17の組成物を投与することを含むことを特徴とする治療方法。
  20. 請求項1に記載のポリペプチドのアゴニストとして有効性を確認するために化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを含むサンプルを化合物に曝すステップと、
    (b)前記サンプルにおいてアゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
  21. 請求項20に記載の方法によって同定したアゴニスト化合物と、薬剤として許容できる賦形剤とを含むことを特徴とする組成物。
  22. 機能的なCSAPの発現の低下に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項21の組成物を投与することを含むことを特徴とする治療方法。
  23. 請求項1に記載のポリペプチドのアンタゴニストとして有効性を確認するために化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを含むサンプルを化合物に曝すステップと、
    (b)前記サンプルにおいてアンタゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
  24. 請求項23に記載の方法によって同定したアンタゴニスト化合物と、薬剤として許容できる賦形剤とを含むことを特徴とする組成物。
  25. 機能的なCSAPの過剰な発現に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項24の組成物を投与することを含むことを特徴とする治療方法。
  26. 請求項1に記載のポリペプチドに特異結合する化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを適切な条件下で少なくとも1つの試験化合物と混合する過程と、
    (b)請求項1のポリペプチドの試験化合物との結合を検出し、それによって請求項1のポリペプチドに特異結合する化合物を同定する過程を含む方法。
  27. 請求項1に記載のポリペプチドの活性を調節する化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドの活性が許容される条件下で、請求項1のポリペプチドを少なくとも1つの試験化合物と混合する過程と、
    (b)請求項1に記載のポリペプチドの活性を試験化合物の存在下で算定する過程と、
    (c)試験化合物の存在下での請求項1のポリペプチドの活性を、試験化合物の不存在下での請求項1のポリペプチドの活性と比較する過程を含み、試験化合物の存在下での請求項1のポリペプチドの活性の変化が、請求項1のポリペプチドの活性を調節する化合物を標示するような方法。
  28. 請求項5の配列を含む標的ポリヌクレオチドの発現を変容させるのに効果的な化合物をスクリーニングする方法であって、
    (a)前記標的ポリヌクレオチドの発現に好適な条件下で、該標的ポリヌクレオチドを含むサンプルを化合物に曝露する過程と、
    (b)前記標的ポリヌクレオチドの発現改変を検出する過程と、
    (c)可変量の前記化合物の存在下と前記化合物の不存在下で、前記標的ポリヌクレオチドの発現を比較する過程とを含むことを特徴とする方法。
  29. 試験化合物の毒性を算定する方法であって、
    (a)核酸を含む生物学的サンプルを前記試験化合物で処理する過程と、
    (b)処理した前記生物学的サンプルの核酸と、請求項12のポリヌクレオチドの少なくとも20の連続するヌクレオチドを持つプローブをハイブリダイズさせる過程であって、このハイブリダイゼーションゼーションが、前記プローブと前記生物学的サンプル中の標的ポリヌクレオチドとの間で特異的なハイブリダイゼーション複合体が形成される条件下で行われ、前記標的ポリヌクレオチドが、請求項12のポリヌクレオチドまたはその断片のポリヌクレオチド配列を含むポリヌクレオチドである、前記過程と、
    (c)ハイブリダイゼーション複合体の収量を定量する過程と、
    (d)前記処理された生物学的サンプル中のハイブリタイゼーション複合体の量を、処理されていない生物学的サンプル中のハイブリタイゼーション複合体の量と比較する過程とを含み、前記処理された生物学的サンプル中のハイブリタイゼーション複合体の量の差が、前記試験化合物の毒性を標示するような方法。
  30. 生物学的サンプル中のCSAPの発現に関連する症状または疾患に対する診断試験法であって、
    (a)前記生物学的サンプルと請求項11の抗体との混合を、前記抗体が前記ポリペプチドに結合し、抗体とポリペプチドとの複合体を形成するのに適した条件下で行う過程と、
    (b)前記複合体を検出する過程とを含み、前記複合体の存在が、前記生物学的サンプル中の前記ポリペプチドの存在と相関することを特徴とする方法。
  31. 請求項11の抗体であって、
    (a)キメラ抗体
    (b)単鎖抗体
    (c)Fab断片
    (d)F(ab')2 断片
    (e)またはヒト化抗体である抗体。
  32. 請求項11に記載の抗体と、許容できる賦形剤とを含む組成物。
  33. 被検者のCSAPの発現に関連する病状又は疾患の診断方法であって、請求項32に記載の組成物の有効量を前記被検者に投与する過程を含むことを特徴とする方法。
  34. 前記抗体が標識されることを特徴とする請求項32に記載の組成物。
  35. 被検者のCSAPの発現に関連する病状又は疾患の診断方法であって、請求項34に記載の組成物の有効量を前記被検者に投与する過程を含むことを特徴とする方法。
  36. 請求項11に記載の抗体の特異性を有するポリクローナル抗体を調製する方法であって、
    (a)抗体反応を誘発する条件下で、SEQ ID NO:1-28からなる群から選択したアミノ酸配列またはその免疫原性断片を含むポリペプチドを用いて動物を免疫化する過程と、
    (b)前記動物から抗体を単離する過程と、
    (c)前記単離された抗体を前記ポリペプチドでスクリーニングし、それによって、SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチドに特異結合するポリクローナル抗体を同定する過程とを含むような方法。
  37. 請求項36に記載の方法で産出したポリクローナル抗体。
  38. 請求項37に記載のポリクローナル抗体及び適切なキャリアーを含む組成物。
  39. 請求項11に記載の抗体の特異性を有するモノクローナル抗体を作製する方法であって、
    (a)抗体反応を誘発する条件下で、SEQ ID NO:1-28からなる群から選択したアミノ酸配列またはその免疫原性断片を含むポリペプチドを用いて動物を免疫化する過程と、
    (b)前記動物から抗体産出細胞を単離する過程と、
    (c)前記抗体産出細胞と不死化した細胞とを融合して、モノクローナル抗体を産出するハイブリドーマ細胞を形成する過程と、
    (d)前記ハイブリドーマ細胞を培養する過程と、
    (e)SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含むポリペプチドに特異結合するようなモノクローナル抗体を前記培養物から単離する過程とを含むことを特徴とする方法。
  40. 請求項39に記載の方法で産出したモノクローナル抗体。
  41. 請求項40に記載のモノクローナル抗体及び適切なキャリアーを含む組成物。
  42. Fab発現ライブラリをスクリーニングすることにより産出されることを特徴とする請求項11に記載の抗体。
  43. 組換え免疫グロブリンライブラリのスクリーニングにより前記抗体を産出することを特徴とする請求項11に記載の抗体。
  44. SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドをサンプル中から検出する方法であって、
    (a)請求項11に記載の抗体と前記ポリペプチドとの特異結合を許容する条件下で、前記抗体と1サンプルとをインキュベートする過程と、
    (b)特異結合を検出する過程とを含み、該特異結合が、SEQ ID NO:1-28からなる群から選択したアミノ酸配列を有するポリペプチドがサンプル中に存在することを標示することを特徴とする方法。
  45. SEQ ID NO:1-28 からなる群から選択したアミノ酸配列を有するポリペプチドを精製する方法であって、
    (a)請求項11に記載の抗体と前記ポリペプチドとの特異結合を許容する条件下で、前記抗体と1サンプルとをインキュベートする過程と、
    (b)前記サンプルから前記抗体を分離し、SEQ ID NO:1-28からなる群から選択したアミノ酸配列を含む精製ポリペプチドを得る過程とを含むことを特徴とする方法。
  46. マイクロアレイの少なくとも1つが請求項13に記載のポリヌクレオチドであることを特徴とするマクロアレイ。
  47. ポリヌクレオチドを含むサンプルの発現プロファイルを作製する方法であって、
    (a)サンプル中のポリヌクレオチドを標識化する過程
    (b)ハイブリダイゼーション複合体が形成されるのに適した条件下で請求項46のマイクロアレイのエレメントとサンプル中の標識化ポリヌクレオチドとを接触させる過程と、
    (c)サンプル中のポリヌクレオチドの発現を定量する過程を含む方法
  48. 或る固体基板上の固有の物理的位置に付着された種々のヌクレオチド分子を有するアレイであって、少なくとも1つの前記ヌクレオチド分子が、或る標的ポリヌクレオチドの少なくとも30の連続したヌクレオチド群と特異的にハイブリダイズ可能な最初のオリゴヌクレオチドまたはポリヌクレオチド配列を含み、前記の標的ポリヌクレオチドが請求項12に記載のポリヌクレオチドであることを特徴とするアレイ。
  49. 請求項48に記載のアレイで、前記の最初のオリゴヌクレオチドまたはポリヌクレオチドの配列が前記の標的ポリヌクレオチドの少なくとも30の連続したヌクレオチドに完全に相補的であることを特徴とするアレイ。
  50. 請求項48に記載のアレイで、前記の最初のオリゴヌクレオチドまたはポリヌクレオチドの配列が前記の標的ポリヌクレオチドの少なくとも60の連続したヌクレオチドに完全に相補的であることを特徴とするアレイ。
  51. 請求項48に記載のアレイで、前記の最初のオリゴヌクレオチドまたはポリヌクレオチドの配列が前記の標的ポリヌクレオチドに完全に相補的であることを特徴とするアレイ。
  52. 請求項48に記載のアレイで、マイクロアレイであることを特徴とするアレイ。
  53. 請求項48に記載のアレイで、前記のオリゴヌクレオチドまたはポリヌクレオチドの最初の配列を含むヌクレオチド分子にハイブリダイズした前記の標的ポリヌクレオチドを有することを特徴とするアレイ。
  54. 請求項48に記載のアレイで、リンカーが少なくとも1つの前記のヌクレオチド分子と前記の固体基板を連結していることを特徴とするアレイ。
  55. 請求項48に記載のアレイで、基板上の固有の物理的位置の各々が複数のヌクレオチド分子を含み、任意の単一の固有の物理的位置でのその複数のヌクレオチド分子は同一の配列を有し、基板上の固有の物理的位置の各々は、基板上の別の固有の物理的位置でのヌクレオチド分子の配列とは異なる配列を有するヌクレオチド分子を含むことを特徴とするアレイ。
  56. SEQ ID NO:1のアミノ酸配列を含む請求項1に記載のポリペプチド。
  57. SEQ ID NO:2のアミノ酸配列を含む請求項1に記載のポリペプチド。
  58. SEQ ID NO:3のアミノ酸配列を含む請求項1に記載のポリペプチド。
  59. SEQ ID NO:4のアミノ酸配列を含む請求項1に記載のポリペプチド。
  60. SEQ ID NO:5のアミノ酸配列を含む請求項1に記載のポリペプチド。
  61. SEQ ID NO:6のアミノ酸配列を含む請求項1に記載のポリペプチド。
  62. SEQ ID NO:7のアミノ酸配列を含む請求項1に記載のポリペプチド。
  63. SEQ ID NO:8のアミノ酸配列を含む請求項1に記載のポリペプチド。
  64. SEQ ID NO:9のアミノ酸配列を含む請求項1に記載のポリペプチド。
  65. SEQ ID NO:10のアミノ酸配列を含む請求項1に記載のポリペプチド。
  66. SEQ ID NO:11のアミノ酸配列を含む請求項1に記載のポリペプチド。
  67. SEQ ID NO:12のアミノ酸配列を含む請求項1に記載のポリペプチド。
  68. SEQ ID NO:13のアミノ酸配列を含む請求項1に記載のポリペプチド。
  69. SEQ ID NO:14のアミノ酸配列を含む請求項1に記載のポリペプチド。
  70. SEQ ID NO:15のアミノ酸配列を含む請求項1に記載のポリペプチド。
  71. SEQ ID NO:16のアミノ酸配列を含む請求項1に記載のポリペプチド。
  72. SEQ ID NO:17のアミノ酸配列を含む請求項1に記載のポリペプチド。
  73. SEQ ID NO:18のアミノ酸配列を含む請求項1に記載のポリペプチド。
  74. SEQ ID NO:19のアミノ酸配列を含む請求項1に記載のポリペプチド。
  75. SEQ ID NO:20のアミノ酸配列を含む請求項1に記載のポリペプチド。
  76. SEQ ID NO:21のアミノ酸配列を含む請求項1に記載のポリペプチド。
  77. SEQ ID NO:22のアミノ酸配列を含む請求項1に記載のポリペプチド。
  78. SEQ ID NO:23のアミノ酸配列を含む請求項1に記載のポリペプチド。
  79. SEQ ID NO:24のアミノ酸配列を含む請求項1に記載のポリペプチド。
  80. SEQ ID NO:25のアミノ酸配列を含む請求項1に記載のポリペプチド。
  81. SEQ ID NO:26のアミノ酸配列を含む請求項1に記載のポリペプチド。
  82. SEQ ID NO:27のアミノ酸配列を含む請求項1に記載のポリペプチド。
  83. SEQ ID NO:28のアミノ酸配列を含む請求項1に記載のポリペプチド。
  84. SEQ ID NO:29のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  85. SEQ ID NO:30のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  86. SEQ ID NO:31のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  87. SEQ ID NO:32のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  88. SEQ ID NO:33のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  89. SEQ ID NO:34のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  90. SEQ ID NO:35のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  91. SEQ ID NO:36のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  92. SEQ ID NO:37のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  93. SEQ ID NO:38のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  94. SEQ ID NO:39のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  95. SEQ ID NO:40のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  96. SEQ ID NO:41のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  97. SEQ ID NO:42のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  98. SEQ ID NO:43のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  99. SEQ ID NO:44のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  100. SEQ ID NO:45のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  101. SEQ ID NO:46のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  102. SEQ ID NO:47のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  103. SEQ ID NO:48のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  104. SEQ ID NO:49のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  105. SEQ ID NO:50のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  106. SEQ ID NO:51のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  107. SEQ ID NO:52のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  108. SEQ ID NO:53のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  109. SEQ ID NO:54のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  110. SEQ ID NO:55のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
  111. SEQ ID NO:56のポリヌクレオチド配列を含む請求項12に記載のポリヌクレオチド。
JP2002578407A 2001-03-29 2002-03-25 細胞骨格結合タンパク質 Pending JP2004533227A (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US28050801P 2001-03-29 2001-03-29
US28132301P 2001-04-03 2001-04-03
US28376901P 2001-04-13 2001-04-13
US28860901P 2001-05-04 2001-05-04
US29051801P 2001-05-10 2001-05-10
US29187001P 2001-05-18 2001-05-18
US29445101P 2001-05-29 2001-05-29
PCT/US2002/009288 WO2002079404A2 (en) 2001-03-29 2002-03-25 Cytoskeleton-associated proteins

Publications (1)

Publication Number Publication Date
JP2004533227A true JP2004533227A (ja) 2004-11-04

Family

ID=27569565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002578407A Pending JP2004533227A (ja) 2001-03-29 2002-03-25 細胞骨格結合タンパク質

Country Status (5)

Country Link
EP (1) EP1373306A4 (ja)
JP (1) JP2004533227A (ja)
AU (1) AU2002306879A1 (ja)
CA (1) CA2441654A1 (ja)
WO (1) WO2002079404A2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1402031A2 (en) 2001-06-21 2004-03-31 Isis Innovation Limited Atopy
AU2003228872A1 (en) * 2002-05-10 2003-11-11 Incyte Corporation Cell adhesion and extracellular matrix proteins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000017355A2 (en) * 1998-09-18 2000-03-30 Incyte Pharmaceuticals, Inc. Human cytoskeleton associated proteins
EP1171585A1 (en) * 1999-03-23 2002-01-16 Human Genome Sciences, Inc. 49 human secreted proteins
WO2002068579A2 (en) * 2001-01-10 2002-09-06 Pe Corporation (Ny) Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof

Also Published As

Publication number Publication date
AU2002306879A1 (en) 2002-10-15
EP1373306A4 (en) 2005-07-20
EP1373306A2 (en) 2004-01-02
WO2002079404A2 (en) 2002-10-10
WO2002079404A3 (en) 2003-03-20
CA2441654A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
JP2004528003A (ja) 細胞外マトリクスおよび細胞接着分子
JP2003527089A (ja) 膜関連タンパク質
JP2004500870A (ja) 分泌タンパク質
JP2003505029A (ja) Gtp結合関連タンパク質
JP2004533222A (ja) 免疫グロブリンスーパーファミリータンパク質
JP2004500114A (ja) 転写因子
JP2003532419A5 (ja)
JP2005500830A (ja) 構造および細胞骨格結合タンパク質
JP2004537283A (ja) 輸送体及びイオンチャネル
JP2004530412A (ja) 細胞骨格関連タンパク質
JP2004511208A (ja) Rna代謝タンパク質
JP2004528002A (ja) 分泌分子および輸送分子
JP2005511028A (ja) 疾患検出および治療用分子
JP2004500862A (ja) 細胞内シグナル伝達タンパク質
JP2004519217A (ja) 微小管関連タンパク質およびチューブリン
JP2004535759A (ja) 免疫グロブリンスーパファミリタンパク質
JP2005503130A (ja) 細胞接着および細胞外マトリクスタンパク質
JP2004533227A (ja) 細胞骨格結合タンパク質
JP2004532630A (ja) Gタンパク質共役受容体
JP2004514411A (ja) 神経伝達物質トランスポータ
JP2004537972A (ja) 細胞接着タンパク質
JP2004528813A (ja) リポカリン
EP1451212A2 (en) Structural and cytoskeleton-associated proteins
US20040096828A1 (en) Cytoskeleton-associated proteins
US20040029144A1 (en) Transcription factors and zinc finger proteins