JP2004520565A - Thermal storage waste incineration system - Google Patents

Thermal storage waste incineration system Download PDF

Info

Publication number
JP2004520565A
JP2004520565A JP2003500471A JP2003500471A JP2004520565A JP 2004520565 A JP2004520565 A JP 2004520565A JP 2003500471 A JP2003500471 A JP 2003500471A JP 2003500471 A JP2003500471 A JP 2003500471A JP 2004520565 A JP2004520565 A JP 2004520565A
Authority
JP
Japan
Prior art keywords
waste
incineration
ceramic layer
heat
regenerative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003500471A
Other languages
Japanese (ja)
Inventor
オー,スック−イン
Original Assignee
キー エンジニアリング カンパニー リミティッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キー エンジニアリング カンパニー リミティッド filed Critical キー エンジニアリング カンパニー リミティッド
Publication of JP2004520565A publication Critical patent/JP2004520565A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/001Incinerators or other apparatus for consuming industrial waste, e.g. chemicals for sludges or waste products from water treatment installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/44Details; Accessories
    • F23G5/46Recuperation of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/061Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating
    • F23G7/065Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel
    • F23G7/066Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator
    • F23G7/068Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases with supplementary heating using gaseous or liquid fuel preheating the waste gas by the heat of the combustion, e.g. recuperation type incinerator using regenerative heat recovery means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2201/00Pretreatment
    • F23G2201/10Drying by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2203/00Furnace arrangements
    • F23G2203/40Stationary bed furnace
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/40Valorisation of by-products of wastewater, sewage or sludge processing

Abstract

化学工場及び下水処理場の最終副産物として発生する産業廃水スラッジ、都市ゴミ、生ゴミ及び下水スラッジなど高含水廃棄物を蓄熱材を用いて焼却処理する蓄熱式廃棄物焼却システムに関する。
この焼却システムは、流れ込まれる廃棄物を乾燥するために外気を高温に転換させ、焼却後焼却灰を含有する高温の処理ガスより熱を回収するためのセラミック層105、106と、流れ込まれる廃棄物が乾燥されて急冷温度を補償して焼却温度を保たせ、焼却後高温の熱を蓄熱するセラミック層107、108と、セラミック層105、106と他のセラミック層107、108間の廃棄物投入口109、110及び焼却時生じる焼却灰を捕集するサイクロン111と、サイクロンで捕集されていない残留焼却灰を捕集するバックフィルター112よりなることを特徴とする。
【選択図】図1
The present invention relates to a regenerative waste incineration system for incinerating industrial wastewater sludge, municipal garbage, garbage, and sewage sludge generated as final by-products of chemical factories and sewage treatment plants using heat storage materials.
The incineration system converts the outside air to a high temperature in order to dry the incoming waste and recovers heat from the high-temperature processing gas containing the incinerated ash after incineration; Is dried to compensate for the quenching temperature to keep the incineration temperature, and to store the high-temperature heat after incineration, and a waste inlet between the ceramic layers 105 and 106 and the other ceramic layers 107 and 108. It is characterized by comprising: a cyclone 111 for collecting incineration ash generated during incineration; and a back filter 112 for collecting residual incineration ash that has not been collected by the cyclone.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は水分含量の高い廃棄物を、2次汚染物質を発生させず、経済的に焼却させるシステムであって、化学工場及び下水処理場の最終副産物として生じる産業廃水スラッジ、都市ゴミ、生ゴミ及び下水スラッジを蓄熱材を用いて焼却処理する蓄熱式廃棄物焼却システムに関する。
【0002】
【従来の技術】
産業廃水スラッジ、都市ゴミ、生ゴミ及び下水スラッジなどは一般に焼却または埋立て処理されるが、このうち焼却は廃棄物の体積を最も多く減少させ、2次汚染発生も低くて最も推奨されるスラッジ処理方法として提示されている。
一般の廃棄物焼却装置のうち、流動層焼却炉は、1962年から都市下水処理場の廃棄物を焼却するために用いられており、主に液状廃棄物やスラッジを焼却し、構造は円筒形耐火壁体よりなっており、炉の下部には流動媒体として用いられる砂が入れられている。流動化のために空気を使用し、この時、空気の圧力は20〜34kPa程度で砂層を支持している板の流出口を通じて砂層に流入されることによって砂層の流動化を起こす。焼却炉の稼動時、砂層の温度は約800℃以上保たれ、流動化によって砂層の体積は30〜60%程度膨脹される。廃棄物は下部から流れ込まれるが、空気の流速が大きい場合、炉の上部から燃焼ガス中に未燃焼されるので、細心な流速調節が要求される。流動化は空気と廃棄物の表面との接触を最大化させて最適の燃焼になるようにする。流動媒体として用いられる多量の砂が熱貯蔵媒体の役割を行うので、高含水率廃棄物の燃焼には適切であるが、廃棄物の燃焼状態によって流動媒体である砂粒子の塊現象が生じることがあり、廃熱の回収が容易でなくて運転費が過度にかかり、処理施設が高価であるという短所がある。
【0003】
廃棄物処理用として広く用いられているロータリーキルン焼却装置も固形廃棄物やスラッジの焼却に使われている。この装置の内壁は耐火材で取り囲まれており、水平軸を中心に回転し、水平軸は通常2〜3%未満の傾斜を有するように設けられている。キルオンの回転に伴ってキルン内にある廃棄物は連続的に熱とガス流れ中の酸素と接触することによって燃焼が進行される。キルンの回転速度は多少の差はあるが、通常0.25〜1.5rpm程度であり、炉の外壁移動速度は0.3〜1.5m/min程度である。廃棄物は直接キルンの内部に投入され、キルンの回転と共に燃焼されて灰となり、灰はキルンの端部にあるタンクに捕集される。この時、熱源の提供はキルンの出口側に位置したバーナーから提供される。これは廃棄物の焼却速度調節が容易で焼却前処理が大きく要求されず、多様な形態の廃棄物の同時焼却が可能で、キルン内廃棄物滞留時間の調節が容易な長所があるが、揮発性物質の燃焼のために別の後燃焼機が必要であり、キルンの長さによって燃焼条件が変わるので、均一な燃焼条件を維持し難しくてキルンの完全密閉が難しく、燃焼室の熱源供給が多くて運転費が過多に所要される問題点がある。
【0004】
補助燃料費が過多に所要される流動層焼却炉やロータリーキルンの短所を補完した多段焼却炉は現在下水処理場で生じるスラッジの焼却のために最も普遍化された焼却炉である。スラッジは、炉の上部投入部から流入され、炉の内部は耐火レンガで取り囲まれた円筒形であって上部から下部まで様々な段より構成されている。上部から投入されたスラッジが続けて各段を経つつ下部に移動するようにし、また各段でよく燃焼されるようにスラッジを撹拌させるランス軸と、ランス軸を回転させるランス駆動装置で構成されている。スラッジの移動のために上部から奇数番目の段は中心軸と段との間に、そして偶数番目の段は炉壁と段との間に小さな穴があってランスの作用でスラッジが通過し、また各段でスラッジの燃焼で生成されたガスがこの穴を通じて上部に抜け出るようになっている。ランスによるスラッジの撹拌と各段で下段にスラッジが移動する度にスラッジは新しい表面を燃焼ガスに露出させる。したがって焼却炉の上方に位置する段では主にスラッジが含有している多量の水分が高温の燃焼ガスに蒸発されて大気に排出される燃焼ガスはスラッジから蒸発された水蒸気を含んでいて悪臭問題が生じる短所がある。
【0005】
【発明が解決しようとする課題】
本発明は前記問題点を解消するために、燃焼後高温の排ガスが汚染源の処理前スラッジやゴミと再接触せず、別途に熱を蓄熱回収し、この熱を再生してスラッジ及びゴミ焼却に再利用することによって、高含水率のスラッジを経済的に焼却するだけでなく、ここで引き起こされうる2次公害要因の悪臭及び一酸化炭素など不完全燃焼物の発生を抑制するのにその目的がある。
【0006】
【発明の実施の形態】
本発明に係る蓄熱式廃棄物焼却システムが図1及び図2に示されている。この高温の処理ガスより熱を回収するための第1、第2セラミック層105、106と、流れ込まれる廃棄物が乾燥されて急冷温度を補償して焼却温度を保たせ、焼却後高温の熱を蓄熱する第3、第4セラミック層107、108と、第1セラミック層105と第3セラミック層107間の空間と第2セラミック層106と第4セラミック層108間の空間に設けられた廃棄物投入口109、110と、第3セラミック層107と第4セラミック層108間で燃焼物質が完全に燃焼さるべく十分な空間が備えられて蓄熱及び熱再生が可能に自動で開閉される弁101、102、103、104により動作する2ベッド型蓄熱式焼却システム、燃焼用空気を投入する送風機100、焼却残滓を捕集するためのサイクロン111及びバックフィルター112が結合された構造よりなっている。送風機100は、図1のように焼却炉の前端に、または図2のように後端に設けられる。自動で開閉される弁101、102、103、104は図3のように3方向弁114、115または図4のように4方向弁116に置換えられる。
【0007】
前記のように構成された蓄熱式廃棄物焼却システムの運転方法を図1を参照して説明すれば次の通りである。
送風機100で燃焼用空気を、弁101を通じて蓄熱されたセラミック層105には吹き込んで800−1200℃の高温で予熱する。この時、弁101、104は開状態であり、弁102、103は閉じられている。高含水率が高い廃棄物は廃棄物投入口109を通じてセラミック層105とセラミック層107間の空間に投入される。この時、廃棄物投入弁110は閉じられている。セラミック層105を通過した高温の空気により濡れた廃棄物は水蒸気と乾燥された廃棄物とに分離され、蒸発熱の供給で燃焼用空気の温度は急に下降するが、高温に蓄熱された他のセラミック層107を経つつ燃焼用空気、水蒸気及び廃棄物の温度が再上昇し、乾燥された廃棄物は焼却され、この燃焼熱により排ガスの温度はセラミック層107の通過時よりさらに上昇する。
【0008】
排ガスは、以前過程の運転で冷却されたセラミック層108、106を通過しつつ熱のほとんどがセラミック層に排出される。排ガスの温度は廃棄物の含水率によって変わるので、セラミック層108、106が次の過程の運転に十分な熱を有するように足りない熱量はバーナー113から提供する。前記方法で一定時間運転した後、廃棄物投入弁109を閉じ、セラミック層105とセラミック層107間の空間に未処理廃棄物をセラミック層105を通過した高温の空気で完全焼却し、焼却後に残った焼却灰が抜け出るようにする。この運転を順方向運転とし、この順方向運転を終了した後、弁101、104は閉じ、弁102、103は開放して空気流路をスイッチングし、廃棄物投入弁110を開放してセラミック層106とセラミック層108間の空間に投入する。この時、廃棄物投入弁109を閉じて順方向運転と同じ方法で逆方向運転を実施してこの順方向/逆方向運転を繰返して運転する。
【0009】
焼却時に生じる焼却灰は順方向運転時にセラミック層107、108、106を経て弁104を通じてサイクロン111で分離され、逆方向運転時にセラミック層108、107、105を経て弁103を通じてサイクロン111で分離される。サイクロンで捕集されていない残留焼却灰はサイクロン後端に設けられたバックフィルター112で捕集する。浄化された空気は大気に放出する。
本発明の実施例に係る蓄熱式廃棄物焼却システムと従来の流動層焼却炉との燃料消費量の比較計算例は次の実施例1のようである。
【0010】
<実施例1>
蓄熱式廃棄物焼却システムに流入されたスラッジは含水率87%、Ash濃度3%、有機物はCCl0.11S0.1形状を有し、含有率は10%である。1トン/hrであり、燃焼温度は焼却温度の850℃、放熱損失は5%を基準にした。濡れたスラッジの総発熱量は5,880kcal/kgである。
蓄熱式廃棄物焼却システムに流れ込まれる空気量は5,000Nm/hr、入出口温度差は△T=80℃、総排ガス量は6,149Nm/hrである。この時、総必要熱量は754,000kcal/hrであり、スラッジ自体発熱量の588,000kcal/hrを除すれば純粋に166,000kcal/hrが必要である。
【0011】
既存の流動式スラッジ焼却炉の補助熱量を計算すれば次の通りである。流動式スラッジ焼却炉に流れ込まれる空気量は空気比1.3の場合1,600Nm/hr、総排ガス量は2,793Nm/hrである。流入燃焼容空気が排ガスを用いて350℃まで予熱する場合、総必要熱量は1,125,000kcal/hrであり、廃棄物自体発熱量の588,000kcal/hrを除すれば純粋に537,000kcal/hrが必要である。
よって、本発明による蓄熱式廃棄物焼却システムを使用すれば既存の流動式スラッジ焼却炉と比較する時、エネルギー節減効果が大きい。
【0012】
【発明の効果】
本発明に係る蓄熱式廃棄物焼却システムは、高温の排ガスがセラミック充填材を直接加熱し、常温の空気を加熱された空気と接触させて熱を再生した後、この高温の予熱空気で高含水率の廃棄物を乾燥及び焼却する方法であって、熱回収率が非常に高くて高含水率廃棄物の焼却時の最大の問題となる補助燃料費を画期的に節減できるだけでなく、焼却後の排ガスが燃焼前廃棄物と直接接触しないので、排ガスの悪臭及び不完全燃焼による2次汚染物質の排出がない。
【図面の簡単な説明】
【図1】
本発明に係る蓄熱式廃棄物焼却装置。
【図2】
本発明に係る送風機が焼却炉後端に構成された蓄熱式廃棄物焼却装置。
【図3】
本発明に係る自動開閉弁が3方向弁で構成された廃棄物焼却システム。
【図4】
本発明に係る自動開閉弁が4方向弁で構成された廃棄物焼却装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a system for economically incinerating waste having a high water content without generating secondary pollutants, and comprises industrial wastewater sludge, municipal garbage and garbage generated as final by-products of chemical plants and sewage treatment plants. And a regenerative waste incineration system for incinerating sewage sludge using a thermal storage material.
[0002]
[Prior art]
Industrial wastewater sludge, municipal garbage, garbage and sewage sludge are generally incinerated or landfilled. Of these, incineration reduces the volume of waste most and produces the least amount of secondary pollution. It is presented as a processing method.
Among general waste incinerators, fluidized bed incinerators have been used to incinerate waste from municipal sewage treatment plants since 1962. They mainly incinerate liquid waste and sludge, and have a cylindrical structure. It consists of a refractory wall, and the lower part of the furnace contains sand used as a fluid medium. Air is used for fluidization, and at this time, the pressure of the air is about 20 to 34 kPa, and the sand is fluidized by flowing into the sand through an outlet of a plate supporting the sand. During operation of the incinerator, the temperature of the sand layer is maintained at about 800 ° C. or higher, and the volume of the sand layer is expanded by about 30 to 60% by fluidization. Although the waste flows in from the lower part, when the flow velocity of the air is large, it is unburned into the combustion gas from the upper part of the furnace, so that a careful flow velocity control is required. Fluidization maximizes contact between the air and the surface of the waste for optimal combustion. Since a large amount of sand used as a fluid medium acts as a heat storage medium, it is suitable for burning high-moisture content waste. However, it is not easy to recover the waste heat, the operation cost is excessively high, and the processing facility is expensive.
[0003]
Rotary kiln incinerators, which are widely used for waste disposal, are also used to incinerate solid waste and sludge. The inner wall of the device is surrounded by a refractory material and rotates about a horizontal axis, which is typically provided with a slope of less than 2-3%. As the kiln rotates, the waste in the kiln is continuously burned by contact with heat and oxygen in the gas stream. The rotation speed of the kiln is slightly different, but is usually about 0.25 to 1.5 rpm, and the moving speed of the outer wall of the furnace is about 0.3 to 1.5 m / min. The waste is put directly into the kiln and burns as the kiln rotates to ashes, which are collected in a tank at the end of the kiln. At this time, the heat source is provided from a burner located at the exit side of the kiln. This method has the advantage that the incineration speed of waste is easy to control, the pretreatment before incineration is not greatly required, and various types of waste can be incinerated simultaneously, and the residence time of waste in the kiln can be easily adjusted. A separate post-combustor is required to burn the volatile substances, and the combustion conditions vary depending on the length of the kiln, making it difficult to maintain uniform combustion conditions, making it difficult to completely seal the kiln, and providing a heat source supply to the combustion chamber. There are many problems that require excessive operating costs.
[0004]
Fluidized bed incinerators with excessive auxiliary fuel costs and multi-stage incinerators that complement the disadvantages of rotary kilns are currently the most common incinerators for incineration of sludge generated in sewage treatment plants. Sludge flows in from the upper charging section of the furnace, and the inside of the furnace has a cylindrical shape surrounded by refractory bricks and is composed of various steps from the upper part to the lower part. It consists of a lance shaft that agitates the sludge so that the sludge introduced from the upper part passes through each stage continuously and passes through each stage, and is well burned in each stage, and a lance drive device that rotates the lance shaft. ing. For the movement of sludge, the odd-numbered steps from the top have a small hole between the central axis and the step, and the even-numbered steps have a small hole between the furnace wall and the step, through which the sludge passes by the action of a lance, In each stage, the gas generated by the combustion of the sludge escapes upward through this hole. As the sludge is agitated by the lance and each time the sludge moves downward in each stage, the sludge exposes a new surface to the combustion gases. Therefore, in the stage located above the incinerator, a large amount of water mainly contained in the sludge is evaporated into high-temperature combustion gas, and the combustion gas discharged to the atmosphere contains the water vapor evaporated from the sludge, resulting in an odor problem. There is a disadvantage that occurs.
[0005]
[Problems to be solved by the invention]
In order to solve the above problems, the present invention does not allow high-temperature exhaust gas after combustion to re-contact with sludge and refuse before treatment of the pollution source, but separately stores and recovers heat, and regenerates this heat to incinerate sludge and refuse. Its purpose is to not only economically incinerate sludge with a high water content by reusing it, but also to suppress the generation of incomplete combustion products such as odor and carbon monoxide, which are secondary pollution factors that can be caused here. There is.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
A regenerative waste incineration system according to the present invention is shown in FIGS. The first and second ceramic layers 105 and 106 for recovering heat from the high-temperature processing gas, and the waste that flows in are dried to compensate for the quenching temperature so that the incineration temperature is maintained. The third and fourth ceramic layers 107 and 108 for storing heat, the wastes provided in the space between the first ceramic layer 105 and the third ceramic layer 107 and the space between the second ceramic layer 106 and the fourth ceramic layer 108 Valves 101 and 102 which are provided with openings 109 and 110 and a sufficient space between the third ceramic layer 107 and the fourth ceramic layer 108 to completely burn the combustion substance, and which are automatically opened and closed so that heat storage and heat regeneration can be performed. , 103, 104 operated two-bed regenerative incineration system, blower 100 for charging combustion air, cyclone 111 for collecting incineration residues, and backfill Over 112 is made from bonded structure. The blower 100 is provided at the front end of the incinerator as shown in FIG. 1 or at the rear end as shown in FIG. The valves 101, 102, 103 and 104 which are automatically opened and closed are replaced by three-way valves 114 and 115 as shown in FIG. 3 or four-way valves 116 as shown in FIG.
[0007]
An operation method of the regenerative waste incineration system configured as described above will be described with reference to FIG.
Combustion air is blown by the blower 100 into the ceramic layer 105 stored through the valve 101 to be preheated at a high temperature of 800 to 1200 ° C. At this time, the valves 101 and 104 are open, and the valves 102 and 103 are closed. The waste having a high moisture content is introduced into the space between the ceramic layers 105 and 107 through the waste inlet 109. At this time, the waste input valve 110 is closed. The waste wet by the high-temperature air passing through the ceramic layer 105 is separated into water vapor and dried waste, and the supply of evaporation heat causes the temperature of the combustion air to drop sharply. The temperature of the combustion air, steam, and waste again rises while passing through the ceramic layer 107, and the dried waste is incinerated. The heat of the combustion further increases the temperature of the exhaust gas as compared with the passage through the ceramic layer 107.
[0008]
Most of the exhaust gas is discharged to the ceramic layers while passing through the ceramic layers 108 and 106 cooled in the previous operation. Since the temperature of the exhaust gas depends on the moisture content of the waste, the amount of heat provided by the burner 113 is insufficient so that the ceramic layers 108 and 106 have sufficient heat for the next operation. After operating for a certain time in the above method, the waste input valve 109 is closed, and the untreated waste is completely incinerated in the space between the ceramic layers 105 and 107 with the high-temperature air that has passed through the ceramic layer 105, and remains after incineration. So that the incineration ash can escape. This operation is referred to as forward operation. After terminating the forward operation, the valves 101 and 104 are closed, the valves 102 and 103 are opened to switch the air flow path, the waste input valve 110 is opened, and the ceramic layer is opened. It is put into the space between 106 and the ceramic layer 108. At this time, the waste input valve 109 is closed, the reverse operation is performed in the same manner as the forward operation, and the forward / reverse operation is repeated.
[0009]
The incineration ash generated during incineration is separated by the cyclone 111 through the valve 104 through the ceramic layers 107, 108, 106 during forward operation, and separated by the cyclone 111 through the valve 103 through the ceramic layers 108, 107, 105 during reverse operation. . Residual incineration ash not collected by the cyclone is collected by the back filter 112 provided at the rear end of the cyclone. The purified air is released to the atmosphere.
An example of comparison calculation of fuel consumption between the regenerative waste incineration system according to the embodiment of the present invention and the conventional fluidized bed incinerator is as in the following embodiment 1.
[0010]
<Example 1>
The sludge flowing into the regenerative waste incineration system has a water content of 87%, an Ash concentration of 3%, and organic substances having a C 8 H 8 O 2 Cl 0.1 N 11 S 0.1 shape, and a content of 10%. It is. The combustion temperature was 850 ° C. of the incineration temperature, and the heat loss was based on 5%. The total heating value of the wet sludge is 5,880 kcal / kg.
The amount of air flowing into the regenerative waste incineration system is 5,000 Nm 3 / hr, the temperature difference between the inlet and outlet is ΔT = 80 ° C., and the total amount of exhaust gas is 6,149 Nm 3 / hr. At this time, the total required heat amount is 754,000 kcal / hr, and purely 166,000 kcal / hr is required except for the sludge itself having a calorific value of 588,000 kcal / hr.
[0011]
Calculating the auxiliary heat of the existing fluidized sludge incinerator is as follows. When the air ratio is 1.3, the amount of air flowing into the fluidized sludge incinerator is 1,600 Nm 3 / hr, and the total amount of exhaust gas is 2,793 Nm 3 / hr. When the inflowing combustion air is preheated to 350 ° C. using the exhaust gas, the total required calorie is 1,125,000 kcal / hr, and purely 537,000 kcal excluding the waste itself calorific value of 588,000 kcal / hr. / Hr is required.
Therefore, when the regenerative waste incineration system according to the present invention is used, the energy saving effect is large as compared with the existing fluidized sludge incinerator.
[0012]
【The invention's effect】
The regenerative waste incineration system according to the present invention is characterized in that the high temperature exhaust gas directly heats the ceramic filler, and the room temperature air is brought into contact with the heated air to regenerate the heat, and then the high temperature preheated air contains high water content. Is a method of drying and incinerating waste with a high heat recovery rate, which can not only dramatically reduce auxiliary fuel costs, which is the biggest problem when incinerating high moisture content waste, but also incinerate it. Since the subsequent exhaust gas does not directly contact the pre-combustion waste, there is no odor of the exhaust gas and no emission of secondary pollutants due to incomplete combustion.
[Brief description of the drawings]
FIG.
A regenerative waste incinerator according to the present invention.
FIG. 2
A regenerative waste incinerator in which a blower according to the present invention is provided at the rear end of an incinerator.
FIG. 3
A waste incineration system in which the automatic on-off valve according to the present invention includes a three-way valve.
FIG. 4
A waste incinerator in which the automatic on-off valve according to the present invention includes a four-way valve.

Claims (9)

逆方向運転において高温の処理ガスより熱を蓄積し、順方向運転において低温のガスに前記蓄積された熱を再生する第1及び第2セラミック層と、
前記順方向運転において高温のガスから熱を蓄積し、前記逆方向運転において蓄積された熱を再生する第3及び第4セラミック層と、
前記第1セラミック層と前記第2セラミック層との間に位置し、前記順方向運転において廃棄物を導入する第1廃棄物導入弁と、
前記第3セラミック層と前記第4セラミック層との間に位置し、前記逆方向運転において廃棄物を導入する第2廃棄物導入弁と、
前記第2セラミック層と前記第3セラミック層との間に位置し、焼却のための熱を供給するバーナーと、
前記順方向運転時、前記第1セラミック層を通じてシステムに空気を導入する第1空気弁と、
前記逆方向運転時、前記第4セラミック層を通じてシステムに空気を導入する第2空気弁と、を含むことを特徴とする蓄熱式廃棄物焼却システム。
First and second ceramic layers for storing heat from the high-temperature processing gas in the reverse operation and regenerating the stored heat in the low-temperature gas in the forward operation;
Third and fourth ceramic layers that accumulate heat from the hot gas in the forward operation and regenerate the accumulated heat in the reverse operation;
A first waste introduction valve located between the first ceramic layer and the second ceramic layer and introducing waste in the forward operation;
A second waste introduction valve located between the third ceramic layer and the fourth ceramic layer and introducing waste in the reverse operation;
A burner located between the second ceramic layer and the third ceramic layer and supplying heat for incineration;
A first air valve for introducing air into the system through the first ceramic layer during the forward operation;
A second air valve for introducing air into the system through the fourth ceramic layer during the reverse operation.
焼却時生じる焼却灰がセラミック層間を通過すべく構成されることを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, wherein incineration ash generated during incineration is configured to pass between the ceramic layers. 燃焼用空気を供給する送風機が焼却炉の前端に構成されたことを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, wherein a blower for supplying combustion air is provided at a front end of the incinerator. 燃焼用空気を供給する送風機が焼却炉の後端に構成されたことを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, wherein a blower for supplying combustion air is provided at a rear end of the incinerator. 前記自動で開閉される弁は3方向弁であることを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, wherein the valve that is automatically opened and closed is a three-way valve. 前記自動で開閉される弁は4方向弁であることを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, wherein the valve that is automatically opened and closed is a four-way valve. 焼却残滓を捕集するためのサイクロンをさらに備えることを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, further comprising a cyclone for collecting incineration residues. 焼却残滓を捕集するためのバックフィルターをさらに備えることを特徴とする請求項1に記載の蓄熱式廃棄物焼却システム。The regenerative waste incineration system according to claim 1, further comprising a back filter for collecting incineration residues. 廃棄物投入口のうち燃焼用空気の流入方向に位置した廃棄物投入口にのみ廃棄物を投入し、一定時間後に廃棄物の投入を中断して炉内に残存する未処理廃棄物を完全焼却して焼却灰を炉内で除去する順方向運転と、燃焼用空気流路を反対に切り換えて同じ方法で廃棄物を投入焼却する過程を反復することを特徴とする請求項1に記載の蓄熱式廃棄物焼却システムを用いた蓄熱式廃棄物焼却方法。Waste is injected only into the waste inlet located in the direction of the combustion air inflow, and after a certain period of time, the input of waste is interrupted and the untreated waste remaining in the furnace is completely incinerated. The heat storage according to claim 1, wherein a forward operation of removing the incineration ash in the furnace and a process of injecting and burning waste in the same manner by switching the combustion air flow path in the opposite direction are repeated. Regenerative waste incineration method using a waste incineration system.
JP2003500471A 2001-05-30 2002-05-30 Thermal storage waste incineration system Pending JP2004520565A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010029953A KR20010070670A (en) 2001-05-30 2001-05-30 Regenerative Thermal Waste Incineration System
PCT/KR2002/001026 WO2002097328A1 (en) 2001-05-30 2002-05-30 Regenerative thermal waste incineration system

Publications (1)

Publication Number Publication Date
JP2004520565A true JP2004520565A (en) 2004-07-08

Family

ID=19710153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003500471A Pending JP2004520565A (en) 2001-05-30 2002-05-30 Thermal storage waste incineration system

Country Status (7)

Country Link
US (1) US20040020415A1 (en)
EP (1) EP1390666A1 (en)
JP (1) JP2004520565A (en)
KR (1) KR20010070670A (en)
CN (1) CN1460166A (en)
CA (1) CA2410719A1 (en)
WO (1) WO2002097328A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755250B2 (en) * 2005-06-21 2011-08-24 中国科学院工程熱物理研究所 Combined dryer, wet sludge incineration apparatus with combined dryer, and method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149807B4 (en) * 2001-10-09 2007-12-27 Herhof Verwaltungsgesellschaft Mbh Method and apparatus for purifying exhaust gases containing substances containing heat, in particular pollutant particles and / or odor particles
CN1946492A (en) * 2004-05-18 2007-04-11 高田和彦 Method of smoking/burning type volume reduction treatment and apparatus therefor
KR100771667B1 (en) * 2006-05-10 2007-11-01 김일동 Movable collector system
US9657989B2 (en) * 2008-04-07 2017-05-23 Wastedry, Llc Systems and methods for processing municipal wastewater treatment sewage sludge
CN105327589A (en) * 2015-11-13 2016-02-17 惠州市环发环保科技有限公司 Waste gas treatment system
CN106051790A (en) * 2016-05-24 2016-10-26 杨峥雄 Regenerative thermal oxidizer (RTO) with waste solvent as auxiliary fuel and burning method
CN106348371B (en) * 2016-11-17 2019-04-12 山东大学 The minimizing technology of volatile organic matter in a kind of water difficult to degrade
EP3859207A1 (en) * 2020-01-29 2021-08-04 Steinmüller Engineering GmbH Combustion installation with heat accumulator

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54128171A (en) * 1978-03-29 1979-10-04 Nittetsu Kakoki Kk Incinerating device of noxious matter in waste gas
US4252070A (en) * 1979-06-27 1981-02-24 Regenerative Environmental Equipment Co., Inc. Double valve anti-leak system for thermal regeneration incinerators
US4454826A (en) * 1982-06-23 1984-06-19 Regenerative Environmental Equipment Co., Inc. Vertical flow incinerator having regenerative heat exchange
JPH05322145A (en) * 1992-05-18 1993-12-07 Chizuo Matsumoto Fluidized bed type incinerator
JPH05332523A (en) * 1992-06-02 1993-12-14 Takuma Co Ltd Heat accumulative deodorizing device
US5553555A (en) * 1994-04-28 1996-09-10 Dasibi Environmental Corporation System and method for flue gas purification for thermal power units
US5503551A (en) * 1995-06-05 1996-04-02 Houston; Reagan Rotary valve for fume incinerator
US5626088A (en) * 1995-11-28 1997-05-06 Foster Wheeler Energia Oy Method and apparatus for utilizing biofuel or waste material in energy production
US5888063A (en) * 1996-03-07 1999-03-30 Scott; Gregory J. Method and apparatus for quick purging a multiple bed regenerative fume incinerator
US6119607A (en) * 1997-05-09 2000-09-19 Corporation De L'ecole Polytechnique Granular bed process for thermally treating solid waste in a flame
KR19980082082A (en) * 1998-08-21 1998-11-25 오석인 Evaporative Regenerative Incineration System of Organic Wastewater

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4755250B2 (en) * 2005-06-21 2011-08-24 中国科学院工程熱物理研究所 Combined dryer, wet sludge incineration apparatus with combined dryer, and method thereof

Also Published As

Publication number Publication date
CN1460166A (en) 2003-12-03
EP1390666A1 (en) 2004-02-25
CA2410719A1 (en) 2002-12-05
WO2002097328A1 (en) 2002-12-05
US20040020415A1 (en) 2004-02-05
KR20010070670A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
KR20140141343A (en) Incinerator for waste disposal
JP2004520565A (en) Thermal storage waste incineration system
JP4626875B2 (en) Low pollution incineration equipment
WO2007036914A1 (en) A boiler producing steam from flue gases with high electrical efficiency and improved slag quality
JP4953373B2 (en) Waste treatment power generation furnace
CN108105777A (en) A kind of small continuous consumer waste incineration processing system
JPH037806A (en) Waste disposal method and device
US5632210A (en) High temperature incinerator for bio-active solid wastes
KR200189422Y1 (en) Cupola furnace with apparatus capable of treating ash produced at treating waste
JPH1054522A (en) Refuse incineration plant
JP2898625B1 (en) Method and apparatus for removing and decomposing dioxins with unburned ash
JP3015266B2 (en) Waste melting equipment
JP2011522200A (en) Material oxidation process and related equipment
KR102631046B1 (en) waste-to-energy system
CN220707354U (en) Comprehensive utilization device for waste salt incineration
KR102471922B1 (en) A high temperature combustion system
CN212108415U (en) Household garbage pyrolysis gasification incineration grate furnace and treatment system thereof
KR950010992B1 (en) Fluidised bed incinerator
KR200390958Y1 (en) Boiler using refuse derived fuel
JP3006430U (en) Pollution-free incinerator
KR20000073008A (en) Destruction equipment and method by fire for combustible waste
JP3069972U (en) Incinerator equipment
JP2004169976A (en) Solid fuel boiler installation providing for dioxin
JP2002267131A (en) Incinerator
CN116357980A (en) High-water-content sludge continuous self-maintaining smoldering treatment system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050906