JP2004518544A - パターン化された粒状運動を用いるロボット的操作システム - Google Patents

パターン化された粒状運動を用いるロボット的操作システム Download PDF

Info

Publication number
JP2004518544A
JP2004518544A JP2002562794A JP2002562794A JP2004518544A JP 2004518544 A JP2004518544 A JP 2004518544A JP 2002562794 A JP2002562794 A JP 2002562794A JP 2002562794 A JP2002562794 A JP 2002562794A JP 2004518544 A JP2004518544 A JP 2004518544A
Authority
JP
Japan
Prior art keywords
container
particles
objects
electric field
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002562794A
Other languages
English (en)
Inventor
アレクサンダー ディー. ウィスナー−グロス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitre Corp
Original Assignee
Mitre Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitre Corp filed Critical Mitre Corp
Publication of JP2004518544A publication Critical patent/JP2004518544A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/12Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/30Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant
    • B05D2401/32Form of the coating product, e.g. solution, water dispersion, powders or the like the coating being applied in other forms than involving eliminable solvent, diluent or dispersant applied as powders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/724Devices having flexible or movable element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/88Manufacture, treatment, or detection of nanostructure with arrangement, process, or apparatus for testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/882Assembling of separate components, e.g. by attaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/888Shaping or removal of materials, e.g. etching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/89Deposition of materials, e.g. coating, cvd, or ald
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Micromachines (AREA)
  • Manipulator (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

対象物(130)のロボット的操作システム(100、100’、100’’)及び方法は、粒子(110、110’)のパターン化された粒状運動を設定するために、粒子(110、110’)がエネルギの転送によって掻き混ぜられるものを提供する。粒子(110、110’)のパターン化された粒状運動は、定常波(112)を形成する。対象物(130)は、定常波(112)にそれらの位置を合わせ、従って、定常波(112)の位置によって設定された形態で動的に配置される。定常波(112)の位置を、エネルギ応用システム(140)へ印加された信号の波形を制御することによって、予め設定することができる。所定の波形は、信号源(150、154)からエネルギ応用システム(140)へ供給される。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、複数の対象物(objects)のロボット的操作(robotic manipulation)のためのパターン化された粒状運動(patterned granular motion)の使用に関する。特に、本発明は、パターン化された粒状運動現象の使用に関し、粒子へ転送されるエネルギの波形を制御することによって、複数の粒子の定常波が位置付けられる。更に、特に、本発明は、この分子が粒子として用いられるパターン化された粒状運動の使用に関し、分子における帯電と、それらに印加される電界との間の相互作用によって、分子が掻き混ぜられる。更に、本発明は、ナノメータ寸法の組立体又はシステムの形成に関し、それら粒子へエネルギを転送することによってパターン化された粒状運動が誘発されたときに設定された粒子の定常波により形成された電界によって、ナノメータサイズの部品が動的に配列される。
【0002】
【従来の技術】
個別デバイスから、常に複雑に増大するパッケージ回路及びシステムへの固体電子の発達は、全体として回路素子の複雑な組み合わせを生産することを可能にすることに、一部で成功している。同時に、多様な同じ回路を生産する機能は、工業的及び商業的な使用に対して、回路のコスト面において魅力的な効果を提供する。更に小さい部品及び回路パターンを使用するこのような回路の発達は、このような固体デバイスに対する大量生産方法の限界が迫ってきている。
【0003】
【発明が解決しようとする課題】
単分子によって形成されたナノ寸法の電子部品及び回路が実現されている現在において、ナノ寸法の回路及びシステムの組立てに対して大量生産技術が必要となっている。現在、走査トンネル顕微鏡又は原子間力顕微鏡を用いる機械合成物(mechanosynthesis)は、分子ワイヤと、ある時間に1つのナノ寸法の回路を連続に生産するデバイスとを操作するために用いられる。化学合成物が、同時に多数の分子回路を製造する見込みがあるのに対し、生産された各回路を分離する方法は、今のところ発達していない。従って、ナノ寸法で集積されたような多数の回路構造を同時に生産することが可能な現実的な方法は存在しない。同様に、ナノ寸法の多数の機械的組立体又は量子システムを同時に組立てることが可能な現実的な方法も存在しない。
【0004】
パターン化された粒状運動が最近発見され、粒状媒体の薄層に観察される特有の機械的動作が、周期的な垂直発振にさらされる。この現象は、粒状媒体の定常波の形態によって特徴付けられる。薄い粒状層に垂直発振の応用によって、これら定常波が発生する。定常波の特有のパターンを、正方形、縞、波形及び六角形のようなパターンで形成でき、従って遠方で特定できる。
【0005】
粒子は、通常、0.05〜3mmの範囲の径を有するガラス又は金属の球体によって形成される。現在のところパターン化された粒状運動の関心は、工業的な用途に重要性がなく、実質的に学術的なところにある。
【0006】
【課題を解決するための手段】
従って、本発明の目的は、パターン化された粒状運動の現象を用いて、大量効果のロボット的操作のためのシステム及び方法を提供することである。複数の対象物のロボット的操作システムは、その中に対象物を受け入れるコンテナを含む。複数の粒子はコンテナ内に配置され、複数の粒子へエネルギを印加する組立体は、パターン化された粒状運動を設定するために設けられ、それにより複数の反復垂直方向定常波を形成する。信号発生器は、互いに所定の位置に定常波を動的に位置付けるために、所定の波形を有するエネルギを供給するエネルギ応用組立体に接続されたものを提供する。定常波の所定の位置は、所定の形態で対象物を配列する。別の見地から、複数の対象物のロボット的操作方法が提供され、コンテナを備え、複数の粒子を該コンテナ内に備える。操作すべき複数の対象物が、コンテナに加えられ、定常波パターンを発生する所定の波形を有するエネルギによって複数の粒子が掻き混ぜられる。粒子の定常波パターンは、対象物を動的に配列する。基板は、対象物の接着に適合し、コンテナ内に位置付けられる。
【0007】
【発明の実施の形態】
図1〜図11を参照すると、パターン化された粒状運動を用いて対象物を動的に操作するロボット的操作システム100及び100’が表されている。以下の段落から理解できるように、ロボット的操作システム100及び100’は、具体的に、並行して多数の構造を組立てるための、対象物の大量一括操作の概念に関する。ロボット的操作システム100’は、特に、ナノメータ寸法の組立体又はシステムの応用に関する。これは、回路パターンを備え、分子電子デバイスを位置付け、機械的構造を形成し、又は、互いに位置付けることによって分子を並べ替える、分子の動的配列のようなものである。
【0008】
特に、図1及び図3を参照すると、システム100は、複数の粒子110がコンテナ120内に配置されていることを表している。エネルギ応用システム140は、底面壁122のような、コンテナ120の少なくとも1つの壁を振動させるために、コンテナ120にエネルギを印加する。壁122の振動は、複数の反復垂直方向定常波112を形成し、粒子110におけるパターン化された粒状運動を設定する。定常波112の粒子パターンを達成するために、複数の壁を振動させることができる。また、コンテナ120内には、操作されるべき複数の対象物130が備えられる。定常波112の粒子110と対象物130との間の衝突は、定常波と対応関係にある対象物を動的に配列する。定常波が「縞状」に形成される場合、対象物の列が実現され得る。複雑な波形で印加されるエネルギを用いて定常波パターンを形成することによって、定常波は、所定の位置に配置され得る。
【0009】
エネルギ応用システム140は、信号源150によって駆動される1つ以上の振動アクチュエータ142を含んでもよい。振動アクチュエータ142は、例えばコンテナ壁122に機械的に結合された、電気機械デバイス又は圧電デバイスであってもよい。圧電デバイスが、交互に、一体構造の形態における底面壁の構造に組み込まれてもよい。信号源150は、少なくとも1つの信号発生器154を含み、その発生器154は、振動アクチュエータ142を駆動する所定の波形を有する電気信号を出力する機能を持つ。信号発生器154から出力される信号は、粒子媒体110の不均等な空間定常波を形成する非正弦波発振信号であってもよい。
【0010】
図3Aに表されたように、エネルギ応用システム140は、複数の振動アクチュエータ142a〜142nによって形成されてもよく、その各々は、信号源150によってそれぞれ駆動される。信号源150は、複数の出力を有する単一信号発生器によって形成されてもよく、又は、図に表されているように、複数の信号発生器154a〜154nによって形成されてもよい。信号発生器154a〜154n各々は、振動アクチュエータ142a〜142nにそれぞれ結合される出力145a〜145nを有する。コンテナ120内の媒体によって形成され、結果として生じた振動パターンに連係するために、信号発生器154a〜154nは、コントローラ152に結合される。該コントローラは、各信号発生器154a〜154nへコマンド信号を出力し、それら信号発生器から状態を受信することもできる。コントローラ152は、信号発生器を制御するためにプログラムされたマイクロプロセッサ又はパーソナルコンピュータであってもよい。複数の振動アクチュエータ142a〜142nは、別個のデバイスであってもよく、コンテナの1つ以上の壁に一体的に形成されていてもよい。
【0011】
図4に加えて、図3に戻って参照すると、コンテナ120内の粒子110に印加されたエネルギは、垂直定常波112を設定する。定常波112は、複数の対象物130と衝突することによって該対象物130を同時に機械的に操作する。複数の衝突が、各定常波の粒子とそれぞれの対象物130との間に発生し、定常波と対応関係にある対象物を動的に位置付けるために、矢印方向102によって表されたように対象物に力を印加する。従って、定常波が特定パターン(例えば、縞、正方形、六角形等)を設定するところで、対象物130は、それらのパターンと対応関係にあるように動的に配列され得る。粒子110に印加されたエネルギの波形及び周波数を制御することによって、所望されるようにパターンが設定され得る。操作される対象物は、例えば、集積回路チップ、個別の回路部品、導電素子又は機械部品にすることができる。対象物の動的配列は、同時に形成された、複数の実質的に同じ回路又はパターンを表すことができる。同様に、操作される対象物は、複数の実質的に同じ機械的組立体又はシステムに組立てられる機械的部品にすることができる。図7の実施形態に対して記載されているように、基板134は、コンテナ120に位置付けられ、対象物130を接着するように適合される。
【0012】
ミクロン寸法の粒子にエネルギを印加することによって、ミクロン寸法に下がったコンテナ120内の垂直振動を介して、粒子の粒状動作が設定される。しかしながら、ナノメータ寸法の対象物を操作するためには、従来達成されていない、ナノメータ寸法の粒子におけるパターン化された粒状運動を設定することが必要となる。
【0013】
ナノメータ寸法の粒子の間でパターン化された粒状運動を誘導することに関して、コンテナの壁への衝突を介してナノメータ寸法の粒子を収集するためにエネルギを印加することに係る複数の問題がある。コンテナの発振壁の難点は、粒子の側面の跳ね返り速度における異方性(anisotropy)を生じることである。発振壁の通常の力では、粒子を越えるナノメータ寸法で均一に分布されそうになく、衝突に基づいて破壊する低破壊エネルギ(low fracture energies)を有する粒子を生じる。更に、物理的発振壁の制御の正確さは、ナノメータ寸法の空間で定常波を発生する必要があり、現在の技術のトランスデューサで達成することは容易ではない。
【0014】
これら問題を解決するために、線105によって表された空間均等電界は、図5で説明されたように、コンテナ120の一部分108に適用される。帯電された粒子110’を用いて、発振電界は、粒子を垂直に加速する垂直振動表面をエミュレートする。このような小さいサイズの粒子を用いることは、解決しなければならない別の問題を導出する。ブラウン運動は最小にしなければならず、内部粒子衝突は適切な損失エネルギを必要とし、それらの粒子は、細分化なしに衝突に耐えるために十分な構造強度のものである。用いるために選択されるナノメータ寸法の粒子であって、パターン化された粒状運動が発振電界を用いて設定されるその粒子は、閉ケージ構造を有する単分子である。このような閉ケージ構造は、C60分子に見られ、その構造は実質的に球状である。C80、C140、C180及びC240のような同じ特性を有する他の分子もまた、ナノメー寸法の粒子として提供され得る。バックミンスターフラーレン分子又は「バッキーボール」として公知のC60分子は、帯電されることができ、パターン化された粒状運動が設定されたとき発生する多数の衝突に耐えるために、十分な強度を有する。図2に説明されたように、バックミンスターフラーレン分子は、粒子110’として用いられる。また、1つ以上の発振電界の応用によって、機械的に加速されたより大きい粒子と分かるものに対応する垂直定常波112を設定する。
【0015】
垂直方向に粒子110’を加速させるために、粒子110’は帯電され、システム110’のエネルギ応用システム140は、電界放射システム145を含む。このシステム145は、それらの中に1つ以上の発振電界を設定するコンテナ120の近傍に配置される複数の電極を有する。粒子110’は、少なくとも2つの電極プレートの間に配置され、所定の波形を有する電気信号が、信号源150から印加される。その配列は、粒子におけるパターン化された粒状運動を設定するために、垂直振動表面をエミュレートする。粒子110’の垂直定常波112は、ナノメータ寸法の対象物130を動的に配列することになる。しかしながら、機械的衝突によって操作される代わりに、ナノメータ寸法の対象物、径又は最小寸法が10ミクロンよりも小さいサイズの対象物が、クーロン電界によって操作される。
【0016】
コンテナ120内で要求される電界を設定することに使用する電極配列の一例として、図5Aが参照図面となる。帯電された粒子110’の加速は、コンテナ120を囲み、逆に帯電された電極プレート144及び146の間に形成された電界によって達成される。プレート144及び146は環状になるように描かれている一方で、このようなものは単なる例であり、具体化された発明思想から離れることのない、多数の異なる外形で形成されていてもよい。
【0017】
更に図6を参照すると、プレート144及び146の間に設定された発振電界は、帯電された粒子110’にエネルギを印加する。印加されたエネルギは、発振するが、必ずしも周期的ではない。これにより形成された各定常波は、それぞれの対象物130における測定可能なクーロン力を作用させるそれぞれの電界106を設定する。それら対象物は、それぞれの電界106と相互作用する電界104を有する。
【0018】
操作すべき対象物130は、対象物の所定の配列又は対象物の変形を設定するために、帯電されなくてもよいし、又は、粒状定常波112の帯電極性と同じ又は反対のどちらか一方の極性に帯電する。対象物130が、帯電し、代表的な定常波112の極性と反対の極性を有する場合、引力が、それらの間に設定される。以下の段落で説明されるように、特定のパターンに対象物を正確に配列するのと反対に、対象物を所定の形態に変形するために、又は、電荷の差を用いて対象物を並び替えるために、コンテナ120内に発生した定常波のパターンによって設定されたクーロン電荷が用いられ得る。
【0019】
戻って図5Aを参照すると、電極プレート144及び146は、信号源150に電気的に接続される。信号源は、コンテナ120内に粒子110’の所望の定常波パターンを設定するために、所定の波形を有する発振信号を出力する。図3及び図3Aに関して説明されたように、信号源150は、内部に又は外部コントローラの使用を介して、要求された波形パターンを合成するようにプログラム可能な1つ以上の信号発生器によって形成されてもよい。発生した信号の波形はフーリエ列として表現されてもよく、その係数は、所望の形状の出力信号波形を出力するように選択される。プレート144及び146に印加される信号の波形の形状を制御することにより、粒子の定常波の配置が制御され得る。それゆえ、定常波によって発生した電界の形状又はトポロジもまた、制御され得る。粒子110’の定常波によって発生した電界の形状又はトポロジを制御することによって、対象物130は、所定のパターンに、又は公知の方法で操作される他のパターンに、配列され得る。
【0020】
定常波の配置は、更に、コンテナ120内に設定された多数の電界の組み合わせによって制御されてもよい。電極プレート144及び146の間に設定された電界に加えて、追加電界は、それぞれ対向する側面電極143の対の間に設定され、電極143はコンテナ120の近傍に加えられてもよい。複数の側面電極143は、一緒に、コンテナ120を実質的に囲み、その各々は、所定の波形を有する信号によって分かれて励磁される。他の実施形態によれば、プレート144及び146は、複数のセクションに更に分割され、その各々は、分かれて励磁される。配列は、単独で用いられるか、又は、複数の側面電極143との組み合わせで用いられる。また、配列は、図3Aの実施形態の複数の垂直アクチュエータの使用と類似する。
【0021】
達成可能な制御率の説明として、図6Aに表された3次元プロット図がある。プロットは、コンピュータシミュレーションによって得られた電界強度の分布を描いている。シミュレーションは、粒子の定常波の分布に対応して、クーロン電界が、所定のパターンで分布し得ることを表している。定常波の分布は、コンテナ内に設定された電界強度パターンによって制御される。
【0022】
ここに開示された方法及びシステムによって操作されるであろうナノメータ寸法の対象物は、分子ダイオード、分子トランジスタ、分子論理デバイス、又は単分子によって形成される他の回路を含む。「ワイヤ」として機能する分子構造を有するような分子は、医薬/生薬学論理等に重要性を有する。量子コンピュータの部品、別の新規なタイプのナノコンピュータ、及びナノマシンもまた、この方法によって操作されかつ組立てられることになる。
【0023】
単分子から形成される電子デバイス及び回路の開発で関心が非常に高い一方で、分子及び他のナノメータ寸法の回路をより複雑な機能と組み合わせる、内部接続導電素子として機能し得る構造に非常に関心が高い。1つの期待される導電要素は、カーボンナノチューブである。分子110’の定常波の位置の調整によって、ナノチューブのような対象物が、所定の電気回路パターンに配置され得る。その回路パターンに用いるために、ナノチューブ130は、より複雑な回路に組み合わされる分子回路素子と同様に、基板に適用する必要がある。
【0024】
図7を参照すると、対象物130を基板に適用する1つの方法が表されている。この例において、基板134は対象物130の上部に配置され、基板134の下側表面は、対象物を接着するように適合される。このような適合は、対象物130の構成に対して相性の良い基板材料を選択する形態からなってもよい。それは、対象物130と基板134との間の接着剤を備えるコーティングの応用、又は、対象物130を引き寄せるように基板134に対する特定の帯電の応用によるものでもよい。基板134は、パターン化された粒状運動の設定の前に又はそれに続いて、コンテナ120内に又はその上に位置付けられてもよい。対象物130が底面の基板の表面上に一度位置付けられると、基板は、コンテナ120から分離されてもよく、更に処理するために渡されてもよい。基板を複数の個別のセグメントに分離して含んでもよく、複数の集積回路チップのためにウェーハを分離することと異ならない。従って、複数の実質的に同一且つ分離可能なナノ寸法の回路又は回路パターンが、同時に形成され得る。
【0025】
対象物が複数の粒子110’と基板134の底部表面との間に配置されている空間124は、真空、ガス、液体又はゲルのような媒体で満たされてもよい。このような媒体は、処理を容易にし、若しくは操作すべき対象物の特性の効果を得、又は、粒子のような特定の材料の使用を容易にする。
【0026】
ここで図8を参照すると、対象物130が、位置付けられ、かつ、基板に適用された他の方法が表されている。この配列において、基板134は、該基板134を介して対象物130に作用する定常波112によって発生した電界と共に、対象物130と粒子110’との間に位置付けられる。対象物130は、前述された方法によって基板134に接着するようになされることもでき、又は、続いて基板134に貼るために対象物を位置付けるように取り扱われる。基板134は、粒子110’が配置されるコンテナ120の部分に対して閉を形成することができる。それゆえ、粒子110’と基板134との間の空間124は、所望の特性を促進するように選択された媒体で満たされることもできる。これは、ガス又は液体の分子を導入することによる抵抗を減らすために、真空を利用するようにする。基板134の上部で、空間126は、同じ又は異なる媒体で満たされてもよい。例えば、対象物130が液体の中で一括処理によって形成される分子回路であるならば、対象物130が所望の形態に位置付けられるまで、その液体は、空間126内に維持され得る。粒子は、他方で、それら動作に対する抵抗を減らすために真空の空間内に配置されてもよい。
【0027】
分子が、医学/生薬的応用で並べ替えられる場合、空間126内の媒体は、ゲルとされるであろう。図9に表されたように、粒子110’の定常波112によって形成された電界の結果として、ゲル136は、基板134の上部に、異なる方向に配置された対象物130a及び130bと一緒に配置される。粒子110’は非ゲル媒体である。このようなゲルは、既に、電気泳動処理(electrophoretic prosess)で広く用いられている。ナノメータ寸法の粒子で設定されるパターン化された粒状運動は、電気泳動処理の非常に細かい制御を提供し、2又は3次元で処理する能力を提供する。
【0028】
ここで図10を参照すると、基板134上に配置されたカーボンナノチューブ130cが表されている。基板134上の精密な位置にナノチューブ130cを位置付けることに加えて、粒子110’の定常波112は、ナノチューブ130cを変形させる(distort)ために用いられ得る。その変形は、わずかな角度偏差又は平行移動の範囲内にあり、ナノチューブの電気特性は、ねじれに対して影響を及ぼさず、ナノチューブの電気特性は、結果として変化させられる。従って、定常波は、図11A、図11B及び図11Cに表されているように、縞112’の形状を得る。負に帯電されたナノチューブ130cは、逆の帯電極性のそれぞれの縞112’にそれ自身を並べる。従って、図11Cのように、それぞれの縞112’はアーチ形状を有し、ナノチューブ130cは、アーチ外形に曲げられることになる。アーチ外形の径が図11Aに描かれたように小さい場合、ナノチューブ130cは、「ねじれ」の範囲で曲げられる。ここにおいて、ナノチューブの電気特性は、影響を及ぼす。このような変形に加えて、ナノチューブ130cは、図11Bに表されたように、一方の位置から他方の位置へ平行移動され得る。定常波がより複雑なパターンに位置付けられる場合、ナノチューブ130cは、より複雑な形状に変形され得る。
【0029】
従って、パターン化された粒状形態の所定のトポロジカルな設定は、電界放射システム145に対する所定の波形を有する発振信号の応用によって選択的に形成され得る。電界放射システム145によって設定された電界は、次々に、コンテナ120内に配置された帯電した粒子110’へエネルギを加える。そのエネルギは、粒子のパターン化された粒状運動を設定するために十分なものである。帯電した粒子110’のパターン化された粒状運動は、対象物を動的に配列するために用いられる電界を生じる定常波を有する、それぞれの定常波からなる。パターン化された粒状運動を設定するための電界の使用を通して、C60のようなナノメータ寸法の粒子が、ナノメータ寸法の対象物を操作するために用いられ得る。カーボンナノチューブ若しくはポニフェニレン分子ワイヤ、分子電子デバイスを規定する分子、量子コンピュータ部品又はナノメカニカル部品によって規定された導体のようなナノメータ寸法の対象物は、全部一緒に操作され得る。
【0030】
ミクロン及びミリメータ寸法のデバイスよりも大きいために、そのエネルギは、コンテナ120の壁に配置する振動トランスデューサを用いて粒子に加えられ、それによりパターン化された粒状運動を設定する。パターン化された粒状運動によって形成された定常波は、定常波内の粒子とそれぞれの対象物との間の衝突によって対象物を操作するために用いられ得る。図7に表されような配列と同様に、基板の配置に関して、コンテナ壁の振動配置によって生じた定常波によって操作された対象物は、複数の実質的に同じパターンを提供するために、基板の下側表面に接着して作られ得る。
【0031】
前述されたように、分子の所定の定常波パターンは、電源150によって供給された波形を表す1つ以上のフーリエ列の所定の係数を特定することによって設定される。対象物の操作は、別個の段階の中で所定のプログラムに従って時間と共に変化する電源150からの信号の波形で実行されてもよい。しかしながら、電源150から出力された波形が操作に応答して積極的に変更されるならば、対象物の操作は、より精密になされる。このようなフィードバック配列は、図12におけるシステム100’’に対して概略的に説明される。前述したように、信号源150は、粒子の所定の定常波パターンを提供するために設定された波形を有する信号を提供する。電源150からの出力は、エネルギ応用システム140に接続され、コンテナ120内で粒子へ出力される電源からのエネルギを転送する。前述されたように、エネルギ応用は、機械的か又は電気的かのどちらか一方となり得る。
【0032】
加えて、ロボット的操作システム100’’は、電源150から出力された1つ以上の波形の調整用にフィードバックを提供する検知システム160を含み、それによりコンテナ120内の定常波の位置を調整する。システム100’’が、複数の対象物130を並行に操作すると同時に、検知システム160は、1個程度の対象物の一部の位置及び/又は他の特性をモニタする。検知された位置又は測定された他の特性に基づいて、検知システム160は、それらによる1つ以上の波形出力を変更するために、電源150への出力を備える。検知システム160は、対象物の位置を検知するために、光/画像又は走査プローブ顕微鏡装置を含む。電気的及び/又は光学的な検知は、対象物が操作されるように変更する対象物の他の特性をモニタすることを含んでもよい。従って、原子間力顕微鏡のプローブは、操作されるカーボンナノチューブと接触するように用いられ得る。そのプローブは、例えばナノチューブの電気的コンダクタンスを測定するために電子モニタ装置に接続され、それらの「ねじれ」の形態を検出する。フィードバックの使用の1つに、例えば、対象物の非常に精密な操作を提供することにある。
【0033】
複数の対象物のロボット的操作方法は、コンテナを提供する段階を含み、そのコンテナは、高い周波数で高速な粒状跳ね返りを生じることを許容し、コンテナ内に複数の粒子を提供する。操作すべき対象物はコンテナに与えられ、粒子は、定常波パターン(即ちパターン化された粒状運動)を生じる所定の波形を有するエネルギで掻き混ぜられる。定常波パターンは、対象物を動的に配列する。その配列は、例えば、電子デバイスによって規定された対象物の回路設定、又は電気的導電構造によって規定された対象物の電気的回路パターンであり得る。対象物の配列は、同様に、他のタイプの組立体を形成することもできる。また、その方法は、コンテナ内に基板を位置付けることを含み、その基板は、対象物を接着するように適合する。基板の位置付けは、粒子を掻き混ぜる前又はその後にすることができる。複数の粒子の掻き混ぜは、コンテナの壁を振動することによって達成され得る。粒子を掻き混ぜる他の方法として、粒子が所定の極性に帯電するように、コンテナ内で発振電界を設定することである。操作される対象物は、10ミクロンよりも小さいサイズ、即ち、10ミクロンよりも小さい直径か、又は対象物の外形の最も小さい径が10ミクロンよりも小さいものであり、その対象物は単分子であってもよい。
【0034】
粒子自身は、単分子であってもよく、このような分子は、例えばバックミンスターフラーレン分子のような、閉ケージ構造を有する。分子及び対象物の両方は、真空、ガス、液体又はゲルからなる群に依存せずに選択された媒体内に提供され得る。この方法を用いて、複数の実質的に同一のナノ寸法の構造(例えば電気、量子又は機械)が、基板上に形成され得る。従って、複数の回路の組立て、回路パターン、システム、マシン又は組立体は、並行に行い、一括組立処理を構成する。
【0035】
この発明は、特定の形式及び実施形態に関して記載されているけれども、前述とは別の種々の変更は、本発明の技術的思想又は見地と離れることなしに、
例えば、等価な構成要素が、具体的に表され且つ説明されるように置き換えられてもよい。特別な特徴は、他の特徴と独立して用いられてもよい。
特定の場合、要素の特別なハイチは、
従属請求項に規定されたような本発明の技術的思想又は見地から離れることない全てのものを
【図面の簡単な説明】
【図1】
ミクロン又はミリメータサイズの粒子におけるパターン化された粒状運動の概略的な粒子モデル図である。
【図2】
粒子としてC60分子を用いるパターン化された粒状運動の概略的な分子モデル図である。
【図3】
本発明のシステムにおける一実施形態の概略的な構成図である。
【図3A】
本発明で用いられるエネルギ応用システムにおける他の実施形態の概略的な構成図である。
【図4】
本発明によって操作される対象物の概略的な説明図である。
【図5】
本発明のシステムにおける他の実施形態の概略的な構成図である。
【図5A】
本発明の模範的な電界放射電極配置を表す、図5の実施形態の概略的な構成図である。
【図6】
本発明の他の実施形態によって操作される対象物の概略的な説明図である。
【図6A】
本発明のコンピュータシミュレーションから得られたクーロン電界強度を説明する3次元プロット図である。
【図7】
第1の配置で組み込まれた基板を有する、本発明の他の実施形態の概略的な構成図である。
【図8】
第2の配置で組み込まれた基板を有する、本発明の他の実施形態の概略的な構成図である。
【図9】
操作される対象物がゲル内に配置されている本発明の概略図である。
【図10】
操作される対象物がカーボンナノチューブである本発明の概略図である。
【図11A】
カーボンナノチューブが、本発明による方法で変形された概略図である。
【図11B】
カーボンナノチューブが、本発明による方法で変形された概略図である。
【図11C】
カーボンナノチューブが、本発明による方法で変形された概略図である。
【図12】
フィードバックを組み込んだ本発明の構成図である。
【符号の説明】
100、100’、100’’ ロボット的操作システム
102 方向矢印
104、106 電界
105 線
108 コンテナの部分
110、110’ 粒子
112、112’ 定常波
120 コンテナ
122 底面壁
124、126 空間
130、130a、130b、130c 対象物、ナノチューブ
134 基板
136 ゲル
140 エネルギ応用システム
142、142a〜142n 振動アクチュエータ
143 電極
144、146 電極プレート
145 電界放射システム
145a〜145n 出力
150 信号源、電源
152 コントローラ
154、154a〜154n 信号発生器
155a〜155n
160 検知システム

Claims (40)

  1. 複数の対象物のロボット的操作システムであって、
    前記対象物をその中に受け入れるコンテナと、
    前記コンテナ内に配置される複数の粒子と、
    前記複数の粒子のパターン化された粒状運動を設定するために、該複数の粒子にエネルギを印加し、それにより複数の反復垂直方向定常波を形成する手段と、
    互いに所定の位置に前記定常波を動的に位置付けするために、所定の波形を有する前記エネルギを供給する前記エネルギ応用手段に接続された信号手段と
    を有し、前記定常波の所定の位置は、前記対象物を所定の形態に動的に配列することを特徴とするシステム。
  2. 前記エネルギ応用手段は、前記コンテナの壁面を振動させる手段を含むことを特徴とする請求項1に記載のシステム。
  3. 前記エネルギ応用手段は、前記コンテナ内に発振電界を設定する手段を含むことを特徴とする請求項1に記載のシステム。
  4. 前記複数の粒子の各々は、単分子であることを特徴とする請求項1に記載のシステム。
  5. 前記各単分子は、閉ケージ構造を有する分子であることを特徴とする請求項4に記載のシステム。
  6. 前記各閉ケージ構造分子は、バックミンスターフラーレン分子であることを特徴とする請求項5に記載のシステム。
  7. 前記エネルギ応用手段は、前記コンテナ内に発振電界を設定する手段を含み、前記分子の定常波はそれぞれ、前記対象物を前記所定の形態に動的に配列する電界を発生することを特徴とする請求項4に記載のシステム。
  8. 前記対象物は、電気的導体であり、前記所定の形態は、複数の実質的に同じナノ寸法の回路パターンを規定することを特徴とする請求項4に記載のシステム。
  9. 前記対象物は、単分子であることを特徴とする請求項4に記載のシステム。
  10. 前記粒子及び前記対象物は、真空、ガス、液体及びゲルからなる群に依存せずに選択された各媒体であることを特徴とする請求項4に記載のシステム。
  11. 前記対象物は、分子回路要素であり、前記所定の形態は、複数の実質的に同じナノ寸法の回路を規定することを特徴とする請求項4に記載のシステム。
  12. 前記対象物は、機械的構造であり、前記所定の形態は、複数の実質的に同じナノ寸法の機械的組立体を規定することを特徴とする請求項4に記載のシステム。
  13. 前記対象物は、電気的導体であり、前記所定の形態は、複数の実質的に同じ回路パターンを規定することを特徴とする請求項1に記載のシステム。
  14. 前記粒子及び前記対象物は、真空、ガス、液体及びゲルからなる群に依存せずに選択された各媒体であることを特徴とする請求項1に記載のシステム。
  15. 前記対象物は、単分子であることを特徴とする請求項1に記載のシステム。
  16. 10ミクロンよりも小さいサイズの複数の対象物のロボット的操作システムであって、該対象物は、それらの所定の形態を形成するために操作されており、
    前記対象物をその中に受け入れるコンテナと、
    前記コンテナ内に配置される複数のイオン化分子と、
    前記複数のイオン化分子のパターン化された粒状運動を設定するために該複数のイオン化分子に発振電界を印加し、それにより複数の反復垂直方向定常波を形成する手段と、
    互いに所定の位置に前記定常波を動的に位置付けるために、所定の波形を有する前記発振電界を設定する前記発振電界応用手段に接続された信号手段と
    を有し、前記イオン化分子の定常波はそれぞれ、前記対象物を前記所定の形態に動的に配列する電界を発生することを特徴とするシステム。
  17. 前記対象物は、電気的導体であり、前記所定の形態は、複数の実質的に同じナノ寸法の回路パターンを規定することを特徴とする請求項16に記載のシステム。
  18. 前記対象物は、カーボンナノチューブであることを特徴とする請求項17に記載のシステム。
  19. 前記カーボンナノチューブは,電界を発生した前記定常波によって曲げられていることを特徴とする請求項18に記載のシステム。
  20. 前記カーボンナノチューブは、電界を発生した前記定常波によって変形されていることを特徴とする請求項18に記載のシステム。
  21. 前記カーボンナノチューブは、電界を発生した前記定常波によって平行移動されていることを特徴とする請求項18に記載のシステム。
  22. 前記イオン化分子及び前記対象物は、真空、ガス、液体及びゲルからなる群に依存せずに選択された各媒体であることを特徴とする請求項16に記載のシステム。
  23. 前記対象物は、分子回路要素であり、前記所定の形態は、複数の実質的に同じナノ寸法の回路を規定することを特徴とする請求項16に記載のシステム。
  24. 前記対象物は、ナノメータ寸法の機械的要素であり、前記所定の形態は、複数の実質的に同じナノ寸法の機械的組立体を規定することを特徴とする請求項16に記載のシステム。
  25. 複数の対象物のロボット的操作方法であって、
    コンテナを備える段階aと、
    前記コンテナ内に複数の分子を備える段階bと、
    操作すべき前記対象物を前記コンテナへ加える段階cと、
    前記対象物を動的に配列する前記粒子の定常波パターンを発生するために、所定の波形を有するエネルギで前記複数の粒子を掻き混ぜる段階dと、
    前記対象物を接着させるに適合した基板を、前記コンテナに位置付ける段階eとを有することを特徴とする方法。
  26. 前記複数の粒子を励起する段階は、前記コンテナの壁を振動させる段階を含むことを特徴とする請求項25に記載の方法。
  27. 前記複数の粒子を備える段階は、各粒子が単分子である該粒子を提供する段階を含むことを特徴とする請求項25に記載の方法。
  28. 前記複数の分子を掻き混ぜる段階は、発振電界を設定し且つ該分子に該発振電界を印加する段階を含むことを特徴とする請求項27に記載の方法。
  29. 前記発振電界を設定し且つ印加する段階は、前記発振電界を設定するために所定の波形を発生する段階を含み、それにより前記対象物を所定のパターンに動的に配列することを特徴とする請求項28に記載の方法。
  30. 複数の対象物のロボット的操作方法であって、
    コンテナを備える段階aと、
    前記コンテナ内に複数のイオン化分子を備える段階bと、
    10ミクロンよりも小さいサイズを有する操作されるべき前記対象物を、前記コンテナに加える段階cと、
    前記対象物を動的に配列する前記イオン化分子の定常波パターンを発生するために、所定の波形を有する電界で前記複数のイオン化分子を掻き混ぜる段階dと、
    前記対象物を接着させるに適合した基板を、前記コンテナに位置付ける段階eとを有することを特徴とする方法。
  31. 前記基板を位置付ける段階は、前記対象物の上部に前記基板を配置する段階を含むことを特徴とする請求項30に記載の方法。
  32. 前記基板を位置付ける段階は、前記イオン化分子と前記対象物との間で前記基板を配置する段階を含むことを特徴とする請求項30に記載の方法。
  33. 前記対象物を加える段階は、操作すべき対象物として単分子を提供する段階を含むことを特徴とする請求項30に記載の方法。
  34. 前記掻き混ぜる段階は、前記対象物を電気回路パターンに動的に配列するために、前記所定の波形を発生する段階を含むことを特徴とする請求項33に記載の方法。
  35. 前記分子を備える段階は、カーボンナノチューブを備える段階を含むことを特徴とする請求項33に記載の方法。
  36. 前記複数のイオン化分子を備える段階は、真空、ガス、液体及びゲルからなる群から選択された媒体内に前記分子を備える段階を含むことを特徴とする請求項30に記載の方法。
  37. 前記対象物を加える段階は、真空、ガス、液体及びゲルからなる群から選択された媒体内に前記対象物を備える段階を含むことを特徴とする請求項36に記載の方法。
  38. 前記対象物を加える段階は、操作すべき対象物として分子回路要素を備える段階を含み、前記掻き混ぜる段階は、前記分子回路要素を複数の実質的に同じナノ寸法の回路に動的に配列するために、前記所定の波形を発生する段階を含むことを特徴とする請求項30に記載の方法。
  39. 前記対象物を加える段階は、操作すべき対象物としてナノメータ寸法の機械的要素を備える段階を含み、前記掻き混ぜる段階は、前記機械的要素を複数の実質的に同じナノ寸法の機械的組立体に動的に配列するために、前記所定の波形を発生する段階を含むことを特徴とする請求項30に記載の方法。
  40. 複数の対象物のロボット的操作システムであって、
    前記対象物をその中に受け入れるコンテナと、
    前記コンテナ内に配置される複数の粒子と、
    前記複数の粒子のパターン化された粒状運動を設定するために該複数の粒子にエネルギを印加し、それにより複数の反復垂直定常波を形成する手段と、
    互いに所定の位置に前記定常波を動的に位置付けするために、所定の波形を有する前記エネルギを供給する前記エネルギ応用手段に接続された信号手段と
    を有し、前記定常波の所定の位置は、前記対象物を所定の形態に動的に配列しており、
    更に、操作すべき前記複数の対象物の少なくとも1つの対象物の少なくとも1つの特性をモニタする手段であって、前記所定の波形を変更するフィードバック信号を提供する前記信号手段に接続された出力を有し、それにより前記所定の形態を調整する手段を有することを特徴とするシステム。
JP2002562794A 1999-08-12 2001-02-07 パターン化された粒状運動を用いるロボット的操作システム Pending JP2004518544A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/372,619 US6216631B1 (en) 1999-08-12 1999-08-12 Robotic manipulation system utilizing patterned granular motion
PCT/US2001/000681 WO2002063062A1 (en) 1999-08-12 2001-02-07 Robotic manipulation system utilizing patterned granular motion

Publications (1)

Publication Number Publication Date
JP2004518544A true JP2004518544A (ja) 2004-06-24

Family

ID=26680394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002562794A Pending JP2004518544A (ja) 1999-08-12 2001-02-07 パターン化された粒状運動を用いるロボット的操作システム

Country Status (9)

Country Link
US (2) US6216631B1 (ja)
EP (1) EP1358361B1 (ja)
JP (1) JP2004518544A (ja)
CN (1) CN1318640C (ja)
AU (1) AU2001234427B2 (ja)
CA (1) CA2404870C (ja)
IL (1) IL152028A0 (ja)
TW (1) TW550303B (ja)
WO (1) WO2002063062A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001095375A1 (en) * 2000-06-06 2001-12-13 The Penn State Research Foundation An electro-fluidic assembly process for integration of electronic devices onto a substrate
US6559550B2 (en) * 2000-11-03 2003-05-06 Lockheed Martin Corporation Nanoscale piezoelectric generation system using carbon nanotube
US20030176914A1 (en) * 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
US6776118B2 (en) * 2002-04-16 2004-08-17 The Mitre Corporation Robotic manipulation system utilizing fluidic patterning
US8915692B2 (en) * 2008-02-21 2014-12-23 Harvest Automation, Inc. Adaptable container handling system
CN101565164B (zh) * 2009-05-31 2011-05-11 北京石油化工学院 量子点生长控制方法及控制设备
US8972053B2 (en) 2011-08-30 2015-03-03 5D Robotics, Inc. Universal payload abstraction
US9147173B2 (en) 2011-10-31 2015-09-29 Harvest Automation, Inc. Methods and systems for automated transportation of items between variable endpoints
US8937410B2 (en) 2012-01-17 2015-01-20 Harvest Automation, Inc. Emergency stop method and system for autonomous mobile robots

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169874A (ja) * 1984-09-14 1986-04-10 Nippon Paint Co Ltd 粉体表面処理法
US4794878A (en) * 1987-08-03 1989-01-03 Xerox Corporation Ultrasonics traveling wave for toner transport
US5591312A (en) * 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
US5620512A (en) * 1993-10-27 1997-04-15 University Of Chicago Diamond film growth from fullerene precursors
JPH09122480A (ja) * 1995-11-08 1997-05-13 Hitachi Ltd 超音波処理方法および装置
JPH10109283A (ja) * 1996-10-01 1998-04-28 Agency Of Ind Science & Technol 非接触マイクロマニピュレーション方法及び装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102690A (en) * 1990-02-26 1992-04-07 Board Of Trustees Operating Michigan State University Method coating fibers with particles by fluidization in a gas
US5876684A (en) * 1992-08-14 1999-03-02 Materials And Electrochemical Research (Mer) Corporation Methods and apparati for producing fullerenes
CN1093301A (zh) * 1993-04-09 1994-10-12 曾龄庆 电脑辅助喷涂系统的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6169874A (ja) * 1984-09-14 1986-04-10 Nippon Paint Co Ltd 粉体表面処理法
US4794878A (en) * 1987-08-03 1989-01-03 Xerox Corporation Ultrasonics traveling wave for toner transport
US5591312A (en) * 1992-10-09 1997-01-07 William Marsh Rice University Process for making fullerene fibers
US5620512A (en) * 1993-10-27 1997-04-15 University Of Chicago Diamond film growth from fullerene precursors
JPH09122480A (ja) * 1995-11-08 1997-05-13 Hitachi Ltd 超音波処理方法および装置
JPH10109283A (ja) * 1996-10-01 1998-04-28 Agency Of Ind Science & Technol 非接触マイクロマニピュレーション方法及び装置

Also Published As

Publication number Publication date
CA2404870A1 (en) 2002-08-15
WO2002063062A1 (en) 2002-08-15
EP1358361A4 (en) 2009-05-20
TW550303B (en) 2003-09-01
US6216631B1 (en) 2001-04-17
CN1434878A (zh) 2003-08-06
IL152028A0 (en) 2003-04-10
CA2404870C (en) 2007-03-13
EP1358361A1 (en) 2003-11-05
US6335059B1 (en) 2002-01-01
CN1318640C (zh) 2007-05-30
AU2001234427B2 (en) 2004-09-23
EP1358361B1 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
US8916055B2 (en) Method and device for controlling pattern and structure formation by an electric field
JP2004518544A (ja) パターン化された粒状運動を用いるロボット的操作システム
Ke et al. Nanoelectromechanical systems and modeling
US6776118B2 (en) Robotic manipulation system utilizing fluidic patterning
Li et al. Self-vectoring electromagnetic soft robots with high operational dimensionality
CN110476339A (zh) 致动器
JP2024036487A (ja) 微小電気機械システム構造及びそれらの応用
KR100812854B1 (ko) 패턴화된 과립 운동을 이용하는 로봇식 조작 시스템
CN104549975A (zh) 供应带电粉体装置
Vasiljev et al. Modelling and analysis of omni-directional piezoelectric actuator
RU2233910C2 (ru) Система роботизированного манипулирования, использующая структурированное гранулярное движение
JP2006511090A (ja) 電子回路を自己組織化させる方法及びその方法によって形成された回路
Hu et al. Expanding the flexibility of dynamics simulation on different size particle–particle interactions by dielectrophoresis
RU2002126559A (ru) Система роботизированного манипулирования, использующая структурированное гранулярное движение
Meyyappan 4.1 Carbon Nanotubes
Kobayashi et al. Fabrication of microstructures and microdevices by the particle assemblage
Robotics Ensembles of millions of microbots
JP2011190121A (ja) 微小導電性物質の分離方法、微小導電性物質及び微小導電性物質の分離装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816