JP2004502404A - ヒトキナーゼ - Google Patents

ヒトキナーゼ Download PDF

Info

Publication number
JP2004502404A
JP2004502404A JP2001560362A JP2001560362A JP2004502404A JP 2004502404 A JP2004502404 A JP 2004502404A JP 2001560362 A JP2001560362 A JP 2001560362A JP 2001560362 A JP2001560362 A JP 2001560362A JP 2004502404 A JP2004502404 A JP 2004502404A
Authority
JP
Japan
Prior art keywords
polynucleotide
pkin
polypeptide
sequence
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001560362A
Other languages
English (en)
Inventor
タング、ワイ・トム
バーフォード、ニール
ガンディー、アミーナ・アール
パターソン、チャンドラ
カーン、ファラ・エイ
ユエ、ヘンリー
ハファリア、エープリル
シー、レオ・エル
トリボレー、キャサリーン・エム
ヤオ、モニーク・ジー
バリル、ジョン・ディー
マーカス、グレゴリー・エイ
ジングラー、カート・エイ
リュ、デュング・アイナ・エム
バンドマン、オルガ
ポリッキー、ジェニファー・エル
グリフィン、ジェニファー・エイ
ソーントン、マイケル
ニュエン、ダニエル・ビー
ラル、プリーティ
ウォルシュ、ロデリック・ティー
Original Assignee
インサイト・ゲノミックス・インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by インサイト・ゲノミックス・インコーポレイテッド filed Critical インサイト・ゲノミックス・インコーポレイテッド
Publication of JP2004502404A publication Critical patent/JP2004502404A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Diabetes (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Endocrinology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Obesity (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明は、ヒトキナーゼ(PKIN)と、PKINを同定及びコードするポリヌクレオチドとを提供する。本発明はまた、発現ベクター及び宿主細胞、抗体、アゴニスト、アンタゴニストを提供する。更に、本発明は、PKINの発現に関連する疾患の診断・治療・予防方法を提供する。

Description

【0001】
(発明の所属分野)
本発明は、ヒトキナーゼの核酸配列及びアミノ酸配列に関する。本発明はまた、これらの配列を利用した、癌、免疫疾患、成長及び発達に影響を及ぼす障害、アテローム性動脈硬化症及びその他の心血管疾患、及び脂質異常の診断・治療・予防に関する。本発明はさらに、ヒトキナーゼの核酸配列及びアミノ酸配列の発現における外来性化合物の効果についての評価に関する。
【0002】
(発明の背景)
キナーゼは最も大きな既知の酵素スーパーファミリーを構成し、標的分子が多種多様である。キナーゼは、高エネルギーリン酸基のリン酸供与体からリン酸受容体への移動を触媒する。ヌクレオチドは通常、これらの反応においてリン酸供与体として働き、ほとんどのキナーゼはアデノシン三リン酸(ATP)を利用する。リン酸受容体には様々な分子が可能であり、その中には、ヌクレオシド、ヌクレオチド、脂質、炭水化物、およびタンパク質が含まれる。タンパク質は、ヒドロキシアミノ酸においてリン酸化される。リン酸基が付加されると、受容体分子における局所電位が変化し、それによって内部構造が変化し、細胞内接触を引き起こし得る。可逆的なタンパクの質リン酸化は、真核細胞におけるタンパク質活性の調節の主な方法である。一般に、タンパク質は、ホルモン、神経伝達物質、成長因子、および分化因子などの細胞外シグナルに応答したリン酸化により活性化される。活性化されたタンパク質は細胞の細胞応答を、細胞内シグナル伝達経路、並びにタンパク質リン酸化を調節するサイクリックヌクレオチド、カルシウム−カルモジュリン、イノシトール、および様々な分裂促進因子などのセカンドメッセンジャー分子によって開始させる。
【0003】
キナーゼは、解糖などの基本的な代謝プロセスから細胞周期の調節、分化、およびシグナル伝達カスケードによる細胞外環境との情報交換に至る細胞機能の全てに関与する。細胞内における不適切なタンパク質のリン酸化は、細胞周期の進行および細胞増殖における変化に関連する。細胞周期における変化は、アポトーシスや癌の誘導に関連する。細胞分化における変化は、生殖系、免疫系、および骨格筋の疾患や障害に関連する。
【0004】
プロテインキナーゼには2つのクラスがある。一方のクラスのプロテインチロシンキナーゼ(PTK)はチロシン残基をリン酸化し、他方のクラスであるプロテインセリン/トレオニンキナーゼ(STK)はセリン残基およびトレオニン残基をリン酸化する。ある種のPTKおよびSTKは、両方のファミリーの構造的な特徴を有し、チロシン残基およびセリン/トレオニン残基の両方に対して特異性(二重特異性)を有する。ほとんど全てのキナーゼは、キナーゼファミリー特有の特定の残基および配列モチーフを含む保存された250〜300のアミノ酸からなる触媒ドメインを含む。プロテインキナーゼ触媒ドメインは、更に11のサブドメインに分類することができる。N末端サブドメインI−IVは、ATP供与体分子に結合して方向性を与える2葉構造(two lobed structure)に折り畳まれ、サブドメインVは2葉にまたがる。C末端サブドメインVI−XIはタンパク質基質と結合し、γリン酸をATPからチロシン残基、セリン残基、またはトレオニン残基のヒドロキシル基に移動させる。11のサブドメインのそれぞれは、サブドメインに特徴的なアミノ酸モチーフ或いは特定の触媒残基を含む。例えば、サブドメインIは、8個のアミノ酸からなる高グリシンATP結合共通モチーフを含み、サブドメインIIは、触媒活性の最大化に必要な重要なリシン残基を含み、サブドメインVIからIXは高度に保存された触媒中心を含む。PTKおよびSTKはまた、ヒドロキシアミノ酸特異性を付与し得るサブドメインVIおよびVIIIに固有の配列モチーフを含む。
【0005】
更に、キナーゼは、キナーゼドメイン内に含まれるか或いは隣接する通常は5〜100の範囲の残基からなる追加のアミノ酸配列によって分類され得る。これらの追加のアミノ酸配列は、キナーゼ活性を調節し基質特異性を決定する(Hardie, G. および Hanks, S. (1995) The Protein Kinase Facts Book, Vol I p.p. 17−20 Academic Press, San Diego, CA.を参照)。具体的には、2つのプロテインキナーゼシグネチャ配列が、キナーゼドメインで同定された。第1のプロテインキナーゼシグネチャ配列は、ATP結合に関与するリシン残基活性部位を含み、第2のプロテインキナーゼシグネチャ配列は触媒活性に重要なアスパラギン酸残基を含む。分析するタンパク質がこの2つのプロテインキナーゼシグネチャを含む場合、そのタンパク質がプロテインキナーゼである確率は100%に近い(PROSITE: PDOC00100, November 1995)。
【0006】
プロテインチロシンキナーゼ
プロテインチロシンキナーゼ(PTK)は、膜貫通受容体PTKタンパク質または非膜貫通非受容体PTKタンパク質のいずれかに分類され得る。膜貫通チロシンキナーゼは、ほとんどの成長因子に対する受容体として機能する。成長因子が受容体チロシンキナーゼ(RTK)に結合し、それによって受容体が、自己(自己リン酸化)および特定の細胞内セカンドメッセンジャータンパク質をリン酸化する。受容体PTKに結合する成長因子(GF)は、上皮成長因子GF、血小板由来GF、繊維細胞芽GF、肝細胞GF、インスリンおよびインスリン様GF、神経GF、血管内皮GF、およびマクロファージコロニー刺激因子が含まれる。
【0007】
非膜貫通型非受容体PTKは、膜貫通領域を含まない代わりに細胞膜受容体の細胞質ドメインとシグナル伝達複合体を形成する。非受容体PTKを介して機能する受容体には、サイトカイン受容体およびホルモン受容体(成長ホルモンおよびプロラクチン)や、Tリンパ球およびBリンパ球における抗原特異的受容体が含まれる。
【0008】
多くのPTKは、PTK活性が正常な細胞制御を受けない癌細胞における腫瘍遺伝子産物として初めに同定された。実際に、約3分の1の腫瘍遺伝子がPTKをコードする。更に、細胞形質転換(発癌)はチロシンリン酸化活性の上昇を伴う場合が多い(Charbonneau, H. および Tonks, N. K. (1992) Annu. Rev. Cell Biol. 8:463−93)。従って、PTK活性の調節は、ある種の癌を制御するための重要な手段となり得る。
【0009】
プロテインセリン/トレオニンキナーゼ
プロテインセリン/トレオニンキナーゼ(STK)は非膜貫通型タンパク質である。STKのサブクラスは、ERK(細胞外シグナル調節キナーゼ)またはMAP(マイトジェン活性化プロテインキナーゼ)として知られ、様々なホルモンや成長因子による細胞刺激によって活性化される。細胞刺激には、MEK(MAP/ERKキナーゼ)のリン酸化に導くシグナル伝達カスケードを含む。MEKのリン酸化の後に、セリンおよびトレオニンのリン酸化によりERKが活性化される。多数のタンパク質が活性なERKに対する下流のエフェクターであることから、細胞増殖および分化の調節や、細胞骨格の調節に関与すると思われる。ERKの活性化は通常一過性であり、細胞は、そのダウンレギュレーションに関係する二重特異性ホスファターゼを有する。また様々な研究から、ERK活性の上昇がある種の癌に関連することが分かった。その他のSTKには、サイクリックAMP依存性プロテインキナーゼ(PKA)、カルシウム−カルモジュリン(CaM)依存性プロテインキナーゼ、およびマイトジェン活性化プロテインキナーゼ(MAP)などのセカンドメッセンジャー依存性プロテインキナーゼや、サイクリン依存性プロテインキナーゼ、チェックポイントおよび細胞周期キナーゼ、増殖関連キナーゼ、5’−AMP−活性化プロテインキナーゼ、アポトーシスに関与するキナーゼが含まれる。
【0010】
セカンドメッセンジャー依存性プロテインキナーゼは、サイクリックAMP(cAMP)、サイクリックGMP、イノシトール三リン酸、ホスファチジルイノシトール、3,4,5−三リン酸、サイクリックADPリボース、アラキドン酸、ジアシルクリセロールおよびカルシウム−カルモジュリンなどのセカンドメッセンジャーの効果を主に仲介する。PKAはホルモン誘導性細胞応答の仲介に関与し、ホルモン刺激に応答して細胞内で生成されるcAMPによって活性化される。cAMPは、研究した全ての動物細胞におけるホルモン作用の細胞内メディエーターである。ホルモン誘導性細胞応答には、甲状腺ホルモン分泌、コルチゾル分泌、プロゲステロン分泌、グリコーゲン分解、骨再吸収、心拍数の調節、および心筋収縮力の調節が含まれる。PKAは全ての動物細胞に見られ、これらほとんどの細胞におけるcAMPの効果に関係すると思われる。PKA発現の変化は、癌、甲状腺疾患、糖尿病、アテローム性動脈硬化症、および心血管疾患に関連する(Isselbacher, K. J.ら,(1994) Harrison’s Principles of Internal Medicine, McGraw−Hill, New York, NY, pp. 416−431, 1887)。
【0011】
カゼインキナーゼI(CKI)遺伝子ファミリーは、セリン/トレオニンプロテインキナーゼの別のサブファミリーである。この持続的に拡大するキナーゼ群は、細胞代謝、DNAの複製、およびDNAの修復を含む様々な細胞プロセスおよび核プロセスの調節に関与する。CKI酵素は、真核細胞の膜、核、細胞質および細胞骨格や、哺乳動物細胞の紡錘体上に存在する(Fish, K. J.ら,(1995) J. Biol. Chem. 270:14875−14883.)。
【0012】
CKIファミリーメンバーの全ては、9〜76のアミノ酸からなる短いアミノ末端ドメイン、284のアミノ酸からなる高度に保存されたキナーゼドメイン、および24〜200を超える範囲のアミノ酸からなる可変カルボキシル末端ドメインを含む(Cegielska, A.ら,(1998) J. Biol. Chem. 273:1357−1364.)。このCKIファミリーは高度に関連するタンパク質からなる。これは、様々な試料からのカゼインキナーゼIのイソ型の同定によって確認されている。α、β、γ、δ、およびεの少なくとも5つの哺乳動物イソ型が存在する。Fishらが、ヒト胎盤cDNAライブラリからCKIεを同定した。このCKIεは416のアミノ酸からなる塩基性タンパク質であり、CKIデルタに類似している。組み替え発現によって、CKIεが既知のCKI基質をリン酸化し、CKI特異的インヒビターであるCKI−7によって抑制されることが分かった。CKIεのヒト遺伝子は、酵母CKI遺伝子座であるHRR250の欠失によって起こる成長が遅い表現型(slow−growth phenotype)を有する酵母を助けることができる。
【0013】
哺乳動物突然変異概日tauが、シリアンハムスターにおける概日リズムの周期を著しく短くするCKIεの半優性染色体対立遺伝子であることが分かった。tau遺伝子座はカゼインキナーゼIεによってコードされ、ショウジョウバエ概日遺伝子double−timeの相同体でもある。野生型およびtau突然変異CKIε酵素の両方の研究から、突然変異酵素はその最大速度が著しく低下し、自己リン酸化状態であることが分かった。更に、in vitroにおけるCKIεは哺乳動物PERIODタンパク質と相互作用する能力を有するが、突然変異酵素はPERIODをリン酸化する能力に欠ける。Lowreyらが、CKIεが概日機構の中心をなす転写−翻訳系の自己調節ループ内の負のフィードバックシグナルを遅らせる重要な因子であると主張した。従って、CKIε酵素は、概日リズム、時差ぼけおよび睡眠、更に概日調節下のその他の生理的プロセスおよび代謝プロセスに影響を与える医薬組成物の理想的な候補である(Lowrey, P. L.ら,(2000) Science 288:483−491.)。
【0014】
カルシウム−カルモジュリン依存性プロテインキナーゼ
カルシウム−カルモジュリン(CaM)依存性キナーゼは、平滑筋の収縮、グリコーゲン分解(ホスホリラーゼキナーゼ)、および神経伝達(CaMキナーゼIおよびCaMキナーゼII)の調節に関与する。CaM依存性プロテインキナーゼは、細胞内の遊離カルシウムの濃度に応答して細胞内カルシウム受容体であるカルモジュリンによって活性化される。多くのCaMキナーゼはまた、リン酸化によって活性化される。ある種のCaMキナーゼはまた、自己リン酸化またはその他の調節キナーゼによって活性化される。CaMキナーゼIは、神経伝達物質関連タンパク質であるシナプシンIおよびII、遺伝子転写調節因子であるCREB、および嚢胞性繊維コンダクタンス調節タンパク質であるCFTRを含む様々な物質をリン酸化する(Haribabu, B.ら,(1995) EMBO Journal 14:3679−3686)。また、CaMキナーゼIIは、様々な部位においてシナプシンをリン酸化し、チロシンヒドロキシラーゼのリン酸化および活性化によって脳におけるカテコールアミンの合成を調節する。CaMキナーゼIIはまた、チロシンヒドロキシラーゼおよびトリプトファンヒドロキシラーゼのリン酸化/活性化によってカテコールアミンおよびseratoninの合成を調節する(Fujisawa, H. (1990) BioEssays 12:27−29)。カルモジュリン結合プロテインキナーゼ様タンパク質をコードするmRNAが哺乳動物前頭葉で多量に見つかった。このタンパク質は軸索および樹状突起の双方における小胞に結合し、主に出生後に蓄積される。このタンパク質のアミノ酸配列はCaM依存性STKに類似しており、このタンパク質はカルシウムの存在下でカルモジュリンと結合する(Godbout, M.ら,(1994) J. Neurosci. 14:1−13)。
【0015】
マイトジェン活性化プロテインキナーゼ
マイトジェン活性化プロテインキナーゼ(MAP)は、リン酸化カスケードによって細胞表面から核へのシグナル伝達を仲介する。MAPは、細胞内シグナル伝達経路を調節する別のSTKファミリーである。いくつかのサブグループが同定されており、それぞれが異なった基質特異性を有し、固有の細胞外刺激に応答する(Egan, S. E.およびWeinberg, R. A. (1993) Nature 365:781−783)。MAPキナーゼシグナル伝達経路は、哺乳動物細胞および酵母に存在する。MAPキナーゼ経路を活性化する細胞外刺激には、上皮成長因子(EGF)、紫外線、高浸透圧媒体、熱ショック、内毒素性リポ多糖(LPS)、腫瘍壊死因子(TNF)およびインターロイキン−1(IL−1)などの前炎症性サイトカインが含まれる。MAPキナーゼ発現の変化は、癌、炎症、免疫疾患、および成長および発達に影響を及ぼす疾患を含む様々な疾患に関与する。
【0016】
サイクリン依存性プロテインキナーゼ
サイクリン依存性プロテインキナーゼ(CDK)は、細胞周期を介して細胞の進行を調節するSTKである。細胞は、サイクリンと呼ばれる活性化タンパク質ファミリーの合成および分解による調節により、有糸分裂に入ったり有糸分裂から出たりする。小さな調節タンパク質であるサイクリンはCDKに結合してそのCDKを活性化させる。それによって、有糸分裂プロセスに関与する選択されたタンパク質がリン酸化され活性化される。CDKは、活性化するために多数の入力が必要であるという点でユニークである。サイクリンの結合に加えて、CDKの活性化には、CDKにおける特定のトレオニン残基のリン酸化および特定のチロシン残基の脱リン酸化が必要である。
【0017】
NIMA(有糸分裂に決して入らない)関連キナーゼ(Neks)は細胞周期に関連するSTKの別のファミリーである。CDKおよびNekの両方は、動物細胞における複製、成熟、微小管形成中心である中心体の分離に関与する(Fry, A. M.ら,(1998) EMBO J. 17:470−481)。
【0018】
チェックポイントおよび細胞周期キナーゼ
細胞分化のプロセスでは、細胞周期移行の順番およびタイミングは細胞周期チェックポイントの制御下にある。この細胞周期チェックポイントは、DNA複製および染色体分離などの重要なプロセスが正確に実行されるようにする。例えば放射線などによってDNAが損傷を受けた場合、チェックポイント経路が活性化され、修復の時間を与えるべく細胞周期が停止される。損傷が大きい場合には、アポトーシスが誘導される。このようなチェックポイントが存在しないと、損傷したDNAが異常な細胞に受け継がれ、癌などの増殖異常が引き起こされ得る。プロテインキナーゼは、このプロセスにおいて重要な役割を果たす。例えば、特定のキナーゼすなわちチェックポイントキナーゼ1(Chk1)が酵母および哺乳動物で同定された。このChk1は、酵母におけるDNA損傷によって活性化される。Chk1が活性化されると、G2/M移行において細胞が停止する。(Sanchez, Y.ら,(1997) Science 277:1497−1501.)具体的には、Chk1が細胞分裂サイクルホスファターゼCDC25をリン酸化し、それによってサイクリン依存性キナーゼCdc2を脱リン酸化して活性化するCDC25の正常な機能が阻害される。Cdc2の活性化によって細胞が有糸分裂に入るのが調節される(Peng, C−Yら,(1997) Science 277:1501−1505.)。従って、Chk1の活性化によって、損傷した細胞が有糸分裂に入るのが阻止される。Chk1のようなチェックポイントキナーゼの同様の欠損によっても、G2/Mのような他のチェックポイントにおいてDNAが損傷した細胞が停止できないことにより癌が引き起こされ得る。
【0019】
細胞増殖関連キナーゼ
細胞増殖関連キナーゼは、ヒト巨核球細胞における細胞周期および細胞増殖の調節に関与する血清/サイトカイン誘導性STKである(Li, B.ら,(1996) J. Biol. Chem. 271:19402−8)。増殖関連キナーゼは、細胞分裂に関与するSTKのpolo(ショウジョウバエpolo遺伝子に由来する)ファミリーに関連する。増殖関連キナーゼは肺腫瘍組織においてダウンレギュレートされ、プロトオンコジーンであると思われる。プロトオンコジーンが正常な組織において制御を受けないで発現すると、正常な組織が癌化し得る。
【0020】
5’−AMP− 活性化プロテインキナーゼ
リガンド活性化STKプロテインキナーゼは、5’−AMP−活性化プロテインキナーゼ(AMPK)である(Gao, G.ら,(1996) J. Biol Chem. 271:8675−8681)。哺乳動物AMPKは、酵素であるアセチル−CoAカルボキシラーゼおよびヒドロキシメチルグルタリル−CoAレダクターゼのリン酸化による脂肪酸およびステロールの合成の調節因子であって、熱ショックやグルコースおよびATPの枯渇などの細胞内ストレスに対するこれらの経路の応答を仲介する。AMPKは、触媒αサブユニットと、このαサブユニットの活性を調節すると考えられている2つの非触媒βサブユニットおよびγサブユニットからなるヘテロ三量体複合体である。AMPKのサブユニットは、脳、心臓、脾臓、および肺などの非脂肪性組織において予想以上に広く分布している。この分布から脂質の代謝の調節以外にもある役割を果たしていると考えられる。
【0021】
アポトーシスにおけるキナーゼ
アポトーシスは、細胞死を導く高度に制御されたシグナル伝達経路であって、組織の発達および恒常性に極めて重要な役割を果たしている。このプロセスの調節不全は、自己免疫疾患、神経変性疾患、および癌を含む様々な疾患の病原に関連する。様々なSTKがこのプロセスにおいて重要な役割を果たす。ZIPキナーゼは、N末端プロテインキナーゼドメインに加えてC末端ロイシンジッパードメインを含むSTKである。このC末端ドメインは、ホモ二量体化およびキナーゼの活性化、ならびに転写因子のサイクリックAMP応答性エレメント結合タンパク質(ATF/CREB)ファミリーのメンバーである活性化転写因子ATF4などの転写因子との相互作用を仲介する(Sanjo, H.ら, (1998) J. Biol. Chem, 273:29066−29071)。DRAK1およびDRAK2は、死関連プロテインキナーゼ(DAPキナーゼ)と相同性を共有するSTKであって、インターフェロンγ誘導性アポトーシスにおいて機能することが知られている(Sanjoら 前出)。ZIPキナーゼと同様に、DAPキナーゼも、N末端キナーゼドメインに加えてアンキリンリピート型のC末端タンパク質−タンパク質相互作用ドメインを含む。ZIP、DAP、およびDRAKキナーゼは、NIH3T3細胞に形質転換されるとアポトーシスに関連する形態変化を誘導する(Sanjoら,前出)。しかしながら、これらのタンパク質のN末端キナーゼ触媒ドメインか或いはC末端ドメインのいずれかが欠失すると、アポトーシス活性がなくなる。このことから、キナーゼ活性に加えてC末端ドメインにおける活性も、アポトーシスに必要であり、調節因子または特定の基質と相互作用するドメインの可能性がある。
【0022】
RICKは、死受容体CD95を含む特定のアポトーシス経路を仲介するとして近年同定された別のSTKである(Inohara, N.ら,(1998) J. Biol. Chem. 273:12296−12300)。CD95は腫瘍壊死因子受容体スーパーファミリーのメンバーであって、免疫系の調節および恒常性において重要な役割を果たす(Nagata, S. (1997) Cell 88:355−365)。CD95受容体シグナル伝達経路は、様々な細胞内分子の受容体複合体への動員、およびそれに続くリガンド結合を伴う。このプロセスは、システインプロテアーゼカスパーゼ−8の動員を伴い、それによってカスパーゼカスケードが活性化され細胞死が起こる。RICKは、カスパーゼ様ドメインと相互作用するC末端「カスパーゼ動員」ドメインおよびN末端キナーゼ触媒ドメインとからなる。このことから、RICKがカスパーゼ−8の動員においてある役割を果たしていると思われる。この解釈は、ヒト293T細胞におけるRICKの発現がカスパーゼ−8の活性化を促進し、CD95アポトーシス経路に関与する様々なタンパク質によるアポトーシスの誘導を増強するという事実によって補強される(Inoharaら,前出)。
【0023】
ミトコンドリアプロテインキナーゼ
原核生物ヒスチジンプロテインキナーゼに対する配列によって関連する真核生物キナーゼの新規のクラスであるミトコンドリアプロテインキナーゼ(MPK)は、他の真核生物プロテインキナーゼとは配列類似性を有していないようである。これらのプロテインキナーゼは、ミトコンドリアマトリックス空間のみに存在し、遺伝子真核細胞によって取り込まれた呼吸依存性細菌に存在した遺伝子が進化したものと思われる。MPKは、分枝鎖αケト酸デヒドロゲナーゼおよびピルビン酸デヒドロゲナーゼ複合体のリン酸化および不活化に関係する(Harris, R. A.ら,(1995) Adv. Enzyme Regul. 34:147−162)。5つのMPKが同定された。4つのメンバーはピルビン酸デヒドロゲナーゼイソ酵素に対応し、解糖とクエン酸回路との中間において重要な調節酵素であるピルビン酸デヒドロゲナーゼ複合体の活性を調節する。5番目のメンバーは分枝鎖αケト酸デヒドロゲナーゼキナーゼに対応し、分枝鎖アミノ酸の除去のための経路の調節に重要である(Harris, R. A.ら,(1997) Adv. Enzyme Regul. 37:271−293)。飢餓状態および糖尿病状態において、ラットの肝臓、心臓および筋肉におけるピルビン酸デヒドロゲナーゼキナーゼの活性が著しく上昇することが知られている。この活性の上昇が、両方の病態におけるピルビン酸デヒドロゲナーゼ複合体のリン酸化および不活化、並びに糖新生のためのピルビン酸および乳酸の保存に貢献する(Harrisら,前出)。
【0024】
(非タンパク質基質を用いるキナーゼ)
脂質キナーゼおよびイノシトールキナーゼ
脂質キナーゼは、脂質頭基上のヒドロキシル残基をリン酸化する。ホスファチジルイノシトール(PI)のリン酸化に関与するキナーゼのファミリーが記載されており、それぞれのメンバーがイノシトール環の特定の炭素をリン酸化する(Leevers, S.ら,(1999) Curr. Opin. Cell. Biol. 11:219−225)。ホスファチジルイノシトールのリン酸化は、プロテインキナーゼCシグナル伝達経路の活性化に関与する。イノシトールホスホリピッド(ホスホイノシチド)細胞内シグナル伝達経路は、細胞膜においてシグナル伝達分子がGタンパク質結合受容体に結合することによって始まる。これによって、イノシトールキナーゼによる細胞膜の内側のホスファチジルイノシトール(PI)残基のリン酸化が起こり、それによってPI残基が二リン酸状態(PIP)に変換される。次にPIPがイノシトール三リン酸(IP)およびジアシルグリセロールに切断される。これらの2つの生成物は、シグナル伝達経路を分けるためのメディエーターとして作用する。これらの経路によって仲介される細胞応答には、バソプレッシンに応答する肝臓におけるグリコーゲン分解、アセチルコリンに応答する平滑筋の収縮、およびトロンビン誘導性血小板凝集がある。
【0025】
PIおよびその誘導体のD3位をリン酸化するPI3−キナーゼ(PI3K)は、細胞増殖、分化、および代謝に関与する成長因子シグナルカスケードにおいて重要な役割を果たす。PI3Kは、アダプターサブユニットおよび触媒サブユニットからなるヘテロ二量体である。このアダプターサブユニットは足場タンパク質として作用し、特定のチロシン−リン酸化タンパク質、脂質成分、およびその他の細胞質因子と相互作用する。アダプターサブユニットがインスリン応答性基質(IRS)−1などのチロシンリン酸化標的と結合すると、触媒サブユニットが活性化され、PI (4, 5) 二リン酸 (PIP)をPI (3, 4, 5) P (PIP)に変換する。次にPIPが、PKA、プロテインキナーゼB(PKB)、プロテインキナーゼC(PKC)、グリコーゲンシンターゼキナーゼ(GSK)−3、およびP70リボソームs6キナーゼを含むその他の幾つかのタンパク質を活性化する。PI3Kもまた、細胞骨格形成タンパク質であるRac、rho、およびcdc42と直接相互作用する(Shepherd, P. R.ら,(1998) Biochem. J. 333:471−490)。obeseマウスおよびfatマウスなどの糖尿病動物モデルは、PI3kアダプターサブユニットのレベルが改変されている。アダプターサブユニットにおける特定の変異が、インスリン抵抗性のデンマーク人集団に見られることから、PI3Kが2型糖尿病においてある役割を果たしていると思われる(Shepherd、前出)。
【0026】
脂質キナーゼリン酸化活性の例は、D−エリトロ−スフィンゴシンのスフィンゴ脂質代謝産物であるスフィンゴシン−1−リン酸(SPP)へのリン酸化である。SPPは、細胞外作用および細胞内作用の両方を持つ新規の脂質セカンドメッセンジャーであることが分かった(Kohama, T.ら(1998) J. Biol. Chem. 273:23722−23728)。細胞外では、SPPはGタンパク質結合受容体EDG−1(内皮由来Gタンパク質結合受容体)のリガンドである。細胞内では、SPPは、細胞の成長、生存、運動性、および細胞骨格の変化を調節する。SPPのレベルは、D−エリトロ−スフィンゴシンを特異的にリン酸化してSPPにするスフィンゴシンキナーゼによって調節される。細胞シグナル伝達におけるスフィンゴシンキナーゼの重要性は、血小板由来成長因子(PDGF)、神経成長因子、およびプロテインキナーゼCの活性化を含む様々な刺激が、スフィンゴシンキナーゼの活性化によりSPPの細胞内レベルを上昇させるという事実、および酵素の競合阻害剤がPDGFによって誘導された細胞増殖を選択的に阻害するという事実から証明された(Kohamaら,前出)。
【0027】
プリンヌクレオチドキナーゼ
プリンヌクレオチドキナーゼであるアデニル酸キナーゼ(ATP:AMPホスホトランズフェラーゼ、もしくはAdK)およびグアニル酸キナーゼ(ATP:GMPホスホトランズフェラーゼ、もしくはGuK)が、ヌクレオチド代謝において重要な役割を果たし、ATPおよびGTPの合成および細胞内レベルの調節のそれぞれにおいて重要である。これらの2つの分子は、成長している細胞におけるDNA合成およびRNA合成の前駆物質であって、細胞における主な生化学エネルギーの主な供給源(ATP)であり、シグナル伝達経路(GTP)を提供する。これらの2つの分子の合成における様々なステップを妨げることが、癌および抗ウイルス治療のための多くの抗増殖剤の原理である(Pillwein, K.ら,(1990) Cancer Res. 50:1576−1579)。
【0028】
AdKはほとんどの細胞型に見られ、高い速度でATPを合成する骨格筋などの細胞に特に多く存在する。これらの細胞において、AdKは、細胞下構造であるミトコンドリアおよび筋原繊維と物理的に関連する。ミトコンドリアはエネルギーを生産し、筋原繊維はそのエネルギーを利用する。近年の研究により、ATPを生成する代謝プロセスからATPを消費する細胞成分への高エネルギーのホスホリルの転移においてAdKが重要な役割を果たしていることが実証された(Zeleznikar, R. J.ら,(1995) J. Biol. Chem. 270:7311−7319)。従って、AdKは、細胞、特に癌細胞などの増殖や代謝速度が速い細胞におけるエネルギー生産の維持において中心的な役割を演じると考えられ、ある種の癌の治療においてその活性を阻害するための候補を提供し得る。別法では、AdK活性の低下が、心不全や呼吸器不全を引き起こす様々な代謝筋エネルギー疾患の原因と考えられ、AdKの活性を上昇させて治療できるであろう。
【0029】
RNAおよびDNA合成のためのGTPの合成における重要なステップを提供するのに加えて、GuKはまた、GDPおよびGTPの調節によって細胞のシグナル伝達経路において重要な役割を果たす。具体的には、膜関連Gタンパク質に結合するGTPは細胞受容体の活性化を仲介し、アデニルシクラーゼが細胞内で活性化され、セカンドメッセンジャーであるサイクリックAMPが生産される。Gタンパク質に結合するGDPはこれらのプロセスを阻害する。また、GDPおよびGTPのレベルによって、細胞増殖の調節および発癌に関与するとして知られるp21rasなどのある種の腫瘍タンパク質の活性が調節される(Bos, J. L. (1989) Cancer Res. 49:4682−4689)。GuKの抑制によって起こるGDPに対するGTPの比率が高いと、p21rasが活性化され発癌が促進される。GDPのレベルを上昇させGDPに対するGTPのレベルを低下させるためにGuKの活性を高めることが、発癌を抑制する治療となり得る。
【0030】
GuKは、ヘルペスウイルス感染の治療に有用なある種の抗ウイルス剤のリン酸化および活性化における重要な酵素である。これらの薬剤には、グアニン相同体アシクロビルおよびbuciclovirが含まれる(Miller, W. H.およびMiller R. L. (1980) J. Biol. Chem. 255:7204−7207 ; Stenberg, K.ら,(1986) J. Biol. Chem. 261:2134−2139)。感染細胞においてGuKの活性を高めることが、これらの薬剤の効果を促進させる治療方法となり得るため、薬剤の服用を減らすことが可能であろう。
【0031】
ピリミジンキナーゼ
ピリミジンキナーゼは、デオキシチジンキナーゼ、およびチミジンキナーゼ1および2を含む。デオキシチジンキナーゼは核に存在し、チミジンキナーゼ1および2は細胞質に見られる(Johansson, M.ら,(1997) Proc. Natl. Acad. Sci. U. S. A. 94:11941−11945)。ピリミジンキナーゼによるデオキシリボヌクレオシドのリン酸化によって、DNA前駆物質のde novo合成のための代替の経路が提供される。リン酸化におけるピリミジンキナーゼの役割はプリンキナーゼと同様に、化学療法に重要な幾つかのヌクレオシド類似体の活性化に重要である(Arner E. S.およびEriksson, S. (1995) Pharmacol. Ther. 67:155−186)。
【0032】
新規のヒトキナーゼ、およびそれらをコードするポリヌクレオチドの発見により、新規の組成物を提供することで当分野の要望に応えることができる。この新規の組成物は、癌、免疫疾患、成長および発達に影響を及ぼす疾患、アテローム性動脈硬化症及びその他の心血管疾患、および脂質異常の診断・治療・予防において有用であり、また、ヒトキナーゼの核酸配列及びアミノ酸配列の発現における外来性化合物の効果についての評価にも有用である。
【0033】
(発明の要約)
本発明は、総称して「PKIN」、個別にはそれぞれ「PKIN−1」、「PKIN−2」、「PKIN−3」、「PKIN−4」、「PKIN−5」、「PKIN−6」、「PKIN−7」、「PKIN−8」、「PKIN−9」、「PKIN−10」、及び「PKIN−11」と呼ぶヒトキナーゼである精製されたポリペプチドを提供する。本発明の一実施態様では、(a)SEQ ID NO:1乃至11(SEQ ID NO:1−11)からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含む単離されたポリペプチドを提供する。別法では、SEQ ID NO:1−11のアミノ酸配列を含む単離されたポリペプチドを提供する。
【0034】
更に本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドをコードする単離されたポリヌクレオチドを提供する。別法では、このポリヌクレオチドは、SEQ ID NO:1−11からなる一群から選択されたポリペプチドをコードする。別法では、このポリヌクレオチドは、SEQ ID NO:12−22からなる一群から選択される。
【0035】
更に、本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドをコードするポリヌクレオチドと機能的に結合されたプロモーター配列を含む組換えポリヌクレオチドを提供する。別法では、本発明は、この組換えポリヌクレオチドで形質転換された細胞を提供する。更なる別法では、本発明は、この組換えポリヌクレオチドを含む遺伝子組換え生物を提供する。
【0036】
また、本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドの生産方法を提供する。この方法は、(a)このポリペプチドの発現に好適な条件下で、このポリペプチドをコードするポリヌクレオチドと機能的に結合されたプロモーター配列を含む組換えポリヌクレオチドで形質転換された細胞を培養するステップと、(b)このように発現したポリペプチドを回収するステップとを含む。
【0037】
更に、本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドに特異的に結合する単離された抗体を提供する。
【0038】
更に、本発明は、(a)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と、(b)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と90%以上の配列同一性を有する天然のポリヌクレオチド配列と、(c)前記(a)に相補的なポリヌクレオチド配列と、(d)前記(b)に相補的なポリヌクレオチド配列と、(e)前記(a)乃至(d)のRNA等化物とで構成される一群から選択されたポリヌクレオチド配列を含む単離されたポリヌクレオチドを提供する。別法では、このポリヌクレオチドは、少なくとも60個の連続するヌクレオチドを含む。
【0039】
更に本発明は、(a)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と、(b)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と90%以上の配列同一性を有する天然のポリヌクレオチド配列と、(c)前記(a)に相補的なポリヌクレオチド配列と、(d)前記(b)に相補的なポリヌクレオチド配列と、(e)前記(a)乃至(d)のRNA等化物とで構成される一群から選択されたポリヌクレオチド配列を含むポリヌクレオチド配列を有する標的ポリヌクレオチドをサンプルにおいて検出する方法を提供する。この方法は、(a)前記サンプル内の標的ポリヌクレオチドと相補的な配列を構成する少なくとも20個の連続するヌクレオチドを含むプローブと前記サンプルをハイブリダイズさせるステップであって、前記プローブと前記標的ポリヌクレオチドまたはその断片とでハイブリダイゼーション複合体が形成される条件下で、前記プローブが前記標的ポリヌクレオチドに特異的にハイブリダイズする、該ステップと、(b)前記ハイブリダイゼーション複合体の存在するか否かを検出し、存在する場合には随意選択でその収量を測定するステップとを含む。別法では、前記プローブは、少なくとも60個の連続するヌクレオチドを含む。
【0040】
更に本発明は、(a)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と、(b)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と90%以上の配列同一性を有する天然のポリヌクレオチド配列と、(c)前記(a)に相補的なポリヌクレオチド配列と、(d)前記(b)に相補的なポリヌクレオチド配列と、(e)前記(a)乃至(d)のRNA等化物とで構成される一群から選択されたポリヌクレオチド配列を含むポリヌクレオチド配列を有する標的ポリヌクレオチドをサンプルにおいて検出する方法を提供する。この方法は、(a)ポリメラーゼ連鎖反応増幅を用いて、前記標的ポリヌクレオチドまたはその断片を増幅するステップと、(b)増幅された前記標的ポリヌクレオチドまたはその断片が存在するか否かを検出し、存在する場合には随意選択でその収量を測定するステップとを含む。
【0041】
更に本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含む効果的な量のポリペプチド及び好適な医薬用賦形剤を含む組成物を提供する。一実施例では、SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列を含む組成物を提供する。更に、本発明は、患者にこの組成物を投与することを含む、機能的PKINの発現の低下に関連した疾患やその症状の治療方法を提供する。
【0042】
更に本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドのアゴニストとして効果的な化合物をスクリーニングする方法を提供する。この方法は、(a)このポリペプチドを含むサンプルを化合物に曝露するステップと、(b)このサンプルのアゴニスト活性を検出するステップとを含む。別法では、本発明は、この方法によって同定されたアゴニスト化合物と好適な医薬用賦形剤とを含む組成物を提供する。更なる別法では、本発明は、この組成物の患者への投与を含む、機能的PKINの発現の低下に関連した疾患やその症状の治療方法を提供する。
【0043】
更に、本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドのアンタゴニストとして効果的な化合物をスクリーニングする方法を提供する。この方法は、(a)このポリペプチドを含むサンプルを化合物に曝露するステップと、(b)このサンプルのアンタゴニスト活性を検出するステップとを含む。別法では、本発明は、この方法によって同定されたアンタゴニスト化合物と好適な医薬用賦形剤とを含む組成物を提供する。更なる別法では、本発明は、この組成物の患者への投与を含む、機能的PKINの過剰な発現に関連した疾患やその症状の治療方法を提供する。
【0044】
更に本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドに特異的に結合する化合物をスクリーニングする方法を提供する。この方法は、(a)このポリペプチドを好適な条件下で少なくとも1つの化合物と結合させるステップと、(b)このポリペプチドとこの試験化合物との結合を検出して、このポリペプチドと特異的に結合する化合物を同定するステップとを含む。
【0045】
更に本発明は、(a)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と、(b)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列と90%以上の配列同一性を有する天然のアミノ酸配列と、(c)SEQ ID NO:1−11からなる一群から選択されたアミノ酸配列の生物学的に活性な断片と、(d)SEQ ID NO:1−11とからなる一群から選択されたアミノ酸配列の免疫原性断片とで構成される一群から選択されたアミノ酸配列を含むポリペプチドの活性を調節する化合物をスクリーニングする方法を提供する。このスクリーニング方法は、(a)このポリペプチドを、その活性が許容される条件下で少なくとも1つの化合物と結合させるステップと、(b)この試験化合物の存在下でのこのポリペプチドの活性を評価するステップと、(c)この試験化合物の存在下でのこのポリペプチドの活性と、この試験化合物の不在下でのこのポリペプチドの活性とを比較するステップとを含み、この試験化合物の存在下でのこのポリペプチドの活性の変化が、このポリペプチドの活性を調節する化合物の存在を示唆するという特徴を有する。
【0046】
更に本発明は、SEQ ID NO:12−22からなる一群から選択された配列を含む標的ポリヌクレオチドの発現を変化させるのに効果的な化合物をスクリーニングする方法であって、(a)この標的ポリヌクレオチドを含むサンプルを化合物に曝露するステップと、(b)この標的ポリヌクレオチドの発現の変化を検出するステップとを含む、該スクリーニング方法を提供する。
【0047】
本発明はさらに、試験化合物の毒性を評価する方法を提供する。この方法は、(a)核酸を含む生体サンプルを前記試験化合物で処理するステップと、(b)処理した前記生体サンプルの核酸をプローブとハイブリダイズするステップと、(c)ハイブリダイゼーション複合体の収量を測定するステップと、(d)前記処理した生体サンプルにおけるハイブリダイゼーション複合体の収量を、未処理の生体サンプルにおけるハイブリダイゼーション複合体の収量とを比較するステップとを含み、前記処理した生体サンプルにおけるハイブリダイゼーション複合体の収量の差異が試験化合物の毒性を示唆する。この方法における前記プローブは、(1)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と、(2)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と少なくとも90%の配列同一性を有する天然のポリヌクレオチド配列と、(3)前記(1)に相補的なポリヌクレオチド配列と、(4)前記(2)に相補的なポリヌクレオチド配列と、(5)前記(1)乃至(4)のRNA等価物とで構成される一群から選択されたポリヌクレオチド配列を含むポリヌクレオチドの連続する少なくとも20個のヌクレオチドを含む。また、前記ハイブリダイゼーションは、前記プローブと前記生体サンプルの標的ポリヌクレオチドとの間で特異的なハイブリダイゼーション複合体が形成される条件下で行わる。また、前記標的ポリヌクレオチドが、(1)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と、(2)SEQ ID NO:12−22からなる一群から選択されたポリヌクレオチド配列と少なくとも90%の配列同一性を有する天然のポリヌクレオチド配列と、(3)前記(1)に相補的なポリヌクレオチド配列と、(4)前記(2)に相補的なポリヌクレオチド配列と、(5)前記(1)乃至(5)のRNA等価物とを含む。代替的に前記標的ポリヌクレオチドは前記ポリヌクレオチド配列の断片である。
【0048】
(本発明の記載について)
本発明のタンパク質及び核酸配列、方法について説明する前に、本発明は、ここに開示した特定の装置及び材料、方法に限定されず、その実施形態を変更できることを理解されたい。また、ここで用いられる用語は、特定の実施例のみを説明する目的で用いられたものであり、後述の請求の範囲によってのみ限定され、本発明の範囲を限定することを意図したものではないということも理解されたい。
【0049】
本明細書及び請求の範囲において単数形を表す「或る」、「その(この等)」は、文脈で明確に示していない場合は複数形を含むことに注意されたい。従って、例えば「或る宿主細胞」は複数の宿主細胞を含み、その「抗体」は複数の抗体は含まれ、当業者には周知の等価物なども含まれる。
【0050】
本明細書で用いた全ての科学技術用語は、別の方法で定義されていない限り、本発明の属する技術分野の一般的な技術者が普通に解釈する意味と同じである。本明細書で記述したものと類似、或いは同等の全ての装置及び材料、方法は本発明の実施及びテストに使用できるが、好適な装置及び材料、方法をここに記す。本明細書に記載の全ての文献は、本発明に関連して使用する可能性のある文献に記載された細胞系、プロトコル、試薬、ベクターを記述し開示するために引用した。従来の発明を引用したからと言って、本発明の新規性が損なわれると解釈されるものではない。
【0051】
(定義)
用語「PKIN」は、天然、合成、半合成或いは組換え体など全ての種(特にウシ、ヒツジ、ブタ、マウス、ウマ及びヒトを含む哺乳動物)から得られる実質的に精製されたPKINのアミノ酸配列を指す。
【0052】
用語「アゴニスト」は、PKINの生物学的活性を強めたり、模倣する分子を指す。このアゴニストは、PKINに直接相互作用するか、或いはPKINが関与する生物学的経路の成分と作用して、PKINの活性を調節するタンパク質、核酸、糖質、小分子、任意の他の化合物や組成物を含み得る。
【0053】
用語「アレル変異配列」は、PKINをコードする遺伝子の別の形を指す。アレル変異配列は、核酸配列における少なくとも1つの変異によって生じ、変異mRNA若しくは変異ポリペプチドになり、これらの構造や機能は変わる場合もあれば変わらない場合もある。ある遺伝子は、天然型のアレル変異配列が存在しないもの、1つ或いは多数存在するものがある。一般にアレル変異配列を生じる変異は、ヌクレオチドの自然な欠失、付加、或いは置換による。これらの各変異は、単独或いは他の変異と同時に起こり、所定の配列内で一回或いはそれ以上生じる。
【0054】
PKINをコードする「変異」核酸配列は、様々なヌクレオチドの欠失、挿入、或いは置換が起こっても、PKINと同じポリペプチド或いはPKINの機能特性の少なくとも1つを備えるポリペプチドを指す。この定義には、PKINをコードするポリヌクレオチド配列の正常な染色体の遺伝子座ではない位置でのアレル変異配列との不適当或いは予期しないハイブリダイゼーション、並びにPKINをコードするポリヌクレオチドの特定のオリゴヌクレオチドプローブを用いて容易に検出可能な或いは検出困難な多形性を含む。コードされたタンパク質も変異され得り、サイレント変化を生じPKINと機能的に等価となるアミノ酸残基の欠失、挿入、或いは置換を含み得る。意図的なアミノ酸置換は、生物学的或いは免疫学的にPKINの活性が保持される範囲で、残基の極性、電荷、溶解度、疎水性、親水性、及び/または両親媒性についての類似性に基づいて成され得る。例えば、負に荷電したアミノ酸にはアスパラギン酸及びグルタミン酸が含まれ、正に荷電したアミノ酸にはリシン及びアルギニンが含まれ得る。類似の親水性の値をもち極性非荷電側鎖を有するアミノ酸には、アスパラギン、グルタミン、セリン、トレオニンが含まれ得る。類似の親水性の値をもち非荷電側鎖を有するアミノ酸には、ロイシン、イソロイシン、バリン、グリシン、アラニン、フェニルアラニン及びチロシンが含まれ得る。
【0055】
用語「アミノ酸」及び「アミノ酸配列」は、オリゴペプチド、ペプチド、ポリペプチド、タンパク質配列、或いはそれらの任意の断片を指し、天然の分子及び合成分子を含む。「アミノ酸配列」が天然のタンパク質分子の配列を指す場合、「アミノ酸配列」及び類似の用語は、アミノ酸配列を記載したタンパク質分子に関連する完全で元のままのアミノ酸配列に限定するものではない。
【0056】
用語「増幅」は、核酸配列の複製物を作製することに関連する。一般に増幅は、この技術分野で周知のポリメラーゼ連鎖反応(PCR)技術によって行われる。
【0057】
用語「アンタゴニスト」は、PKINの生物学的活性を阻害或いは減弱する分子である。アンタゴニストは、PKINに直接相互作用するか、或いはPKINが関与する生物学的経路の成分と作用して、PKINの活性を調節する抗体、核酸、糖質、小分子、任意の他の化合物や組成物などのタンパク質を含み得る。
【0058】
用語「抗体」は、抗原決定基と結合可能なFab及びF(ab’)、及びそれらの断片、Fv断片などの無傷の分子を指す。PKINポリペプチドと結合する抗体は、抗体を免疫する小ペプチドを含む無傷の分子またはその断片を用いて作製可能である。動物(例えば、マウス、ラット、若しくはウサギ)を免疫化するのに使用されるポリペプチド或いはオリゴペプチドは、RNAの翻訳から、或いは化学的に合成可能であり、必要に応じて担体タンパク質と結合させることも可能である。ペプチドと化学的に結合した一般に用いられる担体は、ウシ血清アルブミン、チログロブリン、及びキーホールリンペットヘモニアン(KLH)を含む。次ぎに、この結合したペプチドを用いて動物を免疫化する。
【0059】
用語「抗原決定基」は、特定の抗体と接触する分子の領域(即ちエピトープ)を指す。タンパク質或いはタンパク質の断片が、宿主動物を免疫化するのに用いられるとき、このタンパク質の種々の領域は、抗原決定基(タンパク質上の特定の領域或いは三次元構造体)に特異的に結合する抗体の産生を誘発し得る。抗原決定基は、抗体と結合するために無傷の抗原(即ち、免疫応答を引き出すために用いられる免疫原)と競合し得る。
【0060】
本明細書において「アンチセンス」は、特定の核酸配列のセンス(コーディング)鎖と塩基対を形成し得る任意の組成物を指す。アンチセンス成分には、DNAと、RNAと、ペプチド核酸(PNA)と、ホスホロチオネートやメチルホスホネート、ベンジルホスホネート(benzylphosphonate)などの修飾された骨格(backbone linkage)を有するオリゴヌクレオチドと、2’−メトキシエチル糖または2’−メトキシエトキシ糖などの修飾された糖を有するオリゴヌクレオチドと、5−メチルシトシンまたは2’−deoxyuracil、7−deaza−2’−deoxyguanosineなどの修飾された塩基を有するオリゴヌクレオチドを含み得る。アンチセンス分子は、化学合成や転写を含む任意の方法で作り出すことができる。相補的アンチセンス分子は、一度細胞に導入されると、細胞によって作られた天然の核酸配列と塩基対となって二重鎖を形成し、転写や翻訳を阻害する。「負」または「マイナス」という表現はアンチセンス鎖であり、「正」または「プラス」という表現はセンス鎖である。
【0061】
用語「生物学的に活性」は、天然分子の構造的、調節的、或いは生化学的な機能を有するタンパク質を指す。同様に、用語「免疫学的に活性」または「免疫原性」は、天然或いは組換え体のPKIN、合成のPKINまたはそれらの任意のオリゴペプチドが、適当な動物或いは細胞の特定の免疫応答を誘発して特定の抗体と結合する能力を指す。
【0062】
用語「相補的」は、塩基対合によってアニールする2つの一本鎖核酸配列間の関係を指す。例えば、配列「5’AGT3’」が相補的な配列「3’TCA5’」と対をなす。
【0063】
「所定のポリヌクレオチド配列を含む組成物」または「所定のアミノ酸配列を含む組成物」は広い意味で、所定のヌクレオチド配列若しくはアミノ酸配列を含む任意の組成物を指す。この組成物は、乾燥した製剤或いは水溶液を含み得る。PKIN若しくはPKINの断片をコードするポリヌクレオチド配列を含む組成物は、ハイブリダイゼーションプローブとして使用され得る。このプローブは、凍結乾燥状態で保存可能であり、糖質などの安定化剤と結合させることが可能である。ハイブリダイゼーションにおいて、プローブは、塩(例えば、NaCl)及び界面活性剤(例えば、SDS:ドデシル硫酸ナトリウム)、その他の物質(例えば、デンハート液、乾燥ミルク、サケ精子DNAなど)を含む水溶液に展開され得る。
【0064】
「コンセンサス配列」は、不要な塩基を分離するためにDNA配列の解析を繰り返し行い、XL−PCRキット(PE Biosystems,Foster City CA)を用いて5’及び/または3’の方向に伸長され、再度シークエンシングされた核酸配列、またはGELVIEW 断片構築システム(GCG, Madison, WI)またはPhrap (University of Washington, Seattle WA)等の断片構築用のコンピュータプログラムを用いて1つ或いはそれ以上の重複するcDNAやEST、またはゲノムDNA断片から構築された核酸配列を指す。伸長及び重複の両方によって構築されるコンセンサス配列もある。
【0065】
用語「保存的なアミノ酸置換」は、元のタンパク質の特性を殆ど変えない置換を指す。即ち、置換によってそのタンパク質の構造や機能が大きくは変わらず、そのタンパク質の構造、特にその機能が保存される。以下に、あるタンパク質の元のアミノ酸が別のアミノ酸に置換される保存的なアミノ酸置換を示す。
元の残基       保存的な置換
Ala         Gly, Set
Arg         His, Lys
Asn         Asp, Gln, His
Asp         Asn, Glu
Cys         Ala, Ser
Gln         Asn, Glu, His
Glu         Asp, Gln, His
Gly         Ala
His         Asn, Arg, Gln, Glu
Ile         Leu, Val
Leu         Ile, Val
Lys         Arg, Gln, Glu
Met         Leu, Ile
Phe         His, Met, Leu, Trp, Tyr
Ser         Cys, Thr
Thr         Ser, Val
Trp         Phe, Tyr
Tyr         His, Phe, Trp
Val         Ile. Leu, Thr
一般に、保存されたアミノ酸置換の場合は、a)置換された領域のポリペプチドの骨格構造、例えば、βシートやαヘリックス高次構造、b)置換された部位の分子の電荷または疎水性、及び/または、c)側鎖の大半が維持される。
【0066】
用語「欠失」は、1個以上のアミノ酸残基が欠如するアミノ酸配列の変化、或いは1個以上のヌクレオチドが欠如する核酸配列の変化を指す。
【0067】
用語「誘導体」は、化学修飾されたポリヌクレオチドまたはポリペプチドを指す。ポリヌクレオチド配列の化学修飾には、例えば、アルキル基、アシル基、ヒドロキシル基、或いはアミノ基による水素の置換がある。誘導体ポリヌクレオチドは、自然分子(未修飾の分子)の生物学的或いは免疫学的機能の少なくとも1つを維持するポリペプチドをコードする。誘導体ポリペプチドとは、もとのポリペプチドの生物学的機能、或いは免疫学的機能の少なくとも1つを維持する、グリコシル化、ポリエチレングリコール化、或いは任意の同様のプロセスによって修飾されたポリペプチドのことである。
【0068】
「検出可能な標識」は、測定可能な信号を生成し得る、ポリヌクレオチドやポリペプチドに共有結合或いは非共有結合するレポーター分子や酵素を指す。
【0069】
用語「断片」は、PKINまたはPKINをコードするポリヌクレオチドの固有の部分であって、その親配列(parent sequence)と同一であるがその配列より長さが短いものを指す。「断片」の最大の長さは、親配列から1つのヌクレオチド/アミノ酸残基を差し引いた長さである。例えば、ある断片は、5〜1000個の連続するヌクレオチド或いはアミノ酸残基を含む。プローブ、プライマー、抗原、治療用分子、またはその他の目的に用いる断片は、少なくとも5、10、15、16、20、25、30、40、50、60、75、100、150、250若しくは500個の連続するヌクレオチド或いはアミノ酸残基の長さである。断片は、優先的に分子の特定の領域から選択される場合もある。例えば、ポリペプチド断片は、所定の配列に示された最初の250若しくは500のアミノ酸(或いは、ポリペプチドの最初の25%または50%)から選択された連続するアミノ酸の所定の長さを含み得る。これらの長さは一例であり、配列表及び表、図面を含む明細書に記載の任意の長さが、本発明の実施例に含まれ得る。
【0070】
SEQ ID NO:12−22の断片は、例えば、この断片を得たゲノム内の他の配列とは異なる、SEQ ID NO:12−22を明確に同定する固有のポリヌクレオチド配列の領域を含む。SEQ ID NO:12−22のある断片は、例えば、ハイブリダイゼーションや増幅技術、またはSEQ ID NO:12−22を関連ポリヌクレオチド配列から区別する類似の方法に有用である。ある断片と一致するSEQ ID NO:12−22の正確な断片の長さや領域は、その断片の目的に基づいて当分野で一般的な技術によって日常的に測定できる。
【0071】
SEQ ID NO:1−11のある断片は、SEQ ID NO:12−22のある断片によってコードされる。SEQ ID NO:1−11のある断片は、SEQ ID NO:1−11を特異的に同定する固有のアミノ酸配列の領域を含む。例えば、SEQ ID NO:1−11のある断片は、SEQ ID NO:1−11を特異的に認識する抗体の開発における免疫原性ペプチドとして有用である。ある断片と一致するSEQ ID NO:1−11の正確な断片の長さや領域は、その断片の目的に基づいて当分野で一般的な技術によって日常的に決定できる。
【0072】
「完全長」ポリヌクレオチド配列とは、少なくとも1つの翻訳開始コドン(例えばメチオニン)、それに続くオープンリーディングフレーム及び翻訳終止コドンを有する配列である。「完全長」ポリヌクレオチド配列は、「完全長」ポリペプチド配列をコードする。
【0073】
「相同性」は、2つ以上のポリヌクレオチド配列間または2つ以上のポリペプチド配列間の配列類似性である。この配列類似性は配列同一性と言い換えることができる。
【0074】
ポリヌクレオチド配列についての用語「パーセントの同一性」または「%の同一性」とは、標準化されたアルゴリズムを用いてアラインメントされる、2つ以上のポリヌクレオチド配列間の一致する残基の百分率のことである。このようなアルゴリズムは、標準化され再現できる方法で、2つの配列間のアラインメントを最適化するべく、配列にギャップを挿入して、より意味をもつ2つの配列間の比較を行うことができる。
【0075】
ポリヌクレオチド配列間の同一性のパーセントは、MEGALIGN version 3.12e配列アラインメントプログラムに組込まれるCLUSTAL Vアルゴリズムのデフォルトパラメータを用いて決定可能である。このプログラムはLASERGENEソフトウェアパッケージの一部であり、分子生物学分析プログラム一式(DNASTAR, Madison WI)である。このCLUSTAL Vは、Higgins, D.G. 及び P.M. Sharp (1989) CABIOS 5:151−153、Higgins, D.G. 他 (1992) CABIOS 8:189−191に記載されている。ポリヌクレオチド配列の対のアライメントの場合、デフォルトパラメータは、Ktuple=2、gap penalty=5、window=4、「diagonals saved」=4と設定する。「重み付けされた」残基重み付け表が、デフォルトとして選択された。同一性のパーセントは、アラインメントされたポリヌクレオチド配列間の「類似性のパーセント」としてCLUSTAL Vによって報告される。
【0076】
別法では、National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. 他 (1990) J. Mol. Biol. 215:403−410)が提供する、広く用いられている無料の配列比較アルゴリズム一式が、NCBI(Bethesda、MD)を含む幾つかのソース及びインターネット(http://WWW.ncbi.nlm.nih.gov/BLAST/)で入手可能である。このBLASTソフトウェア一式には、既知のポリヌクレオチド配列と様々なデータベースの別のポリヌクレオチド配列とのアラインメントに用いられる「blastn」を含む、様々な配列分析プログラムが含まれる。「BLAST 2 Sequences」と呼ばれるツールが入手可能であり、2つのヌクレオチド配列の対を直接比較するために用いられる。「BLAST 2 Sequences」は、http://WWW.ncbi.nlm.nih.gov/gorf/b12.htmlにアクセスして、対話形式で利用ができる。「BLAST 2 Sequences」ツールは、blastn 及び blastp(以下に記載)の両方に用いることができる。BLASTプログラムは、一般的には、デフォルトを設定するギャップ及び他のパラメーターと共に用いられる。例えば、2つのヌクレオチド配列を比較する場合、ある者は、デフォルトパラメータに設定された「BLAST 2 Sequences」ツールVersion 2.0.12 (April−21−2000)でblastnを使用するであろう。そのようなデフォルトパラメータは、例えば、以下のようにする。
【0077】
Matrix: BLOSUM62
Reward for match: 1
Penalty for mismatch: −2
Open Gap: 5 及び Extension Gap: 2 penalties
Gap x drop−off: 50
Expect: 10
Word Size: 11
Filter: on
同一性のパーセントは、例えば、特定の配列番号で決められた、所定の配列の全長に対して測定してもよいし、それより短い長さに対して、例えば、ある大きな所定の配列から得られた断片、例えば、連続する少なくとも、20または30、40、50、70、100、200のヌクレオチドの断片の長さに対して測定してもよい。このような長さは単なる例であり、配列表及び表、図面を含む明細書に記載の配列の任意の長さの断片を用いて、同一性のパーセントが測定される長さを示すことができる。
【0078】
高い同一性を示さない核酸配列でも、遺伝子コードの縮重によって類似のアミノ酸配列をコードし得る。縮重を利用して核酸配列を変え、それぞれが実質的に同じタンパク質をコードする様々な核酸配列を作製できることを理解されたい。
【0079】
ポリペプチド配列に用いられる用語「パーセントの同一性」または「%の同一性」とは、標準化されたアルゴリズムを用いてアラインメントされる2つ以上のポリペプチド配列間の一致する残基の百分率のことである。ポリペプチド配列アラインメントの方法は周知である。アラインメント方法の中には、保存的なアミノ酸置換を考慮したものもある。詳細に上述したこのような保存的な置換は、一般に、置換部位の電荷や疎水性が保存され、ポリペプチドの構造(従って機能も)が保存される。
【0080】
ポリペプチド配列間の同一性のパーセントは、MEGALIGN バージョン3.12e配列アラインメントプログラム(上記)に組込まれるCLUSTAL Vアルゴリズムのデフォルトパラメータを用いて決定可能である。CLUSTAL Vを用いる対方式のポリぺプチド配列のアライメントの場合、デフォルトパラメータは、Ktuple=1、gap penalty=3、window=5、及び「diagonals saved」=5と設定する。PAM250マトリクスが、デフォルトの残基重み付け表として選択される。ポリヌクレオチドアラインメントと同様に、アラインメントされたポリペプチド配列の対の同一性のパーセントは、「類似性のパーセント」としてCLUSTAL Vによって報告される。
【0081】
別法では、NCBI BLASTソフトウェア一式が用いられる。例えば、2つのポリペプチド配列を対で比較をする場合、ある者は、デフォルトパラメータで設定された「BLAST 2 Sequences」ツールVersion 2.0.12 (Apr−21−2000)でblastpを使用するであろう。そのようなデフォルトパラメータは、例えば、以下のようにする。
【0082】
Matrix: BLOSUM62
Open Gap: 11 及び Extension Gap: 1 penalties
Gap x drop−off: 50
Expect: 10
Word Size: 3
Filter: on
同一性のパーセントは、例えば、特定の配列番号で決められた、所定のポリペプチド配列の全長に対して測定してもよいし、それより短い長さに対して、例えば、ある大きな所定のポリペプチド配列から得られた断片、例えば、連続する少なくとも15、20または30、40、50、70、150の残基の断片の長さに対して測定してもよい。このような長さは単なる例であり、配列表及び表、図面を含む明細書に記載の配列の任意の長さの断片を用いて、同一性のパーセントが測定される長さを示すことができる。
【0083】
「ヒト人工染色体(HAC)」は、約6kb(キロベース)〜10MbのサイズのDNA配列を含み得る、安定した有糸分裂染色体の分離及び維持に必要な全てのエレメントを含む直鎖状の小染色体である。
【0084】
用語「ヒト化抗体」は、もとの結合能力を保持しつつよりヒトの抗体に似せるために、非抗原結合領域のアミノ酸配列が変えられた抗体分子を指す。
【0085】
「ハイブリダイゼーション」とは、所定のハイブリダイゼーション条件下で、ある一本鎖ポリヌクレオチドがある相補的な一本鎖と塩基対を形成するアニーリングのプロセスである。特異的なハイブリダイゼーションとは、2つの核酸配列が高い相同性を有することを意味する。アニーリングが許容される条件下で、特異的なハイブリダイゼーション複合体が形成され、洗浄過程の後もハイブリダイズしたままである。洗浄過程は、ハイブリダイゼーションプロセスの厳密性即ちストリンジェンシー(stringency)の決定において特に重要であり、よりストリンジェントな条件では、非特異的な結合、即ち完全には一致しない核酸鎖間の対の結合が減少する。核酸配列間のアニーリングが許容される条件は、当業者によって日常的に決定され、ハイブリダイゼーションの間は一定であるが、洗浄過程は、目的のストリンジェンシーにするためにその最中に条件の変更が可能であり、ハイブリダイゼーション特異性が得られる。アニーリングが許容される条件は、例えば、温度が68℃で、約6×SSC、約1%(w/v)のSDS、並びに約100μg/mlのせん断して変性したサケ精子DNAが含まれる。
【0086】
一般に、ハイブリダイゼーションのストリンジェンシーは、洗浄過程を行う際の温度によっても左右される。この洗浄温度は通常、所定のイオン強度とpHにおける特定の配列の熱融点(Tm)より約5〜20℃低く選択される。このTmは、(所定のイオン強度とpHの下)標的の配列の50%が完全に一致するプローブとハイブリダイズする温度である。Tmを計算する式及び核酸のハイブリダイゼーションの条件は、周知であり、Sambrook, J. 他による, 1989, Molecular Cloning: Laboratory Manual, 第2版の1−3巻, Cold Spring Harbor Press, Plainview NY; 特に2巻の9章に記載されている。
【0087】
本発明のポリヌクレオチド間の高いストリンジェンシーのハイブリダイゼーションでは、約0.2x SSC及び約1%のSDSの存在の下、約68℃で1時間の洗浄過程を含む。別法では、65℃、60℃、55℃、42℃の温度で行う。SSCの濃度は、約0.1%のSDSが存在の下、約0.1〜2x SSCの範囲である。通常は、ブロッキング試薬を用いて非特異的なハイブリダイゼーションを阻止する。このようなブロッキング試薬には、例えば、約100〜200μg/mlの切断され変性したサケ精子DNAが含まれる。約35〜50%v/vの濃度のホルムアミドなどの有機溶剤が、例えば、RNAとDNAのハイブリダイゼーションなどの特定の場合に用いることができる。これらの洗浄条件の有用な改変は、当業者には周知である。特に高いストリンジェントな条件でのハイブリダイゼーションは、ヌクレオチド間の進化における類似性を示唆し得る。このような類似性は、それらのヌクレオチド及びコードされたポリペプチドが類似の役割を果たしていることを強く示唆する。
【0088】
用語「ハイブリダイゼーション複合体」は、相補的な塩基間の水素結合によって、形成された2つの核酸配列の複合体を指す。ハイブリダイゼーション複合体は溶液中(例えば、CtまたはRt分析)で形成されるか、或いは溶液中の1つの核酸配列と固体の支持物(例えば、紙、膜、フィルター、チップ、ピン、或いはスライドガラス、または細胞及びその核酸を固定する任意の適当な基板)に固定されたもう一つの核酸配列とで形成され得る。
【0089】
用語「挿入」或いは「付加」は、1個以上のアミノ酸残基或いはヌクレオチドがそれぞれ追加されるアミノ酸配列或いは核酸配列の変化を指す。
【0090】
「免疫応答」は、炎症性疾患及び外傷、免疫異常、感染症、遺伝病などに関連する症状を指す。これらの症状は、細胞系及び全身防衛系に影響を及ぼすサイトカイン及びケモカイン、別の情報伝達分子などの様々な因子の発現という特徴をもつ。
【0091】
用語「免疫原性断片」は、例えば哺乳動物などの生きている動物に導入すると、免疫反応を引き起こすPKINのポリペプチド断片またはオリゴペプチド断片を指す。用語「免疫原性断片」はまた、本明細書で開示するまたは当分野で周知のあらゆる抗体生産方法に有用なPKINのポリペプチド断片またはオリゴペプチド断片を含む。
【0092】
用語「マイクロアレイ」は、基質上の複数のポリヌクレオチド、ポリペプチドまたはその他の化合物の構成を指す。
【0093】
用語「エレメント」または「アレイエレメント」は、マイクロアレイ上に固有の指定された位置を有する、ポリヌクレオチド、ポリペプチドまたはその他の化合物を指す。
【0094】
用語「調節」は、PKINの活性の変化を指す。例えば、調節によって、PKINのタンパク質活性、或いは結合特性、またはその他の生物学的特性、機能的特性或いは免疫学的特性の変化が起こる。
【0095】
用語「核酸」及び「核酸配列」は、ヌクレオチド、オリゴヌクレオチド、ポリヌクレオチド、或いはそれらの断片を指し、一本鎖若しくは二本鎖であって、センス鎖或いはアンチセンス鎖であるゲノム起源若しくは合成起源のDNA或いはRNA、ペプチド核酸(PNA)、任意のDNA様物質、及びRNA様物質である。
【0096】
「機能的に結合した」は、第1の核酸配列と第2の核酸配列が機能的な関係にある状態を指す。例えば、プロモーターがコード配列の転写または発現に影響を与える場合、そのプロモーターはそのコード配列に機能的に結合している。一般に、機能的に結合したDNA配列は、同じ読み枠内で2つのタンパク質をコードする領域が結合する必要がある場合は、非常に近接或いは連続する。
【0097】
「ペプチド核酸(PNA)」は、末端がリシンで終わるアミノ酸残基のペプチド骨格に結合した、少なくとも約5ヌクレオチドの長さのオリゴヌクレオチドを含む、アンチセンス分子または抗遺伝子剤を指す。この末端のリシンにより、この組成物が溶解性となる。PNAは、相補的な一本鎖DNAやRNAに優先的に結合して転写物の伸長を止め、ポリエチレングリコール化して細胞における寿命を延ばし得る。
【0098】
PKINの「翻訳後修飾」には、脂質化、グリコシル化、リン酸化、アセチル化、ラセミ化、蛋白分解性切断及びその他の当分野で既知の修飾を含まれ得る。これらのプロセスは、合成或いは生化学的に生じ得る。生化学的修飾は、PKINの酵素環境に依存し、細胞の種類によって異なり得る。
【0099】
「プローブ」とは、同一配列或いはアレル核酸配列、関連する核酸配列の検出に用いる、PKINやそれらの相補配列、またはそれらの断片をコードする核酸配列のことである。プローブは、検出可能な標識またはレポーター分子が結合され単離されたオリゴヌクレオチドやポリヌクレオチドである。典型的な標識には、放射性アイソトープ及びリガンド、化学発光試薬、酵素がある。「プライマー」とは、相補的な塩基対を形成して標的のポリヌクレオチドにアニーリング可能な、通常はDNAオリゴヌクレオチドである短い核酸である。プライマーがポリヌクレオチドにアニーリングした後、あるDNAポリメラーゼ酵素によって、標的のDNA一本鎖に沿って伸長される。プライマーの組は、例えば、PCR法における核酸配列の増幅(及び同定)に用いることができる。
【0100】
本発明に用いられるプローブ及びプライマーは、既知の配列の少なくとも15の連続するヌクレオチドを含む。特異性を高めるために、より長いプローブ及びプライマーが用いることも可能である。例えば、開示した核酸配列の連続する少なくとも20または25、30、40、50、60、70、80、90、100、150のヌクレオチドを含む。プローブ及びプライマーは、上記した例より相当長いものも用いることができ、本明細書の表及び図面、配列表に示された任意の長さのヌクレオチドも用いることができることを理解されたい。
【0101】
プローブ及びプライマーの準備及び使用方法については、例えば、Sambrook, J.他による、1989年、名称「Molecular Cloning: A Laboratory Manual」、第2版の1−3巻(Cold Spring Harbor Press, Plainview NY)、またはAusubel, F.M. 他による、1987年、名称「Current Protocols in Molecular Biology」(Greene Pubi. Assoc. & Wiley−Intersciences, New York NY)、並びに Innis他による、1990年、名称「PCR Protocols, A Guide to Methods and Applications」(Academic Press, San Diego CA.)を参照されたい。PCR用のプライマーの組は、例えば、Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA)などのそのような目的のためのコンピュータプログラムを用いて、ある既知の配列から引き出すことができる。
【0102】
プライマーとして用いるオリゴヌクレオチドは、当分野で周知のプライマー選択用のコンピュータプログラムで選択される。例えば、OLIGO 4.06ソフトウェアは、それぞれが最大100ヌクレオチドまでのPCR用のプライマーの対の選択、及び32,000塩基までの入力ポリヌクレオチド配列から最大5,000ヌクレオチドまでの大きなポリヌクレオチド及びオリゴヌクレオチドの分析に有用である。類似のプライマー選択用プログラムには、能力を拡大する追加の機能が含まれている。例えば、PrimOUプライマー選択プログラム(Genome Center at University of Texas South West Medical Center, Dallas TXより入手可能)は、メガベース配列から特定のプライマーを選択できるため、ゲノムワイドスコープ(genome−wide scope)におけるプライマーの設計に有用である。Primer3プライマー選択プログラム(Whitehead Institute/MIT Center for Genome Research, Cambridge MA1より入手可能)によって、ユーザーは、プライマー結合部位として避けたい配列を指定できる「非プライミングライブラリ(mispriming libaray)」を入力できる。また、Primer3は、特にマイクロアレイのオリゴヌクレオチドの選択に有用である(後の方の2つのプライマー選択プログラムのソースコードは、それぞれのソースから得ることができ、ユーザーのニーズを満たすように変更することもできる)。PrimerGenプログラム(UK Human Genome Mapping Project Resource Centre, Cambridge UK より入手可能)は、多数の配列アラインメントに基づいてプライマーを設計するため、アラインメントされた核酸配列の最も保存された領域或いは最も保存されていない領域のどちらかとハイブリダイズするプライマーを選択することができる。従って、このプログラムは、固有及び保存されたオリゴヌクレオチドやポリヌクレオチドの断片の同定に有用である。上記した任意の選択方法で同定されたオリゴヌクレオチドやポリヌクレオチドの断片は、例えば、PCR法やシークエンシングプライマー、マイクロアレイエレメント、或いはサンプルの核酸の完全或いは部分的に相補的なポリヌクレオチドを同定する特定のプローブなどの、ハイブリダイゼーション技術に有用である。オリゴヌクレオチドの選択方法は、上記した方法に制限されるものではない。
【0103】
本明細書における「組換え核酸」は天然の配列ではなく、2つ以上の配列の離れたセグメントを人工的に組み合わせた配列である。この人工の組み合せは、化学合成によって作られる場合も多いが、前出のSambrook に記載されたような遺伝子工学の技術を用いて核酸の離れたセグメントを人工的に操作する方がより一般的である。この「組換え核酸」には、単に核酸の一部の追加または置換、欠失によって変更された核酸も含む。組換え核酸は、あるプロモーター配列に機能的に結合した核酸配列を含む場合もある。このような組換え核酸は、例えば、ある細胞を形質転換するのに用いられるベクターの一部であり得る。
【0104】
別法では、このような組換え核酸は、この組換え核酸を発現する哺乳動物のワクチン接種に用いると、その哺乳動物の防衛的な免疫応答を誘発する、ワクシニアウイルスに基づいたウイルスベクターの一部であり得る。
【0105】
「調節エレメント」は、通常は遺伝子の非翻訳領域に由来する核酸配列であり、エンハンサー、プロモーター、イントロン及び5’及び3’の非翻訳領域(UTR)を含む。調節エレメントは、転写や翻訳、またはRNAの安定性を調節する宿主またはウイルスタンパク質と相互作用する。
【0106】
「レポーター分子」は、核酸、アミノ酸または抗体の標識に用いられる化学的または生化学的な部分である。レポーター分子には、放射性核種、酵素、蛍光剤、化学発光剤、発色剤、基質、補助因子、インヒビター、磁気粒子及びその他の当分野で既知の成分が含まれる。
【0107】
本明細書において、DNA配列に対する「RNA等価物」とは、基準となるDNA配列と同じ直鎖の核酸配列から構成されるが、窒素性塩基のチミンがウラシルに置換され、糖鎖の背骨がデオキシリボースではなくリボースからなる。
【0108】
用語「サンプル」は、その最も広い意味で用いられている。PKIN、PKINをコードする核酸、またはその断片を含むと推定されるサンプルは、体液と、細胞からの抽出物や細胞から単離された染色体や細胞内小器官、膜と、細胞と、溶液中に存在するまたは基板に固定されたゲノムDNA、RNA、cDNAと、組織と、組織プリント等を含み得る。
【0109】
用語「特異的結合」及び「特異的に結合する」は、タンパク質若しくはペプチドと、アゴニスト、抗体、アンタゴニスト、小分子、若しくは任意の天然若しくは合成の結合組成物との間の相互作用を指す。この相互作用は、結合する分子によって認識される、例えば、抗原決定基つまりエピトープなどのタンパク質の特定の構造の存在によって左右される。例えば、抗体がエピトープ「A」に対して特異的である場合、結合していない標識した「A」及び抗体を含む反応液に、エピトープAを含むポリペプチド或いは結合していない無標識の「A」が存在すると、抗体と結合する標識Aの量が減少する。
【0110】
用語「実質的に精製された」は、自然の環境から取り除かれてから、単離或いは分離された核酸配列或いはアミノ酸配列であって、自然に結合している組成物が少なくとも約60%除去されたものであり、好ましくは約75%以上の除去、最も好ましいくは90%以上除去されたものを指す。
【0111】
「置換」とは、一つ以上のアミノ酸またはヌクレオチドをそれぞれ別のアミノ酸またはヌクレオチドに置き換えることである。
【0112】
用語「基板」は、任意の好適な固体或いは半固体の支持物を指し、膜及びフィルター、チップ、スライド、ウエハ、ファイバー、磁気または非磁気ビード、ゲル、チューブ、プレート、ポリマー、微小粒子、毛細管が含まれる。この基板には、壁または塹壕、ピン、チャンネル、細孔などの様々な表面形態があり、そこにポリヌクレオチドやポリペプチドが結合する。
【0113】
「転写イメージ」は、所定条件下での所定時間における特定の細胞の種類または組織による集合的遺伝子発現のパターンを指す。
【0114】
「形質転換」とは、外来DNAが受容細胞に導入されるプロセスのことである。形質転換は、当分野で周知の種々の方法により、自然或いは人工の条件下で起こり、原核宿主細胞若しくは真核宿主細胞の中に外来核酸配列を挿入する任意の周知の方法によって行うことができる。この形質転換の方法は、形質転換される宿主細胞のタイプによって選択される。この方法には、バクテリオファージまたはウイルス感染、電気穿孔法(エレクトロポレーション)、リポフェクション、及び微粒子照射が含まれるが、これらに限定されるものではない。「形質転換された」細胞には、導入されたDNAが自律的に複製するプラスミドとして或いは宿主染色体の一部として複製可能である安定的に形質転換された細胞が含まれる。さらに、限られた時間に一時的に導入DNA若しくは導入RNAを発現する細胞も含まれる。
【0115】
本明細書における「遺伝子組換え生物」とは、当分野で周知の遺伝子組換え技術などを用いて、人間が生物の1つ以上の細胞に異種の核酸を導入した任意の生物であり、動物及び植物を含むが、それらに限定されるものではない。微量注入や組換えウイルスに感染させるなどの慎重な遺伝子操作によって、細胞の前駆体に直接或いは間接的に異種核酸を細胞に導入する。「遺伝子操作」とは、典型的な交雑育種やin vitroでの受精ではなく、組換えDNA分子を導入することである。本発明に従った遺伝子組換え生物には、細菌及びラン藻類、菌類、植物、動物が含まれる。本発明の単離されたDNAは、当分野で周知の、例えば、感染、形質移入、形質転換、トランス接合(transconjugation)などの方法によって、宿主に導入することができる。本発明のDNAをそのような生物に導入する技術は周知であり、前出のSambrook他(1989)に記載されている。
【0116】
特定の核酸配列の「変異配列」とは、デフォルトパラメータ設定の「BLAST 2 Sequences」ツールVersion 2.0.9 (May−07−1999)を用いるblastnによって、ある核酸配列のある長さに対する該特定の核酸配列の同一性が、少なくとも40%と決定された核酸配列のことである。このような核酸の対は、ある長さにおいて、例えば、少なくとも50%または60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或いはそれ以上の同一性を示し得る。ある変異配列は、例えば、「アレル」変異配列(上述)または「スプライス」変異配列、「種」変異配列、「多型」変異配列と表すことができる。スプライス変異配列は基準分子と同一性が極めて高い可能性があるが、mRNAプロセッシング中のエキソンの択一的スプライシングによってポリヌクレオチドの数が多くなったり、少なくなったりする。対応するポリペプチドは、基準分子に存在する追加の機能ドメインを有したり、基準分子に存在するドメインが欠落したりし得る。種変異配列は、種によって異なるポリヌクレオチド配列である。得られるポリペプチドは、互いに高いアミノ酸同一性を有する。多型変異配列は、所定の種と種における特定の遺伝子のポリヌクレオチド配列が異なる。多型変異配列はまた、ポリヌクレオチド配列の1つのヌクレオチドが異なる「1ヌクレオチド多型」(SNP)も含み得る。SNPの存在は、例えば、或る集団、病態、病態の性向を示唆し得る。
【0117】
特定のポリペプチド配列の「変異体」とは、デフォルトパラメータ設定の「BLAST 2 Sequences」ツールVersion 2.0.9 (May−07−1999)を用いるblastpによって、あるポリペプチド配列のある長さに対する該特定のポリペプチド配列の同一性が、少なくとも40%と決定されたポリペプチド配列のことである。このようなポリペプチドの対は、ある長さにおいて、例えば、少なくとも50%または60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%或いはそれ以上の同一性を示し得る。
【0118】
(発明)
本発明は、新規のヒトキナーゼ(PKIN)及びPKINをコードするポリヌクレオチドの発見に基づき、これらの組成物を利用した癌、免疫疾患、成長及び発達に影響を及ぼす障害、アテローム性動脈硬化症及びその他の心血管疾患、及び脂質異常の診断、治療、及び予防に関する。
【0119】
表1は、本発明のポリヌクレオチド配列及びポリペプチド配列の識別番号を示す。各ポリヌクレオチドおよびそれに対応するポリペプチドは、1つのインサイトプロジェクト識別番号(Incyte Project ID)に相関する。各ポリペプチド配列は、記載されているようにポリペプチド配列識別番号(Polypeptide SEQ ID NO :)およびインサイトポリペプチド配列番号(Incyte Polypeptide ID)の両方によって示されている。各ポリヌクレオチド配列は、記載されているようにポリヌクレオチド配列識別番号(Polypeptide SEQ ID NO :)およびインサイトポリヌクレオチドコンセンサス配列番号(Incyte Polypeptide ID)の両方によって示されている。
【0120】
表2は、GenBankタンパク質(genept)データベースにおいてBLAST解析により同定された本発明のポリペプチドに相同性を有する配列を示す。列1および列2はそれぞれ、本発明の各ポリペプチドに対するポリペプチド配列識別番号(Polypeptide SEQ ID NO :)およびそれに対応するインサイトポリペプチド配列番号(Incyte Polypeptide ID)を示す。列3は、GenBankの最も近い相同体のGenBankの識別番号(Genbank ID NO :)を示す。列4は、各ポリペプチドとそのGenBank相同体との間の一致を表す確率スコアを示す。列5は、GwnBank相同体のアノテーションを示し、更に該当箇所には適当な引用文も示す。これらを引用することを以って本明細書の一部とする。
【0121】
表3は、本発明の各ポリペプチドの様々な構造的特徴を示す。列1および列2はそれぞれ、本発明の各ポリペプチドのポリペプチド配列識別番号(SEQ ID NO :)およびそれに対応するインサイトポリペプチド配列番号(Incyte Polypeptide ID)を示す。列3は、各ポリペプチドのアミノ酸残基数を示す。列4および列5はそれぞれ、GCG配列分析ソフトウェアパッケージのMOTIFSプログラム(Genetics Computer Group, Madison WI)によって決定された、潜在的なリン酸化部位および潜在的なグリコシル化部位を示す。列6は、シグネチャ(signature)配列、ドメイン、およびモチーフを含むアミノ酸残基を示す。列7は、タンパク質の構造/機能の分析のための分析方法を示し、該当箇所にはさらに分析方法に利用した検索可能なデータベースを示す。
【0122】
表2及び3は共に、本発明の各々のポリペプチドの特性を要約しており、それら特性が請求の範囲に記載されたポリペプチドがヒトキナーゼであることを確立している。例えば、残基M1より残基Q783まで、配列識別番号5は、Basic Local Alignment Search Tool (BLAST)で決定されるように、ネズミ塩−誘導性タンパク質キナーゼ(GenBank ID g5672676)と81%同一である(図2参照)。BLAST確率スコアはごくわずかであり、それは、偶然に観測されたポリペプチド配列を得る確率を示す。配列識別番号5はまた、保存ドメインの隠されたMarkovモデル(HMM)ベースPFAMデータベース中の統計学的に有意な整合(match)を捜索する事で決定されるタンパク質キナーゼドメインを含む(図3参照)。BLAST、MOTIFS、及びPROFILESCAN解析よりのデータは、配列識別番号1がタンパク質キナーゼである、さらに実証的な証拠を提供する。配列識別番号1、配列識別番号2、配列識別番号3、配列識別番号4、配列識別番号6、配列識別番号7、配列識別番号8、配列識別番号9、配列識別番号10、及び配列識別番号11は、同様の規則で解析され注釈された。配列識別番号1−3の解析のためのアルゴリズム及びパラメータが表7で記述されている。
【0123】
表4に示されているように、本発明のポリヌクレオチド配列は、cDNA配列、またはゲノムDNA由来のコード(エキソン)配列、或いはこれらの2種類の配列のあらゆる組み合わせを用いて組み立てた。列1および列2はそれぞれ、本発明の各ポリヌクレオチドのポリヌクレオチド配列識別番号(Polynucleotide SEQ ID NO :)およびそれに対応するインサイトポリヌクレオチドコンセンサス配列番号(Incyte Polynucleotide ID)を示す。列3は、塩基対における各ポリヌクレオチド配列の長さを示す。列4は、例えば、SEQ ID NO:12−22を同定するため、或いはSEQ ID NO:12−22と関連するポリヌクレオチド配列とを区別するためのハイブリダイゼーションまたは増幅技術に有用なポリヌクレオチド配列の断片を示す。列5は、cDNA配列、ゲノムDNAから推定されるコード配列(エキソン)、および/またはcDNAおよびゲノムDNAの両方からなる群に対応する識別番号を示す。これらの配列を用いて本発明のポリヌクレオチド配列を組み立てた。表4の列6および列7はそれぞれ、列5の配列に対応するcDNA配列およびゲノム配列の開始ヌクレオチド(5’)位置および終了ヌクレオチド(3’)位置を示す。
【0124】
表4の列5に示されている識別番号は、具体的には、例えばインサイトcDNAおよびそれらに対応するcDNAライブラリの識別番号を示す。例えば、7286907H1はインサイトcDNA配列の識別番号であり、BRAIFER06はそれが由来するcDNAライブラリの識別番号である。cDNAライブラリが示されていないインサイトcDNAは、プールされているcDNAライブラリ(例えば、70067849V1)に由来した。列5の識別番号は、完全長ポリヌクレオチド配列の組み立てに用いたGenBankのcDNAすなわちESTの識別番号の場合もある。または、列5の識別番号が、ゲノムDNAのGenscan分析によって推定されるコード領域の場合もある。例えば、GNN. g6560812_002. editは、Genscan予測コード配列のコード番号であり、g6560812は、Genscanが用いられた配列のGenBank識別番号である。このGenscan推定コード配列は、配列を組み立てる前に編集する場合がある(実施例4を参照)。または、列5の識別番号は、”exon−stitching”アルゴリズムによってcDNAおよびGenscan推定エキソンの両方からなる群の場合もある。例えば、FL6756529_00001は、6756529がアルゴリズムが採用された配列のクラスタの識別番号であり、00001がアルゴリズムによって生成された予測数である、”stitched”配列を示している(実施例5を参照)。または、列5の識別番号は、”exon−stretching”アルゴリズムによってcDNAおよびGenscan推定エキソンの両方からなる群の場合もある(実施例5を参照)。場合によっては、列5に示されている配列の範囲と重複するインサイトcDNAの範囲が得られ、最終的なコンセンサス配列が決定されるが、それに相当するインサイトcDNAの識別番号は示されていない。
【0125】
表5は、インサイトcDNA配列を用いて組み立てられたこれらのポリヌクレオチド配列が由来する代表的なcDNAライブラリを示す。代表的なcDNAライブラリとは、上記ポリヌクレオチド配列の組み立ておよび決定に用いられたインサイトcDNA配列を最も多く含むインサイトcDNAライブラリのことである。表5に示されているcDNAライブラリを作製するために用いた組織およびベクターが表6に示されている。
【0126】
本発明はまた、PKINの変異体も含む。好適なPKINの変異体は、PKINの機能的或いは構造的特徴の少なくともどちらか一方を有し、かつPKINアミノ酸配列に対して少なくとも約80%のアミノ酸配列同一性、或いは少なくとも約90%のアミノ酸配列同一性、更には少なくとも約95%のアミノ酸配列同一性を有する。
【0127】
本発明はまた、PKINをコードするポリヌクレオチドを提供する。特定の実施例において、本発明は、PKINをコードするSEQ ID NO:12−22からなる一群から選択された配列を含むポリヌクレオチド配列を提供する。配列表に示したSEQ ID NO:12−22のポリヌクレオチド配列は、窒素系塩基のチミンがウラシルに置換され、糖鎖の背骨がデオキシリボースではなくリボースからなる等価RNA配列を含む。
【0128】
本発明はまた、PKINをコードするポリヌクレオチド配列の変異配列を含む。詳細には、このようなポリヌクレオチド配列の変異配列は、PKINをコードするポリヌクレオチド配列と少なくとも70%のポリヌクレオチド配列同一性、或いは少なくとも85%のポリヌクレオチド配列同一性、更には少なくとも95%ものポリヌクレオチド配列同一性を有する。本発明の特定の実施形態は、SEQ ID NO:12−22からなる一群から選択された核酸配列と少なくとも70%のポリヌクレオチド配列同一性、或いは少なくとも85%のポリヌクレオチド配列同一性、更には少なくとも95%ものポリヌクレオチド配列同一性を有するSEQ ID NO:12−22からなる一群から選択された配列を含むポリヌクレオチド配列の変異配列を提供する。上記したポリヌクレオチド変異配列は何れも、PKINの機能的或いは構造的特徴の少なくとも1つを有するアミノ酸配列をコードする。
【0129】
遺伝暗号の縮重により作り出され得るPKINをコードする種々のポリヌクレオチド配列には、既知の自然発生する任意の遺伝子のポリヌクレオチド配列と最小の類似性しか有しないものも含まれることを、当業者は理解するであろう。したがって本発明には、可能なコドン選択に基づいた組み合わせの選択によって作り出され得る可能なポリヌクレオチド配列の変異の全てが含まれ得る。これらの組み合わせは、天然のPKINのポリヌクレオチド配列に適用される標準的なトリプレット遺伝暗号を基に作られ、全ての変異が明確に開示されていると考慮する。
【0130】
PKINをコードするヌクレオチド配列及びその変異配列は一般に、好適に選択されたストリンジェントな条件下で、天然のPKINのヌクレオチド配列とハイブリダイズ可能であるが、非天然のコドンを含めるなどの実質的に異なった使い方のコドンを有するPKIN或いはその誘導体をコードするヌクレオチド配列を作ることは有利となり得る。特定のコドンが宿主によって利用される頻度に基づいてコドンを選択して、ペプチドの発現が特定の真核細胞または原核宿主に発生する割合を高めることが可能である。コードされたアミノ酸配列を変えないで、PKIN及びその誘導体をコードするヌクレオチド配列を実質的に変更する別の理由は、天然の配列から作られる転写物より例えば長い半減期など好ましい特性を備えるRNA転写物を作ることにある。
【0131】
本発明はまた、PKIN及びその誘導体をコードするDNA配列またはそれらの断片を完全に合成化学によって作り出すことも含む。作製後にこの合成配列を、当分野で良く知られた試薬を用いて、種々の入手可能な発現ベクター及び細胞系の何れの中にも挿入可能である。更に、合成化学を用いて、PKINまたはその任意の断片をコードする配列の中に突然変異を導入することも可能である。
【0132】
更に本発明には、種々のストリンジェントな条件下で、請求項に記載されたポリヌクレオチド配列、特に、SEQ ID NO:12−22及びそれらの断片とハイブリダイズ可能なポリヌクレオチド配列が含まれる(例えば、Wahl, G.M.及びS.L. Berger (1987) Methods Enzymol. 152:399−407; and Kimmel. A.R. (1987) Methods Enzymol. 152:507−511.を参照)。アニーリング及び洗浄条件を含むハイブリダイゼーションの条件は、「定義」に記載されている。
【0133】
当分野で周知のDNAのシークエンシング方法を用いて、本発明の何れの実施例も実行可能である。この方法には、例えばDNAポリメラーゼIのクレノウ断片、SEQUENASE(US Biochemical, Cleveland OH)、Taqポリメラーゼ(Applied Biosystems)、熱安定性T7ポリメラーゼ(Amersham, Pharmacia Biotech Piscataway NJ)、或いはELONGASE増幅システム(Life Technologies, Gaithersburg MD)にみられるような校正エキソヌクレアーゼとポリメラーゼとの組み合わせなどの酵素が用いられる。好ましくは、MICROLAB2200液体転移システム(Hamilton, Reno, NV)、PTC200 Thermal Cycler200(MJ Research, Watertown MA)及びABI CATALYST 800 (PE Biosystems) などの装置を用いて配列の準備を自動化する。次に、ABI 373或いは377 DNAシークエンシングシステム(PE Biosystems)、MEGABACE 1000 DNAシークエンシングシステム(Molecular Dynamics. Sunnyvale CA)または当分野で周知の他の方法を用いてシークエンシングを行う。得られた配列を当分野で周知の様々なアルゴリズムを用いて分析する(例えば、Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856−853.を参照)。
【0134】
当分野で周知のPCR法をベースにした種々の方法で、部分的なヌクレオチド配列を利用して、PKINをコードする核酸配列を伸長し、プロモーターや調節エレメントなどの上流にある配列を検出する。例えば制限部位PCR法を利用する1つの方法では、一般的なプライマー及び入れ子プライマー(nested primer)を用いてクローニングベクター内のゲノムDNAから未知の配列を増幅する(例えば、Sarkar, G. (1993) PCR Methods Applic 2:318−322を参照)。逆PCR法を用いる別法では、広範な方向に伸長して環状化した鋳型から未知の配列を増幅するプライマーを用いる。この鋳型は、既知のゲノム遺伝子座及びその周辺の配列を含む制限断片に由来する(例えば、Triglia, T.ら(1988)Nucleic Acids Res 16:8186を参照)。キャプチャPCR法を用いる第3の方法は、ヒト及び酵母菌人工染色体DNAの既知の配列に隣接するDNA断片のPCR増幅を含む(例えば、Lagerstrom, M.他(1991)PCR Methods Applic 1:111−119を参照)。この方法では、多数の制限酵素による消化及びライゲ−ションを用いて、PCRを行う前に未知の配列の領域の中に組換え二本鎖配列を挿入することが可能である。また、当分野で周知の別の方法を用いて未知の配列を得ることも可能である。(例えば、Parker, J.D. 他 (1991)Nucleic Acids Res. 19:3055−3060を参照)。更に、PCR、ネスト化プライマー、PROMOTERFINDERライブラリ(Clontech, Palo Alto CA)を用いれば、ゲノムDNA内の歩行が可能である。この方法ではライブラリをスクリーニングする必要がなく、イントロン/エキソン接合部を探すのに有用である。全てのPCR法をベースにした方法では、プライマーは、市販のOLIGO 4.06 Primer Analysis software(National Biosciences, Plymouth MN)或いは別の好適なプログラムなどを用いて、長さが22〜30ヌクレオチド、GC含量が50%以上、約68℃〜72℃の温度で鋳型に対してアニーリングするよう設計される。
【0135】
完全長のcDNAをスクリーニングする場合は、大きなcDNAを含むようにサイズが選択されたライブラリを用いるのが好ましい。更に、オリゴd(T)ライブラリが完全な長さのcDNAを産生できない場合は、遺伝子の5’領域を有する配列を含むものが多いランダムに初回抗原刺激を受けたライブラリが有用である。ゲノムライブラリは、5’非転写調節領域への配列の伸長に有用であろう。
【0136】
市販のキャピラリー電気泳動システムを用いて、シークエンシングまたはPCR産物のヌクレオチド配列のサイズの分析、または確認が可能である。詳しくは、キャピラリーシークエンシングには、電気泳動による分離のための流動性ポリマー、及び4つの異なったヌクレオチドに特異的なレーザーで活性化される蛍光色素、放出された波長の検出に利用するCCDカメラを使用することが可能である。出力/光強度は、適切なソフトウェア(例えば、GENOTYPER及びSEQUENCE NAVIGATOR、PE Biosystems)を用いて電気信号に変換され、サンプルのローディングからコンピュータ分析までのプロセス及び電子データ表示がコンピュータ制御可能である。キャピラリー電気泳動法は、特定のサンプルに少量しか存在しない場合もあるDNAの小片のシークエンシングに特に適している。
【0137】
本発明の別の実施例では、PKINをコードするポリヌクレオチド配列またはその断片を組換えDNA分子にクローニングして、適切な宿主細胞内にPKIN、その断片または機能的等価物を発現させることが可能である。遺伝暗号固有の縮重により、実質的に同じ或いは機能的に等価のアミノ酸配列をコードする別のDNA配列が作られ得り、これらの配列をPKINのクローン化及び発現に利用可能である。
【0138】
種々の目的でPKINをコードする配列を変えるために、当分野で一般的に知られている方法を用いて、本発明のヌクレオチド配列を組換えることができる。この目的には、遺伝子産物のクローン化、プロセッシング及び/または発現の調節が含まれるが、これらに限定されるものではない。ランダムな断片によるDNAの混合や遺伝子断片と合成オリゴヌクレオチドのPCR再組み立てを用いて、ヌクレオチド配列の組換えが可能である。例えば、オリゴヌクレオチド媒介性定方向突然変異誘発を利用して、新しい制限部位を生成する突然変異の導入、グリコシル化パターンの変更、コドン選択の変更、スプライスバリアントの作製等が可能である。
【0139】
本発明のヌクレオチドを、MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; 米国特許第5,837,458号; Chang, C.−C. 他 (1999) Nat. Biotechnol. 17:793−797; Christians, F.C. 他 (1999) Nat. Biotechnol. 17:259−264; Crameri, A. 他 (1996) Nat. Biotechnol. 14:315−319)などのDNAシャフリング技術を用いてシャフリングして、PKINの生物学的または酵素的な活性、或いは他の分子や化合物と結合する能力などのPKINの生物学的特性を変更或いは改良することができる。DNAシャフリングは、PCR法による遺伝子断片の組換えで遺伝子変異体のライブラリを作製するプロセスである。次に、このライブラリを、目的の特性を有する遺伝子変異体を同定するために選択或いはスクリーニングする。これらの好ましい変異体をプールし、DNAシャフリング及び選択/スクリーニングを繰り返す。従って、人工的な育種及び急速な分子の進化によって多様な遺伝子が作られる。例えば、ランダムな位置に変異がある1つの遺伝子の断片を、目的の特性が最適化するまで、組換え及びスクリーニング、シャフリングを実施することもできる。別法では、所定の遺伝子の断片を、同じ或いは異なった種の同じ遺伝子ファミリーの相同な遺伝子の断片で組換え、それによってプロトコルに従った調節可能な方法で、多数の天然遺伝子の遺伝子多様性を最大にすることができる。
【0140】
別の実施例によれば、PKINをコードする配列は、当分野で周知の化学的方法を用いて、全体或いは一部が合成可能である(例えば、Caruthers. M.H.ら(1980)Nucl. Acids Res. Symp. Ser 7:215−223; 及びHorn, T.他(1980)Nucl. Acids Res. Symp. Ser.225−232を参照)。別法として、化学的方法を用いてPKIN自体またはその断片を合成することが可能である。例えば、ペプチド合成は種々の固相技術を用いて実行可能である(例えば、Creighton, T. (1984) Proteins. Structures and Molecular Properties, WH Freeman, New York NY, pp. 55−60; Roberge, J.Y.ら(1995) Science 269:202−204を参照)。また、合成の自動化は例えばABI 431Aペプチドシンセサイザー(PE Biosystems)を用いて達成し得る。更にPKINのアミノ酸配列または任意のその一部は、直接的な合成の際の変更、及び/または化学的方法を用いた他のタンパク質または任意のその一部からの配列との組み合わせにより、天然のポリペプチド配列を有するポリペプチドまたは変異体ポリペプチドを作製することが可能である。
【0141】
このペプチドは、分離用高速液体クロマトグラフィー(例えば、Chiez, R.M. 及び F.Z. Regnier (1990)Methods Enzymol. 182:392−421を参照)を用いて実質的に精製可能である。合成されたペプチドの組成は、アミノ酸分析或いはシークエンシングにより確認することができる(例えば、Creighton、前出、pp28−53を参照)。
【0142】
生物学的に活性なPKINを発現させるために、PKINをコードするヌクレオチド配列またはその誘導体を好適な発現ベクターに挿入する。この発現ベクターは、好適な宿主に挿入されたコーディング配列の転写及び翻訳の調節に必要なエレメントを含む。これらのエレメントには、ベクター及びPKINをコードするポリヌクレオチド配列におけるエンハンサー、構成型及び発現誘導型のプロモーター、5’及び3’の非翻訳領域などの調節配列が含まれる。このようなエレメントは、その長さ及び特異性が様々である。特定の開始シグナルによって、PKINをコードする配列のより効果的な翻訳を達成することが可能である。このようなシグナルには、ATG開始コドン及びコザック配列などの近傍の配列が含まれる。PKINをコードする配列及びその開始コドン、上流の調節配列が好適な発現ベクターに挿入された場合は、更なる転写調節シグナルや翻訳調節シグナルは必要なくなるであろう。しかしながら、コーディング配列或いはその断片のみが挿入された場合は、インフレームのATG開始コドンを含む外来性の翻訳調節シグナルが発現ベクターに含まれなければならない。外来性の翻訳要素及び開始コドンは、自然及び合成の様々なものから得ることが可能である。用いられる特定の宿主細胞系に好適なエンハンサーを含めることで発現の効率を高めることが可能である。(例えば、Scharf, D. 他 (1994) Results Probl. Cell Differ. 201−18−162.を参照)。
【0143】
当業者に周知の方法を用いて、PKINをコードする配列、好適な転写及び翻訳調節エレメントを含む発現ベクターを作製することが可能である。これらの方法には、in vitro組換えDNA技術、合成技術、及びin vivo遺伝子組換え技術が含まれる。(例えば、 Sambrook, J. 他. (1989) Molecular Cloning. Laboratory Ma nual, Cold Spring Harbor Press, Plainview NY, 4章及び8章, 及び16−17章; 及び Ausubel, F.M. 他. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9章及び13章1−4章を参照)。
【0144】
種々の発現ベクター/宿主系を利用して、PKINをコードする配列の保持及び発現が可能である。これらには、限定するものではないが、組換えバクテリオファージ、プラスミド、またはコスミドDNA発現ベクターで形質転換された細菌などの微生物や、酵母菌発現ベクターで形質転換された酵母菌や、ウイルス発現ベクター(例えば、バキュロウイルス)に感染した昆虫細胞系や、ウイルス発現ベクター(例えば、カリフラワーモザイクウイルス、CaMV;タバコモザイクウイルス、TMV)または細菌発現ベクター(例えば、TiまたはpBR322プラスミド)で形質転換された植物細胞系や、動物細胞系などが含まれる(例えば、前出のSambrook、前出のAusubel、Van Heeke, G. および S.M. Schuster (1989) J. Biol. Chem. 264:5503−5509、Engelhard、E.K. 他 (1994) Proc. Natl. Acad. Sci. USA 91:3224−3227、Sandig, V. 他 (1996) Hum. Gene Ther. 7:1937−1945、Takamatsu, N. (1987) EMBOJ. 6:307−311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191−196、Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655−3659、Harrington, J.J. 他 (1997) Nat. Genet. 15:345−355を参照)。レトロウイルス、アデノウイルス、ヘルペスウイルスまたはワクシニアウイルス由来の発現ベクター、または種々の細菌性プラスミド由来の発現ベクターを用いて、ヌクレオチド配列を標的器官、組織または細胞集団へ輸送することができる(Di Nicola, M. 他 (1998) Cancer Gen. Ther. 5(6):350−356、Yu, M. 他(1993) Proc. Natl. Acad. Sci. USA 90(13):6340−6344、Buller, R.M. 他(1985) Nature 317(6040):813−815; McGregor, D.P. 他(1994) Mol. Immunol. 31(3):219−226、Verma, I.M. and N. Somia (1997) Nature 389:239−242等を参照)。本発明は使用される宿主細胞によって限定されるものではない。
【0145】
細菌系では、多数のクローニングベクター及び発現ベクターが、PKINをコードするポリヌクレオチド配列の使用目的に応じて選択可能である。例えば、PKINをコードするポリヌクレオチド配列の日常的なクローニング、サブクローニング、増殖には、PBLUESCRIPT(Stratagene, La Jolla CA)またはpSPORT1プラスミド(GIBCO BRL)などの多機能の大腸菌ベクターを用いることができる。ベクターの多数のクローニング部位にPKINをコードする配列をライゲーションするとlacZ遺伝子が破壊され、組換え分子を含む形質転換された細菌の同定のための比色スクリーニング法が可能となる。更に、これらのベクターを用いて、クローニングされた配列のin vitroでの転写、ジデオキシンスクリーニング、ヘルパーファージによる一本鎖の救出、入れ子状態の欠失を作り出すことが可能である(例えば、Van Heeke, G.及びS.M. Schuster (1989) J. Biol. Chem. 264:5503−5509.を参照)。例えば、抗体の産生のためなどに多量のPKINが必要な場合は、PKINの発現をハイレベルで誘導するベクターが使用できる。例えば、強力に発現を誘発するSP6またはT7バクテリオファージプロモーターを含むベクターを使用できる。
【0146】
PKINの発現に酵母の発現系の使用が可能である。α因子やアルコールオキシダーゼやPGHプロモーターなどの構成型或いは誘導型のプロモーターを含む多種のベクターが、酵母菌サッカロミセス−セレビジエまたはPichia pastorisに使用可能である。更に、このようなベクターは、発現したタンパク質の分泌か細胞内への保持のどちらかを誘導し、安定した増殖のために宿主ゲノムの中に外来配列を組み込む。(例えば、Ausubel, 1995,前出、Bitter, G.A. ら (1987) Methods Enzymol.153:516−544、及びScorer. C. A. ら (1994) Bio/Technology 121−181−184.を参照)。
【0147】
植物系もPKINの発現に使用可能である。PKINをコードする配列の転写は、例えば、CaMV由来の35S及び19Sプロモーターなどのウイルスプロモーターが単独で、或いはTMV(例えば、Coruzzi, G. ら. (1984) EMBO J. 3 : 1671−1680 ; Broglie, R. ら (1984) Science 224 : 838−843 ; および Winter, J. ら (1991) Results Probl. Cell Differ. 17 : 85−105を参照)由来のオメガリーダー配列と組み合わせて促進される。これらの作製物は、直接のDNA形質転換或いは病原体を介したトランスフェクションによって、植物細胞の中に導入可能である。(例えば、The McGraw Hill Yearbook of Science and Technology(1992)McGraw Hill NY, pp.191−196を参照)。
【0148】
哺乳動物細胞では、多種のウイルスベースの発現系が利用され得る。アデノウイルスが発現ベクターとして用いられる場合、後発プロモーター及び3連リーダー配列からなるアデノウイルス転写物/翻訳複合体にPKINをコードする配列を結合し得る。ウイルスのゲノムの非必須のE1またはE3領域への挿入により、感染した宿主細胞にPKINを発現する生ウイルスを得ることが可能である(Logan, J.及びShenk, T.(1984)Proc. Natl. Acad. Sci. 81:3655−3659を参照)。さらに、ラウス肉腫ウイルス(RSV)エンハンサーなどの転写エンハンサーを用いて、哺乳動物宿主細胞における発現を増大させることが可能である。タンパク質を高レベルで発現させるために、SV40またはEBVを基にしたベクターを用いることが可能である。
【0149】
ヒト人工染色体(HAC)を用いて、プラスミドで発現しそれに含まれているものより大きなDNAの断片を供給可能である。治療のために約6kb〜10MbのHACsを作製し、従来の輸送方法(リポソーム、ポリカチオンアミノポリマー、またはベシクル)で供給する。(例えば、Harrington. J.J. 他 (1997) Nat Genet.15:345−355.を参照)。
【0150】
哺乳動物系の組換えタンパク質の長期にわたる産生のためには、株化細胞におけるPKINの安定した発現が望ましい。例えば、発現ベクターを用いて、PKINをコードする配列を株化細胞に形質転換することが可能である。このような発現ベクターは、ウイルス起源の複製及び/または内在性の発現要素や、同じ或いは別のベクターの上の選択マーカー遺伝子を含む。ベクターの導入の後、細胞を選択培地に移す前に、強化培地で約1〜2日の間増殖させる。選択マーカーの目的は選択的な媒介物に対する抵抗性を与えるとともに、その存在により導入された配列を確実に発現する細胞の増殖及び回収が可能となる。安定的に形質転換された細胞の耐性クローンは、その細胞型に好適な組織培養技術を用いて増殖可能である。
【0151】
任意の数の選択系を用いて、形質転換された細胞系を回収することが可能である。選択系には、以下のものに限定はしないが、単純ヘルペスウイルスチミジンキナーゼ遺伝子及びアデニンホスホリボシルトランスフェラーゼ遺伝子が含まれ、それぞれtkまたはapr細胞において使用される。(例えば、Wigler, M. 他 (1977) Cell 11:223−232; 及びLowy, I. 他(1980) Cell 22:817−823を参照)。また代謝拮抗物質、抗生物質或いは除草剤への耐性を選択のベースとして用いることができる。例えばdhfrはメトトレキセートに対する耐性を与え、neoはアミノグリコシッドネオマイシン及びG−418に対する耐性を与え、als或いはpatはクロルスルフロン(chlorsulfuron)、ホスフィノトリシンアセチルトランスフェラーゼ(phosphinotricin acetyltransferase)に対する耐性を与える(例えば、Wigler, M. 他. (1980) Proc. Natl. Acad. Sci. 77:3567−3570; Colbere−Garapin, F. 他(1981) J. Mol. Biol. 150:1−14を参照)。さらに選択に利用できる遺伝子、例えば、代謝のために細胞が必要なものを変えるtrpB及びhisDが文献に記載されている(例えば、Hartman, S.C.及びR.C. Mulligan(1988)Proc. Natl. Acad. Sci. 85:8047−51を参照)。アニトシアニン、緑色蛍光タンパク質(GFP;Clontech)、βグルクロニダーゼ及びその基質GUS,ルシフェラーゼ及びその基質ルシフェリンなどの可視マーカーが用いられる。緑色蛍光タンパク質(GFP)(Clontech, Palo Alto, CA)も使用できる。これらのマーカーを用いて、トランスフォーマントを特定するだけでなく、特定のベクター系に起因する一過性或いは安定したタンパク質発現を定量することが可能である(例えば、Rhodes, C.A.他(1995)Methods Mol. Biol. 55:121−131を参照)。
【0152】
マーカー遺伝子の発現の存在/不在によって目的の遺伝子の存在が示されても、その遺伝子の存在及び発現の確認が必要な場合もある。例えば、PKINをコードする配列がマーカー遺伝子配列の中に挿入された場合、PKINをコードする配列を含む形質転換された細胞は、マーカー遺伝子機能の欠落により特定可能である。または、1つのプロモーターの制御下でマーカー遺伝子がPKINをコードする配列と一列に配置することも可能である。誘導または選択に応答したマーカー遺伝子の発現は、通常タンデム遺伝子の発現も示す。
【0153】
一般に、PKINをコードする核酸配列を含み、PKINを発現する宿主細胞は、当業者に周知の種々の方法を用いて特定することが可能である。これらの方法には、DNA−DNA或いはDNA−RNAハイブリダイゼーションや、PCR法、核酸或いはタンパク質の検出及び/または数量化のための膜系、溶液ベース、或いはチップベースの技術を含むタンパク質生物学的試験法または免疫学的アッセイが含まれるが、これらに限定されるものではない。
【0154】
特異的なポリクローナル抗体またはモノクローナル抗体のどちらかを用いるPKINの発現の検出及び計測のための免疫学的な方法は、当分野で周知である。このような技法には、酵素に結合したイムノソルベントアッセイ(ELISA)、ラジオイムノアッセイ(RIA)、蛍光標示式細胞分取器(FACS)などがある。PKIN上の2つの非干渉エピトープに反応するモノクローナル抗体を用いた、2部位のモノクローナルベースイムノアッセイ(two−site, monoclonal−based immunoassay)が好ましいが、競合の結合アッセイも用いることもできる。これらのアッセイ及びその他のアッセイは、当分野では十分に知られている。(例えば、 Hampton. R. 他.(1990) Serological Methods, Laboratory Manual. APS Press. St Paul. MN, Sect. IV; Coligan, J. E. 他Current Protocols in Immunology, Greene Pub. Associates and Wiley−Interscience, New York. NY; 及びPound, J.D. (1990) Immunochemical Protocols, Humans Press, Totowa NJ)。
【0155】
種々の標識技術及び結合技術が当業者には周知であり、様々な核酸アッセイおよびアミノ酸アッセイに用いられ得る。PKINをコードするポリヌクレオチドに関連する配列を検出するための、標識されたハイブリダイゼーションプローブ或いはPCRプローブを生成する方法には、オリゴ標識化、ニックトランスレーション、末端標識化、または標識されたヌクレオチドを用いるPCR増幅が含まれる。別法として、PKINをコードする配列、またはその任意の断片をmRNAプローブを生成するためのベクターにクローニングすることも可能である。当分野では周知であり市販されているこのようなベクターを、T7,T3,またはSP6などの好適なRNAポリメラーゼ及び標識されたヌクレオチドの追加によって、in vitroでのRNAプローブの合成に用いることができる。これらの方法は、例えば、Amersham Pharmacia Biotech及びPromega(Madison WI)、U.S. Biochemical Corp(Cleveland OH)が市販する種々のキットを用いて行うことができる。容易な検出のために用い得る好適なレポーター分子或いは標識には、基質、コファクター、インヒビター、磁気粒子、及び放射性核種、酵素、蛍光剤、化学発光剤、色素産生剤などが含まれる。
【0156】
PKINをコードするヌクレオチド配列で形質転換された宿主細胞は、細胞培地でのこのタンパク質の発現及び回収に好適な条件下で培養される。形質転換された細胞から産生されたタンパク質が分泌されるか細胞内に留まるかは、使用されるその配列及び/またはそのベクターによる。PKINをコードするポリヌクレオチドを含む発現ベクターは、原核細胞膜及び真核細胞膜を透過するPKINの分泌を誘導するシグナル配列を含むように設計できることは、当業者には理解されよう。
【0157】
更に、挿入した配列の発現調節能力または発現したタンパク質を所望の形にプロセシングする能力によって宿主細胞株が選択される。このようなポリペプチドの修飾には、アセチル化、カルボキシル化、グリコシル化、リン酸化、脂質化(lipidation)、及びアシル化が含まれるが、これらに限定されるものではない。タンパク質の「プレプロ」または「プロ」形を切断する翻訳後のプロセシングを利用して、標的タンパク質、折りたたみ及び/または活性を特定することが可能である。翻訳後の活性のための特定の細胞装置及び特徴のある機構をもつ種種の宿主細胞(例えば、CHO、HeLa、MDCK、MEK293、WI38)がAmerican Type Culture Collection(ATCC; Bethesda, MD)より入手可能であり、外来のタンパク質の正しい修飾及びプロセシングを確実にするために選択される。
【0158】
本発明の別の実施例では、PKINをコードする自然或いは変更された、または組換えの核酸配列を上記した任意の宿主系の融合タンパク質の翻訳となる異種配列に結合させる。例えば、市販の抗体によって認識できる異種部分を含むキメラPKINタンパク質が、PKINの活性のインヒビターに対するペプチドライブラリのスクリーニングを促進し得る。また、異種タンパク質部分及び異種ペプチド部分が、市販の親和性基質を用いて融合タンパク質の精製を促進し得る。このような部分には、グルタチオンSトランスフェラーゼ(GST)、マルトース結合タンパク質(MBP)、チオレドキシン(Trx)、カルモジュリン結合ペプチド(CBP)、6−His、FLAG、c−mc、赤血球凝集素(HA)が含まれるが、これらに限定されるものではない。GST及びMBP、Trx、CBP、6−Hisによって、固定されたグルタチオン、マルトース、フェニルアルシン酸化物(phenylarsine oxide)、カルモジュリン、金属キレート樹脂のそれぞれで同族の融合タンパク質の精製が可能となる。FLAG、c−mc、及び赤血球凝集素(HA)によって、これらのエピトープ標識を特異的に認識する市販のモノクローナル抗体及びポリクローナル抗体を用いた融合タンパク質の免疫親和性の精製ができる。また、PKINをコードする配列と異種タンパク質配列との間にあるタンパク質分解切断部位を融合タンパク質が含むように遺伝子操作すると、PKINが精製の後に異種部分から切断され得る。融合タンパク質の発現と精製の方法は、Ausubel. (1995、前出 ch 10).に記載されている。市販されている様々なキットを用いて、融合タンパク質の発現及び精製を促進できる。
【0159】
本発明の別の実施例では、TNTウサギ網状赤血球可溶化液またはコムギ胚芽抽出系(Promega)を用いてin vitroで放射能標識したPKINの合成が可能である。これらの系は、T7またはT3、SP6プロモーターと機能的に結合したタンパク質をコードする配列の転写と翻訳をつなげる。翻訳は、例えば、35Sメチオニンである放射能標識されたアミノ酸前駆体の存在の下で起こる。
【0160】
本発明のPKINまたはその断片を用いて、PKINに特異結合する化合物をスクリーニングすることができる。少なくとも1つまたは複数の試験化合物を用いて、PKINへの特異的な結合をスクリーニングすることが可能である。試験化合物の例には、抗体、オリゴヌクレオチド、タンパク質(例えば受容体)または小分子が挙げられる。
【0161】
一実施例では、このように同定された化合物は、例えばリガンドやその断片などのPKINの天然のリガンド、または天然の基質、構造的または機能的な擬態性または自然結合パートナーに密接に関連している(Coligan, J.E. 他 (1991) Current Protocols in Immunology 1(2)の5章等を参照)。同様に、化合物は、PKINが結合する天然受容体、或いは例えばリガンド結合部位などの少なくとも受容体のある断片に密接に関連し得る。何れの場合も、既知の技術を用いてこの化合物を合理的に設計することができる。一実施例では、このような化合物に対するスクリーニングには、分泌タンパク質或いは細胞膜上のタンパク質の何れか一方としてPKINを発現する好適な細胞の作製が含まれる。好適な細胞には、哺乳動物、酵母、大腸菌からの細胞が含まれる。PKINを発現する細胞またはPKINを含有する細胞膜断片を試験化合物と接触させて、PKINまたは化合物の何れかの結合、刺激または阻害を分析する。
【0162】
あるアッセイは、単に試験化合物をポリペプチドに実験的に結合させ、結合を、フルオロフォア、放射性同位体、酵素抱合体またはその他の検出可能な標識により検出することができる。例えば、このアッセイは、少なくとも1つの試験化合物を、溶液中の或いは固体支持物に固定されたPKINと結合させるステップと、PKINとこの化合物との結合を検出するステップを含み得る。別法では、標識された競合物の存在下での試験化合物の結合の検出及び測定を行うことができる。更にこのアッセイでは、細胞遊離剤、化学ライブラリまたは天然の生成混合物を用いて実施することができ、試験化合物は、溶液中で遊離させるか固体支持体に固定させる。
【0163】
本発明のPKINまたはその断片を用いて、PKINの活性を調整する化合物をスクリーニングすることが可能である。このような化合物には、アゴニスト、アンタゴニスト、或るいは部分的または逆アゴニスト等が含まれる。一実施例では、PKINが少なくとも1つの試験化合物と結合する、PKINの活性が許容される条件下でアッセイを実施し、試験化合物の存在下でのPKINの活性が試験化合物不在下でのPKINの活性と比較する。試験化合物の存在下でのPKINの活性の変化は、PKINの活性を調整する化合物の存在を示唆する。別法では、試験化合物をPKINの活性に適した条件下でPKINを含むin vitroまたは細胞遊離系と結合させてアッセイを実施する。これらアッセイの何れかにおいて、PKINの活性を調整する試験化合物は間接的に結合することが可能であり、試験化合物と直接接触する必要がない。少なくとも1つから複数の試験化合物をスクリーニングすることができる。
【0164】
別の実施例では、胚性幹細胞(ES細胞)における相同組換えを用いて動物モデル系内で、PKINまたはその哺乳動物相同体をコードするポリヌクレオチドを「ノックアウト」する。このような技術は当技術分野において周知であり、ヒト疾患動物モデルの作製に有用である(米国特許第5,175,383号及び第5,767,337号等を参照)。例えば129/SvJ細胞株等のマウスES細胞は初期のマウス胚に由来し、培地で増殖させることができる。このES細胞は、ネオマイシンホスホトランスフェラーゼ遺伝子(neo: Capecchi, M.R. (1989) Science 244:1288−1292)等のマーカー遺伝子で破壊した目的の遺伝子を含むベクターで形質転換する。このベクターは、相同組換えにより宿主ゲノムの対応する領域に組み込まれる。別法では、Cre−loxP系を用いて相同組換えを行い、組織特異的または発生段階特異的に目的遺伝子をノックアウトする(Marth, J.D. (1996) Clin. Invest. 97:1999−2002; Wagner, K.U. 他 (1997) Nucleic Acids Res. 25:4323−43 30)。形質転換したES細胞を同定し、例えばC57BL/6マウス系等から採取したマウス細胞胚盤胞に微量注入する。胚盤胞を偽妊娠メスに外科的に導入し、得られるキメラ子孫の遺伝形質を決め、これを交配させてヘテロ接合性系またはホモ接合性系を作製する。このようにして作製した遺伝子組換え動物は、潜在的な治療薬や毒性薬剤で検査することができる。
【0165】
PKINをコードするポリヌクレオチドをin vitroでヒト胚盤胞由来のES細胞において操作することが可能である。ヒトES細胞は、内胚葉、中胚葉及び外胚葉の細胞の種類を含む少なくとも8つの別々の細胞系統に分化する可能性を有する。これらの細胞系統は、例えば神経細胞、造血系統及び心筋細胞に分化する(Thomson, J.A. 他 (1998) Science 282:1145−1 147)。
【0166】
PKINをコードするポリヌクレオチドを用いて、ヒト疾患をモデルとした「ノックイン」ヒト化動物(ブタ)または遺伝子組換え動物(マウスまたはラット)を作製することが可能である。ノックイン技術を用いて、PKINをコードするポリヌクレオチドの或る領域を動物ES細胞に注入し、注入した配列を動物細胞ゲノムに組み込ませる。形質転換細胞を胞胚に注入し、胞胚を上記のように移植する。遺伝子組換え子孫または近交系について研究し、潜在的な医薬品を用いて処理し、ヒトの疾患の治療に関する情報を得る。別法では、例えばPKINを乳汁内に分泌するなどPKINを過剰に発現する哺乳動物近交系は、便利なタンパク質源となり得る(Janne, J. 他 (1998) Biotechnol. Annu. Rev. 4:55−74)。
【0167】
(治療)
PKINのある領域とヒトキナーゼのある領域との間に、例えば配列及びモチーフの文脈における化学的及び構造的類似性が存在する。加えて、PKINの発現は乳ガン及び前立腺癌を含むがんと密接に関係する。従って、PKINは、癌、免疫疾患、成長及び発達に影響を及ぼす障害、アテローム性動脈硬化症及びその他の心血管疾患、及び脂質異常においてある役割を果たすと考えられる。PKINの発現若しくは活性の増大に関連する疾患の治療においては、PKINの発現または活性を低下させることが望ましい。また、PKINの発現または活性の低下に関連する疾患の治療においては、PKINの発現または活性を増大させることが望ましい。
【0168】
従って、一実施例において、PKINの発現または活性の低下に関連した疾患の治療または予防のために、患者にPKINまたはその断片や誘導体を投与することが可能である。限定するものではないが、このような疾患には癌、免疫疾患、成長及び発達に影響を及ぼす障害、アテローム性動脈硬化症及びその他の心血管疾患、及び脂質異常が含まれ、癌の中には腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌、多発骨髄腫などの白血病、悪性リンパ腫などのリンパ腫が含まれ、免疫疾患の中には、炎症及び日光性角化症、後天性免疫不全症候群(AIDS)及び副腎機能不全、成人呼吸窮迫症候群、アレルギー、強直性脊椎炎、アミロイド症、貧血、喘息、アテローム性動脈硬化症、自己免疫性溶血性貧血、自己免疫性甲状腺炎、自己免疫性多腺性内分泌カンジダ性外胚葉ジストロフィー(APECED)、気管支炎、胆嚢炎、接触皮膚炎、クローン病、アトピー性皮膚炎、皮膚筋炎、糖尿病、肺気腫、リンパ球毒素性一時性リンパ球減少症、赤芽球症、結節性紅斑、萎縮性胃炎、糸球体腎炎、グッドパスチャー症候群、痛風、グレーブス病、橋本甲状腺炎、過好酸球増加症、過敏性大腸症候群、多発性硬化症、重症筋無力症、心筋または心膜炎症、骨関節炎、骨粗しょう症、膵炎、乾癬、ライター症候群、リウマチ様関節炎、強皮症、シェ−グレン症候群、全身性アナフィラキシー、全身性エリテマトーデス、全身性硬化症、原発性血小板血症、血小板減少症、潰瘍性大腸炎、ウェルナー症候群、癌合併症、血液透析、体外循環、ウイルス感染症、細菌感染症、真菌感染症、寄生虫感染症、原虫感染症、蠕虫感染症、外傷が含まれ、成長および発達に影響を及ぼす疾患の中には日光性角化症及びアテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌や、尿細管性アシドーシス、貧血、クッシング症候群、軟骨形成不全性小人症、デュシェンヌ‐ベッカー型筋ジストロフィー、癲癇、性腺形成異常、WAGR症候群(ウィルムス腫瘍、無虹彩症、尿生殖器異常、精神薄弱)、スミス‐マジェニス症候群(Smith− Magenis syndrome)、脊髄形成異常症候群、遺伝性粘膜上皮異形成、遺伝性角皮症、シャルコー‐マリー‐ツース病及び神経線維腫症などの遺伝性神経病、甲状腺機能低下症、水頭症、舞踏病(Syndenham’s chorea)及び脳性小児麻痺などの発作障害、脊髄二分裂、無脳症、頭蓋脊椎披裂、先天性緑内障、白内障、感覚神経性聴力損失が含まれ、心血管疾患の中には、動静脈瘻、アテローム硬化、高血圧、脈管炎、レイノー病、静脈奇形、動脈解離、静脈瘤、血栓静脈炎及び静脈血栓、血管の腫瘍、血栓崩壊の合併症、バルーン血管形成術(balloon angioplasty)、血管置換術(vascular replacement)、大動脈冠動脈バイパス術移植手術(coronary artry bypass graft suegery)、うっ血性心不全、虚血性心疾患、狭心症、心筋梗塞、高血圧性心疾患、変性弁膜性心疾患、石灰化大動脈弁狭窄症、先天性2尖大動脈弁、僧帽弁輪状石灰化(mitral annular calcification)、僧帽弁脱出、リウマチ熱、リウマチ性心疾患、感染性心内膜炎、非細菌性血栓性心内膜炎、全身性エリテマトーデスの心内膜炎、カルチノイド心疾患、心筋症、心筋炎、心膜炎、腫瘍性心疾患、先天性心臓疾患、及び心臓移植の合併症と、先天性肺異常(congenital lung anomalies)、肺拡張不全、肺うっ血及び肺水腫、肺動脈塞栓症、肺出血、肺梗塞、肺高血圧症、血管硬化症、閉塞性肺疾患、拘束性肺疾患(restrictive pulmonary disease)、慢性閉塞性肺疾患、肺気腫、慢性気管支炎、気管支喘息、細気管支拡張症、細菌性肺炎、ウイルス性肺炎及びマイコプラズマ肺炎、肺膿瘍、肺結核、びまん性間質性疾患(diffuse interstitial diseases)、塵肺症、サルコイド症、特発性肺繊維症(idiopathic pulmonary fibrosis)、剥離性間質性肺炎、過敏症肺炎(hypersensivitity pneumonitis)、肺好酸球増加閉塞性細気管支炎―器質性肺炎(pulmonary eosinophilia bronchiolitis obliterans−organizing pneumonia)、びまん性肺出血症候群(diffuse pulmonary hemorrhage syndromes)、グッドパスチャー症候群、特発性肺血鉄症、肺併発膠原血管病(pulmonary involvement in collagen−vascular disorders)、肺胞たんぱく症、肺腫瘍、炎症性及び非炎症性胸水(inflammatory and noninflammatory pleural effusions)、気胸症、胸膜腫瘍、薬物による肺疾患(drug−induced lung disease)、放射線による肺疾患(radiation−induced lung desease)及び肺移植の合併症などが含まれ、脂質異常の中には、脂肪肝、胆汁うっ滞、原発性胆汁性肝硬変、カルニチン欠乏症、カルニチンパルミトイルトランスフェラーゼ欠乏症(carnitine palmitoyltransferase deficiency)、ミオアデニレートデミナーゼ欠乏症(myoadenylate deaminase deficiency)、hypertriglyceridemia、ファブリー病などの脂質貯蔵病、ゴーシェ病、ニーマン‐ピック病、変染色性白質ジストロフィー、副腎性白質ジストロフィー、G にガングリオシドーシス、セロイドリポフスチン症、無β‐リポ蛋白血症、タンジアー病、リポ蛋白過剰血症、糖尿病、脂肪異栄養症、脂肪腫症、急性皮下脂肪組織炎、播種性脂肪組織壊死症、有痛脂肪症、リポイド副腎過形成、リポイドネフローゼ、脂肪腫、アテローム性動脈硬化症、高コレステロール血症、高トリグリセリド血症を伴った高コレステロール血症、原発性低αリポ蛋白血症(primary hypoalphalipoproteinemia)、低甲状腺症(hypothyroidism)、腎臟病、肝疾患、レシチン−コレステロールアシルトランスフェラーゼ欠乏症、脳腱黄色腫症、シトステロール血症(sitosterolemia)、低コレステロール血症、テイ‐サックス病、サンドホフ病、高脂血症、脂肪過剰血症、脂質筋障害、肥満症が含まれる。
【0169】
別の実施例では、限定するものではないが上に列記した疾患を含むPKINの発現または活性の低下に関連した疾患の治療または予防のために、PKINまたはその断片や誘導体を発現し得るベクターを患者に投与することも可能である。
【0170】
更に別の実施例では、限定するものではないが上に列記した疾患を含むPKINの発現または活性の低下に関連した疾患の治療または予防のために、実質的に精製されたPKINを含む組成物を好適な医薬用担体と共に患者に投与することも可能である。
【0171】
更に別の実施例では、限定するものではないが上に列記した疾患を含むPKINの発現または活性の低下に関連した疾患の治療または予防のために、PKINの活性を調節するアゴニストを患者に投与することも可能である。
【0172】
更なる実施例では、PKINの発現または活性の増大に関連した疾患の治療または予防のために、患者にPKINのアンタゴニストを投与することが可能である。限定するものではないが、このような疾患の例には、上記した癌、免疫疾患、成長及び発達に影響を及ぼす障害、アテローム性動脈硬化症及びその他の心血管疾患、及び脂質異常が含まれる。一実施態様では、PKINと特異的に結合する抗体が直接アンタゴニストとして、或いはPKINを発現する細胞または組織に薬剤を運ぶターゲッティング或いは運搬機構として間接的に用いられ得る。
【0173】
別の実施例では、限定するものではないが上に列記した疾患を含むPKINの発現または活性の増大に関連した疾患の治療または予防のために、PKINをコードするポリヌクレオチドの相補配列を発現するベクターを患者に投与することも可能である。
【0174】
別の実施例では、本発明の任意のタンパク質、アンタゴニスト、抗体、アゴニスト、相補的な配列、ベクターを別の好適な治療薬と組み合わせて投与することもできる。当業者は、従来の医薬原理にしたがって併用療法で用いる好適な治療薬を選択可能である。治療薬との組み合わせにより、上に列記した種々の疾患の治療または予防に相乗効果をもたらし得る。この方法を用いて少ない量の各薬剤で医薬効果をあげることが可能であり、広範囲な副作用の可能性を低減し得る。
【0175】
PKINのアンタゴニストは、当分野で一般的な方法を用いて製造することが可能である。詳しくは、精製されたPKINを用いて抗体を作ったり、治療薬のライブラリをスクリーニングしてPKINと特異的に結合するものを同定が可能である。PKINの抗体も、当分野で一般的な方法を用いて製造することが可能である。このような抗体には、ポリクローナル抗体、モノクローナル抗体、キメラ抗体、一本鎖、Fabフラグメント、及びFab発現ライブラリによって作られたフラグメントが含まれる。但し、これらに限定されるものではない。治療用には、中和抗体(即ち、二量体の形成を阻害するもの)が特に好ましい。
【0176】
抗体の産生のためには、ヤギ、ウサギ、ラット、マウス、ヒト及びその他のものを含む種々の宿主が、PKINまたは任意の断片、または免疫原性の特性を備えるそのオリゴペプチドの注入によって免疫化され得る。宿主の種に応じて、種々のアジュバントを用いて免疫応答を高めることもできる。このようなアジュバントにはフロイントアジュバント、水酸化アルミニウムなどのミネラルゲルアジュバント、リゾレシチン、プルロニックポリオル、ポリアニオン、ペプチド、油性乳剤、キーホールリンペットヘモシニアン、及びジニトロフェノールなどの界面活性剤が含まれるが、これらに限定されるものではない。ヒトに用いられるアジュバントの中では、BCG(bacilli Calmette−Guerin)及びCorynebacterium parvumが特に好ましい。
【0177】
PKINに対する抗体を誘発するために用いられるオリゴペプチド、ペプチド、または断片は、少なくとも約5個のアミノ酸からなり、一般的には約10個以上のアミノ酸からなるものが好ましい。これらのオリゴペプチド或いはペプチド、またはそれらの断片は、天然のタンパク質のアミノ酸配列の一部と同一であることが望ましい。PKINアミノ酸の短いストレッチは、KLHなどの別のタンパク質の配列と融合し、キメラ分子に対する抗体が産生され得る。
【0178】
PKINに対するモノクローナル抗体は、培地内の連続した細胞株によって、抗体分子を産生する任意の技術を用いて作製することが可能である。これらの技術には、ハイブリドーマ技術、ヒトB細胞ハイブリドーマ技術、及びEBV−ハイブリドーマ技術が含まれるが、これらに限定されるものではない(例えば、Kohler, G. ら. (1975) Nature 256:495−497; Kozbor, D. ら. (1985) .J. Immunol. Methods 81−8−42; Cote, R.J. ら. (1983) Proc. Natl. Acad. Sci. 80:2026−2030; Cole, S.P. ら. (1984) Mol. Cell Biol. 62:109−120を参照)。
【0179】
更に、「キメラ抗体」作製のために発達したヒト抗体遺伝子にマウス抗体遺伝子をスプライシングするなどの技術が、好適な抗原特異性及び生物学的活性を備える分子を得るために用いられる(例えば、Morrison, S.L.他. (1984) Proc. Natl. Acad. Sci. 81−4851−4855; Neuberger, M.S.他. (1984) Nature 312:604−608; Takeda, S.ら. (1985) Nature 314:452,454を参照)。別法では、当分野で周知の方法を用いて、一本鎖抗体の産生のための記載された技術を適用して、PKIN特異性一本鎖抗体を生成する。関連する特異性を備えるが別のイディオタイプの組成の抗体は、ランダムな組み合わせの免疫グロブリンライブラリから鎖混合によって生成することもできる(例えば、Burton D.R. (1991) Proc. Natl. Acad. Sci. 88:11120−3を参照)。
【0180】
抗体は、リンパ球集団の中のin vivo産生を誘発することによって、または免疫グロブリンライブラリのスクリーニングまたは文献に示されているような、高度に特異的な結合試薬のパネルをスクリーニングすることによって、得ることもできる(例えば、Orlandi, R. 他. (1989) Proc. Natl. Acad. Sci. 86: 3833−3837; Winter, G. 他. (1991) Nature 349:293−299を参照)。
【0181】
PKINに対する特異的な結合部位を含む抗体も得ることができる。例えば、このような断片には、抗体分子のペプシン消化によって生成されるF(ab’)に断片と、F(ab’)に断片のジスルフィド架橋を減じることによって生成されるFab断片が含まれるが、これらに限定されるものではない。別法では、Fab発現ライブラリを作製することによって、所望の特異性とモノクローナルFab断片の迅速且つ容易な同定が可能となる(例えば、Huse, W.D. ら. (1989) Science 254:1275−1281を参照)。
【0182】
種々のイムノアッセイを用いてスクリーニングし、所望の特異性を有する抗体を同定する。隔離された特異性を有するポリクローナル抗体またはモノクローナル抗体の何れかを用いる競合的な結合、または免疫放射線活性のための数々のプロトコルが、当分野では周知である。通常このようなイムノアッセイには、PKINとその特異性抗体との間の複合体調整の計測が含まれる。二つの非干渉性PKINエピトープに対して反応性のモノクローナル抗体を用いる、2部位モノクローナルベースのイムノアッセイが一般に利用されるが、競合的結合アッセイも利用することができる(Pound、前出)。
【0183】
ラジオイムノアッセイ技術と共にScatchard分析などの様々な方法を用いて、PKINに対する抗体の親和性を評価する。親和性を結合定数Kaで表すが、このKaは、平衡状態の下でPKIN抗体複合体のモル濃度を遊離抗体と遊離抗原のモル濃度で除して得られる値である。多数のPKINエピトープに対して親和性が不均一なポリクローナル抗体医薬のKaは、PKINに対する抗体の平均親和性または結合活性を表す。特定のPKINエピトープに単一特異的なモノクローナル抗体医薬のKaは、親和性の真の測定値を表す。Ka値が10〜1012L/molの高親和性抗体医薬は、PKIN抗体複合体が激しい操作に耐えなければならないイムノアッセイに用いるのが好ましい。Ka値が10〜10L/molの低親和性抗体医薬は、PKINが抗体から最終的に活性化状態で解離する必要がある免疫精製(immunopurification)及び類似の処理に用いるのが好ましい。(Catty, D. (1988) Antibodies, Volume I: Practical Approach. IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY)。
【0184】
ある下流での適用におけるこのような医薬品の品質及び適性を調べるために、ポリクローナル抗体医薬の抗体価及び結合活性を更に評価する。例えば、少なくとも1〜2mg/mlの特異的な抗体、好ましくは5〜10mg/mlの特異的な抗体を含むポリクローナル抗体医薬は一般に、PKIN抗体複合体を沈殿させなければならない処理に用いられる。様々な適用例における抗体の特異性及び抗体価、結合活性、抗体の品質や使用法の指針は一般に入手可能である。(例えば、Catty, 前出, 及びColigan 他、前出を参照)。
【0185】
本発明の別の実施例では、PKINをコードするポリヌクレオチド、またはその任意の断片や相補配列が、治療目的で使用することができる。ある実施態様では、PKINをコードする遺伝子のコーディング領域や調節領域に相補的な配列やアンチセンス分子(DNA及びRNA、修飾ヌクレオチド)を設計して遺伝子発現を変更することができる。このような技術は当分野では周知であり、センスまたはアンチセンスオリゴヌクレオチドまたは大きな断片が、PKINをコードする配列の制御領域から、またはコード領域に沿ったさまざまな位置から設計可能である。
【0186】
治療に用いる場合、アンチセンス配列を好適な標的細胞に導入するのに好適な任意の遺伝子送達系を用いることができる。アンチセンス配列は、転写時に標的タンパク質をコードする細胞配列の少なくとも一部に相補的な配列を発現する発現プラスミドの形で細胞内に送達することができる(例えば、Slater, J.E. 他 (1998) J. Allergy Clin. Immunol. 102(3):469−475; and Scanlon, K.J. 他 (1995)9(13):1288−1296.を参照 )。また、アンチセンス配列は、例えばレトロウイルスやアデノ関連ウイルスベクター等のウイルスベクターを用いて細胞内に導入することもできる(例えば、Miller, A.D. (1990) Blood 76:271; Ausubel, 前出; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323−347を参照)。その他の遺伝送達機構には、リポソーム系、人工的なウイルスエンベロープ、及び当分野で周知のその他の系が含まれる(Rossi, J.J. (1995) Br. Med. Bull. 51(1):217−225; Boado, R.J.他 (1998) J. Pharm. Sci. 87(11):1308−1315; and Morris, M.C. 他 (1997) Nucleic Acids Res. 25(14):2730−2736.を参照)。
【0187】
本発明の別の実施例では、PKINをコードするポリヌクレオチドを、体細胞若しくは生殖細胞の遺伝子治療に用いることが可能である。遺伝子治療は、(i)遺伝子欠損症(例えば、X染色体連鎖遺伝(Cavazzana−Calvo, M. 他 (2000) Science 288:669−672)によって特徴づけられる重度の複合型免疫欠損(SCID)−X1)、遺伝性アデノシン−デアミナーゼ(ADA)欠損症(Blaese, R.M. 他 (1995) Science 270:475−480; Bordignon, C. 他 (1995) Science 270:470−475)に関連する重度の複合型免疫欠損、嚢胞性繊維症(Zabner, J. 他 (1993) Cell 75:207−216: Crystal, R.G. 他 (1995) Hum. Gene Therapy 6:643−666; Crystal, R.G. 他. (1995) Hum. Gene Therapy 6:667−703)、サラセミア(thalassamia)、家族性高コレステロール血症、第VIII因子若しくは第IX因子欠損による血友病(Crystal, 35 R.G. (1995) Science 270:404−410; Verma, I.M. and Somia. N. (1997) Nature 389:239−242)を治療したり、(ii)条件的致死性遺伝子産物(例えば、細胞増殖の制御不能による癌の場合)を発現させたり、及び(iii)細胞内の寄生虫(例えば、ヒト免疫不全ウイルス(HIV)(Baltimore, D. (1988) Nature 335:395−396; Poescbla, E. 他 (1996) Proc. Natl. Acad. Sci. USA. 93:11395−11399)や、B型若しくはC型肝炎ウイルス(HBV、HCV)、Candida albicans及びParacoccidioides brasiliensis等の真菌寄生虫、Plasmodium falciparum及びTrypanosoma cruzi等の原虫寄生体)に対する防御機能を有するタンパク質を発現させて行うことができる。PKINの発現若しくは調節に必要な遺伝子の欠損が疾患を引き起こす場合、導入した細胞の好適な集団からPKINを発現させて、遺伝子欠損によって起こる症状の発現を緩和することが可能である。
【0188】
本発明の更なる実施例では、PKINの欠損による疾患や異常症は、PKINをコードする哺乳動物発現ベクターを作製して、これらのベクターを機械的手段によってPKIN欠損細胞に導入することによって治療する。in vivo或いはex vitroの細胞に用いる機械的な導入技術には、(i)個々の細胞内へのDNAのマイクロインジェクション、(ii)金粒子の打ち込み、(iii)リポソーム仲介性トランスフェクション、(iv)受容体仲介性遺伝子導入、及び(v)DNAトランスポソン(Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191−217; Ivics, Z. (1997) Cell 91:501−510; Boulay, J−L. and H. Recipon (1998) Curr. Opin. Biotechnol. 9:445−450)の使用が含まれる。
【0189】
PKINの発現に影響を及ぼし得る発現ベクターには、限定するものではないが、PCDNA 3.1、EPITAG、PRCCMV2、PREP、PVAXベクター(Invitrogen, Carlsbad CA)、PCMV−SCRIPT、PCMV−TAG、PEGSH/PERV (Stratagene, La Jolla CA)、PTET−OFF、PTET−ON、PTRE2、PTRE2−LUC、PTK−HYG (Clontech, Palo Alto CA)が含まれる。PKINを発現させるために、(i)恒常的に活性なプロモーター(例えば、サイトメガロウイルス(CMV)、ラウス肉腫ウイルス(RSV)、SV40ウイルス、チミジンキナーゼ(TK)、若しくはβ−アクチン遺伝子等)、(ii)誘導性プロモーター(例えば、市販されているT−REXプラスミド(Invitrogen)に含まれている、テトラサイクリン調節性プロモーター(Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. U.S.A. 89:5547−5551; Gossen, M. 他 (1995) Science 268:1766−1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451−456))、エクジソン誘導性プロモーター(市販されているプラスミドPVGRXR及びPINDに含まれている:Invitrogen)、FK506/ラパマイシン誘導性プロモーター、またはRU486/ミフェプリストーン誘導性プロモーター(Rossi, F.M.V. and H.M. Blau, 前出)、または(iii)正常な個体に由来するPKINをコードする内在性遺伝子の天然のプロモーター若しくは組織特異的プロモーターを用いることが可能である。
【0190】
市販のリポソーム形質転換キット(例えば、Invitrogenが販売しているPERFECT LIPID及びTRANSFECTION KIT)を用いれば、当業者は経験にそれほど頼らないでもポリヌクレオチドを培養中の標的細胞に導入することが可能である。別法では、リン酸カルシウム法(Graham. F.L. and A.J. Eb (1973) Virology 52:456−467)若しくは電気穿孔法 (Neumann, B. 他 (1982) EMBO J. 1:841−845)を用いて形質転換を行う。初代細胞にDNAを導入するためには、これらの標準的な哺乳動物トランスフェクションプロトコルを変更する必要がある。
【0191】
本発明の別の実施例では、PKINの発現に関連する遺伝子欠損によって起こる疾患や異常症は、(i)レトロウイルス末端反復配列(LTR)プロモーター若しくは独立したプロモーターのコントロール下でPKINをコードするポリヌクレオチドと、(ii)好適なRNAパッケージングシグナルと、(iii)追加のレトロウイルス・シス作用性RNA配列及び効率的なベクターの増殖に必要なコーディング配列を伴うRev応答性エレメント(RRE)とからなるレトロウイルスベクターを作製して治療することができる。レトロウイルスベクター(例えば、PFB及びPFBNEO)はStratagene社から入手可能であり、公表データ(Riviere, I. 他. (1995) Proc. Natl. Acad. Sci. U.S.A. 92:6733−6737)に基づいている。上記データを引用することをもって本明細書の一部とする。このベクターは、VSVg(Armentano, D. 他 (1987) J. Virol. 61:1647−1650; Bender, M.A. 他 (1987) J. Virol. 61:1639−1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802−3806; Dull, T. 他 (1998) J. Virol. 72:8463−8471; Zufferey, R. 他 (1998) J. Virol. 72:9873−9880)等の乱交雑エンベロープタンパク質若しくは標的細胞上の受容体に対する親和性を有するエンベロープ遺伝子を発現する好適なベクター産生細胞系(VPCL)において増殖される。RIGGに付与された米国特許第5,910,434号(「Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant」)において、レトロウイルスパッケージング細胞系を得るための方法が開示されており、引用することをもって本明細書の一部とする。レトロウイルスベクターの増殖、ある細胞集団(例えば、CD4T細胞)の形質導入、並びに形質導入した細胞を患者に戻す方法は、遺伝子治療の分野では周知であり、多数の文献に記載されている(Ranga, U. 他. (1997) J. Virol. 71:7020−7029; Bauer, G. 他 (1997) Blood 89:2259−2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707−4716; Ranga, U. 他 (1998) Proc. Natl. Acad. Sci. U.S.A. 95:1201−1206: Su, L. (1997) Blood 89:2283−2290)。
【0192】
別法では、アデノウイルス系遺伝子治療の送達系を用いて、PKINの発現に関連する1或いは複数の遺伝子異常を有する細胞にPKINをコードするポリヌクレオチドを送達する。アデノウイルス系ベクターの作製及びパッケージングは当分野では周知である。複製欠損型アデノウイルスベクターは、免疫調節タンパク質をコードする遺伝子を膵臓の無損傷の膵島の中に導入するために可変性であることが証明された(Csete, M.E. 他. (1995) Transplantation 27:263−268)。使用できる可能性のあるアデノウイルスベクターが、米国特許第5,707,618号(「Adenovirus vectors for gene therapy」)に記載されており、引用することをもって本明細書の一部とする。アデノウイルスベクターについてはまた、Antinozzi, P.A. 他 (1999) Annu. Rev. Nutr. 19:511−544; and Verma, I.M. and N. Somia (1997) Nature 18:389:239−242を参照し、引用することをもって本明細書の一部とする。
【0193】
別法では、ヘルペス系遺伝子治療の送達系を用いて、PKINの発現に関連する1或いは複数の遺伝子異常を有する標的細胞にPKINをコードするポリヌクレオチドを送達する。単純疱疹ウイルス(HSV)系のベクターは、HSV親和性の中枢神経細胞にPKINを導入する際に特に重要である。ヘルペス系ベクターの作製及びパッケージングは当分野では周知である。複製適格性の単純疱疹ウイルス(HSV)I型系のベクターは、霊長類の眼にレポーター遺伝子を送達するために用いられてきた(Liu, X. 他 (1999) Exp. Eye Res.169:385−395)。HSV−1ウイルスベクターの作製は、DeLucaに付与された米国特許第5,804,413号(Herpes simplex virus swains for gene transfer)に記載されており、引用することをもって本明細書の一部とする。米国特許第5,804,413号には、ヒト遺伝子治療を含む目的のために、好適なプロモーターのコントロールの下で、細胞に導入される少なくとも1つの内在性遺伝子を含むゲノムからなる組換えHSV d92についての記載がある。また上記特許には、ICP4、ICP27及びICP22のために除去される組換えHSV株の作製及び使用方法が開示されている。HSVベクターについては、Goins, W.F. 他 (1999) J. Virol. 73:519−532 and Xu, H. 他 (1994) Dev. Biol. 163:152−161を参照し、引用することをもって本明細書の一部とする。クローニングされたヘルペスウイルス配列の操作や、巨大ヘルペスウイルスのゲノムの異なった部分を含む多数のプラスミドをトランスフェクトした後の組換えウイルスの継代、ヘルペスウイルスの成長及び増殖、並びにヘルペスウイルスの細胞への感染は当分野で周知の技術である。
【0194】
別法では、αウイルス(正の一本鎖RNAウイルス)ベクターを用いてPKINをコードするポリヌクレオチドを標的細胞に送達する。プロトタイプのαウイルスであるセムリキ森林熱ウイルス(Semliki Forest Virus, SFV)の生物学的な研究が広範に行われ、遺伝子伝達ベクター(gene transfer vector)がSFVゲノムに基づいていることが分かった(Garoff, H. and K.−J. Li (1998) Cun. Opin. Biotech. 9:464−469)。αウイルスRNAの複製中に、通常はウイルスカプシドタンパク質をコードするサブゲノムRNAが作り出される。このサブゲノムRNAが完全長のゲノムRNAより高いレベルで複製されるため、酵素活性(例えばプロテアーゼ及びポリメラーゼ)を有するウイルスタンパク質に対してカプシドタンパク質が過剰に産生される。同様に、PKINをコードする配列をαウイルスゲノムのカプシドをコードする領域に導入することによって、ベクター導入細胞において多数のPKINをコードするRNAが産生され、高いレベルでPKINが合成される。通常はαウイルス感染は2〜3日以内の細胞溶解に関係するが、シンドビスウイルス(SIN)の変異体を有するハムスターの正常な腎細胞(BHK−21)の持続的な感染を確立する能力は、αウイルスの溶解性の複製が遺伝子治療に適用できるように好適に変更することが可能であることを示唆している(Dryga, S.A. 他. (1997) Virology 228 :74−83)。様々な宿主にαウイルスを導入できることから、様々なタイプの細胞にPKINを導入することできる。ある集団における細胞のサブセットの特定の形質導入には、形質導入する前に細胞のソーティングを必要とする場合がある。αウイルスの感染性cDNAクローンの操作、αウイルスcDNA及びRNAのトランスフェクション、並びにαウイルスの感染方法は当分野で周知である。
【0195】
例えば開始部位から約−10から約+10までの転写開始部位に由来するオリゴヌクレオチドを用いて、遺伝子の発現を阻害することが可能である。同様に、三重らせん塩基対合法を用いて阻害することができる。三重らせん構造は、二重らせんがポリメラーゼ、転写因子、または調節分子の結合のために十分に広がるのを阻止するため有用である。三重式DNAを用いる最近の治療の進歩は文献に記載されている(例えば、Gee, J.E. ら. (1994) In: Huber, B.E. 及び B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing Co., Mt. Kisco, NYを参照)。相補的な配列またはアンチセンス分子もまた、転写物がリボソームに結合するのを阻止することによってmRNAの翻訳を阻止するように設計できる。
【0196】
酵素性RNA分子であるリボザイムは、RNAの特異的切断を触媒するために用いることができる。リボザイム作用の機構には、相補的な標的RNAへのリボザイム分子の配列特異性ハイブリダイゼーションが含まれ、ヌクレオチド鎖切断が続く。例えば、PKINをコードする配列のヌクレオチド鎖切断を、特異的且つ効果的に触媒する組換え型のハンマーヘッド型リボザイム分子が含まれる。
【0197】
任意の潜在的RNA標的内の特異的なリボザイム切断部位が、後続の配列GUA、GUU、及びGUCを含むリボザイム切断部位に対して、標的分子をスキャニングすることによって初めに同定される。一度同定されると、切断部位を含む標的遺伝子の領域に対応する15個から20個のリボヌクレオチドの短いRNA配列を、オリゴヌクレオチドの機能を不全にする二次的な構造の特徴について評価することが可能である。候補標的の適合性も、リボヌクレアーゼ保護アッセイを用いて、相補的なオリゴヌクレオチドとのハイブリダイゼーションの容易性をテストすることによって評価することが可能である。
【0198】
本発明の相補的なリボ核酸分子及びリボザイムは、当分野で周知の方法を用いて、核酸分子の合成のために作製することができる。これらの方法には、固相ホスホラミダイト化合物などのオリゴヌクレオチドを化学的に合成する方法が含まれる。別法では、RNA分子がin vitro及びin vivoでPKINをコードするDNA配列の転写によって生成され得る、このようなDNA配列はT7またはSP6等の好適なRNAポリメラーゼプロモータを用いて、種々のベクターの中に組み入れることが可能である。別法では、相補的なRNAを構成的または誘導的に合成するこれらのcDNA作製物は、細胞株、細胞、または組織の中に導入することができる。
【0199】
RNA分子を修飾することによって、細胞内の安定性を高め、半減期を長くすることができる。可能な修飾には、分子の5’及び/または3’端部でのフランキング配列の追加、または分子のバックボーン内のホスホジエステル結合の代わりにホスホロチオネートまたは2’Oメチルを用いる修飾が含まれるが、これらに限定されるものではない。PNAの生成に固有のこの概念は、内在性のエンドヌクレアーゼによって容易には認識されないアデニン、シチジン、グアニン、チミン、及びウリジンのアセチル−、メチル−、チオ−、及び同様の修飾形態だけでなく、イノシン、キュエオシン(queosine)、及びワイブトシン(wybutosine)などの従来のものでない塩基を含めることによって、これらの分子の全体に拡大することができる。
【0200】
本発明の更なる実施例は、PKINをコードするポリヌクレオチドの発現の変化に有効な化合物をスクリーニングする方法を含む。特定のポリヌクレオチドの発現の変化に有効な化合物には、限定するものではないが、特定のポリヌクレオチド配列と相互作用可能な非高分子化学物質、オリゴヌクレオチド、アンチセンスオリゴヌクレオチド、三重らせん形成オリゴヌクレオチド、転写因子やその他のポリペプチド転写調節因子が含まれる。有効な化合物は、ポリヌクレオチド発現のインヒビター或いはエンハンサーとして作用し、ポリヌクレオチドの発現を変化させ得る。従って、PKINの発現または活性の増加に関連する疾患の治療においては、PKINをコードするポリヌクレオチドの発現を特異的に阻害する化合物が治療上有用であり、PKINの発現または活性の低下に関連する疾患の治療においては、PKINをコードするポリヌクレオチドの発現を特異的に促進する化合物が治療上有用であり得る。
【0201】
特定のポリヌクレオチドの発現の変化の有効性を調べるために、少なくとも1個から複数個の試験化合物をスクリーニングすることができる。試験化合物は、有効な化合物の化学修飾を含む当分野で周知の任意の方法で得ることができる。このような方法は、ポリヌクレオチドの発現を変化させる場合、一般に市販されている或いは専売の天然または非天然の化合物ライブラリから選択する場合、標的ポリヌクレオチドの化学的及び/または構造的特性に基づいて化合物を合理的にデザインする場合、更に組合せ的にまたは無作為に生成した化合物のライブラリから選択する場合に有効である。PKINをコードするポリヌクレオチドを含むサンプルは、少なくとも1つの試験化合物に曝露して得る。サンプルには、例えば無傷細胞、透過化処理した細胞、in vitro細胞遊離系または再構成生化学系が含まれ得る。PKINをコードするポリヌクレオチドの発現における変化は、当分野で周知の任意の方法でアッセイする。通常、PKINをコードするポリヌクレオチドの配列に相補的なヌクレオチド配列を有するプローブを用いたハイブリダイゼーションにより、特定のヌクレオチドの発現を検出する。ハイブリダイゼーションの収量を定量し、その値が1或いは複数の試験化合物に曝露される及び曝露されないポリヌクレオチドの発現の比較における基準となり得る。試験化合物に曝露されるポリヌクレオチドの発現の変化が検出される場合は、ポリヌクレオチドの発現の変化に試験化合物が有効であることを示している。特定のポリヌクレオチドの発現の変化に有効な化合物を調べるために、例えばSchizosaccharomyces pombe遺伝子発現系(Atkins, D. 他 (1999) 米国特許第5,932,435号、Arndt, G.M. 他 (2000) Nucleic Acids Res. 28:E15)またはHeLa細胞等のヒト細胞株(Clarke, M.L. 他 (2000) Biochem. Biophys. Res. Commun. 268:8−13)を用いてスクリーニングする。本発明の特定の実施例は、特異的ポリヌクレオチド配列に対するアンチセンス活性を調べるための、各オリゴヌクレオチド(デオキシリボヌクレオチド、リボヌクレオチド、ペプチド核酸、及び修飾オリゴヌクレオチド)の組み合わせライブラリのスクリーニングを含む(Bruice, T.W. 他 (1997) 米国特許第5,686,242号、Bruice, T.W. 他 (2000) 米国特許第6,022,691号)。
【0202】
ベクターを細胞または組織に導入する多数の方法が利用でき、in vivoin vitro、及びex vivoでの使用に等しく適している。ex vivoでの治療の場合、患者から採取された肝細胞の中にベクターを導入して、自家移植で同じ患者に戻すためにクローニング増殖される。トランスフェクション、リボソーム注入またはポリカチオンアミノポリマーによる運搬は、当分野で周知の方法を用いて実行することができる(例えば、Goldman, C.K. 他. (1997) Nature Biotechnology 15:462−66:を参照)。
【0203】
上記したいかなる治療方法も、例えば、ヒト、イヌ、ネコ、ウシ、ウマ、ウサギ及びサルなどの哺乳動物を含む、治療が必要な全ての被験者に適用できる。
【0204】
本発明の別の実施例は、上記した全ての治療効果のために、医学上認められる担体と共に医薬品或いは無菌組成物の投与に関連する。このような組成物は、PKIN、PKINの抗体、擬態、アゴニスト、アンタゴニスト、またはPKINのインヒビターなどからなる。この組成物は、単体で、或いは安定剤などの1種類以上の別の薬剤と共に、無菌の生体適合性医薬品担体に投与することができる。このような医薬品担体には、生理食塩水、緩衝食塩水、ブドウ糖、及び水などが含まれるがこれらに限定されるものではない。この組成物は、単独或いは薬物またはホルモンなどの別の薬剤と共に投与することができる。
【0205】
本発明に用いられる組成物は、様々な経路を用いて投与するが可能である。この経路には、経口、静脈内、筋肉内、動脈内、骨髄内、クモ膜下、心室内、経皮、皮下、腹腔内、鼻腔内、腸内、局所、舌下、または直腸が含まれるがこれらに限定されるものではない。
【0206】
肺投与用の組成物は、液状または乾燥粉末状に調製することができる。このような組成物は通常、患者が吸入する直前にエアロゾル化する。小分子(例えば、従来の低分子量有機薬剤)の場合には、速効製剤のエアロゾル輸送が当分野で周知である。高分子(例えばより大きなペプチドやタンパク質)の場合には、肺の肺胞領域を介する肺輸送の技術が近年向上したため、インスリン等の薬剤を実際に血中に輸送することが可能となった(Patton, J.S. 他, 米国特許第5,997,848号等を参照)。肺輸送は、針注射を用いないで投与できるという点で優れており、潜在的に有毒な浸透エンハンサーが必要でなくなる。
【0207】
本発明に用いる好適な組成物には、目的を達成するため、効果的な量の活性処方成分を含む組成物が含まれる。当業者は、十分に自身の能力で効果的な服用量を決めることができる。
【0208】
PKINまたはその断片を含む高分子を直接細胞内に輸送するべく、特殊な形態に組成物が調製されるのが好ましい。例えば、細胞不透過性高分子を含むリポソーム製剤は、細胞融合及び高分子の細胞内輸送を促進し得る。別法では、PKINまたはその断片をHIV Tat−1タンパク質の陽イオンN末端部に結合することもできる。このようにして作製された融合タンパク質は、マウスモデル系の脳を含む全ての組織の細胞に形質導入されることが確認されている(Schwarze, S.R. 他 (1999) Science 285:1569−1572)。
【0209】
どのような組成物であっても、治療に効果的な薬用量は、初めは、例えば腫瘍細胞の腫瘍細胞アッセイで、或いは動物モデルのどちらかで推定することができる。通常、動物モデルには、マウス、ウサギ、イヌ、サル、またはブタなどが用いられる。動物モデルはまた、好適な濃縮範囲及び投与の経路を決めるのに用いることができる。このような治療をもとに、ヒトへの有益な薬用量及び投与経路を決定することができる。
【0210】
医学的に効果的な薬用量は、症状や容態を回復させる、たとえばPKINまたはその断片、PKINの抗体、PKINのアゴニストまたはアンタゴニスト、インヒビターなどの活性処方成分の量に関連する。薬用有効度及び毒性は、たとえば、ED50(服用に対して集団の50%に医薬的効果がある用量)またはLD50(服用に対して集団の50%に致命的である用量)統計を計算するなど、細胞培養または動物実験における標準的な薬剤手法によって決定することができる。毒性効果と治療効果との薬用量比は治療指数であり、LD50/ED50と示すことができる。高い治療指数を示す組成物が望ましい。細胞培養アッセイ及び動物実験から得られたデータが、ヒトへの適用のために、薬用量の範囲を調剤するのに用いられる。このような組成物が含まれる薬用量は、毒性を殆ど或いは全く含まず、ED50を含む血中濃度の範囲であることが望ましい。薬用量は、用いられる投与形態及び患者の感受性、投与の経路によって、この範囲内で様々である。
【0211】
正確な薬用量は、治療が必要な患者に関する要素を考慮して、実務者によって決められるであろう。薬用量及び投与は、効果的なレベルの活性成分を与えるため或いは所望の効果を維持するために調節される。薬用量の要素として考慮されるものには、疾患の重症度、患者の一般的な健康状態、年齢、体重、及び患者の性別、投与の時間及び頻度、併用する薬剤、反応感受性、及び治療に対する応答が含まれる。作用期間が長い組成物は、三日か四日に一度、一週間に一度、二週間に一度、特定の製剤の半減期及びクリアランス率によって左右され、投与され得る。
【0212】
通常の薬用量は投与の経路によって異なるが、約0.1〜100,000μgまでの最大約1グラムまでである。特定の薬用量及び運搬の方法に関するガイダンスは文献に記載されており、一般に当分野の実務者はそれを利用することができる。当業者は、タンパク質またはインヒビターとは異なったヌクレオチドの製剤を利用するであろう。同様に、ポリヌクレオチドまたはポリペプチドの運搬は、特定の細胞、状態、位置などに対して特異的であろう。
【0213】
(診断)
別の実施例では、PKINに特異的に結合する抗体が、PKINの発現によって特徴付けられる疾患の診断、またはPKINやPKINのアゴニストまたはアンタゴニスト、インヒビターで治療を受けている患者をモニターするためのアッセイに用いられる。診断に有用な抗体は、治療のところで記載した方法と同じ方法で製剤される。PKINの診断アッセイには、抗体及び標識を用いてヒトの体液或いは細胞や組織から採取されたものからPKINを検出する方法が含まれる。これらの抗体は、修飾をして或いはしないで使用され、レポーター分子の共有結合性或いは非共有結合性の接着によって標識化され得る。当分野で周知の種々のレポーター分子が用いられるが、その内の幾つかは上記した。
【0214】
PKINを測定するためのELISA,RIA,及びFACSを含む種々のプロトコルは、当分野では周知であり、変わった或いは異常なレベルのPKINの発現を診断する元となるものを提供する。正常或いは標準的なPKINの発現の値は、複合体の形成に適した条件の下、正常な哺乳動物、例えばヒトなどの被験者から採取した体液または細胞とPKINに対する抗体とを結合させることによって決定する。標準的な複合体形成の量は、測光法(photometric)などの種々の方法で定量され得る。被験者のPKINの発現の量、制御及び疾患、生検組織からのサンプルが基準値と比較される。基準値と被験者との間の偏差が、診断の指標となる。
【0215】
本発明の別の実施例によれば、PKINをコードするポリヌクレオチドを診断のために用いることもできる。用いられるポリヌクレオチドには、オリゴヌクレオチド配列、相補的なRNA及びDNA分子、及びPNAが含まれる。このポリヌクレオチドを用いて、疾患と相関し得るPKINを発現する生検組織における遺伝子の発現を検出し定量する。この診断アッセイを用いて、PKINの存在の有無、更に過剰な発現を調べ、治療中のPKIN値の調節を監視する。
【0216】
一実施形態では、PKINまたは近縁の分子をコードする遺伝子配列を含むポリヌクレオチド配列を検出可能なPCRプローブを用いたハイブリダイゼーションによって、PKINをコードする核酸配列を同定することが可能である。例えば5’調節領域である高度に特異的な領域か、例えば保存されたモチーフであるやや特異性の低い領域から作られているかのプローブの特異性と、ハイブリダイゼーション或いは増幅のストリンジェントは、プローブがPKINをコードする自然界の配列のみを同定するかどうか、或いはアレルや関連配列コードする自然界の配列のみを同定するかどうかによって決まるであろう。
【0217】
プローブはまた、関連する配列の検出に利用され、PKINをコードする任意の配列と少なくとも50%の配列同一性を有し得る。目的の本発明のハイブリダイゼーションプローブには、DNAあるいはRNAが可能であり、SEQ ID NO:12−22の配列、或いはPKIN遺伝子のプロモーター、エンハンサー、イントロンを含むゲノム配列に由来し得る。
【0218】
PKINをコードするDNAに対して特異的なハイブリダイゼーションプローブの作製方法には、PKIN及びPKIN誘導体をコードするポリヌクレオチド配列をmRNAプローブの作製のためのベクターにクローニングする方法がある。このようなベクターは市販されており、当業者には周知であり、好適なRNAポリメラーゼ及び好適な標識されたヌクレオチドを加えることによって、in vitroでRNAプローブを合成するために用いられる。ハイブリダイゼーションプローブは、例えば32P或いは35Sなどの放射性核種、或いはアビジン/ビオチン(biotin)結合系によってプローブに結合されたアルカリホスファターゼなどの酵素標識等の種々のレポーターの集団によって標識され得る。
【0219】
PKINをコードするポリヌクレオチド配列を用いて、PKINの発現に関連する疾患を診断することが可能である。限定するものではないが、このような疾患には癌、免疫疾患、成長及び発達に影響を及ぼす障害、アテローム性動脈硬化症及びその他の心血管疾患、及び脂質異常が含まれ、癌の中には腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌、多発骨髄腫などの白血病、悪性リンパ腫などのリンパ腫が含まれ、免疫疾患の中には、炎症及び日光性角化症、後天性免疫不全症候群(AIDS)及び副腎機能不全、成人呼吸窮迫症候群、アレルギー、強直性脊椎炎、アミロイド症、貧血、喘息、アテローム性動脈硬化症、自己免疫性溶血性貧血、自己免疫性甲状腺炎、自己免疫性多腺性内分泌カンジダ性外胚葉ジストロフィー(APECED)、気管支炎、胆嚢炎、接触皮膚炎、クローン病、アトピー性皮膚炎、皮膚筋炎、糖尿病、肺気腫、リンパ球毒素性一時性リンパ球減少症、赤芽球症、結節性紅斑、萎縮性胃炎、糸球体腎炎、グッドパスチャー症候群、痛風、グレーブス病、橋本甲状腺炎、過好酸球増加症、過敏性大腸症候群、多発性硬化症、重症筋無力症、心筋または心膜炎症、骨関節炎、骨粗しょう症、膵炎、乾癬、ライター症候群、リウマチ様関節炎、強皮症、シェ−グレン症候群、全身性アナフィラキシー、全身性エリテマトーデス、全身性硬化症、原発性血小板血症、血小板減少症、潰瘍性大腸炎、ウェルナー症候群、癌合併症、血液透析、体外循環、ウイルス感染症、細菌感染症、真菌感染症、寄生虫感染症、原虫感染症、蠕虫感染症、外傷が含まれ、成長および発達に影響を及ぼす疾患の中には日光性角化症及びアテローム性動脈硬化、滑液包炎、硬変、肝炎、混合型結合組織病(MCTD)、骨髄線維症、発作性夜間ヘモグロビン尿症、真性多血症、乾癬、原発性血小板血症、並びに腺癌及び白血病、リンパ腫、黒色腫、骨髄腫、肉腫、及び奇形癌、具体的には、副腎、膀胱、骨、骨髄、脳、乳房、頚部、胆嚢、神経節、消化管、心臓、腎臓、肝臓、肺、筋肉、卵巣、膵臓、副甲状腺、陰茎、前立腺、唾液腺、皮膚、脾臓、精巣、胸腺、甲状腺、子宮の癌や、尿細管性アシドーシス、貧血、クッシング症候群、軟骨形成不全性小人症、デュシェンヌ‐ベッカー型筋ジストロフィー、癲癇、性腺形成異常、WAGR症候群(ウィルムス腫瘍、無虹彩症、尿生殖器異常、精神薄弱)、スミス‐マジェニス症候群(Smith− Magenis syndrome)、脊髄形成異常症候群、遺伝性粘膜上皮異形成、遺伝性角皮症、シャルコー‐マリー‐ツース病及び神経線維腫症などの遺伝性神経病、甲状腺機能低下症、水頭症、舞踏病(Syndenham’s chorea)及び脳性小児麻痺などの発作障害、脊髄二分裂、無脳症、頭蓋脊椎披裂、先天性緑内障、白内障、感覚神経性聴力損失が含まれ、心血管疾患の中には、動静脈瘻、アテローム硬化、高血圧、脈管炎、レイノー病、静脈奇形、動脈解離、静脈瘤、血栓静脈炎及び静脈血栓、血管の腫瘍、血栓崩壊の合併症、バルーン血管形成術(balloon angioplasty)、血管置換術(vascular replacement)、大動脈冠動脈バイパス術移植手術(coronary artry bypass graft suegery)、うっ血性心不全、虚血性心疾患、狭心症、心筋梗塞、高血圧性心疾患、変性弁膜性心疾患、石灰化大動脈弁狭窄症、先天性2尖大動脈弁、僧帽弁輪状石灰化(mitral annular calcification)、僧帽弁脱出、リウマチ熱、リウマチ性心疾患、感染性心内膜炎、非細菌性血栓性心内膜炎、全身性エリテマトーデスの心内膜炎、カルチノイド心疾患、心筋症、心筋炎、心膜炎、腫瘍性心疾患、先天性心臓疾患、及び心臓移植の合併症と、先天性肺異常(congenital lung anomalies)、肺拡張不全、肺うっ血及び肺水腫、肺動脈塞栓症、肺出血、肺梗塞、肺高血圧症、血管硬化症、閉塞性肺疾患、拘束性肺疾患(restrictive pulmonary disease)、慢性閉塞性肺疾患、肺気腫、慢性気管支炎、気管支喘息、細気管支拡張症、細菌性肺炎、ウイルス性肺炎及びマイコプラズマ肺炎、肺膿瘍、肺結核、びまん性間質性疾患(diffuse interstitial diseases)、塵肺症、サルコイド症、特発性肺繊維症(idiopathic pulmonary fibrosis)、剥離性間質性肺炎、過敏症肺炎(hypersensivitity pneumonitis)、肺好酸球増加閉塞性細気管支炎―器質性肺炎(pulmonary eosinophilia bronchiolitis obliterans−organizing pneumonia)、びまん性肺出血症候群(diffuse pulmonary hemorrhage syndromes)、グッドパスチャー症候群、特発性肺血鉄症、肺併発膠原血管病(pulmonary involvement in collagen−vascular disorders)、肺胞たんぱく症、肺腫瘍、炎症性及び非炎症性胸水(inflammatory and noninflammatory pleural effusions)、気胸症、胸膜腫瘍、薬物による肺疾患(drug−induced lung disease)、放射線による肺疾患(radiation−induced lung desease)及び肺移植の合併症などが含まれ、脂質異常の中には、脂肪肝、胆汁うっ滞、原発性胆汁性肝硬変、カルニチン欠乏症、カルニチンパルミトイルトランスフェラーゼ欠乏症(carnitine palmitoyltransferase deficiency)、ミオアデニレートデミナーゼ欠乏症(myoadenylate deaminase deficiency)、hypertriglyceridemia、ファブリー病などの脂質貯蔵病、ゴーシェ病、ニーマン‐ピック病、変染色性白質ジストロフィー、副腎性白質ジストロフィー、G にガングリオシドーシス、セロイドリポフスチン症、無β‐リポ蛋白血症、タンジアー病、リポ蛋白過剰血症、糖尿病、脂肪異栄養症、脂肪腫症、急性皮下脂肪組織炎、播種性脂肪組織壊死症、有痛脂肪症、リポイド副腎過形成、リポイドネフローゼ、脂肪腫、アテローム性動脈硬化症、高コレステロール血症、高トリグリセリド血症を伴った高コレステロール血症、原発性低αリポ蛋白血症(primary hypoalphalipoproteinemia)、低甲状腺症(hypothyroidism)、腎臟病、肝疾患、レシチン−コレステロールアシルトランスフェラーゼ欠乏症、脳腱黄色腫症、シトステロール血症(sitosterolemia)、低コレステロール血症、テイ‐サックス病、サンドホフ病、高脂血症、脂肪過剰血症、脂質筋障害、肥満症が含まれる。PKINをコードするポリヌクレオチド配列は、サザーン法やノーザン法、ドットブロット法、或いはその他の膜系の技術、PCR法、ディップスティック(dipstick)、ピン(pin)、ELISA式アッセイ、及び変異PKINの発現を検出するために患者から採取した体液或いは組織を利用するマイクロアレイに使用することが可能である。このような質的或いは量的方法は、当分野では周知である。
【0220】
ある実施態様では、PKINをコードするヌクレオチド配列は、関連する疾患、特に上記した疾患を検出するアッセイにおいて有用であろう。PKINをコードするヌクレオチド配列は、標準的な方法で標識化され、ハイブリダイゼーション複合体の形成に好適な条件の下、患者から採取した体液或いは組織のサンプルに加えることができるであろう。好適な培養期間の後、サンプルを洗浄し、シグナルを定量して基準値と比較する。患者のサンプルのシグナルの量が、制御サンプルと較べて著しく変わっている場合は、サンプル内のPKINをコードするヌクレオチド配列の変異レベルにより、関連する疾患の存在が明らかになる。このようなアッセイを用いて、動物実験、臨床試験、或いは個人の患者の治療を監視における、特定の治療効果を推定することが可能である。
【0221】
PKINの発現に関連する疾患の診断の基準となるものを提供するために、発現の正常すなわち標準的なプロファイルが確立される。これは、ハイブリダイゼーション或いは増幅に好適な条件の下、動物或いはヒトの何れかの正常な被験者から抽出された体液或いは細胞と、PKINをコードする配列或いはその断片とを結合させることにより達成され得る。標準的なハイブリダイゼーションは、正常な被験者から得た値と周知の量の実質的に精製されたポリヌクレオチドが用いられる実験からの値とを比較することによって定量可能である。正常なサンプルから得た標準的な値を、疾患の症状を示す被験者から得た値と比較可能である。基準値と被験者の値との偏差を用いて罹患しているかどうを決定する。
【0222】
疾患の存在が確定され、治療プロトコルが開始されると、ハイブリダイゼーションアッセイを通常ベースで繰り返して、被験者における発現のレベルが正常な患者に示される値に近づき始めたかどうかを推定することが可能である。繰り返し行ったアッセイの結果を、数日から数ヶ月の期間の治療の効果を見るのに用いることができる。
【0223】
癌では、個体からの生体組織における異常な量の転写物が、疾患の発生の素因を示し、また実際に臨床的症状が出る前に疾患を検出する方法を提供することが可能である。この種のより明確な診断により、医療の専門家が予防方法或いは積極的な治療法を早くから利用して、癌の発生または進行を防ぐことが可能となる。
【0224】
PKINをコードする配列から設計されたオリゴヌクレオチドのさらなる診断への利用には、PCRの利用が含まれ得る。このようなオリゴマーは、化学的な合成、酵素を用いた生成、或いはin vitroで生成され得る。オリゴマーは、好ましくはPKINをコードするポリヌクレオチドの断片、或いはPKINをコードするポリヌクレオチドと相補的なポリヌクレオチドの断片を含み、最適な条件の下、特定の遺伝子や条件を識別するために利用される。また、オリゴマーは、やや緩いストリンジェントな条件の下、近縁のDNA或いはRNA配列の検出及び/または定量のため用いることが可能である。
【0225】
或る実施態様において、PKINをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いて、一塩基多型(SNP)を検出し得る。SNPは、ヒトの先天性または後天性遺伝病の原因となる場合が多いヌクレオチドの置換、挿入及び欠失である。限定するものではないが、SNPの検出方法には、一本鎖立体構造多型(SSCP)及び蛍光SSCP(fSSCP)法が含まれる。SSCPでは、PKINをコードするポリヌクレオチド配列由来のオリゴヌクレオチドプライマーを用いたポリメラーゼ連鎖反応(PCR)でDNAを増幅する。このDNAは、例えば病変或いは正常な組織、生検サンプル、体液等に由来し得る。このDNA内のSNPは、一本鎖形状のPCR産物の2次及び3次構造に差異を生じさせる。この差異は非変性ゲル中でのゲル電気泳動法を用いて検出可能である。fSCCPでは、オリゴヌクレオチドプライマーを蛍光標識することによって、DNAシークエンシング装置などのハイスループット機器でアンプリマー(amplimer)の検出をすることが可能になる。更に、インシリコSNP(in silico SNP:isSNP)と呼ばれる配列データベース分析法は、共通のコンセンサス配列の構築に用いられる個々の重複するDNA断片の配列を比較することによって、多型を同定することができる。これらのコンピュータベースの方法は、DNA配列クロマトグラムの自動分析及び統計モデルを用いたシークエンシングエラーや研究室でのDNAの調整に起因する配列のばらつきを排除する。別法では、例えばハイスループットのMASSARRAYシステム(Sequenom, Inc., San Diego CA)を用いた質量分析によりSNPを検出し、特徴付ける。
【0226】
PKINの発現を定量するために用いられ得る方法には、ヌクレオチドの放射標識或いはビオチン標識、調節核酸の相互増幅(coamplification)、及び標準的な曲線に結果が加えられたものが含まれる(例えば、Melby, P.C.ら(1993) J. Immunol. Methods, 159:235−44;Duplaa, C.ら(1993) Anal. Biochem. 229−236を参照)。多数のサンプルの定量速度は、ハイスループット型のアッセイを用いることで速くなるであろう。このアッセイでは、目的のオリゴマーやポリヌクレオチドが様々な希釈液中に含まれ、分光光度法或いは非色応答によって定量が迅速である。
【0227】
更に別の実施例では、本明細書で記載した任意のポリヌクレオチド配列に由来するオリゴヌクレオチドまたはより長い断片を、マイクロアレイにおける標的として用いることができる。マイクロアレイを、上記したように多数の遺伝子の相対的な発現レベルを同時にモニタリングする転写イメージング技術に用いてることができる。マイクロアレイはまた、遺伝子変異、突然変異及び多型の同定に用いることができる。この情報を用いて、遺伝子機能を決定し、疾患の遺伝的根拠を解明し、疾患を診断し、遺伝子発現に関連する疾病の進行/後退をモニタリングし、疾患の治療における治療薬の開発や活性のモニタリングを行うことができる。特に、患者にとって最適かつ有効な治療法を選択するために、この情報を用いて患者の薬理ゲノムプロフィールを作成することができる。例えば、患者の薬理ゲノムプロフィールに基づいて、患者に対して極めて効果的でありながら副作用を殆ど示さない治療薬を選択することができる。
【0228】
別の実施例では、PKIN、PKINの断片、PKINに特異的な抗体をマイクロアレイ上のエレメントとして用いることができる。マイクロアレイを用いて、上記のようにタンパク質間相互作用、薬剤−標的相互作用及び遺伝子発現プロファイルをモニタリング及び測定することが可能である。
【0229】
特定の実施例は、或る組織または細胞型の転写イメージを生成する本発明のポリヌクレオチドの使用に関連する。転写イメージは、特定の組織または細胞型により遺伝子発現の包括的パターンを表す。包括的遺伝子発現パターンは、所定の条件下で所定の時間に発現した遺伝子の数及び相対存在量を定量することにより分析される(Seilliamer 他、米国特許第5,840,484号の”Comparative Gene Transcript Analysis” を参照。この特許に言及することを以って本明細書の一部とする)。従って、特定の組織または細胞型の転写物または逆転写物の全てに本発明のポリヌクレオチドまたはその相補配列をハイブリダイズすることにより、転写イメージが生成され得る。或る実施例では、本発明のポリヌクレオチドまたはその相補配列がマイクロアレイ上に複数のエレメントのサブセットを構成するハイスループット型でハイブリダイゼーションさせる。結果として得られる転写イメージは、遺伝子活性のプロファイルとなり得る。
【0230】
転写イメージは、組織、細胞株、生検サンプル、またはその他の生体サンプルから単離した転写物を用いて生成し得る。従って、転写イメージは、組織または生検サンプルの場合にはin vivo、または細胞株の場合にはin vitroにおける遺伝子発現を反映する。
【0231】
本発明のポリヌクレオチドの発現プロファイルを示す転写イメージはまた、合成化合物または天然化合物の毒性試験のみならず、in vitroモデル系及び薬剤の前臨床評価に関連して使用され得る。全ての化合物は、作用及び毒性の機構を示唆する、頻繁に分子フィンガープリント若しくは毒性シグネチャ(signature)と称されるような特徴的な遺伝子発現パターンを引き起こす(Nuwaysir, E.F. 他 (1999) Mol. Carcinog. 24:15 3−159、Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112−113:467−471、また言及することを以って本明細書の一部とする)。試験化合物が、毒性を有する既知の化合物のシグネチャと同一のシグネチャを有する場合には、毒性特性を共有している可能性が高い。フィンガープリンまたはシグネチャが、より多くの遺伝子及び遺伝子ファミリーからの発現情報を含んでいれば、より有用かつ正確になる。理想としては、発現のゲノム全域にわたって測定し、最高品質のシグネチャを提供することである。任意の試験化合物によっても発現が変化しない遺伝子も同様に重要である。それは、これらの遺伝子の発現レベルを用いて残りの発現データを標準化することができるためである。標準化処理は、異なる化合物で処理した後の発現データの比較に有用である。毒性シグネチャのエレメントへの遺伝子機能を割り当てることは毒性機構の解明に役立つが、毒性の予測につながるシグネチャの統計的な一致には遺伝子機能の知識は必要ではない(例えば2000年2月29日にNational Institute of Environmental Health Sciencesより発行されたPress Release 00−02を参照されたい。これについてはhttp://www.niehs.nih.gov/oc/news/toxchip.htmで入手可能である)。従って、毒性シグネチャを用いる毒性スクリーニングにおいて、全ての発現した遺伝子配列を含めることは重要でありまた望ましいことである。
【0232】
一実施例では、試験化合物の毒性は、核酸を含有する生体サンプルをその試験化合物で処理して評価する。処理した生体サンプル中で発現した核酸は、本発明のポリヌクレオチドに特異的な1若しくは複数のプローブでハイブリダイズさせ、それによって本発明のポリヌクレオチドに対応する転写レベルを定量することができる。処理した生体サンプル中の転写レベルを、非処理生体サンプル中のレベルと比較する。両サンプルの転写レベルの差が、処理されたサンプル中で試験化合物が引き起こす毒性反応を示唆する。
【0233】
別の実施例は、本発明のポリペプチド配列を用いて組織または細胞型のプロテオームを分析することに関連する。「プロテオーム」という用語は、或る特定の組織または細胞型におけるタンパク質発現の包括的パターンを指す。プロテオームを構成する各タンパク質は、個々に更なる分析をすることができる。プロテオーム発現パターン即ちプロファイルは、所定の条件下で所定の時間に発現したタンパク質の数及びそれらの相対的な存在量を定量することにより分析する。従って、ある細胞のプロテオームのプロファイルは、特定の組織または細胞型のポリペプチドを分離及び分析することにより作成し得る。或る実施例では、このような分離は2次元ゲル電気泳動によって行う。この2次元ゲル電気泳動法では、まず、1次元の等電点電気泳動によりサンプルからタンパク質を分離し、次に、2次元のドデシル硫酸ナトリウムスラブゲル電気泳動により分子量に従って分離する(前出のSteiner and Anderson)。これらのタンパク質は、通常クーマシーブルーまたはシルバーまたは蛍光染色などの染色剤を用いてゲルを染色して、分散した個別の位置にあるスポットとしてゲル中で可視化される。各タンパク質スポットの光学密度は、通常サンプル中のタンパク質レベルに比例する。異なるサンプル、例えば試験化合物または治療薬で処理済みまたは未処理のいずれかの生体サンプルから得られる等位置にあるタンパク質スポットの光学密度を比較し、処理に関連するタンパク質スポット密度の変化を調べる。スポット内のタンパク質は、例えば化学的または酵素的に切断した後、質量分析する標準的な方法を用いて部分的にシークエンシングする。スポット内のタンパク質の同一性は、好適には少なくとも5個の連続するアミノ酸残基であるその部分的な配列を、本発明のポリペプチド配列と比較することにより決定し得る。場合によっては、決定的なタンパク質同定のための更なる配列が得られる。
【0234】
プロテオームのプロファイルは、PKINに特異的な抗体を用いてPKIN発現レベルを定量することによっても作成可能である。或る実施例では、マイクロアレイ上のエレメントとして抗体を用い、マイクロアレイをサンプルに曝露して各アレイエレメントへのタンパク質結合レベルを検出することによりタンパク質発現レベルを定量する(Lueking, A. ら. (1999) Anal. Biochern. 270:103−111、Mendoze, L.G. ら. (1999) Biotechniques 27:778−788)。検出は当分野で既知の様々な方法で行うことができ、例えば、チオール反応性またはアミノ反応性蛍光化合物を用いてサンプル中のタンパク質を反応させ、各アレイエレメントにおける蛍光結合の量を検出し得る。
【0235】
プロテオームレベルでの毒性シグネチャも中毒学的スクリーニングに有用であり、転写レベルでの毒性シグネチャと並行して分析するべきである。或る組織における或るタンパク質では、転写物の存在量とタンパク質の存在量との相関性が低いことがあるため(Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533−537)、プロテオーム毒性シグネチャは、転写イメージにはそれ程影響しないがプロテオームのプロファイルを変化させる化合物の分析において有用たり得る。更に、体液中での転写の分析は、mRNAが急速に分解するため困難である。しがたがって、このような場合にはプロテオームのプロファイル作成はより信頼でき、情報価値がある。
【0236】
別の実施例では、試験化合物の毒性は、タンパク質を含む生体サンプルをその試験化合物で処理して評価する。処理された生体サンプル中で発現したタンパク質を分離して、各タンパク質の量が定量できるようにする。各タンパク質の量を、未処理生体サンプル中の対応するタンパク質の量と比較する。両サンプル中のタンパク質の量の差は、処理されたサンプル中の試験化合物に対する毒性反応を示唆する。個々のタンパク質は、それらのアミノ酸残基をシークエンシングし、これらの部分配列を本発明のポリペプチドと比較することで同定する。
【0237】
別の実施例では、試験化合物の毒性は、タンパク質を含む生体サンプルをその試験化合物で処理することにより評価する。生体サンプルから得たタンパク質を、本発明のポリペプチドに特異的な抗体と共にインキュベートする。その抗体により認識されたタンパク質の量を定量する。処理された生体サンプル中のタンパク質の量を、未処理生体サンプル中のタンパク質の量と比較する。両サンプルのタンパク質量の差が、処理サンプル中の試験化合物に対する毒性反応を示唆する。
【0238】
当分野で周知の方法でマイクロアレイを準備して使用し、分析する。(例えば、Brennan, T.M. 他 (1995) 米国特許第5,474,796号;Schena, M. 他 (1996) Proc. Natl. Acad. Sci. 93:10614−10619; Baldeschweiler 他(1995) PCT出願番号WO95/251116; Shalon, D.他 (1995) PCT出願番号WO95/35505; Heller, R.A. 他(1997) Proc. Natl. Acad. Sci. 94:2150−2155; 及び Heller, M.J. 他 (1997) 米国特許第5,605,662号を参照)。様々なタイプのマイクロアレイが周知であり、詳細については、DNA Microarrays: Practical Approach, M. Schena, ed. (1999) Oxford University Press, Londonに記載されている。また、この文献を引用することを以って本明細書の一部とする。
【0239】
本発明の別の実施例ではまた、PKINをコードする核酸配列を用いて、天然のゲノム配列をマッピングするのに有用なハイブリダイゼーションプローブを作製することが可能である。コーディング配列または非コーディング配列の何れかを用いることができるが、或る例では、コーディング配列より非コード配列が好ましい。例えば、多重遺伝子ファミリーのメンバー間にコーディング配列が保存されていることにより、染色体マッピング時に望ましくない交差ハイブリダイゼーションが生じる可能性がある。この配列は、特定の染色体、染色体の特定領域または人工の染色体、例えば、ヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC)、細菌P1産物、或いは単一染色体cDNAライブラリに対してマッピングされる(Harrington, J.J. ら (1997) Nat Genet. 15:345−355、Price, C.M. (1993) Blood Rev. 7:127−134、Trask, B.J. (1991) Trends Genet. 7:149−154等を参照)。一度マッピングすると、本発明の核酸配列を用いて、例えば病状の遺伝と特定の染色体領域やまたは制限断片長多型(RFLP)の遺伝とが相関するような遺伝子連鎖地図を作成可能である(Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353−7357を参照)。
【0240】
in sit蛍光ハイブリダイゼーション(FISH)は、他の物理的及び遺伝子地図データと相関し得る(例えば、Heinz−Ulrich, 他による(1995) in Meyers, 前出, pp. 965−968を参照)。遺伝子地図データの例は、種々の科学誌あるいはOnline Mendelian Inheritance in Man(OMIM)のワールドワイドウェブのサイトで見付けることができる。物理的な染色体地図上のPKINをコードする遺伝子の位置と特定の疾患との相関性、或いは特定の疾患に対する素因が、このような疾患と関連するDNA領域の決定に役立つため、更なる位置を決定するクローニングが行われる。
【0241】
染色体標本のin sitハイブリダイゼーション、及び確定した染色体マーカーを用いた結合分析などの物理的マッピング技術を用いて、遺伝子地図を拡張することもできる。マウスなどの別の哺乳動物の染色体上に遺伝子を配置させることにより、たとえ正確なヒト染色体の位置が分かっていなくても、関連するマーカーが明らかになる場合が多い。この情報は、位置クローニング或いは別の遺伝子発見技術を用いて遺伝的疾患の研究をしている研究者にとって価値がある。疾患や症候群に関与する1つ或いは複数の遺伝子の位置が、例えば血管拡張性失調症の11q22−23などの特定の遺伝子領域に遺伝子結合によって大まかに決定されると、その領域に対するどの配列マッピングも、さらなる調査のための関連する遺伝子或いは調節遺伝子を表す(例えば、Gatti, R.A.他による(1988)Nature 336:577−580を参照)。また、目的の本発明のヌクレオチド配列を用いて、正常者、保有者、即ち感染者の間の、転位置、反転などによる染色体位置の違いを検出することもある。
【0242】
本発明の別の実施例では、PKIN、その触媒作用断片或いは免疫原断片またはそのオリゴペプチドを、種々の任意の薬剤スクリーニング技術における化合物のライブラリのスクリーニングに用いることができる。このようなスクリーニングに用いる断片は、溶液に遊離、固体支持物に固定、細胞の表面上に保持、或いは細胞内に存在する。PKINと検査する薬剤との結合による複合体の形成を測定してもよい。
【0243】
薬剤スクリーニングに用いる別の方法は、目的のタンパク質に対して、好適な結合親和性を有する化合物のスクリーニング処理能力を高めるために用いられる(例えば、Geysen,他による(1984) PCT出願番号 WO84/03564を参照)。この方法では、相当な数の異なる小さな試験用化合物が、プラスチックピン或いは他の基板の上に合成される。試験用化合物は、PKIN、或いはその断片と反応してから洗浄される。次ぎに、結合されたPKINが、当分野で周知の方法で検出される。精製されたPKINはまた、前記した薬剤をスクリーニングする技術に用いられるプレート上で直接被覆することもできる。別法では、非中和抗体を用いて、ペプチドを捕らえ、固体支持物に固定することもできる。
【0244】
別の実施例では、PKINと結合可能な中和抗体がPKINと結合するため試験用化合物と特に競合する、競合的薬剤スクリーニングアッセイを用いることができる。この方法では、抗体が、PKINと1つ以上の抗原決定因子を共有するどのペプチドの存在も検出する。
【0245】
別の実施例では、発展途上の分子生物学技術にPKINをコードするヌクレオチド配列を用いて、限定はされないが、現在知られているトリプレット暗号及び特異的な塩基対相互作用などのヌクレオチド配列の特性に依存する新しい技術を提供することができる。
【0246】
当分野の技術者であれば、更なる説明がなくても前述の説明だけで最大限に本発明を利用できるであろう。したがって、以下に記載する実施例は、例示目的であって本発明を限定するものではない。
【0247】
前述した及び以下に記載する全ての特許出願、特許、刊行物、特に米国特許出願第60/183,682号、同第60/186,559号、同第60/188,606号、同第60/189,998号、および同第60/193,851号に言及することをもって本明細書の一部とする。
【0248】
(実施例)
1  cDNA ライブラリの作製
インサイトcDNAはLIFESEQ GOLD データベース (Incyte Genomics, Palo Alto CA)に含まれているcDNAライブラリに由来し、表4の列5に示されている。まず、組織の一部をホモジナイズしてグアニジニウムイソチオシアネート溶液に溶解する一方、この組織の別の一部をホモジナイズしてフェノールに溶解するか、或いはTRIZOL (Life Technologies)、グアニジニウムイソチオシアネート及びフェノールの単相溶液などの好適な変性剤の混合液に溶解した。この溶解物を塩化セシウムにおいて遠心分離によって、或いはクロロホルムで抽出した。イソプロパノール或いは酢酸ナトリウムのどちらかとエタノール、或いは別の方法でこの溶解物からRNAを沈殿させた。
【0249】
RNAの純度を高めるためにRNAのフェノールによる抽出及び沈殿を必要な回数繰り返した。場合によっては、DNA分解酵素でRNAを処理する。殆どのライブラリでは、オリゴd(T)連結常磁性粒子(Promega)またはOLIGOTEXラテックス粒子(QIAGEN. Valencia CA)、OLIGOTEX mRNA精製キット(QIAGEN)を用いてポリ(A+)RNAを単離した。別法では、POLY(A)PURE mRNA精製キット(Ambion, Austin TX)などの別のRNA単離キットを用いて組織溶解物から直接単離した。
【0250】
ある場合には、Stratagene社にRNAを提供し、Stratagene社が対応するcDNAライブラリを作製した。そうでない場合は、UNIZAPベクターシステム(Stratagene)またはSUPERSCRIPT プラスミドシステム(Life Technologies)を用いて当分野で周知の推奨方法または類似の方法でcDNAを合成してcDNAライブラリを作製した。(例えば、Ausubel, 1997,前出,ユニット5.1−6.6を参照)。逆転写は、オリゴd(T)またはランダムプライマーを用いて開始した。合成オリゴヌクレオチドアダプターを二本鎖cDNAに結合させてから、好適な1つの制限酵素或いは複数の制限酵素でcDNAを消化した。殆どのライブラリでは、SEPHACRYL S 1000または SEPHAROSE CL2B、SEPHAROSE CL4Bカラムクロマトグラフィー(Amersham Pharmacia Biotech)、アガロースゲル電気泳動法によってcDNAの大きさ(300〜1000bp)を選択した。PBLUESCRIPTプラスミド(Stratagene)またはpSPORT1プラスミド(Life Technologies)、pcDNA2.1プラスミド(Invitrogen Carlsbad CA)、PBK−CMVプラスミド(Stratagene)、plNCYプラスミド(Incyte Pharmaceuticals, Palo Alto CA)若しくはその誘導体などの好適なプラスミドのポリリンカーの適合性制限酵素部位にcDNAを結合させた。この組換えプラスミドを、Stratagene社のXL1−Blue, XL1−BIueMRF、SOLRを含むE.coli 細胞、またはLife Technologies社のDH5αまたはDH 10B、ELECTROMAX DH 10Bを含むコンピテント大腸菌細胞に導入し組み込んだ。
【0251】
2  cDNA クローンの単離
上記実施例1に記載したように得たプラスミドを、UNIZAPベクターシステム(Stratagene)或いは細胞溶解を利用したin vivo切除によって宿主細胞から回収した。MagicまたはWIZARD Minipreps DNA精製システム(Promega)、及びAGTC Miniprep精製キット(Edge Biosystems, Gaithersburg MD)、QIAGEN社のQIAWELL 8 Plasmid、QIAWELL 8 Plus Plasmid、QIAWELL 8 Ultra Plasmid 精製システム、REAL Prep 96プラスミドキットの内の少なくとも1つを用いてプラスミドを精製した。沈殿させた後、0.1mlの蒸留水に再懸濁して、凍結乾燥して或いは凍結乾燥しないで4℃で保管した。
【0252】
別法では、ハイスループットの直接結合PCR法によって宿主細胞溶解物からプラスミドDNAを増幅した。(Rao, V.B. (1994) Anal. Biochem. 216:1−14)。宿主細胞の溶解及び熱サイクリング過程を単一反応混合液で行った。サンプルを処理してから384−ウェルプレートに移して保管し、増幅したプラスミドDNAの濃度をPICOGREEN色素(Molecular Probes, Eugene OR)及びFluoroskan II蛍光スキャナ(Labsystems Oy, Helsinki, Finland)を用いて蛍光定量的に測定した。
【0253】
3 シークエンシング及び分析
実施例2に記載したようにプラスミドから回収したインサイトcDNAを、以下に示すようにシークエンシングした。cDNAのシークエンシング反応は標準的な方法で行うか、またはHYDRAマイクロディスペンサー(Robbins Scientific)或いはMICROLAB 2200 (Hamilton) 液体移送装置と共にABI CATALYST 800 (PE Biosystems) サーマルサイクラー或いはPTC−200 thermal cycler (MJ Research)などのハイスループット装置を用いて行った。cDNAのシークエンシング反応は、Amersham Pharmacia Biotech社の試薬、またはABI PRISM BIGDYE Terminator cycle sequencing ready reactionキット(PE Biosystems)などのABIシークエンシングキットに含まれる試薬を用いて行った。cDNAシークエンシングの反応物の電気泳動的による分離及び標識したポリヌクレオチドの検出は、MEGABACE 1000 DNAシークエンシングシステム(Molecular Dynamics)、標準ABIプロトコル及び塩基対呼び出しソフトウェアを用いるABI PRISM 373または377シークエンシングシステム(PE Biosystems)、または当分野で周知のその他の配列解析システムを用いて行った。cDNA配列内の読み枠は、標準的な方法(Ausubel, 1997, 前出, unit 7.7)を用いて決定した。cDNA配列の幾つかを選択して、実施例8に記載した方法で配列を伸長した。
【0254】
インサイトcDNAに由来する本ポリヌクレオチド配列の確認は、BLAST、動的プログラミング、およびジヌクレオチドの分布による解析(dinucleotide nearest neighbor analysis)に基づいたプログラム及びアルゴリズムを用いて、ベクター、リンカー、およびポリA配列を取り除き、更にあいまいな塩基対をマスクすることで行った。次に、インサイトcDNA配列およびそれらの翻訳を、公共のデータベースであるGenBankの霊長類、げっ歯類、哺乳類、脊椎動物、および真核生物のデータベース、およびBLOCKS、PRINTS、DOMO、PRODOM、およびPFAMなどの隠れマルコフモデル(HMM)を基にしたタンパク質ファミリーのデータベースから選択した配列に対して問合せた(HMMは、遺伝子ファミリーのコンセンサス主構造を分析する確率的手法である。例えば、Eddy, S. R. (1996) Curr. Opin. Struct. Biol. 6 : 361−365を参照)。このような問合せは、BLAST、FASTA、BLIMPS、およびHMMRに基づいたプログラムを用いて行った。インサイトcDNA配列を組み立てて、完全長ポリヌクレオチド配列を作製した。或いは、GenBank cDNAs、GenBank EST、ステッチ配列(stitched sequence)、ストレッチ配列(stretched sequences)、またはGenscan−推定コード配列(実施例4および5を参照)を用いて、インサイトcDNA群を完全長の配列に伸長した。配列の組み立ては、Phred、Phrap、およびConsedに基づいたプログラムを用いて行い、GeneMark、BLAST、およびFASTAに基づいたプログラムを用いてcDAN群をスクリーニングし、オープンリーディングフレームを決定した。これらの完全長ポリヌクレオチド配列を翻訳して対応する完全長ポリペプチド配列を得た。次に、これらのポリペプチド配列をGenBankタンパク質データベース(genpept)、SwissProt、BLOCKS、PRINTS、DOMO、PRODOM、Prosite、およびPFAMなどの隠れマルコフモデル(HMM)に基づいたタンパク質ファミリーデータベースに対して問合せて分析した。こられの完全長ポリヌクレオチド配列はまた、MACDNASIS PRO ソフトウェア(Hitachi Software Engineering, South San Francisco CA)およびLASERGENEソフトウェア(DNASTAR)を用いて分析した。ポリヌクレオチド配列およびポリペプチド配列のアラインメントを、アライメントした配列間のパーセント同一性も計算するMEGALIGNマルチシークエンスアラインメントプログラム(DNASTAR)に組み込まれたCLUSTALアルゴリズムによって指定されたデフォルトパラメータを用いて作成した。
【0255】
表7は、インサイトcDNAの組み立ておよび完全長配列の分析に利用したツール、プログラム、およびアルゴリズム、並びにそれらの説明、引用文献、閾値パラメーターを簡単に示す。表7の列1は用いたツール、プログラム、およびアルゴリズム、列2はそれらの簡単な説明、列3は引用することで本明細書の一部とした引用文献、列4の記載されている部分は2つの配列の一致の程度を評価するために用いたスコア、確率値、およびその他のパラメータを示す(スコアが高くなれば高くなるほど即ち確率値が低ければ低いほど、配列間の相同性が高くなる)。
【0256】
完全長ポリヌクレオチド配列およびポリペプチド配列の組み立て及び分析に用いる上記のプログラムは、SEQ ID NO:12−22のポリヌクレオチド配列断片の同定にも利用できる。ハイブリダイゼーション及び増幅技術に有用である約20〜約4000ヌクレオチドの断片を表4の列4に示した。
【0257】
4 ゲノム DNA 由来のコード配列の同定および編集
推定ヒトキナーゼは、公共のゲノム配列データベース(例えば、gbpriやgbhtg)においてGenscan遺伝子同定プログラムを実行して初めに同定された。Genscanは、様々な生物に由来するゲノムDNA配列を分析するための汎用遺伝子同定プログラムである(Burge, C. および S. Karlin (1997) J. Mol. Biol. 268 : 78−94、Burge, C. および S. Karlin (1998) Curr. Opin. Struct. Biol. 8 : 346−354を参照)。このプログラムは推定エキソンを連結して、メチオニンから停止コドンまで伸長した組み立てcDNA配列を構築する。Genscanにより得られる配列は、FASTAデータベースのポリヌクレオチド配列およびポリペプチド配列になる。Genscanによって一回で解析できる配列の最大長さは30kbに設定されている。これらのGenscan推定cDNA配列の内、どの配列がヒトキナーゼをコードするかを決定するために、コードされたポリペプチドをPFAMモデルにおいてヒトキナーゼについて問合せて分析した。潜在的なヒトキナーゼが、ヒトキナーゼとしてアノテーションが付けられたインサイトcDNA配列に対する相同性を基に同定された。次に、これらの選択されたGenscan推定配列を、BLAST解析を用いてgeneptおよびgbpri公共データベースの配列と比較した。必要に応じて、Genscan推定cDNA配列を、geneptにおいてBLASTで最もヒットした配列と比較して、Genscan推定配列における余分なエキソンや省いてしまったエキソンなどのエラーを修正し、編集した。BLAST解析を用いてGenscan推定cDNA配列を含むインサイトcDNAまたは公共のcDNAを見つけ出すことにより、転写の証拠が得られる。インサイトcDNAがGenscan推定cDNA配列を含む場合、この情報を用いてGenscan推定配列を修正或いは確認できる。完全長ポリヌクレオチド配列は、実施例3に説明した組み立て方法でGenscan推定コード配列とインサイトcDNAおよび/または公共のcDNA配列を組み立てて作製した。また、完全長ポリヌクレオチド配列は、最終的には、編集および編集されていないGenscan推定配列に由来した。
【0258】
5 ゲノム配列データと cDNA 配列データとの組み立て
ステッチ配列( Stiched Sequence
部分的なcDNA配列を、実施例4に記載したGenscan遺伝子同定プログラムによって推定されたエキソンで伸長した。実施例3に記載されたように組み立てられた部分的なcDNAをゲノムDNAにマッピングし、関連するcDNAおよび1或いは複数のゲノム配列に由来する関連する推定Genscanエキソンを含む複数のクラスターに入れた。各クラスターを、グラフ理論および動的計画法に基づいたアルゴリズムを用いて、cDNAおよびゲノム情報を統合して分析し、後に確認される潜在的なスプライスバリアントを生成し、編集或いは伸長して完全長の配列を作製した。或るクラスターの2つ以上の配列に或る区間の全長が存在する配列区間を同定し、推移(transitivity)により同定した区間を同等と考える。例えば、或る区間がcDNAおよび2つのゲノム配列のそれぞれに存在する場合、これら3つ全ての区間を同等と考える。この方法によって、関連しないが連続するゲノム配列をcDNA配列によって繋ぎ1つにする。このようにして同定された区間を、親配列(parent sequence)に沿って現われるようにステッチアルゴリズムで縫い合わせ、可能な最も長い配列および変異配列を作製する。或るタイプ(cDNAとcDNA、またはゲノム配列とゲノム配列)の親配列に沿って連結される区間と区間との繋ぎ合わせは、親配列のタイプが異なる(cDNAとゲノム配列)連結より好ましい。得られたステッチ配列を翻訳し、BLAST解析でgenpeptおよびgbpri公共データベースにおける配列と比較した。Genscanによって推定された不適当なエキソンを、geneptにおいてBLASTで最もヒットした配列と比較して修正する。このような配列を更なるcNDA配列で伸長し、必要に応じてゲノムDNAで検査した。
【0259】
ストレッチ配列( Stretched Sequence
部分的なDNA配列をBLAST解析に基づいたアルゴリズムで完全長に伸長した。まず、実施例3に記載したように組み立てた部分的なcDNAを、BLASTプログラムを用いてGenBankの霊長類、げっ歯類、哺乳類、脊椎動物、および真核生物のデータベースなどの公共のデータベースに対して問い合わせた。次に、GenBankの相同性の最も高いタンパク質を、実施例4に記載したインサイトcDNA或いはGenScanエキソン推定配列の何れかと比較した。得られた複数の高スコアのセグメント対(HSP)を用いてキメラタンパク質を作製し、GenBnakの相同タンパク質上に翻訳した配列をマッピングした。元のGenBnakの相同タンパク質に対して、キメラタンパク質に挿入や欠失が起こり得る。公共のヒトゲノムデータベースから相同ゲノム配列を探し出すために、GenBnakの相同タンパク質およびキメラタンパク質の両方をプローブとして用いた。このようにして、部分的なDNA配列を相同ゲノム配列の付加によりストレッチすなわち伸長した。完全な遺伝子を含んでいるか得られたストレッチ配列を検査した。
【0260】
6  PKIN をコードするポリヌクレオチドの染色体マッピング
SEQ ID NO:12−22を組み立てるために用いた配列を、BLAST及びSmith−Watermanアルゴリズムを用いて、インサイトLIFESEQデータベース及び公共のドメインデータベースの配列と比較した。SEQ ID NO:12−22と一致するこれらのデータベースの配列を、Phrap(表7)などの構築アルゴリズムを使用して、連続及び重複した配列のクラスターに組み入れた。Stanford Human Genonse Center (SHGC)、Whitehead Institute for Genome Research (WIGR)及びGenethonなどの公共の情報源から入手できる放射線ハイブリッド(radiation hybrid)及び遺伝子マッピングのデータを用いて、クラスター化した配列がすでにマッピングされているかを調べる。クラスターにマッピングされた配列が含まれている場合は、そのクラスターの全ての配列(特定のSEQ ID NOを含む)をそのマッピング位置に割り当てた。
【0261】
遺伝子地図の位置は、範囲、区間、またはヒト染色体によって表される。センチモルガンで示したマッピング位置の範囲は、染色体の短腕(p)の末端から測定した(センチモルガン(cM)は、同一染色体上の遺伝子間の乗換え率に基づいた距離を表す単位である。平均すると、1cMはヒトの染色体の1メガベースに概ね等しいいが、組換え率の高い部分と低い部分があるため、大きく変化し得る)。距離cMは、配列がそれぞれのクラスターに含まれている放射線ハイブリッドマーカーの境界を検出できるGenethonによってマッピングされた遺伝子マーカーに基づいている。NCBI「GeneMap99」(http://www.ncbi.nlm.nih.gpv/genemap)などの公衆が入手可能なヒト遺伝子マップおよびその他の情報源を用いて、上記した区間が既に同定されている疾患遺伝子マップ内若しくは近傍に位置するかを決定できる。
【0262】
7 ポリヌクレオチド発現の分析
ノーザン分析は、遺伝子の転写物の存在を検出するために用いられる実験用技術であり、特定の細胞種或いは組織からのRNAが結合されている膜への標識されたヌクレオチド配列のハイブリダイゼーションを伴う(例えば、Sambrook,前出, 7章; 及び Ausubel. F.M. 他、前出, 4章及び16章を参照)。
【0263】
BLASTに用いる類似のコンピュータ技術を用いて、GenBank或いはLIFESEQ(Incyte Pharmaceuticals)のようなcDNAデータベース内の同一或いは関連する分子を検索する。この分析は多くの膜系ハイブリダイゼーションより非常に速度が速い。さらにコンピュータ検索の感度を変更して、任意の特定の一致が、厳密な一致或いは相同的一致の何れかとして分類されるかを確定することができる。検索の基準は、
【0264】
【数1】
Figure 2004502404
として定義される積スコアである。積スコアは、0〜100の標準化された値であり、以下のように求める。BLASTスコアにヌクレオチド配列の一致率を乗じ、その積を2つの配列の短い方の長さの5倍で除する。高スコアのセグメントの対(HSP)において一致する各塩基に+5のスコアを割り当て、各不適性塩基対に−4を割り当てることにより、BLASTスコアを計算する。2つの配列は、2以上のHSPを共有し得る(ギャップにより離隔される)。2以上のHSPがある場合には、最高BLASTスコアの塩基対を用いて積スコアを計算する。積スコアは、BLASTアラインメントの断片的重複と質とのバランスを表す。例えば積スコア100は、比較した2つの配列の短い方の長さ全体にわたって100%一致する場合にのみ得られる。積スコア70は、100%の同一性で重畳が70%であるか、或いは88%の同一性で重畳が100%であるかのいずれかの場合である。積スコア50は、100%の同一性で重畳が50%であるか、或いは79%の同一性で重畳が100%であるかのいずれかの場合である。
【0265】
或いは、PKINをコードするポリヌクレオチド配列は、由来する組織に対して分析する。例えば、ある完全長の配列は、少なくとも部分的にインサイトcDNA配列をオーバーラップさせて組み立てられる(実施例3を参照)。各cDNA配列は、ヒト組織から作製されたcDNAライブラリに由来する。各ヒト組織は、心血管系、結合組織、消化系、胚構造、内分泌系、外分泌腺、女性生殖器、男性生殖器、生殖細胞、血液および免疫系、肺、筋骨格系、神経系、膵臓、呼吸器系、感覚器官、皮膚、顎口腔系、分類不能/混合、または尿管などの1つの生物/組織のカテゴリーに分類される。各カテゴリーにおけるライブラリの数をカウントし、その合計数を全カテゴリーのライブラリ数で除す。同様に、各ヒト組織は、癌、細胞系、発生、炎症、神経、外傷、心血管、プール(pooled)などの1つの疾患/症状のカテゴリーに分類され、各カテゴリーにおけるライブラリの数をカウントし、その合計数を全カテゴリーのライブラリ数で除す。得られるパーセンテージは、PKINをコードするcDNAの疾患特異的な発現を反映する。cDNA配列およびcDNAライブラリ/組織の情報は、LIFESEQ GOLD データベース(Incyte Genomics, Palo Alto CA)から得ることができる。
【0266】
8  PKIN をコードするポリヌクレオチドの伸長
完全長のポリヌクレオチド配列は、完全長分子の好適な断片から設計したオリゴヌクレオチドプライマーを用いてその完全長分子の好適な断片を伸長して作製した。一方のプライマーは既知の断片の5’の伸長を開始するために合成し、他方のプライマーは既知の断片の3’の伸長を開始するために合成した。開始プライマーは、OLIGO 4.06ソフトウェア(National Biosciences)或いは他の適切なプログラムを用いて、約22個から約30個のヌクレオチドの長さで約50%以上のGC含量を有し、かつ約68〜72℃の温度で標的配列にアニールするように設計した。ヘアピン構造及びプライマー−プライマー二量体が生じないようにヌクレオチドを伸長した。
【0267】
選択されたヒトcDNAライブラリを用いてこの配列を伸長した。2段階以上の伸長が必要な場合、若しくは望ましい場合は、追加或いはネスト化プライマーの組を設計する。
【0268】
当分野で既知の方法を利用したPCR法で高い忠実度で増幅した。PCRはPTC−200 thermal cycler (MJ Research, Inc.)用いて96ウェルブロックプレートで行った。反応混合液は、鋳型DNA及び200 nmolの各プライマー、Mg と(NHSOとβ−メルカプトエタノールを含むバッファー、Taq DNAポリメラーゼ(Amersham Pharmacia Biotech)、ELONGASE酵素(Life Technologies)、Pfu DNAポリメラーゼ(Stratagene)を含む。プライマーの組、PCI AとPCI Bに対して以下のパラメーターで増幅を行った。
ステップ1  94℃で3分間
ステップ2  94℃で15秒
ステップ3  60℃で1分間
ステップ4  68℃で2分間
ステップ5  ステップ2、3、及び4を20回繰り返す
ステップ6  68℃で5分間
ステップ7  4℃で保管
別法では、プライマーの組、T7とSK+に対して以下のパラメーターで増幅を行った。
ステップ1  94℃で3分間
ステップ2  94℃で15秒
ステップ3  57℃で1分間
ステップ4  68℃で2分間
ステップ5  ステップ2、3、及び4を20回繰り返す
ステップ6  68℃で5分間
ステップ7  4℃で保管。
【0269】
各ウェルのDNA濃度は、1X TE及び0.5μlの希釈していないPCR産物に溶解した100μlのPICOGREEN定量試薬(0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR)を不透明な蛍光光度計プレート(Coming Costar, Acton MA)の各ウェルに分配してDNAが試薬と結合できるようにして測定する。このプレートをFluoroskan II (Labsystems Oy, Helsinki, Finland)でスキャンして、サンプルの蛍光を計測してDNAの濃度を定量化する。反応混合物の5〜10μlのアリコットを1%のアガロースミニゲル上での電気泳動によって解析し、何れの反応物が配列を伸長することに成功したかを決定する。
【0270】
伸長したヌクレオチドを脱塩及び濃縮してから384ウェルプレートに移し、CviJIコレラウィルスエンドヌクレアーゼ(Molecular Biology Research, Madison WI)で消化し、pUC 18ベクター(Amersham Pharmacia Biotech)に再連結する前に音波処理またはせん断を行った。ショットガンシークエンシングのために、消化したヌクレオチドを低濃度(0.6〜0.8%)のアガロースゲル上に分離して断片を切断し、寒天をAgar ACE (Promega)で消化した。T4リガーゼ(New England Biolabs, Beverly MA)を用いて伸長したクローンをpUC 18ベクター(Amersham Pharmacia Biotech)に再連結し、Pfu DNAポリメラーゼ(Stratagene)で制限部位の延び出しを処理してコンピテント大腸菌細胞に形質移入した。形質移入した細胞を選択して抗生物質を含む培地に移し、それぞれのコロニーを切りとってLB/2Xカルベニシリン培養液の384ウェルプレートに37℃で一晩培養した。
【0271】
細胞を溶解して、Taq DNAポリメラーゼ(Amersham Pharmacia Biotech)及びPfu DNAポリメラーゼ(Stratagene)を用いて以下の手順でDNAをPCR増幅した。
ステップ1  94℃で3分間
ステップ2  94℃で15秒
ステップ3  60℃で1分間
ステップ4  72℃で2分間
ステップ5  ステップ2、3、及び4を29回繰り返す
ステップ6  72℃で5分間
ステップ7  4℃で保管。
上記したようにPICOGREEN試薬(Molecular Probes)でDNAを定量化した。DNA回収率の悪いサンプルは、上記した条件で再び増幅した。サンプルを20%のジメチルサルホサイド(dimethysulphoxide)(1:2, v/v)で希釈し、DYENAMIC DIRECTキット(Amersham Pharmacia Biotech)またはABI PRISM BIGDYE Terminator cycle sequencing ready reactionキット(Applied Biosystems)を用いてシークエンシングした。
【0272】
同様に上述の手順で、完全長のポリヌクレオチド配列を検査したり、或いは完全長のポリヌクレオチド配列を利用して、この伸長のために設計したオリゴヌクレオチドと好適なゲノムライブラリを用いて5′調節配列を得た。
【0273】
9 個々のハイブリダイゼーションプローブの標識化及び使用法
SEQ ID NO:12−22から導き出されたハイブリダイゼーションプローブを用いて、cDNA、mRNA、またはゲノムDNAをスクリーニングする。約20塩基対からなるオリゴヌクレオチドの標識について特に記すが、より大きなcDNAフラグメントの場合でも基本的に同じ手順を用いる。オリゴヌクレオチドを、OLIGO4.06ソフトウェア(National Bioscience)のような最新式のソフトウェアを用いてデザインし、50pmolの各オリゴマーと、250μCiの[γ‐32P]アデノシン三リン酸(Amersham, Chicago, IL)及びT4ポリヌクレオチドキナーゼ(DuPont NEN、Boston MA)とを組み合わせて用いることにより標識する。標識されたオリゴヌクレオチドを、SEPHADEX G−25超精細排除デキストランビードカラム(Amersham Pharmacia Biotech)を用いて実質的に精製する。毎分10カウントの標識されたプローブを含むアリコットを、次のエンドヌクレアーゼ、Ase I、Bgl II、Eco RI、Pst I、Xba1或いはPvu II(DuPont NEN)の1つを用いて切断したヒトゲノムDNAの典型的な膜ベースのハイブリダイゼーション解析において用いる。
【0274】
各切断物からのDNAを、0.7%アガロースゲル上で分画して、ナイロン製メンブラン(Nytran Plus, Schleicher & Schuell, Durham NH)に転写する。ハイブリダイゼーションは40℃で16時間かけて行う。非特異的シグナルを取り除くため、例えば、最大0.1xクエン酸ナトリウム食塩水及び0.5%ドデシル硫酸ナトリウムの条件の下、ブロットを順次室温にて洗浄する。ハイブリダイゼーションパターンをオートラジオグラフィー或いは別のイメージ化手段で視覚化して比較する。
【0275】
10 マイクロアレイ
マイクロアレイ上のアレイエレメントの連結または合成は、フォトリソグラフィ、ピエゾプリント(インクジェットプリンター、前出のBaldeschweiler等を参照)、機械的マイクロスポッティング技術及びこれらから派生したものを用いて達成することが可能である。上記各技術において基板は、均一な非多孔性の固体とするべきである(Schena (1999).前出)。推奨する基板には、シリコン、シリカ、スライドガラス、ガラスチップ及びシリコンウエハがある。別法では、ドットブロット法またはスロットブロット法に類似のアレイを利用して、熱や紫外線、または化学的或いは機械的な結合手段で基板の表面にエレメントを配置して結合させることができる。通常のアレイは利用可能な方法や機械を用いて作製でき、任意の適正な数のエレメントを含めることができる(Schena, M. 他 (1995) Science 270:467−470、Shalon. D. 他 (1996) Genome Res. 6:639−645、Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27−31.を参照)。
【0276】
完全長cDNA、発現遺伝子配列断片(EST)、或いはそれらの断片やオリゴマーが、マイクロアレイのエレメントとなり得る。ハイブリダイゼーションに好適な断片やオリゴマーを、LASERGENEソフトウェア(DNASTAR)などの当分野で周知のソフトウェアを用いて選択することが可能である。このアレイエレメントを、生体サンプル中のポリヌクレオチドとハイブリダイズさせる。生体サンプル中のポリヌクレオチドは、検出を容易にするために蛍光標識またはその他の分子タグに結合する。ハイブリダイゼーションの後、生体サンプルからハイブリダイズしなかったヌクレオチドを除去し、蛍光スキャナを用いて各アレイエレメントにおけるハイブリダイゼーションを検出する。別法では、レーザー脱離及び質量スペクトロメトリーを用いてもハイブリダイゼーションを検出し得る。マイクロアレイ上のエレメントにハイブリダイズする各ポリヌクレオチドの相補性の程度及び相対的存在量は、算定することができる。一実施例におけるマイクロアレイの調整及び使用について、以下に詳述する。
【0277】
組織または細胞サンプルの調製
グアニジウムチオシアネート法を用いて組織サンプルから全RNAを単離し、オリゴ(dT)セルロース法を用いてポリ(A)RNAを精製する。各ポリ(A)RNAサンプルは、MMLV逆転写酵素、0.05 pg/μlのオリゴ(dT)プライマー(21mer)、1×第1鎖緩衝液、0.03単位/μlのRNアーゼインヒビター、500μM dATP、500μM dGTP、500μM dTTP、40μM dCTP、40μM dCTP−Cy3(BDS)またはdCTP−Cy5(Amersham Pharmacia Biotech)を用いて逆転写する。この逆転写反応は、GEMBRIGHTキット(Incyte)を用いて、200 ngのポリ(A)RNAを含む25 ml容量で行う。特異的なコントロールポリ(A)RNAは、in vitro転写により非コーディング酵母ゲノムDNAから合成する。370℃で2時間インキュベートした後、各反応サンプル(一方はCy3標識、他方はCy5標識)は、2.5mlの0.5M 水酸化ナトリウムで処理し、850℃で20分間インキュベートし、反応を停止させてRNAを変性する。サンプルは、2つの連続するCHROMA SPIN 30ゲル濾過スピンカラム(CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA)を用いて精製する。結合後、2つの反応サンプルを、1mlのグリコーゲン(1mg/ml)、60mlの酢酸ナトリウム及び300mlの100%エタノールを用いてエタノール沈殿させる。サンプルは次に、SpeedVAC(Savant Instruments Inc., Holbrook NY)を用いて乾燥して仕上げ、14μl 5×SSC/0.2% SDS中で再懸濁する。
【0278】
マイクロアレイの準備
本発明の配列を用いて、アレイエレメントを作製する。各アレイエレメントは、クローン化cDNA挿入断片を含むベクターを含有する細菌性細胞から増幅する。PCR増幅は、cDNA挿入断片に隣接するベクター配列に相補的なプライマーを用いる。30サイクルのPCRによって、1〜2ngの初期量から5μgを超える最終量までアレイエレメントを増幅する。増幅されたアレイエレメントは、SEPHACRYL−400(Amersham Pharmacia Biotech)を用いて精製する。
【0279】
精製したアレイエレメントを、ポリマーコートされたスライドガラス上に固定する。顕微鏡スライドガラス(Corning)は、処理中及び処理後に大量の蒸留水での洗浄と、0.1%のSDS及びアセトン中で超音波による洗浄を行う。スライドガラスは、4%フッ化水素酸(VWR Scientific Products Corporation (VWR), West Chester PA)中でエッチングし、蒸留水中で広範囲にわたって洗浄し、95%エタノール中の0.05%アミノプロピルシラン(Sigma)でコーティングする。コーティングしたスライドガラスは、110℃の天火で硬化させる。
【0280】
米国特許第5,807,522号に記載されている方法を用いて、コーティングしたガラス基板にアレイエレメントを付加する。この特許に引用することを以って本明細書の一部とする。平均濃度が100ng/μlのアレイエレメントDNA1μlを高速機械装置により開放型キャピラリープリンティングエレメント(open capillary printing element)に充填する。次にこの装置が、スライド毎に約5nlのアレイエレメントサンプルを分注する。
【0281】
マイクロアレイには、STRATALINKER UVクロスリンカー(Stratagene)を用いてUV架橋する。マイクロアレイは、室温において0.2%SDSで1回洗浄し、蒸留水で3回洗浄する。非特異的な結合部位は、リン酸緩衝生理食塩水 (PBS)(Tropix, Inc., Bedford MA)における0.2%カゼイン中で60℃で30分間マイクロアレイをインキュベートし、その後上述したように0.2%SDS及び蒸留水で洗浄することによってブロックする。
【0282】
ハイブリダイゼーション
ハイブリダイゼーション反応液は、5×SSC、0.2%SDSハイブリダイゼーション緩衝液にCy3及びCy5標識したcDNA合成産物を各0.2μg含む9μlのサンプル混合体を含めたものである。サンプル混合液を、65℃で5分間加熱し、マイクロアレイ表面上に一定量分注してから1.8cm のカバーガラスで覆う。このアレイを、顕微鏡スライドより僅かに大きいキャビティを有する防水チェンバーに移す。チャンバーの角に140μlの5×SSCを加えて、チャンバー内を湿度100%に保持する。このアレイを含むチャンバーを、60℃で約6.5時間インキュベートする。アレイは、第1洗浄緩衝液中(1×SSC,0.1%SDS)において45℃で10分間、第2洗浄緩衝液中(0.1×SSC)において45℃で10分間それぞれ3回洗浄し、その後乾燥させる。
【0283】
検出
レポーター標識されたハイブリダイゼーション複合体は、Cy3を励起するための488nm、及びCy3を励起するための632nmのスペクトル線を生成し得るInnova 70混合ガス10 Wレーザー(Coherent, Inc., Santa Clara CA)を備えた顕微鏡で検出する。20倍の顕微鏡対物レンズ(Nikon, Inc., Melville NY)を用いて、アレイ上に励起レーザー光を集中させる。このアレイを含むスライドを顕微鏡のコンピュータ制御X−Yステージに置き、対物レンズを通してラスタスキャンする。本実施例で用いた1.8cm×1.8cmのアレイは、20μmの解像度でスキャンする。
【0284】
2つの異なるスキャンにおいて、混合ガスマルチラインレーザーは2つの蛍光体を連続的に励起する。放射された光は、波長に基づいて2つの蛍光体に対応する2つの光電子増倍管検出器(PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ)に分割される。アレイと光電子増倍管との間に配設された好適なフィルターを用いて信号をフィルタリングする。用いる蛍光体の最大発光は、Cy3では565nm、Cy5では650nmである。装置は両方の蛍光体からのスペクトルを同時に記録できるが、レーザー源に好適なフィルターを用いて、蛍光体1つにつき1回スキャンし、各アレイを通常2回スキャンする。
【0285】
スキャンの感度は通常、既知濃度のサンプル混合体に添加されるcDNAコントロール種により生成されるシグナル強度を用いて較正する。アレイ上の特定の位置には相補的DNA配列を含め、その位置におけるシグナルの強度がハイブリダイズする種の重量比1:100,000に相関するようにする。異なる試料(例えば検査細胞及びコントロール細胞を代表する)からの2つのサンプルを、各々異なる蛍光体で標識し、他と異なって発現する遺伝子を同定するために単一のアレイにハイブリダイズさせる場合には、較正は2つの蛍光体を有する較正するcDNAのサンプルを標識して、ハイブリダイゼーション混合液に各々等量を加えて行う。
【0286】
光電子増倍管の出力は、IBMコンパチブルPCコンピュータにインストールされた12ビットRTI−835Hアナログ−ディジタル(AID)変換ボード(Analog Devices, Inc., Norwood MA)を用いてディジタル化される。ディジタル化されたデータは、リニア20色変換を用いてシグナル強度が青色(低シグナル)から赤色(高シグナル)までの擬似カラー範囲にマッピングされるイメージとして表示される。データはまた、定量的に分析される。2つの異なる蛍光体を同時に励起して測定する場合には、各蛍光体の発光スペクトルを用いて、先ずデータは蛍光体間の光学的漏話(重複発光スペクトルに起因する)に対して補正される。
【0287】
グリッドを蛍光シグナルイメージ上に重畳して、各スポットからのシグナルがグリッドの各エレメントに中央に位置するようにする。各エレメント内の蛍光シグナルを統合し、シグナルの平均強度に対応する数値を得る。シグナル分析に用いるソフトウェアは、GEMTOOLS遺伝子発現分析プログラム(Incyte)である。
【0288】
11 相補的ポリヌクレオチド
PKINをコードする配列或いはその任意の一部に対して相補的な配列は、天然のPKINの発現を低下させるため即ち阻害するために用いられる。約15〜約30個の塩基対を含むオリゴヌクレオチドの使用について記すが、より小さな或いはより大きな配列の断片の場合でも本質的に同じ方法を用いることができる。Oligo4.06ソフトウェア(National Biosciences)及びPKINのコーディング配列を用いて、適切なオリゴヌクレオチドを設計する。転写を阻害するためには、最も独特な5′配列から相補的なオリゴヌクレオチドを設計し、これを用いてプロモーターがコーディング配列に結合するのを阻害する。翻訳を阻害するためには、相補的なオリゴヌクレオチドを設計して、リボソームがPKINをコードする転写物に結合するのを阻害する。
【0289】
12  PKIN の発現
PKINの発現及び精製は、細菌若しくはウイルスを基にした発現系を用いて行うことができる。細菌でPKINが発現するために、抗生物質耐性及びcDNAの転写レベルを高める誘導性のプロモーターを含む好適なベクターにcDNAをサブクローニングする。このようなプロモーターには、lacオペレーター調節エレメントに関連するT5またはT7バクテリオファージプロモーター及びtrp−lac(tac)ハイブリッドプロモーターが含まれるが、これらに限定されるものではない。組換えベクターを、BL21(DE3)などの好適な細菌宿主に形質転換する。抗生物質耐性をもつ細菌が、イソプロピルβ−Dチオガラクトピラノシド(IPTG)で誘発されるとPKINを発現する。真核細胞でのPKINの発現は、昆虫細胞株または哺乳動物細胞株に一般にバキュロウイスルスとして知られているAutographica californica核多面性ウイルス(AcMNPV)を感染させて行う。バキュロウイルスの非必須ポリヘドリン遺伝子を、相同組換え或いは転移プラスミドの媒介を伴う細菌の媒介による遺伝子転移のどちらかによって、PKINをコードするcDNAと置換する。ウイルスの感染力は維持され、強いポリヘドリンプロモータによって高いレベルのcDNAの転写が行われる。組換えバキュロウイルスは、多くの場合はSpodoptera frugiperda (Sf9)昆虫細胞に感染に用いられるが、ヒト肝細胞の感染にも用いられることもある。後者の感染の場合は、バキュロウイルスの更なる遺伝的変更が必要になる。(例えば、Engelhard. E. K.他 (1994) Proc. Natl. Acad. Sci. USA 91:3224−3227; Sandig, V. 他 (1996) Hum. Gene Ther. 7:1937−1945.を参照)。
【0290】
殆どの発現系では、PKINが、例えばグルタチオンSトランスフェラーゼ(GST)、またはFLAGや6−Hisなどのペプチドエピトープ標識で合成された融合タンパク質となるため、未精製の細胞溶解物からの組換え融合タンパク質の親和性ベースの精製が素早く1回で行うことができる。Schistosoma japonicumからの26キロダルトンの酵素GSTによって、タンパク質の活性及び抗原性を維持した状態で固定されたグルタチオンで融合タンパク質の精製が可能となる(Amersham Pharmacia Biotech)。精製の後、GST部分を特定の操作部位でPKINからタンパク分解的に切断できる。アミノ酸8個のペプチドであるFLAGで、市販のモノクローナル及びポリクローナル抗FLAG抗体(Eastman Kodak)を用いた免疫親和性の精製が可能となる。6個の連続するヒスチジン残基のストレッチである6−Hisによって、金属キレート樹脂(QIAGEN)で精製が可能となる。タンパク質の発現及び精製の方法は、Ausubel (1995,前出, ch 10, 16)に記載されている。これらの方法で精製したPKINを直接用いて以下の実施例16、及び17のアッセイを行うことができる。
【0291】
13 機能のアッセイ
PKINの機能は、哺乳動物細胞培養系において生理学的に高められたレベルでのPKINをコードする配列の発現によって評価する。cDNAを、cDNAを高いレベルで発現する強いプロモーターを含む哺乳動物発現ベクターにサブクローニングする。このようなベクターには、pCMV SPORTTM (Life Technologies.)及びpCR 3.1 (Invitrogen, Carlsbad, CA)が含まれ、どちらもサイトメガロウイルスプロモーターを含んでいる。5〜10μgの組換えベクターを、例えば内皮由来か造血由来のヒト細胞株にリポソーム製剤或いは電気穿孔法によって一時的に形質移入する。更に、標識タンパク質をコードする配列を含む1〜2μgのプラスミドを同時に形質移入する。標識タンパク質の発現により、形質移入された細胞と形質移入されていない細胞とを区別できる。また、標識タンパク質の発現によって、cDNAの組換えベクターからの発現を正確に予想できる。このような標識タンパク質には、緑色蛍光タンパク質(GFP;Clontech)、及びCD64またはCD64−GFP融合タンパク質が含まれる。レーザー光学に基づいた技術を利用した自動流動細胞計測法(FCM)を用いて、GFPまたはCD64−GFPを発現する形質移入された細胞を同定し、その細胞のアポトーシス状態や他の細胞特性を評価する。また、FCMで、先行した或いは同時の細胞死の現象を診断する蛍光分子の取り込みを検出して計量する。これらの現象には、プロピジウムヨウ化物でのDNAの染色によって計測される核DNA内容物の変化と、ブロモデオキシウリジンの取り込み量の低下によって計測されるDNA合成の下方調節と、特異的な抗体との反応性によって計測される細胞表面及び細胞内のタンパンク質の発現の変化と、蛍光複合アネキシンVタンパク質の細胞表面への結合によって計測される原形質膜組成の変化とが含まれる。流動細胞計測法は、Ormerod, M. G.による (1994) Flow Cytometry Oxford, New York, NY.に記載されている。
【0292】
遺伝子発現におけるPKINの影響は、PKINをコードする配列とCD64またはCD64−GFPのどちらかが形質移入された高度に精製された細胞集団を用いて評価することができる。CD64またはCD64−GFPは形質転換された細胞表面で発現し、ヒト免疫グロブリンG(IgG)の保存された領域と結合する。形質転換された細胞と形質転換されない細胞とは、ヒトIgGかCD64に対する抗体のどちらかで被覆された磁気ビードを用いて分離することができる(DYNAL. Lake Success. NY)。mRNAは、当分野で周知の方法で細胞から精製することができる。PKIN及び目的の他の遺伝子をコードするmRNAの発現は、ノーザン分析やマイクロアレイ技術で分析することができる。
【0293】
14  PKIN に特異的な抗体の作製
ポリアクリルアミドゲル電気泳動法(PAGE;例えば、Harrington, M.G. (1990) Methods Enzymol. 1816−3088−495を参照)または他の精製技術で実質的に精製されたPKINを用いて、標準的なプロトコルでウサギを免疫化して抗体を作り出す。
【0294】
別法では、PKINアミノ酸配列をLASERGENEソフトウェア(DNASTAR)を用いて解析して免疫原性の高い領域を決定し、対応するオリゴペプチドを合成してこれを用いて当業者に周知の方法で抗体を生産する。C末端付近の、或いは隣接する親水性領域内のエピトープなどの適切なエピトープの選択については、当分野で周知である(例えば、前出のAusubel, 1995,11章を参照)。
【0295】
通常、約15残基の長さのオリゴペプチドを、Applied BiosystemsのABI 431Aペプチドシンセサイザー(PE Biosystems)を用いてfmoc法のケミストリにより合成し、N−マレイミドベンゾイル−N−ヒドロキシスクシンイミドエステル(MBS)を用いた反応によりKLH(Sigma−Aldrich, St. Louis MO)に結合させて、免疫原性を高める(例えば、前出のAusubel, 1995を参照)。フロイントの完全アジュバントにおいてオリゴペプチド−KLH複合体を用いてウサギを免疫化する。得られた抗血清の抗ペプチド活性及び抗PKIN活性を検査するには、ペプチドまたはPKINを基板に結合し、1%BSAを用いてブロッキング処理し、ウサギ抗血清と反応させて洗浄し、さらに放射性ヨウ素標識されたヤギ抗ウサギIgGと反応させる。
【0296】
15 特異的抗体を用いる天然 PKIN の精製
天然PKIN或いは組換えPKINを、PKINに特異的な抗体を用いるイムノアフィニティークロマトグラフィにより実質的に精製する。イムノアフィニティーカラムは、CNBr−活性化SEPHAROSE(Amersham Pharmacia Biotech)のような活性化クロマトグラフィー用レジンと抗PKIN抗体とを共有結合させることにより形成する。結合の後、そのレジンを製造者の使用説明書に従ってブロッキング処理し洗浄する。
【0297】
PKINを含む培養液をイムノアフィニティーカラムに通し、PKINを優先的に吸着できる条件で(例えば、界面活性剤の存在下において高イオン強度のバッファーで)そのカラムを洗浄する。そのカラムを、抗体とPKINとの結合を切るような条件で(例えば、pH2〜3のバッファー、或いは高濃度の尿素またはチオシアン酸塩イオンのようなカオトロピックイオンで)溶出させ、PKINを回収する。
【0298】
16  PKIN と相互作用する分子の同定
PKINまたは生物学的に活性なその断片を、125Iボルトンハンター試薬(例えば、Bolton A.E.及びW.M. Hunter (1973) Biochem. J. 133:529を参照)で標識する。マルチウェルプレートに予め配列しておいた候補の分子を、標識したPKINと共にインキュベートし、洗浄して、標識したPKIN複合体を有する全てのウェルをアッセイする。様々なPKIN濃度で得られたデータを用いて、候補分子と結合したPKINの数量及び親和性、会合についての値を計算する。
【0299】
別法では、PKINと相互作用する分子を、Fields, S.及びO. Song(1989, Nature 340:245−246)に記載の酵母2−ハイブリッドシステム(yeast two−hybrid system)やMATCHMAKERシステム(Clontech)などの2−ハイブリッドシステムに基づいた市販のキットを用いて分析する。
【0300】
PKINはまた、ハイスループット型の酵母2ハイブリッドシステムを使用するPATHCALLINGプロセス(CuraGen Corp., New Haven CT)に用いて、遺伝子の2つの大きなライブラリによってコードされるタンパク質間の全ての相互作用を決定することができる(Nandabalan, K. 他 (2000) 米国特許第6,057,101号)。
【0301】
17  PKIN の活性の実証
通常、タンパク質キナーゼ活性は、γ−標識された32P−ATPの存在中で、PKINによりタンパク質基質のリン酸エステル化を定量化することで測定される。PKINはタンパク質基質、32P−ATP、及び適切なキナーゼバッファと共にインキュベートされる。基質に組み込まれた32Pは、電気泳動法で遊離32P−ATPより分離され、組み込まれた32Pはラジオアイソトープカウンターでカウントされる。組み込まれた32Pの量は、PKINの活性に比例する。リン酸化された特異的アミノ酸残基の定量は、加水分解タンパク質のホスホアミド酸解析によってなされる。
【0302】
或る実施態様では、タンパク質キナーゼ活性はアデノシン三リン酸(ATP)よりタンパク質基質中のセリン、トレオニン、またはチロシン残基までのガンマリン酸塩を定量化することによって測定される。反応はビオチン標識されたペプチド基質を有するタンパク質キナーゼとガンマ32P−ATPとの間で起こる。反応に続き、溶液中のアビジンがビオチン標識された32Pペプチド生成物に対して結合させる目的で添加される。結合試料は、次に生成物アビジン複合体を保持し、遊離ガンマ32P−ATPの透過を許す膜を用いる遠心限外濾過プロセスを経る。retentateとして32Pペプチド生成物を含む遠心分離ユニットのリザーバーは、次にシンチレーションカウンタでカウントされる。この方法は、選択されたペプチド基質及びキナーゼ反応バッファに依存するあらゆるタイプのタンパク質キナーゼのアッセイを可能とする。このアッセイは、キット形態(ASUA, Affinity Ultrafiltration Separation Assay, Transbio Corporation, Baltimore MD,米国特許番号 5, 869, 275)で提供される。示唆された基質及びその各々の酵素は、次の、ヒストンH1(シグマ)及びp34cdc2キナーゼ、アネキシンI、アンギオテンシン(シグマ)及びEGF受容体キナーゼ、アネキシンII 及びsrcキナーゼ、ERK1及びERK2基質及びMEK、及びミエリン塩基性蛋白質及びERKである(Pearson, J. D.ら、(1991) Methods Enzymol. 200 : 62−81)。
【0303】
別の実施態様では、PKINのタンパク質活性は、PKIN、50μlのキナーゼバッファ、ミエリン塩基性蛋白質(MBP)若しくは合成ペプチド基質のような1μgの基質、1mMのDTT、10μgのATP、及び0. 5μCiの[γ−33P]ATPを含むアッセイに於いてin vitroで示される。反応は30度で30分間インキュベートされ、P81ペーパー上にピペットすることで停止される。組み込まれていない[γ−33P]は、洗浄によって取り除かれ、組み込まれた放射活性は放射能シンチレーションカウンタを用いて測定される。代わりに、反応は、SDS負荷バッファの存在下で摂氏100度まで加熱されることで停止され、オートラジオグラフィによって12%SDSポリアクリルアミドゲル上に可視化される。組み込まれた放射活性はPKINの不在下、若しくは不活性キナーゼK38Aの存在下で実行される反応のために修正されても良い。
【0304】
さらに別の実施例では、アデニレートキナーゼ若しくはグアニル酸キナーゼが、γラジオアイソトープカウンターを用いて、γ標識された32p−ATPをADP若しくはGDPに組み入れることで、測定されても良い。キナーゼバッファ中の酵素は、適切なヌクレオチドモノリン酸塩基質(AMP若しくはGMP)及びリン酸塩ドナーとしての32p標識ATPと共にインキュベートされる。反応は摂氏37度でインキュベートされ、トリクロロ酢酸の添加によって終了される。酸抽出物は、中和され、ゲル電気泳動にかけられて、モノ、ジ、及びトリホスホヌクレオチド画分を分離する。ジホスホヌクレオチド画分は取り除かれ、カウントされる。回復した放射性活性は酵素の活性に比例する。
【0305】
さらに別の実施例では、PKINのための別のアッセイは、シンチレーション近接アッセイ(SPA)、シンチレーションプレート技術、及びフィルタ結合アッセイを含む。有用な基質はグルタチオントランスフェラーゼで標識された組みかえタンパク質を含み、ビオチンで標識された合成ペプチド基質を含む。小さな有機分子、タンパク質、及びペプチドのようなPKINの活性の阻害剤は、そのようなアッセイで識別される。
【0306】
18 タンパク質キナーゼ活性の強化/抑制
PKIN活性化若しくは抑制のアゴニスト若しくはアンタゴニストは、実施例17で記述されたアッセイを用いてテストされても良い。アゴニストは、PKIN活性の増加を引き起こし、アンタゴニストはPKIN活性の減少を引き起こす。
【0307】
当業者は、本発明の範囲及び精神から逸脱することなく本発明の記載した方法及びシステムの種々の改変を行うことができるであろう。特定の好適な実施例に基づいて本発明を説明したが、本発明の範囲が、そのような特定の実施例に不当に制限されるべきではないことを理解されたい。実際に、分子生物学或いは関連する分野の専門家には明らかな、本明細書に記載の本発明の実施例の様々な改変は、特許請求の範囲に含まれる。
【0308】
(表の簡単な説明)
表1は、本発明のポリヌクレオチド配列及びポリペプチド配列に対する系統的な名称を示す。
【0309】
表2は、本発明の各ポリペプチドに最も近いGenBankの相同体のGenBankの識別番号およびアノテーションを示す。各ポリペプチドとそのGenBankの相同体との間の一致を表す確率値スコアも示す。
【0310】
表3は、推定上のモチーフおよびドメインを含む本発明のポリペプチド配列の構造的な特徴、並びにポリペプチドの分析に用いた方法、アルゴリズム、および検索可能なデータベースを示す。
【0311】
表4は、本発明のポリヌクレオチド配列の組み立てに用いたcDNA断片のリスト、並びにポリヌクレオチド配列の選択された断片のリストを示す。
【0312】
表5は、本発明の各ポリヌクレオチドの代表的なcDNAライブラリを示す。
【0313】
表6は、表5に示すcDNAライブラリの作製に用いた組織およびベクターを示す付録である。
【0314】
表7は、本発明のポリヌクレオチド及びポリペプチドの分析に用いたツール、プログラム、及びアルゴリズム、並びにその説明、引用文献、閾値パラメータを示す。
【表1】
Figure 2004502404
【表2】
Figure 2004502404
【表3】
Figure 2004502404
【表4】
Figure 2004502404
【表5】
Figure 2004502404
【表6】
Figure 2004502404
【表7】
Figure 2004502404
【表8】
Figure 2004502404
【表9】
Figure 2004502404
【表10】
Figure 2004502404
【表11】
Figure 2004502404
【表12】
Figure 2004502404
【表13】
Figure 2004502404
【表14】
Figure 2004502404

Claims (28)

  1. 単離されたポリペプチドであって、
    (a)SEQ ID NO:1乃至SEQ ID NO:11(SEQ ID NO:1−11)からなる群から選択されたアミノ酸配列と、
    (b)SEQ ID NO:1−11からなる群から選択されたアミノ酸配列と少なくとも90%の配列同一性を有する天然のアミノ酸配列と、
    (c)SEQ ID NO:1−11からなる群から選択されたアミノ酸配列の生物学的に活性な断片と、
    (d)SEQ ID NO:1−11からなる群から選択されたアミノ酸配列の免疫原性断片とで構成される群から選択されたアミノ酸配列を含むことを特徴とする単離されたポリペプチド。
  2. SEQ ID NO:1−11からなる群から選択された請求項1の単離されたポリペプチド。
  3. 請求項1のポリペプチドをコードする単離されたポリヌクレオチド。
  4. 請求項2のポリペプチドをコードする単離されたポリヌクレオチド。
  5. SEQ ID NO:12−22からなる群から選択された請求項4の単離されたポリヌクレオチド。
  6. 請求項3のポリヌクレオチドに機能的に結合されたプロモーター配列を含む組換えポリヌクレオチド。
  7. 請求項6の組換えポリヌクレオチドで形質転換された細胞。
  8. 請求項6の組換えポリヌクレオチドを含む遺伝子組換え生物。
  9. 請求項1のポリペプチドを生産する方法であって、
    (a)前記ポリペプチドの発現に好適な条件下で、請求項1のポリペプチドをコードするポリヌクレオチドに機能的に結合されたプロモーター配列を含む組換えポリヌクレオチドで形質転換された細胞を培養するステップと、
    (b)そのように発現したポリペプチドを回収するステップとを含むことを特徴とする請求項1のポリペプチドの生産方法。
  10. 請求項1のポリペプチドに特異的に結合する単離された抗体。
  11. 単離されたポリヌクレオチドであって、
    (a)SEQ ID NO:12−22からなる群から選択されたポリヌクレオチド配列と、
    (b)SEQ ID NO:12−22からなる群から選択されたポリヌクレオチド配列と少なくとも90%の配列同一性を有する天然のポリヌクレオチド配列と、
    (c)前記(a)に相補的なポリヌクレオチド配列と、
    (d)前記(b)に相補的なポリヌクレオチド配列と、
    (e)前記(a)乃至(d)のRNA等価物とで構成される群から選択されたポリヌクレオチド配列を含む単離されたポリヌクレオチド。
  12. 請求項11のポリヌクレオチドの少なくとも60個の連続するヌクレオチドを含む単離されたポリヌクレオチド。
  13. サンプルにおいて、請求項11に記載のポリヌクレオチド配列を有する標的ポリヌクレオチドを検出する方法であって、
    (a)前記サンプルをプローブでハイブリダイズするステップであって、前記プローブが、前記サンプル内の前記標的ポリヌクレオチドと相補的な配列を含む少なくとも20個の連続するヌクレオチドを含み、前記プローブと前記標的ポリヌクレオチドまたはその断片との間でハイブリダイゼーション複合体が形成される条件下で、前記プローブが前記標的ポリヌクレオチドと特異的にハイブリダイズする、該ステップと、
    (b)前記ハイブリダイゼーション複合体が存在するか否かを検出し、存在する場合には随意選択でその収量を測定するステップとを含むことを特徴とする標的ポリヌクレオチドの検出方法。
  14. 前記プローブが少なくとも60個の連続するヌクレオチドを含むことを特徴とする請求項13に記載の方法。
  15. サンプルにおいて、請求項11のポリヌクレオチド配列を有する標的ポリヌクレオチドを検出する方法であって、
    (a)ポリメラーゼ連鎖反応増幅を用いて、前記標的ポリヌクレオチドまたはその断片を増幅するステップと、
    (b)増幅された前記標的ポリヌクレオチドまたはその断片が存在するか否かを検出し、存在する場合には随意選択でその収量を測定するステップとを含むことを特徴とする標的ポリヌクレオチドの検出方法。
  16. 有効量の請求項1のポリペプチド及び医薬的に容認できる賦形剤を含む組成物。
  17. 前記ポリペプチドが、SEQ ID NO:1−11からなる群から選択されたアミノ酸配列を含むことを特徴とする請求項16の組成物。
  18. 機能的なPKINの発現の低下に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項16の組成物を投与することを含むことを特徴とする治療方法。
  19. 請求項1のポリペプチドのアゴニストとして効果的な化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを含むサンプルを化合物に曝露するステップと、
    (b)前記サンプルにおいてアゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
  20. 請求項19のスクリーニング方法によって同定されたアゴニスト化合物及び医薬的に容認できる賦形剤を含む組成物。
  21. 機能的なPKINの発現の低下に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項20の組成物を投与することを含むことを特徴とする治療方法。
  22. 請求項1のポリペプチドのアンタゴニストとして効果的な化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを含むサンプルを化合物に曝露するステップと、
    (b)前記サンプルにおいてアンタゴニスト活性を検出するステップとを含むことを特徴とするスクリーニング方法。
  23. 請求項22のスクリーニング方法によって同定されたアンタゴニスト化合物及び医薬的に容認できる賦形剤を含む組成物。
  24. 機能的なPKINの過剰な発現に関連する疾患や病態の治療方法であって、そのような治療が必要な患者に請求項23の組成物を投与することを含むことを特徴とする治療方法。
  25. 請求項1のポリペプチドに特異的に結合する化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを好適な条件下で少なくとも1つの試験化合物と結合させるステップと、
    (b)請求項1のポリペプチドと前記試験化合物との結合を検出して、請求項1のポリペプチドと特異的に結合する化合物を同定するステップとを含むことを特徴とするスクリーニング方法。
  26. 請求項1のポリペプチドの活性を変化させる化合物をスクリーニングする方法であって、
    (a)請求項1のポリペプチドを、その活性が許容される条件下で少なくとも1つの試験化合物と結合させるステップと、
    (b)前記試験化合物の存在下での請求項1のポリペプチドの活性を評価するステップと、
    (c)前記試験化合物の存在下での請求項1のポリペプチドの活性と、前記試験化合物の不在下での請求項1のポリペプチドの活性とを比較するステップとを含み、
    前記試験化合物の存在下での請求項1のポリペプチドの活性の変化が、請求項1のポリペプチドの活性を変化させる化合物の存在を示唆すること特徴とするスクリーニング方法。
  27. 請求項5の配列を含む標的ポリヌクレオチドの発現を変化させるのに効果的な化合物をスクリーニングする方法であって、
    (a)前記標的ポリヌクレオチドの発現に好適な条件下で、前記標的ポリヌクレオチドを含むサンプルを化合物に曝露するステップと、
    (b)前記標的ポリヌクレオチドの発現の変化を検出するステップと、
    (c)様々な量の前記化合物の存在下での前記標的ポリヌクレオチドの発現と、前記化合物の不在下での前記標的ポリヌクレオチドの発現とを比較するステップとを含むことを特徴とするスクリーニング方法。
  28. 試験化合物の毒性を評価する方法であって、
    (a)核酸を含む生体サンプルを前記試験化合物で処理するステップと、
    (b)処理した前記生体サンプルの核酸と、請求項11のポリヌクレオチドの少なくとも20の連続するヌクレオチドを含むプローブをハイブリダイズさせるステップであって、このハイブリダイゼーションゼーションが、前記プローブと前記生体サンプルの標的ポリヌクレオチドとの間で特異的なハイブリダイゼーション複合体が形成される条件下で行われ、前記標的ポリヌクレオチドが、請求項11のポリヌクレオチドのポリヌクレオチド配列またはその断片を含むポリヌクレオチドである、前記ステップと、
    (c)ハイブリダイゼーション複合体の収量を定量するステップと、
    (d)前記処理した生体サンプルにおけるハイブリダイゼーション複合体の収量を、未処理の生体サンプルにおけるハイブリダイゼーション複合体の収量と比較するステップとを含み、
    前記処理した生体サンプルにおけるハイブリダイゼーション複合体の収量の差が試験化合物の毒性を示唆することを特徴とする試験化合物の毒性評価方法。
JP2001560362A 2000-02-17 2001-02-16 ヒトキナーゼ Pending JP2004502404A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US18368200P 2000-02-17 2000-02-17
US18655900P 2000-03-02 2000-03-02
US18860600P 2000-03-09 2000-03-09
US18999800P 2000-03-17 2000-03-17
US19385100P 2000-03-30 2000-03-30
PCT/US2001/005240 WO2001060991A2 (en) 2000-02-17 2001-02-16 Human kinases

Publications (1)

Publication Number Publication Date
JP2004502404A true JP2004502404A (ja) 2004-01-29

Family

ID=27539107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001560362A Pending JP2004502404A (ja) 2000-02-17 2001-02-16 ヒトキナーゼ

Country Status (5)

Country Link
EP (1) EP1255819A2 (ja)
JP (1) JP2004502404A (ja)
AU (1) AU2001238488A1 (ja)
CA (1) CA2400034A1 (ja)
WO (1) WO2001060991A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7083791B2 (en) 1999-03-25 2006-08-01 Genesis Research & Development Corporation Limited Methods for enhancing immune responses by fibroblast growth factor receptor 5 polypeptides
US6242419B1 (en) * 1999-03-25 2001-06-05 Genesis Research & Development Corporation Ltd. Compositions isolated from stromal cells and methods for their use
US20020025931A1 (en) * 2000-03-24 2002-02-28 Rachel Meyers 3714, 16742, 23546, and 13887 novel protein kinase molecules and uses therefor
CA2431007A1 (en) * 2000-12-11 2002-07-18 Lexicon Genetics Incorporated Novel human kinase and polynucleotides encoding the same
AU2002312241A1 (en) * 2001-06-05 2002-12-16 Exelixis, Inc. B3galts as modifiers of the p53 pathway and methods of use
AU2012206984B2 (en) * 2003-02-11 2015-07-09 Takeda Pharmaceutical Company Limited Diagnosis and treatment of multiple sulfatase deficiency and other using a formylglycine generating enzyme (FGE)
EP2325301B1 (en) 2003-02-11 2015-09-02 Shire Human Genetic Therapies, Inc. Diagnosis and treatment of multiple sulfatase deficiency and others using a formylglycine generating enzyme (FGE)
WO2004072277A2 (en) * 2003-02-13 2004-08-26 Asahi Kasei Pharma Corporation Elk1 phosphorylation related genes
WO2010022444A1 (en) * 2008-08-25 2010-03-04 The Walter And Eliza Hall Institute Of Medical Research Methods and agents for modulating kinase signalling pathways through modulation of mixed-lineage kinase domain-like protein (mlkl)
WO2010096394A2 (en) 2009-02-17 2010-08-26 Redwood Biosciences, Inc. Aldehyde-tagged protein-based drug carriers and methods of use
EP2243828A1 (en) * 2009-04-24 2010-10-27 DKFZ Deutsches Krebsforschungszentrum Use of mixed lineage like kinase polypeptides (MLKL polypeptides) in cancer therapy
RU2606016C2 (ru) 2011-01-14 2017-01-10 Редвуд Байосайнс, Инк. Меченые альдегидом полипептиды иммуноглобулина и способы их применения
US20160145589A1 (en) 2011-06-24 2016-05-26 Green Cross Corporation Composition and formulation comprising recombinant human iduronate-2-sulfatase and preparation method thereof
US9150841B2 (en) 2012-06-29 2015-10-06 Shire Human Genetic Therapies, Inc. Cells for producing recombinant iduronate-2-sulfatase
KR101380740B1 (ko) 2012-06-29 2014-04-11 쉐어 휴먼 제네텍 세러피스, 인코포레이티드 이듀로네이트-2-설파타제의 정제
CN109071634A (zh) 2016-04-26 2018-12-21 R.P.谢勒技术有限责任公司 抗体偶联物及其制备和使用方法
EP3678685A1 (en) 2017-09-07 2020-07-15 Vib Vzw Mixed-lineage kinase domain-like protein in immunotherapeutic cancer control

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863729A (en) * 1996-07-09 1999-01-26 Washington University DNA sequences encoding human TcAK1 kinase
JP2001516009A (ja) * 1997-07-17 2001-09-25 ルードヴィッヒ インスティテュート フォー キャンサー リサーチ ガン関連核酸及びポリペプチド
WO1999047686A2 (en) * 1998-03-16 1999-09-23 Cadus Pharmaceutical Corporation Human mekk proteins, corresponding nucleic acid molecules, and uses therefor
JP2003501038A (ja) * 1999-05-28 2003-01-14 スージェン・インコーポレーテッド 蛋白質キナーゼ
EP1074617A3 (en) * 1999-07-29 2004-04-21 Research Association for Biotechnology Primers for synthesising full-length cDNA and their use

Also Published As

Publication number Publication date
AU2001238488A1 (en) 2001-08-27
WO2001060991A3 (en) 2002-03-21
WO2001060991A2 (en) 2001-08-23
CA2400034A1 (en) 2001-08-23
EP1255819A2 (en) 2002-11-13

Similar Documents

Publication Publication Date Title
JP2004537270A (ja) アミノアシルtRNA合成酵素
JP2004502404A (ja) ヒトキナーゼ
JP2004522409A (ja) ヒトキナーゼ
US7112426B2 (en) Human cAMP-dependent protein kinase beta-catalytic subunit
JP2004527209A (ja) ヒトキナーゼ
WO2001020004A2 (en) Protein phosphatase and kinase proteins
JP2005512501A (ja) キナーゼおよびホスファターゼ
JP2003517838A (ja) ヒトキナーゼ
JP2005507642A (ja) キナーゼ及びホスファターゼ
JP2004512019A (ja) ホスホジエステラーゼ
JP2004513620A (ja) プロテインホスファターゼ
JP2004532605A (ja) トランスフェラーゼ
JP2003530079A (ja) ヒトトランスフェラーゼ分子
JP2004528805A (ja) タンパク質ホスファターゼ
JP2004537258A (ja) ヒトキナーゼ
EP1297150A2 (en) Human kinases
US20060068481A1 (en) Human kinases
US20030211093A1 (en) Human kinases
JP2004500818A (ja) ホスホジエステラーゼ
JP2005502325A (ja) キナーゼ及びホスファターゼ
US20040018185A1 (en) Human kinases
JP2004516009A (ja) アミノアシルtRNAシンテターゼ
JP2004521637A (ja) キナーゼ及びホスホターゼ
JP2004511204A (ja) ヒトキナーゼ
JP2004511206A (ja) 蛋白ホスファターゼ