JP2004363450A - Electromagnetic wave shield casing and method of producing the same - Google Patents

Electromagnetic wave shield casing and method of producing the same Download PDF

Info

Publication number
JP2004363450A
JP2004363450A JP2003162095A JP2003162095A JP2004363450A JP 2004363450 A JP2004363450 A JP 2004363450A JP 2003162095 A JP2003162095 A JP 2003162095A JP 2003162095 A JP2003162095 A JP 2003162095A JP 2004363450 A JP2004363450 A JP 2004363450A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
resin
wave shielding
wall
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162095A
Other languages
Japanese (ja)
Other versions
JP4382396B2 (en
Inventor
Mikio Naruse
幹夫 成瀬
Akihiro Shibuya
彰弘 渋谷
Sukeyuki Furukawa
資之 古川
Kiyobumi Koshiba
清文 小柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Kojin Co Ltd
Original Assignee
Nissan Motor Co Ltd
Kojin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Kojin Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003162095A priority Critical patent/JP4382396B2/en
Publication of JP2004363450A publication Critical patent/JP2004363450A/en
Application granted granted Critical
Publication of JP4382396B2 publication Critical patent/JP4382396B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing an electromagnetic wave shield casing where infiltration of water from external environment is prevented surely. <P>SOLUTION: In a first molding process, the back surface of an insertion material 4 is supported by a surface 108 formed by a metallic mold 10B. Thus, when resin for first molding is poured into the recess 100 of a metallic mold 10A, the insertion material 4 is never deformed. By first molding, an outer wall 6 having a projecting part 6a projecting on the side of an inner wall and a cavity 6b opposing a through hole 41a is formed. In a second molding process, when resin for second molding is poured into the recess 104 of a metallic mold 11B, the resin flows into the cavity 6b from the through hole 41a. Since the insertion material 4 is supported by the outer wall 6 in the case of second molding, the insertion material 4 is never deformed due to pouring of the resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電子機器等が収納され、シールド材をインサート成形した部材により形成される電磁波シールド筐体、およびその製造方法に関する。
【0002】
【従来の技術】
従来、半導体モジュール等の電子機器を筐体に収納する場合に、電子機器が発生する電磁波の外部への漏れ防止や外部からの電磁波の侵入防止等を考慮して、筐体としてシールド筐体が用いられることがある。シールド筐体においては、筐体内への電磁波の侵入や筐体外部への電磁波の放出を防止するために、筐体壁にシールド部材が用いられる。例えば、樹脂材の内部に網状のシールド材をインサート成形したものを筐体壁に用いるシールド筐体が知られている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開2002−134977号公報
【0004】
【発明が解決しようとする課題】
ところで、上述した筐体壁をインサート成形する場合、次のような工程で成形が行われる。まず網状のシールド材を射出成形型にセットし、その後、型内に成形樹脂を射出成形する。この成形の際に、樹脂の射出圧等によって網状のシールド材が変形し、筐体壁である樹脂成形部材の表面にシールド材が露出する可能性がある。シールド材が樹脂成形部材の表面に露出した場合、水等がシールド材と樹脂部分との境界面を通って外部環境から筐体内部に侵入する可能性がある。そのような筐体内部への水の侵入があると、筐体内の電子機器に寿命低下が生じるおそれがあった。
【0005】
本発明は、外部環境からの水の侵入をより確実に防止できる電磁波シールド筐体、およびその製造方法を提供するものである。
【0006】
【課題を解決するための手段】
請求項1の発明による電磁波シールド筐体の製造方法では、一次成形工程と二次成形工程との2種類の成形工程により電磁波シールド材の表裏両面を樹脂でモールド成形する。一次成形工程では、成形の間電磁波シールド材の一方の面が保持部材で常に保持されている。二次成型においては、電磁波シールド材の他方の面に一次成形工程で成形された第1樹脂層がすでに形成されている。そのため、一次および二次成型時には、電磁波シールド材は保持部材または第1樹脂層のいずれかによって保持され、成形時における電磁波シールド材の変形を防止できる。
請求項3の発明は、請求項2に記載の電磁波シールド筐体の製造方法により形成された電磁波シールド筐体において、第1突出部および第2突出部の少なくとも一方の突出部の一部は、径寸法が貫通孔の直径寸法よりも大きく形成されるようにしたものである。それによって、第1樹脂層と第2樹脂層との結合がより強固となる。
【0007】
【発明の効果】
本発明によれば、成形時における電磁波シールド材の変形を防止することができ、電磁波シールド材が筐体表面に現れるようなことがない。そのため、電磁波シールド材と樹脂との接合面を介して外部環境から水が侵入するような事態を避けることができる。
【0008】
【発明の実施の形態】
以下、図を参照して本発明の実施の形態を説明する。図1は本発明による電磁波シールド筐体の一実施の形態を示す分解斜視図であり、側壁部1の一部を破断面で示した。図1に示すシールド筐体は側壁部1とカバー2とを有し、カバー2と側壁部1、および側壁部1と冷却部3との間の固定はネジ止め等により行われる。冷却部3は熱伝導性に優れたアルミ系や銅系の金属で形成され、電子機器(不図示)は冷却部3上に配設される。例えば、パワーモジュール等の発熱量の大きい電子部品は冷却部3上に面実装される。
【0009】
図1に示すシールド筐体は、例えば、車両等に搭載される電力変換装置の筐体として用いられ、エンジンルーム内等に設けられる。そのため、雨水等の水分やエンジンの温度の影響を受けやすく、シールド筐体には電磁波シールド性に加えて、水分や環境温度に対する密閉性や断熱性が要求される。なお、カバー2,側壁部1および冷却部3の相互間のシールに関しては図示していないが、Oリングやガスケット等を用いてシールを行う。その際、カバー2,側壁部1および冷却部3の接触を十分に行わせ、磁気シールド性および熱伝導性を確保する。また、Oリングやガスケットに導電性のものを使用しても良い。
【0010】
上述したように冷却部3は電子機器を冷却するためのヒートシンクとして機能するものであって、液冷仕様であれば冷却部3の内部や下面にエチレングリコール水溶液などの冷却液を循環させる水路が形成され、空冷仕様であれば冷却部3の下面に冷却フィン等が形成されている。側壁部1は、シールド材として機能するインサート材4を樹脂材の内部にインサート成形したものである。すなわち、側壁部1はインサート材4を挟んで、樹脂製の内壁5と外壁6とを有している。側壁部1の詳細は後述する。
【0011】
図1に示す例では、インサート材4は複数の貫通孔41が形成された金属板から成る。複数の貫通孔41はインサート材4の全面に一様に散らばるように形成されている。電磁シールドとして機能するインサート材4に用いられる金属板としては、アルミニウム、銅、真鍮、鋼板など種々のものがあるが、高伝熱性能が必要であることも考慮して、例えば、200W/m・K程度の熱伝導率を有するアルミニウム系や銅系の材料を用いるのが好ましい。
【0012】
このような熱伝導率の金属材料をインサート材4に用いることにより、筐体内の熱をインサート材4を介して効率よく冷却部3に輸送することができ、筐体内に配置された電子機器の冷却の効率化が図れる。なお、伝熱性能がやや劣るものの、パンチングメタルや金網、さらにはハニカムやエキスパンドメタルなどもインサート材4として使用することができる。
【0013】
シールド筐体の内壁5および外壁6に用いる樹脂としては、筐体内部に収納される電子部品が高発熱部品である場合が多いことや、筐体自体に冷却作用を必要とされることから、PA(polyamide)、PBT(polybutylene terephthalate)、PPS(polyphenylene sulfide)等の比較的耐熱性に優れた樹脂が良い。さらに、外部から筐体内部へ侵入する熱を遮断するように外壁6の樹脂には熱伝導率の低いものを使用し、また、筐体内部で発生した熱をインサート材4を介して放熱するように内壁5の樹脂には熱伝導率の高いものを使用するのが好ましい。例えば、外壁6にはエラストマ入りPPS(熱伝導率:約0.2W/mK)を使用し、内壁5にはガラス強化型PPS(熱伝導率:約0.3W/mK)を使用する。
【0014】
カバー2は金属板をプレス加工したものであるが、側壁部1と同様にインサート材を樹脂でインサート形成したものを用いても良い。側壁部1のインサート材4は金属製のカバー2および冷却部3と電気的に接触しており、その結果、筐体内が電磁シールドされる。
【0015】
図2は側壁部1の詳細構造を示す図であり、(a)は側壁部1の外表面の一部、すなわち外壁6側の一部を示す図で、(b)は(a)のII−II断面図である。図2(b)において、インサート材4の右側の樹脂部材が内壁5を構成し、インサート材4の左側の樹脂部材が外壁6を構成している。インサート材4の上端部および下端部には折り返し42,43が形成されていて、インサート材4とカバー2および冷却部3との接触が十分に保たれるような構造となっている。
【0016】
インサート材4に形成された貫通孔41は、2種類の孔41a,41bに分けられる。そして、内壁5を構成する樹脂部材の一部は孔41aを介してインサート材4の左側に突出し、外壁6を構成する樹脂部材の一部がインサート材4の孔41bを介してインサート材4の右側に突出している。孔41aから突出して外壁6に嵌入している突出部5aは外壁6を内側から外側に貫通していて、突出部5aの先端は図2(a)に示すように外壁6の表面に露出している。一方、孔41bから突出して内壁5内に嵌入している突出部6aは、内壁5を外側から内側に貫通している。
【0017】
突出部5aおよび6aは円柱状に形成されており、それらの直径d1は孔41a,41bの直径d2よりも大きく設定されている。すなわち、突出部5aおよび6aは、孔41a,41bの断面を底面とする柱状領域の外側にまで拡がっている。その結果、突出部5a,6aによって内壁5と外壁6とがインサート材4を挟んで強固に結合され、樹脂部材である内壁5および外壁6が金属部材のインサート材4から剥離するのを防止している。
【0018】
なお、図2に示す例では突出部5aは円柱形状であるが、孔41aから直線的に拡がった円錐台形状であっても、円錐台形状の突出部5aが外壁6と結合することにより、内壁5と外壁6とが相互に結合される。
【0019】
図3は側壁部1の成形工程を説明する図である。本実施の形態では、成形を一次と二次の2回に分けて行う。図3(a)は一次成形作業を示し、図3(b)は側壁部1の一次成形品を示し、図3(c)は二次成形作業を示している。まず、図3(a)に示すようにインサート材4を一次成形用金型10A,10Bに装着して一次成形を行う。
【0020】
金型10Aには外壁6を形成するための凹部100と、突出部5aが嵌入する領域を形成するための円柱状凸部101とが形成されている。一方、金型10Bには、外壁6の突出部6aを形成するための円柱状凹部102が形成されている。凸部101および凹部102の各直径は、図2(b)に示した突出部5a,6aの直径d1と等しく設定されている。凸部101はインサート材4の孔41aと対向する位置にそれぞれ形成されており、凹部102はインサート材4の孔41bと対向する位置にそれぞれ形成されている。
【0021】
金型10Aの凹部100内に一次成形用樹脂を注入すると、凹部100内が樹脂で隙間無く満たされるとともに、凹部100内の樹脂が孔41bを通って金型10Bの凹部102に流れ込んで凹部102を満たす。このとき、インサート材4の背面は金型10Bの表面108によって支持されているので、注入された一次成形用樹脂の圧力によってインサート材4が変形するようなことは無い。樹脂が固化した後に金型10A,10Bを外すと、図3(b)に示すようなインサート材4と外壁6とから成る側壁部1の一次成形品が得られる。
【0022】
インサート材4の孔41bの部分には一次成形用樹脂による円柱状突出部6aが形成され、外壁6の孔41aに対向する部分には円柱状空洞6bが形成される。突出部6aおよび空洞6bの直径はd1となり、孔41a,41bの直径d2(図2(b)参照)よりも大きい。そのため、図3(b)の状態においても、外壁6からインサート材4が外れることがなく、二次成形作業が行いやすくなる。
【0023】
次に、図3(c)に示すように、側壁部1の一次成形品を二次成形用金型11A,11Bに装着して二次成形作業を行う。一次成形品の外壁6は金型11Aの凹部103に収納される。金型11Bには内壁5を形成するための凹部104が形成されており、突出部6aはこの凹部104内に収納される。金型11Bの凹部104に二次成形用樹脂を注入すると、凹部104内が二次成形用樹脂で隙間無く満たされる。さらに、凹部104内の樹脂が孔41aを通って外壁6の円柱状空洞6b内に流れ込み、空洞6bが二次成形用樹脂で満たされる。二次成形用樹脂は一次成形用樹脂と同一であっても良いし、異なっていても良い。二次成形用樹脂が固化した後に金型11A,11Bを外すと、図1に示すような内壁5,インサート材4および外壁6で構成される側壁部1が得られる。
【0024】
上述した実施の形態では、複数の貫通孔41a,41bが形成された金属板をインサート材4としたが、金網等のメッシュ部材をインサート材として用いても良い。図4はインサート材14として金属メッシュ14aを用いた場合の成形方法を説明する図であり、(a)〜(c)にその手順を示す。インサート材14は、金属メッシュ14aと、金属メッシュ14aの上下両端に設けられたエンド部材14bとから成る。金属メッシュ14aおよびエンド部材14bには、上述したインサート材4と同様に熱伝導性に優れたアルミ材や銅材が用いられる。エンド部材14bは金属メッシュ14aとカバー2および冷却部3との間の電気的及び熱的接触を十分に行わせるために設けたものであり、ロー付けや圧着等によりメッシュ14aに固定される。
【0025】
図4(a)に示すように、インサート材14を用いた場合も図3の場合と同様の一次成形用金型10A,10Bが用いられる。このとき、メッシュ14aは金型10Aに形成された平面105に密着するように配設される。金型10Aの円柱状凸部101および金型10Bの凹部102の各直径d1は、メッシュ14aの隙間(孔径)よりも大きく設定されている。金型10Aの凹部100内に一次成形用樹脂を注入すると、凹部100内が樹脂で隙間無く満たされる。さらに、一次成形用樹脂がメッシュ14aの隙間を通り抜けることによって、金型10Bの凹部102内が一次成形用樹脂により満たされる。また、凸部101が対向する領域を除いて、メッシュ14aの隙間には一次成形用樹脂が充填されることになる。
【0026】
一次成形用樹脂が固化した後に金型10A,10Bを外すと、図4(b)に示すような側壁部1の一次成形品が得られる。上述したインサート材4を用いたものでは、孔41bを通り抜けた一次成形用樹脂は、孔41bの直径d2よりも大きな直径d1の円柱状突出部6aを形成する。そのため、突出部6aは孔41bの部分でくびれている(図3(b)参照)。一方、インサート材14を用いた場合には、一次成形用樹脂がメッシュ14aの隙間から染み出るように凹部102を満たすため、突出部6aは上述したようなくびれ部を形成せずに、メッシュ14aから直径d1で立ち上がるように形成される。その結果、メッシュ14aと一次成形樹脂とが確実に固定される。
【0027】
次に、図4(c)に示すように、側壁部1の一次成形品を二次成形用金型11A,11Bに装着して二次成形作業を行う。金型11Bの凹部104に二次成形用樹脂を注入すると、凹部104内が二次成形用樹脂で隙間無く満たされるとともに、その二次成形用樹脂がメッシュ14aの隙間を通って外壁6の円柱状空洞6b内に流れ込む。その結果、内壁5,インサート材14および外壁6を有する側壁部1が形成される。インサート部材14のようにメッシュ14aを用いた場合、突出部5a,6aの基部ではメッシュ14aの隙間を埋め尽くすように樹脂が充填されているため、内壁5および外壁6とインサート材14との固定が確実に行われ、内壁5や外壁6がインサート材14から剥離するようなことが無い。
【0028】
ところで、従来のシールド筐体においてインサート材として金属メッシュ等を用いる場合には、金型の中心位置付近にメッシュを配設して、1回の樹脂注入で内壁と外壁とを成形するようにしている。そのため、樹脂注入時に樹脂の流れによってメッシュが変形し、図9に示すようにメッシュが壁面付近に達するような場合もあった。このような場合、メッシュと樹脂部材との接触面に介して水分等が筐体内部に侵入するおそれがあった。
【0029】
しかしながら、本実施の形態では、図3,4に示したようにメッシュ14aは一次成形工程では金型10Bの平面105に密着するように配設され、二次成形工程では外壁6の内表面に固着されている。そのため、樹脂を金型内に圧入する際にメッシュ14aが変形するようなことはなく、確実に内壁5と外壁6との間に配設される。
【0030】
[第1変形例]
図5は上述した電磁波シールド筐体の第1変形例を示す図であり、図2(b)と同様に側壁部1の断面を示した図である。図5に示した側壁部1では、内壁5および外壁6の突出部50a,60aの形状が図2(b)に示した側壁部1と異なっており、その他の部分は同一である。突出部50a,60aは、直径の異なる2つの円柱体を重ねた段付柱状突出部を形成している。突出部50aの場合には、先端部分の直径がd3で根本部分の直径d4はd3よりも小さくなっている。一方、突出部60aの場合、金型からの取り出しを考慮して、突出部50aとは逆に先端部分の直径d4の方が根本部分の直径d3よりも小さくなっている。
【0031】
図6は成形工程を示す図であり、まず、図6(a)に示すように一次成形用金型12A,12Bにインサート材4を装着する。金型12Aには外壁6を形成するための凹部105が形成されている。凹部105には、インサート材4の貫通孔41aに対向する位置に、内壁5の突出部50aを形成するための凸部106がそれぞれ形成されている。一方、金型12Bには、インサート材4の貫通孔41bに対向する位置に、外壁6の突出部60aを形成するための凹部107がそれぞれ形成されている。
【0032】
図6(b)は側壁部1の一次成形品であり、図6(a)の金型12A,12Bに一次成形用樹脂を注入することによって得られたものである。外壁6の貫通孔41aに対向する位置には空洞6cが形成され、貫通孔41bの部分にはインサート材4の内壁側(図示右側)に突出する突出部60aが形成されている。
【0033】
図6(c)は二次成形工程を示す図であり、図3(c)の場合と同一の金型11A,11Bを用いて二次成形を行う。金型11A,11Bに図6(b)の一次成形品を装着して、金型11Bの凹部104に二次成形用樹脂を注入すると、インサート材4の貫通孔41aを通して外壁6の空洞6cに二次成形用樹脂が流れ込む。その結果、図5に示すような側壁部1が形成される。
【0034】
図5に示す側壁部1において、突出部50a,60aの部分は内壁5と外壁6とが直接接する接合部になっている。この側壁部1では、各突出部50a,60aに段差を設けたことにより接合部における接合面積をより大きくして、内壁5と外壁6との結合をより確実なものとしている。さらに、接合面に隙間が生た場合の水分の侵入に関しても、図2(b)の場合と比べて侵入経路が長くなるため侵入が困難となる。なお、突出部50a,60aの段差は1段に限らず2段以上であっても良く、また、突出部50a,60aを円錐台形状として接合面積および進入経路の拡大をはかっても良い。
【0035】
[第2変形例]
上述した図5,2に示す側壁部1においては、突出部50a,5aの先端面を外壁6の表面に露出させ、突出部60a,6aの先端面を内壁5の表面に露出させていたが、図7の(a),(b)に示すように突出部50a,60a,5a,6aの突出量を小さくして表面に露出させないようにしても良い。
【0036】
[第3変形例]
図8(a)はシールド筐体の第3変形例を示す断面図であり、第1変形例の突出部50a,60aを変形したものである。第1変形例では突出部50a,60aを段差のある段付柱状突出部としたが、図8(a)に示す第3変形例では、各突出部50a,60aの直径d4を有する大径部51,61に、小径部53,63方向に延びる伸延部54,64を形成した。図8(a)に示す例では、伸延部54,64は直径d3の小径部51,61を囲むようにリング状に形成されており、その結果、伸延部54,64と小径部51,61の周面との間にはリング状の窪み(隙間)52,62が形成される。窪み52内には外壁6を構成する一次成形用樹脂が入り込んでおり、窪み62内には内壁5を構成する二次成形用樹脂が入り込んでいる。
【0037】
図8(b)は突出部60aの部分を拡大したものであり、突出部60aの機能を説明する図である。内壁5を構成する二次成形用樹脂が固化時に収縮すると、突出部60a部分では、矢印20で示すように内壁5が突出部60aから離れるように収縮する。しかし、第3変形例では、大径部61の窪み62に内壁5の一部であるリング状部55が嵌入しているため、このリング状部55が窪み62の外側にある伸延部64と干渉して、内壁5が矢印20方向に収縮するのを妨げる働きをする。そして、この内壁5を構成する樹脂の収縮によりリング状部55と伸延部64との接合面における面圧が発生し、外壁6の突出部60aと内壁5との接合強度が増加する。
【0038】
一方、突出部50aの部分においては、二次成形用樹脂の固化の際に突出部50aの伸延部54が大径部51の中心方向に収縮することになり、窪み52内の外壁樹脂部材が収縮を妨げる働きをする。その結果、突出部50aの伸延部54と外壁6との接合強度が増加する。このように突出部50a,60aの大径部51,61に伸延部54,64を形成したことにより内壁5と外壁6との結合強度を向上させることができる。
【0039】
さらに、内壁5や突出部50aの固化時の収縮が抑制されるので、内壁5と突出部60aとの接合面および外壁6と突出部50aとの接合面に隙間が生じ難くなり、防水性の向上が図れる。なお、図8に示す例では突出部50a,60aの両方に伸延部54,64を形成したが、いずれか一方だけに伸延部を形成しても十分な接合強度を得ることができる。
【0040】
上述した接合強度の向上は二次成形樹脂の固化時の収縮に起因しているので、内壁5を構成する二次成形用樹脂として外壁6を構成する一次成形用樹脂よりも高収縮率な樹脂材料を用いることにより、より一層接合強度の向上を図ることができる。さらに、二次成形樹脂として低ヤング率の樹脂材料を用いることにより、収縮時の接合部における圧力の分散が向上し、接合部の信頼性を高めることができる。
【0041】
例えば、一次成形樹脂として線膨張係数が約1.5×10−5/℃でヤング率が約2.5×1010Pa、熱伝導率が約0.3W/mKであるガラス強化型PPSを用い、二次成形樹脂として線膨張係数が約3.0×10−5/℃でヤング率が約5.7×10Pa、熱伝導率が約0.2W/mKであるエラストマ入りPPSを用いる。このように樹脂材料を選択することにより、樹脂の接合部における相性を損なうことを避けることができ、使用する環境による両方の樹脂の特性の違いも僅かなものにすることができる。
【0042】
以上説明した実施の形態と特許請求の範囲の要素との対応において、インサート材4は電磁波シールド材を、金型10Bは保持部材を、外壁6は第1樹脂層を、内壁5は第2樹脂層を、貫通孔41bは第1の貫通孔を、貫通孔41aは第2の貫通孔を、突出部6aは第1突出部を、突出部5aは第2突出部を、大径部51,61は第1の柱状体を、小径部53,63は第2の柱状体をそれぞれ構成する。
【0043】
なお、上述した実施の形態では貫通孔41a,41bを円形であるとして説明したが、円形に限らず種々の形状の孔にも適用することができる。突出部5a,6aについても円柱状に限らず様々な形状が可能である。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。
【図面の簡単な説明】
【図1】本発明による電磁波シールド筐体の一実施の形態を示す分解斜視図である。
【図2】側壁部1の詳細構造を示す図であり、(a)は側壁部1の外表面の一部を示す図で、(b)は(a)のII−II断面図である。
【図3】側壁部1の成形工程を説明する図であり、(a)〜(c)にその手順を示す。
【図4】インサート材14として金属メッシュ14aを用いた場合の成形工程を説明する図であり、(a)〜(c)にその手順を示す。
【図5】電磁波シールド筐体の第1変形例を示す図である。
【図6】第1変形例における成形工程を説明する図であり、(a)〜(c)にその手順を示す。
【図7】第2変形例を示す図であり、(a)は突出部50a,60aを示す図で、(b)が突出部5a,6aを示す図である。
【図8】第3変形例を示す図であり、(a)は側壁部1の断面図で、(b)は突出部60aの部分の拡大図である。
【図9】比較例を示す図である。
【符号の説明】
1 側壁部
2 カバー
3 冷却部
4,14 インサート材
5 内壁
5a,6a,50a,60a 突出部
6 外壁
6b,6c 空洞
10A,10B,12A,12B 一次成形用金型
11A,11B 二次成形用金型
41,41a,41b 貫通孔
51,61 大径部
53,63 小径部
54,64 伸延部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electromagnetic wave shielding housing formed by a member in which an electronic device or the like is housed and a shield material is insert-molded, and a method of manufacturing the same.
[0002]
[Prior art]
Conventionally, when housing an electronic device such as a semiconductor module in a housing, a shield housing is used as a housing in consideration of prevention of leakage of electromagnetic waves generated by the electronic device to the outside and prevention of invasion of electromagnetic waves from the outside. May be used. In a shield case, a shield member is used on a case wall in order to prevent intrusion of electromagnetic waves into the case and emission of electromagnetic waves to the outside of the case. For example, there is known a shield housing in which a net-shaped shield material is insert-molded inside a resin material for a housing wall (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2002-134977 A
[Problems to be solved by the invention]
By the way, when the above-mentioned housing wall is insert-molded, the molding is performed in the following steps. First, a mesh-shaped shield material is set in an injection molding die, and thereafter, a molding resin is injection molded in the die. At the time of this molding, the net-like shield material may be deformed by the injection pressure of the resin or the like, and the shield material may be exposed on the surface of the resin molded member that is the housing wall. When the shielding material is exposed on the surface of the resin molded member, water or the like may enter the housing from the external environment through the boundary surface between the shielding material and the resin portion. If water enters the inside of the housing, the life of the electronic device in the housing may be shortened.
[0005]
An object of the present invention is to provide an electromagnetic wave shielding housing capable of more reliably preventing water from entering from an external environment, and a method of manufacturing the same.
[0006]
[Means for Solving the Problems]
In the method for manufacturing an electromagnetic wave shielding casing according to the first aspect of the present invention, both front and back surfaces of the electromagnetic wave shielding material are molded with resin by two types of molding steps, a primary molding step and a secondary molding step. In the primary molding step, one surface of the electromagnetic wave shielding material is always held by the holding member during the molding. In the secondary molding, the first resin layer molded in the primary molding step is already formed on the other surface of the electromagnetic wave shielding material. Therefore, at the time of primary and secondary molding, the electromagnetic wave shielding material is held by either the holding member or the first resin layer, and deformation of the electromagnetic wave shielding material at the time of molding can be prevented.
According to a third aspect of the present invention, in the electromagnetic wave shielding case formed by the method for manufacturing an electromagnetic wave shielding case according to the second aspect, at least one of the first projecting portion and the second projecting portion has a part thereof. The diameter is larger than the diameter of the through hole. Thereby, the bond between the first resin layer and the second resin layer becomes stronger.
[0007]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, deformation | transformation of the electromagnetic wave shielding material at the time of shaping | molding can be prevented, and an electromagnetic wave shielding material does not appear on the surface of a housing | casing. Therefore, it is possible to avoid a situation in which water enters from the external environment via the joint surface between the electromagnetic wave shielding material and the resin.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an exploded perspective view showing an embodiment of an electromagnetic wave shielding housing according to the present invention, in which a part of a side wall portion 1 is shown in a broken section. The shield housing shown in FIG. 1 has a side wall 1 and a cover 2, and the cover 2 and the side wall 1, and the side wall 1 and the cooling unit 3 are fixed by screws or the like. The cooling unit 3 is formed of an aluminum-based or copper-based metal having excellent thermal conductivity, and an electronic device (not shown) is provided on the cooling unit 3. For example, electronic components that generate a large amount of heat, such as power modules, are surface-mounted on the cooling unit 3.
[0009]
The shield housing shown in FIG. 1 is used, for example, as a housing of a power conversion device mounted on a vehicle or the like, and is provided in an engine room or the like. Therefore, it is easily affected by moisture such as rainwater and the temperature of the engine, and the shield housing is required to have a sealing property and a heat insulating property against moisture and environmental temperature in addition to the electromagnetic wave shielding property. Although the seal between the cover 2, the side wall 1 and the cooling unit 3 is not shown, the seal is performed using an O-ring, a gasket or the like. At this time, the cover 2, the side wall portion 1 and the cooling portion 3 are sufficiently brought into contact with each other to secure magnetic shielding properties and thermal conductivity. Further, a conductive material may be used for the O-ring and the gasket.
[0010]
As described above, the cooling unit 3 functions as a heat sink for cooling the electronic device. In the case of the liquid cooling specification, a water channel for circulating a cooling liquid such as an ethylene glycol aqueous solution is provided inside or on the lower surface of the cooling unit 3. In the case of the air cooling specification, cooling fins and the like are formed on the lower surface of the cooling unit 3. The side wall portion 1 is formed by insert-molding an insert material 4 functioning as a shield material inside a resin material. That is, the side wall 1 has an inner wall 5 and an outer wall 6 made of resin with the insert material 4 interposed therebetween. Details of the side wall 1 will be described later.
[0011]
In the example shown in FIG. 1, the insert material 4 is formed of a metal plate having a plurality of through holes 41 formed therein. The plurality of through holes 41 are formed so as to be evenly distributed over the entire surface of the insert material 4. As the metal plate used for the insert material 4 functioning as an electromagnetic shield, there are various types such as aluminum, copper, brass, and steel plate, and in consideration of the need for high heat transfer performance, for example, 200 W / m. -It is preferable to use an aluminum-based or copper-based material having a thermal conductivity of about K.
[0012]
By using a metal material having such a thermal conductivity for the insert 4, heat in the housing can be efficiently transported to the cooling unit 3 via the insert 4, and the heat of the electronic device disposed in the housing can be improved. Cooling efficiency can be improved. Although the heat transfer performance is slightly inferior, punched metal or wire mesh, or honeycomb or expanded metal can also be used as the insert material 4.
[0013]
As the resin used for the inner wall 5 and the outer wall 6 of the shielded housing, the electronic components housed inside the housing are often high heat-generating components, and the housing itself requires a cooling action. Resins having relatively excellent heat resistance such as PA (polyamide), PBT (polybutylene terephthalate), and PPS (polyphenylene sulfide) are preferred. Further, a resin having a low thermal conductivity is used for the resin of the outer wall 6 so as to block heat from entering the inside of the housing from the outside, and heat generated inside the housing is radiated through the insert material 4. As described above, it is preferable to use a resin having a high thermal conductivity for the resin of the inner wall 5. For example, the outer wall 6 is made of PPS containing an elastomer (thermal conductivity: about 0.2 W / mK), and the inner wall 5 is made of glass-reinforced PPS (thermal conductivity: about 0.3 W / mK).
[0014]
Although the cover 2 is formed by pressing a metal plate, the cover 2 may be formed by inserting an insert material with a resin as in the case of the side wall portion 1. The insert material 4 of the side wall portion 1 is in electrical contact with the metal cover 2 and the cooling portion 3, so that the inside of the housing is electromagnetically shielded.
[0015]
2A and 2B are diagrams showing a detailed structure of the side wall portion 1, and FIG. 2A is a diagram showing a part of the outer surface of the side wall portion 1, that is, a part on the side of the outer wall 6, and FIG. It is a II sectional view. In FIG. 2B, the resin member on the right side of the insert 4 forms the inner wall 5, and the resin member on the left side of the insert 4 forms the outer wall 6. Folds 42 and 43 are formed at the upper end and the lower end of the insert 4 so that the insert 4 can be kept in sufficient contact with the cover 2 and the cooling unit 3.
[0016]
The through hole 41 formed in the insert material 4 is divided into two types of holes 41a and 41b. A part of the resin member forming the inner wall 5 projects to the left of the insert 4 through the hole 41a, and a part of the resin member forming the outer wall 6 forms the insert 4 through the hole 41b of the insert 4. It protrudes to the right. The protrusion 5a projecting from the hole 41a and fitting into the outer wall 6 penetrates the outer wall 6 from the inside to the outside, and the tip of the protrusion 5a is exposed on the surface of the outer wall 6 as shown in FIG. ing. On the other hand, the protrusion 6a projecting from the hole 41b and fitting into the inner wall 5 penetrates the inner wall 5 from the outside to the inside.
[0017]
The protrusions 5a and 6a are formed in a columnar shape, and their diameter d1 is set larger than the diameter d2 of the holes 41a and 41b. That is, the protruding portions 5a and 6a extend to the outside of the columnar region whose bottom surface is the cross section of the holes 41a and 41b. As a result, the inner wall 5 and the outer wall 6 are firmly connected to each other by the protrusions 5a and 6a with the insert member 4 interposed therebetween, thereby preventing the inner wall 5 and the outer wall 6 as resin members from peeling off from the insert member 4 as a metal member. ing.
[0018]
In the example shown in FIG. 2, the protruding portion 5a has a cylindrical shape. However, even if the protruding portion 5a is linearly expanded from the hole 41a, the protruding portion 5a having the shape of a truncated cone is connected to the outer wall 6. The inner wall 5 and the outer wall 6 are mutually connected.
[0019]
FIG. 3 is a view for explaining a molding process of the side wall portion 1. In the present embodiment, molding is performed in two stages, primary and secondary. FIG. 3A shows a primary molding operation, FIG. 3B shows a primary molded product of the side wall portion 1, and FIG. 3C shows a secondary molding operation. First, as shown in FIG. 3A, the insert material 4 is mounted on the primary molding dies 10A and 10B to perform primary molding.
[0020]
The mold 10A has a concave portion 100 for forming the outer wall 6, and a columnar convex portion 101 for forming a region into which the protruding portion 5a fits. On the other hand, a cylindrical concave portion 102 for forming the protruding portion 6a of the outer wall 6 is formed in the mold 10B. The diameter of each of the convex portion 101 and the concave portion 102 is set to be equal to the diameter d1 of the protruding portions 5a and 6a shown in FIG. The convex portions 101 are formed at positions facing the holes 41a of the insert material 4, and the concave portions 102 are formed at positions facing the holes 41b of the insert material 4, respectively.
[0021]
When the primary molding resin is injected into the recess 100 of the mold 10A, the inside of the recess 100 is filled with the resin without any gap, and the resin in the recess 100 flows into the recess 102 of the mold 10B through the hole 41b, and the recess 102 is formed. Meet. At this time, since the back surface of the insert 4 is supported by the surface 108 of the mold 10B, the insert 4 is not deformed by the pressure of the injected primary molding resin. When the molds 10A and 10B are removed after the resin is solidified, a primary molded product of the side wall portion 1 composed of the insert material 4 and the outer wall 6 as shown in FIG.
[0022]
A columnar protrusion 6a made of a primary molding resin is formed in the hole 41b of the insert material 4, and a columnar cavity 6b is formed in a portion of the outer wall 6 facing the hole 41a. The diameter of the protrusion 6a and the cavity 6b is d1, which is larger than the diameter d2 of the holes 41a and 41b (see FIG. 2B). Therefore, even in the state of FIG. 3B, the insert material 4 does not come off from the outer wall 6, and the secondary molding operation is easily performed.
[0023]
Next, as shown in FIG. 3C, the primary molded product of the side wall portion 1 is mounted on secondary molding dies 11A and 11B to perform secondary molding. The outer wall 6 of the primary molded product is housed in the recess 103 of the mold 11A. A concave portion 104 for forming the inner wall 5 is formed in the mold 11B, and the protruding portion 6a is housed in the concave portion 104. When the secondary molding resin is injected into the concave portion 104 of the mold 11B, the inside of the concave portion 104 is filled with the secondary molding resin without any gap. Further, the resin in the concave portion 104 flows into the columnar cavity 6b of the outer wall 6 through the hole 41a, and the cavity 6b is filled with the secondary molding resin. The secondary molding resin may be the same as or different from the primary molding resin. When the molds 11A and 11B are removed after the resin for secondary molding is solidified, the side wall portion 1 composed of the inner wall 5, the insert material 4 and the outer wall 6 as shown in FIG. 1 is obtained.
[0024]
In the above-described embodiment, the metal plate on which the plurality of through holes 41a and 41b are formed is used as the insert material 4, but a mesh member such as a wire mesh may be used as the insert material. FIG. 4 is a view for explaining a forming method when the metal mesh 14a is used as the insert material 14, and (a) to (c) show the procedure. The insert member 14 includes a metal mesh 14a and end members 14b provided at both upper and lower ends of the metal mesh 14a. For the metal mesh 14a and the end member 14b, an aluminum material or a copper material having excellent thermal conductivity is used as in the case of the insert material 4 described above. The end member 14b is provided to make sufficient electrical and thermal contact between the metal mesh 14a and the cover 2 and the cooling unit 3, and is fixed to the mesh 14a by brazing, crimping, or the like.
[0025]
As shown in FIG. 4A, when the insert material 14 is used, the same primary molding dies 10A and 10B as those in FIG. 3 are used. At this time, the mesh 14a is disposed so as to be in close contact with the flat surface 105 formed on the mold 10A. Each diameter d1 of the cylindrical convex portion 101 of the mold 10A and the concave portion 102 of the mold 10B is set to be larger than the gap (hole diameter) of the mesh 14a. When the primary molding resin is injected into the concave portion 100 of the mold 10A, the concave portion 100 is filled with the resin without any gap. Furthermore, when the primary molding resin passes through the gap of the mesh 14a, the inside of the concave portion 102 of the mold 10B is filled with the primary molding resin. Except for the region where the convex portion 101 faces, the gap of the mesh 14a is filled with the primary molding resin.
[0026]
When the dies 10A and 10B are removed after the primary molding resin has solidified, a primary molded product of the side wall portion 1 as shown in FIG. 4B is obtained. In the case where the above-described insert material 4 is used, the primary molding resin that has passed through the hole 41b forms a columnar protrusion 6a having a diameter d1 larger than the diameter d2 of the hole 41b. Therefore, the protrusion 6a is narrowed at the hole 41b (see FIG. 3B). On the other hand, when the insert material 14 is used, since the primary molding resin fills the concave portion 102 so as to seep out from the gap of the mesh 14a, the projecting portion 6a does not form the constricted portion as described above, and the mesh 14a Is formed so as to rise with a diameter d1. As a result, the mesh 14a and the primary molding resin are securely fixed.
[0027]
Next, as shown in FIG. 4C, the primary molded product of the side wall portion 1 is mounted on secondary molding dies 11A and 11B to perform secondary molding. When the secondary molding resin is injected into the concave portion 104 of the mold 11B, the inside of the concave portion 104 is completely filled with the secondary molding resin without any gap, and the secondary molding resin passes through the gap of the mesh 14a and forms a circle of the outer wall 6. It flows into the columnar cavity 6b. As a result, the side wall 1 having the inner wall 5, the insert material 14, and the outer wall 6 is formed. When the mesh 14a is used like the insert member 14, the resin is filled at the bases of the protrusions 5a and 6a so as to fill the gaps of the mesh 14a, so that the inner wall 5 and the outer wall 6 are fixed to the insert material 14. Is reliably performed, and the inner wall 5 and the outer wall 6 do not peel off from the insert material 14.
[0028]
By the way, when a metal mesh or the like is used as an insert material in a conventional shield housing, a mesh is arranged near a center position of a mold, and an inner wall and an outer wall are formed by one resin injection. I have. For this reason, the mesh may be deformed by the flow of the resin when the resin is injected, and the mesh may reach the vicinity of the wall surface as shown in FIG. In such a case, moisture or the like may enter the inside of the housing via the contact surface between the mesh and the resin member.
[0029]
However, in the present embodiment, as shown in FIGS. 3 and 4, the mesh 14a is disposed so as to be in close contact with the flat surface 105 of the mold 10B in the primary molding step, and is provided on the inner surface of the outer wall 6 in the secondary molding step. It is fixed. Therefore, the mesh 14a is not deformed when the resin is pressed into the mold, and is reliably disposed between the inner wall 5 and the outer wall 6.
[0030]
[First Modification]
FIG. 5 is a view showing a first modification of the above-described electromagnetic wave shielding housing, and is a view showing a cross section of the side wall portion 1 as in FIG. 2B. In the side wall portion 1 shown in FIG. 5, the shapes of the protruding portions 50a and 60a of the inner wall 5 and the outer wall 6 are different from those of the side wall portion 1 shown in FIG. 2B, and the other portions are the same. The projections 50a and 60a form stepped columnar projections in which two cylindrical bodies having different diameters are stacked. In the case of the protrusion 50a, the diameter of the tip portion is d3, and the diameter d4 of the root portion is smaller than d3. On the other hand, in the case of the protruding portion 60a, the diameter d4 of the tip portion is smaller than the diameter d3 of the root portion, contrary to the protruding portion 50a, in consideration of removal from the mold.
[0031]
FIG. 6 is a view showing a molding step. First, as shown in FIG. 6A, the insert material 4 is mounted on the primary molding dies 12A and 12B. A concave portion 105 for forming the outer wall 6 is formed in the mold 12A. In the concave portion 105, a convex portion 106 for forming the projecting portion 50a of the inner wall 5 is formed at a position facing the through hole 41a of the insert material 4. On the other hand, in the mold 12B, concave portions 107 for forming the protruding portions 60a of the outer wall 6 are formed at positions facing the through holes 41b of the insert material 4, respectively.
[0032]
FIG. 6B shows a primary molded product of the side wall portion 1, which is obtained by injecting a primary molding resin into the dies 12A and 12B of FIG. 6A. A cavity 6c is formed at a position of the outer wall 6 facing the through hole 41a, and a protrusion 60a is formed at the through hole 41b so as to project toward the inner wall side (the right side in the drawing) of the insert material 4.
[0033]
FIG. 6C is a diagram showing a secondary molding step, in which secondary molding is performed using the same dies 11A and 11B as in FIG. 3C. When the primary molded product of FIG. 6B is mounted on the dies 11A and 11B and the resin for secondary molding is injected into the concave portion 104 of the die 11B, the resin is inserted into the cavity 6c of the outer wall 6 through the through hole 41a of the insert material 4. The resin for secondary molding flows. As a result, the side wall 1 as shown in FIG. 5 is formed.
[0034]
In the side wall portion 1 shown in FIG. 5, the portions of the protruding portions 50a and 60a are joint portions where the inner wall 5 and the outer wall 6 are in direct contact. In the side wall portion 1, a step is provided in each of the protruding portions 50 a and 60 a, so that the joining area at the joining portion is further increased, so that the connection between the inner wall 5 and the outer wall 6 is further ensured. Further, with respect to the intrusion of moisture when a gap is formed in the joint surface, the penetration path becomes longer than that in the case of FIG. Note that the level difference between the protruding portions 50a and 60a is not limited to one, and may be two or more. The protruding portions 50a and 60a may have a truncated cone shape to increase the joint area and the approach path.
[0035]
[Second Modification]
In the side wall portion 1 shown in FIGS. 5 and 2 described above, the distal end surfaces of the protruding portions 50a, 5a are exposed on the surface of the outer wall 6, and the distal end surfaces of the protruding portions 60a, 6a are exposed on the surface of the inner wall 5. As shown in FIGS. 7 (a) and 7 (b), the protrusions of the protrusions 50a, 60a, 5a and 6a may be reduced so as not to be exposed on the surface.
[0036]
[Third Modification]
FIG. 8A is a cross-sectional view showing a third modification of the shield housing, in which the protrusions 50a and 60a of the first modification are modified. In the first modification, the protruding portions 50a, 60a are stepped columnar protruding portions having a step. However, in the third modification shown in FIG. 8A, a large diameter portion having a diameter d4 of each protruding portion 50a, 60a. Extending portions 54 and 64 extending in the direction of the small diameter portions 53 and 63 are formed on 51 and 61. In the example shown in FIG. 8A, the extension portions 54 and 64 are formed in a ring shape so as to surround the small diameter portions 51 and 61 having the diameter d3. As a result, the extension portions 54 and 64 and the small diameter portions 51 and 61 are formed. Ring-shaped depressions (gap) 52, 62 are formed between the outer peripheral surface and the peripheral surface. The primary molding resin forming the outer wall 6 enters the recess 52, and the secondary molding resin forming the inner wall 5 enters the recess 62.
[0037]
FIG. 8B is an enlarged view of a portion of the protruding portion 60a, and is a diagram illustrating the function of the protruding portion 60a. When the secondary molding resin forming the inner wall 5 shrinks during solidification, the inner wall 5 shrinks at the protruding portion 60a away from the protruding portion 60a as indicated by an arrow 20. However, in the third modified example, since the ring-shaped portion 55 that is a part of the inner wall 5 is fitted into the recess 62 of the large-diameter portion 61, the ring-shaped portion 55 is connected to the extension portion 64 outside the recess 62. Interference prevents the inner wall 5 from contracting in the direction of the arrow 20. Then, due to the contraction of the resin forming the inner wall 5, a surface pressure is generated at the joint surface between the ring-shaped portion 55 and the extension portion 64, and the joining strength between the protruding portion 60 a of the outer wall 6 and the inner wall 5 increases.
[0038]
On the other hand, in the portion of the protruding portion 50a, the extension portion 54 of the protruding portion 50a contracts toward the center of the large diameter portion 51 when the resin for secondary molding is solidified, and the outer wall resin member in the recess 52 is It works to prevent contraction. As a result, the joining strength between the extension portion 54 of the protrusion 50a and the outer wall 6 increases. By forming the extending portions 54 and 64 on the large diameter portions 51 and 61 of the protruding portions 50a and 60a in this manner, the bonding strength between the inner wall 5 and the outer wall 6 can be improved.
[0039]
Further, since the shrinkage of the inner wall 5 and the protruding portion 50a during solidification is suppressed, gaps are less likely to be generated in the joint surface between the inner wall 5 and the protruding portion 60a and the joint surface between the outer wall 6 and the protruding portion 50a. Improvement can be achieved. In the example shown in FIG. 8, the extension portions 54 and 64 are formed on both the protruding portions 50a and 60a. However, sufficient joint strength can be obtained even if the extension portions are formed on only one of them.
[0040]
Since the above-described improvement in bonding strength is caused by the contraction of the secondary molding resin during solidification, the resin having a higher shrinkage rate than the primary molding resin constituting the outer wall 6 is used as the secondary molding resin constituting the inner wall 5. By using the material, the bonding strength can be further improved. Furthermore, by using a resin material having a low Young's modulus as the secondary molding resin, the dispersion of pressure in the joint at the time of shrinkage is improved, and the reliability of the joint can be increased.
[0041]
For example, a glass-reinforced PPS having a linear expansion coefficient of about 1.5 × 10 −5 / ° C., a Young's modulus of about 2.5 × 10 10 Pa, and a thermal conductivity of about 0.3 W / mK as a primary molding resin. As the secondary molding resin, an elastomer-containing PPS having a linear expansion coefficient of about 3.0 × 10 −5 / ° C., a Young's modulus of about 5.7 × 10 9 Pa, and a thermal conductivity of about 0.2 W / mK is used. Used. By selecting the resin material in this manner, it is possible to avoid compromising the compatibility of the resin at the joint portion, and it is possible to make the difference in the characteristics of the two resins small depending on the environment in which they are used.
[0042]
In the correspondence between the embodiment described above and the elements of the claims, the insert 4 is an electromagnetic wave shielding material, the mold 10B is a holding member, the outer wall 6 is a first resin layer, and the inner wall 5 is a second resin. Layer, the through hole 41b is the first through hole, the through hole 41a is the second through hole, the protrusion 6a is the first protrusion, the protrusion 5a is the second protrusion, and the large diameter portion 51, 61 constitutes a first columnar body, and the small diameter portions 53 and 63 respectively constitute a second columnar body.
[0043]
In the above-described embodiment, the through holes 41a and 41b are described as being circular. However, the present invention is not limited to the circular shape and can be applied to holes having various shapes. The protruding portions 5a and 6a are not limited to the columnar shape, and various shapes are possible. Further, the present invention is not limited to the above-described embodiment at all, as long as the features of the present invention are not impaired.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing an embodiment of an electromagnetic wave shielding housing according to the present invention.
FIGS. 2A and 2B are diagrams showing a detailed structure of a side wall portion 1, in which FIG. 2A is a diagram showing a part of an outer surface of the side wall portion 1, and FIG. 2B is a cross-sectional view taken along line II-II of FIG.
FIGS. 3A to 3C are diagrams illustrating a molding process of the side wall portion 1, and FIGS.
FIG. 4 is a view for explaining a forming step when a metal mesh 14a is used as an insert material 14, and (a) to (c) show the procedure.
FIG. 5 is a diagram showing a first modification of the electromagnetic wave shielding housing.
FIG. 6 is a view for explaining a molding step in a first modified example, and (a) to (c) show the procedure.
FIGS. 7A and 7B are diagrams showing a second modification, in which FIG. 7A is a diagram showing protrusions 50a and 60a, and FIG. 7B is a diagram showing protrusions 5a and 6a.
FIGS. 8A and 8B are diagrams showing a third modification, in which FIG. 8A is a cross-sectional view of a side wall portion 1 and FIG. 8B is an enlarged view of a protruding portion 60a.
FIG. 9 is a diagram showing a comparative example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Side wall part 2 Cover 3 Cooling part 4, 14 Insert material 5 Inner wall 5a, 6a, 50a, 60a Projection part 6 Outer wall 6b, 6c Cavity 10A, 10B, 12A, 12B Primary molding die 11A, 11B Secondary molding metal Dies 41, 41a, 41b Through holes 51, 61 Large diameter portions 53, 63 Small diameter portions 54, 64 Extension portions

Claims (9)

電磁波シールド材の表裏両面を樹脂でモールド成形した電磁波シールド筐体の製造方法において、
前記電磁波シールド材の一方の面を保持部材で所定位置に保持しながら、その電磁波シールド材の他方の面に第1の樹脂から成る第1樹脂層を成形する一次成形工程と、
前記一次成形工程の後に前記電磁波シールド材の一方の面に第2の樹脂から成る第2樹脂層を成形する二次成形工程と、を有することを特徴とする電磁波シールド筐体の製造方法。
In a method of manufacturing an electromagnetic wave shielding casing in which both front and back surfaces of an electromagnetic wave shielding material are molded with resin,
A primary molding step of molding a first resin layer made of a first resin on the other surface of the electromagnetic wave shielding material while holding one surface of the electromagnetic wave shielding material at a predetermined position with a holding member;
A second molding step of molding a second resin layer made of a second resin on one surface of the electromagnetic wave shielding material after the primary molding step.
請求項1に記載の電磁波シールド筐体の製造方法において、
前記電磁波シールド材は第1の貫通孔と第2の貫通孔とを有し、
前記一次成形工程では、前記第1の樹脂を前記第1の貫通孔を介して前記一方の面側に突出させて前記第1樹脂層と連結した第1突出部を形成するとともに、前記第2の貫通孔に連通する連通孔または空洞を前記第1樹脂層に形成し、
前記二次成形工程では、前記第1突出部を包含するように前記第2樹脂層を成形するとともに、前記第2の樹脂を前記第2の貫通孔を介して前記連通孔または空洞に流入させて前記第2樹脂層と連結した第2突出部を形成することを特徴とする電磁波シールド筐体の製造方法。
The method for manufacturing an electromagnetic wave shielding casing according to claim 1,
The electromagnetic wave shielding material has a first through hole and a second through hole,
In the primary molding step, the first resin is projected toward the one surface side through the first through hole to form a first projection connected to the first resin layer, and Forming a communication hole or cavity communicating with the through hole of the first resin layer;
In the secondary molding step, the second resin layer is molded so as to include the first protrusion, and the second resin is caused to flow into the communication hole or the cavity through the second through hole. Forming a second protruding portion connected to the second resin layer by using the method.
請求項2に記載の電磁波シールド筐体の製造方法により形成された電磁波シールド筐体において、
前記第1突出部および第2突出部の少なくとも一方の突出部の一部は、径寸法が前記貫通孔の直径寸法よりも大きく形成されていることを特徴とする電磁波シールド筐体。
An electromagnetic wave shielding case formed by the method for manufacturing an electromagnetic wave shielding case according to claim 2,
A part of at least one of the first protrusion and the second protrusion has a diameter larger than a diameter of the through hole.
請求項3に記載の電磁波シールド筐体において、
前記第1突出部および第2突出部の少なくとも一方が、断面積の異なる2つの柱状体である第1の柱状体と第2の柱状体とを重ねた段付柱状突出部であることを特徴とする電磁波シールド筐体。
The electromagnetic wave shielding casing according to claim 3,
At least one of the first projection and the second projection is a stepped columnar projection in which a first columnar body and a second columnar body, which are two columnar bodies having different cross-sectional areas, are overlapped. Electromagnetic wave shielding case.
請求項4に記載の電磁波シールド筐体において、
断面積の大きな第1の柱状体から断面積の小さな第2の柱状体の方向に伸延し、前記第2の柱状体の周面に隙間を有して対向する伸延部を、前記第1の柱状体に形成したことを特徴とする電磁波シールド筐体。
The electromagnetic wave shielding casing according to claim 4,
The extending portion extending from the first columnar body having a large cross-sectional area toward the second columnar body having a small cross-sectional area, and facing the peripheral surface of the second columnar body with a gap provided between the first columnar body and the first columnar body, An electromagnetic wave shielding housing formed in a columnar body.
請求項5に記載の電磁波シールド筐体において、
前記第2の樹脂の線膨張係数が前記第1の樹脂の線膨張係数よりも大きいことを特徴とする電磁波シールド筐体。
The electromagnetic wave shielding casing according to claim 5,
An electromagnetic wave shielding casing, wherein the linear expansion coefficient of the second resin is larger than the linear expansion coefficient of the first resin.
請求項6に記載の電磁波シールド筐体において、
前記第2の樹脂のヤング率が前記第1の樹脂のヤング率よりも大きいことを特徴とする電磁波シールド筐体。
The electromagnetic wave shielding casing according to claim 6,
The Young's modulus of the second resin is higher than the Young's modulus of the first resin.
請求項3〜7のいずれかに記載の電磁波シールド筐体において、
前記シールド材の熱伝導率は、前記第1および第2の樹脂の熱伝導率よりも高いことを特徴とする電磁波シールド筐体。
The electromagnetic wave shielding casing according to any one of claims 3 to 7,
An electromagnetic wave shielding case, wherein the thermal conductivity of the shielding material is higher than the thermal conductivity of the first and second resins.
請求項3〜8のいずれかに記載の電磁波シールド筐体において、
前記電磁波シールド筐体の筐体外壁を前記第1樹脂層で構成し、筐体内壁を前記第2樹脂層で構成して、前記第1の樹脂の熱伝導率を前記第2の樹脂の熱伝導率よりも小さくしたことを特徴とする電磁波シールド筐体。
The electromagnetic wave shielding casing according to any one of claims 3 to 8,
The casing outer wall of the electromagnetic wave shielding casing is constituted by the first resin layer, and the casing inner wall is constituted by the second resin layer, and the thermal conductivity of the first resin is reduced by the thermal conductivity of the second resin. An electromagnetic wave shielding housing characterized in that the conductivity is smaller than the conductivity.
JP2003162095A 2003-06-06 2003-06-06 Method for manufacturing electromagnetic shielding housing Expired - Lifetime JP4382396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162095A JP4382396B2 (en) 2003-06-06 2003-06-06 Method for manufacturing electromagnetic shielding housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162095A JP4382396B2 (en) 2003-06-06 2003-06-06 Method for manufacturing electromagnetic shielding housing

Publications (2)

Publication Number Publication Date
JP2004363450A true JP2004363450A (en) 2004-12-24
JP4382396B2 JP4382396B2 (en) 2009-12-09

Family

ID=34054335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162095A Expired - Lifetime JP4382396B2 (en) 2003-06-06 2003-06-06 Method for manufacturing electromagnetic shielding housing

Country Status (1)

Country Link
JP (1) JP4382396B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035038A1 (en) * 2007-09-12 2009-03-19 Nissha Printing Co., Ltd. Double insert molded article and electronic device using the same
JP2012236298A (en) * 2010-06-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molded article
JP2016103521A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Housing and manufacturing method for housing
JP2016103654A (en) * 2016-01-04 2016-06-02 旭化成ケミカルズ株式会社 Electronic equipment
CN114536647A (en) * 2021-12-25 2022-05-27 东莞市金铂钰橡塑五金制品有限公司 Mesh cloth ear cap forming method
KR20230171597A (en) * 2022-06-14 2023-12-21 주식회사 현대케피코 Magnetic field shielding structure of Hall IC embedded in transmission

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295U (en) * 1984-06-07 1986-01-06 株式会社 細川製作所 Electromagnetic shielding housing
JPS63162209A (en) * 1986-12-26 1988-07-05 Ricoh Co Ltd Production of resin box with shielding plate
JPS63257298A (en) * 1987-04-15 1988-10-25 サカエ理研工業株式会社 Electromagnetic or radio frequency shielded product and manufacture of the same
JPH04164394A (en) * 1990-10-29 1992-06-10 Hitachi Cable Ltd Synthetic resin molded good having pattern-like metallic layer and electromagnetic wave shielding body
JPH0629669A (en) * 1992-07-09 1994-02-04 Fujitsu Ltd Casing for electronic apparatus
JPH07237243A (en) * 1994-02-28 1995-09-12 Fujitsu Ltd Electric wave shielding housing
JPH0899331A (en) * 1993-12-08 1996-04-16 Fumiyuki Shiina Plastic molding method
JP3028096U (en) * 1995-11-16 1996-08-30 株式会社アドユニオン研究所 Electromagnetic wave shield resin molding
JP2000183468A (en) * 1998-12-16 2000-06-30 Matsushita Electric Ind Co Ltd Resin forming wiring board and its manufacturing method
JP2000334769A (en) * 1999-06-01 2000-12-05 Dainippon Printing Co Ltd Electromagnetic wave shielding molded product and production thereof
JP2001096548A (en) * 1999-09-29 2001-04-10 Matsushita Electric Ind Co Ltd Multicolor molding

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295U (en) * 1984-06-07 1986-01-06 株式会社 細川製作所 Electromagnetic shielding housing
JPS63162209A (en) * 1986-12-26 1988-07-05 Ricoh Co Ltd Production of resin box with shielding plate
JPS63257298A (en) * 1987-04-15 1988-10-25 サカエ理研工業株式会社 Electromagnetic or radio frequency shielded product and manufacture of the same
JPH04164394A (en) * 1990-10-29 1992-06-10 Hitachi Cable Ltd Synthetic resin molded good having pattern-like metallic layer and electromagnetic wave shielding body
JPH0629669A (en) * 1992-07-09 1994-02-04 Fujitsu Ltd Casing for electronic apparatus
JPH0899331A (en) * 1993-12-08 1996-04-16 Fumiyuki Shiina Plastic molding method
JPH07237243A (en) * 1994-02-28 1995-09-12 Fujitsu Ltd Electric wave shielding housing
JP3028096U (en) * 1995-11-16 1996-08-30 株式会社アドユニオン研究所 Electromagnetic wave shield resin molding
JP2000183468A (en) * 1998-12-16 2000-06-30 Matsushita Electric Ind Co Ltd Resin forming wiring board and its manufacturing method
JP2000334769A (en) * 1999-06-01 2000-12-05 Dainippon Printing Co Ltd Electromagnetic wave shielding molded product and production thereof
JP2001096548A (en) * 1999-09-29 2001-04-10 Matsushita Electric Ind Co Ltd Multicolor molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009035038A1 (en) * 2007-09-12 2009-03-19 Nissha Printing Co., Ltd. Double insert molded article and electronic device using the same
JP2012236298A (en) * 2010-06-10 2012-12-06 Shin Kobe Electric Mach Co Ltd Resin molded article
JP2016103521A (en) * 2014-11-27 2016-06-02 トヨタ自動車株式会社 Housing and manufacturing method for housing
JP2016103654A (en) * 2016-01-04 2016-06-02 旭化成ケミカルズ株式会社 Electronic equipment
CN114536647A (en) * 2021-12-25 2022-05-27 东莞市金铂钰橡塑五金制品有限公司 Mesh cloth ear cap forming method
KR20230171597A (en) * 2022-06-14 2023-12-21 주식회사 현대케피코 Magnetic field shielding structure of Hall IC embedded in transmission
KR102620857B1 (en) * 2022-06-14 2024-01-02 주식회사 현대케피코 Magnetic field shielding structure of Hall IC embedded in transmission

Also Published As

Publication number Publication date
JP4382396B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
CN110999560B (en) Resin-sealed vehicle-mounted electronic control device
KR19990078062A (en) Electronic Assembly and Method of Manufacture
EP3358920B1 (en) Electronic control device, and manufacturing method for vehicle-mounted electronic control device
US20100291394A1 (en) Injection molded plastic component having an insert
JP2014146522A (en) On-vehicle electronic module
WO2014208044A1 (en) Electronic device and method for manufacturing said electronic device
WO2007069399A1 (en) Light emitting device, semiconductor device, and its manufacturing method
WO2018055667A1 (en) Semiconductor device
CN110662372A (en) Electronic unit and method for manufacturing the same
JPH11150216A (en) Resin-encapsulated semiconductor part and manufacture thereof
US10325825B2 (en) Semiconductor apparatus
JP3762738B2 (en) In-vehicle electronic device housing structure
JP4382396B2 (en) Method for manufacturing electromagnetic shielding housing
JP2005340698A (en) Enclosed housing of electronic equipment
JP6335815B2 (en) Heat dissipation structure
CN109479381B (en) Electronic control device and assembling method thereof
CN106463487B (en) Electronic module with heat conducting device and method for manufacturing electronic module
JP3734225B1 (en) Surface mount type resin hollow package and semiconductor device using the same
JP2004136878A (en) Air venting device
JP2005093905A (en) Electronic substrate unit
JPH11260968A (en) Composite semiconductor device
JP3742495B2 (en) Servo amplifier housing
JP2007317837A (en) Electronic circuit board and its manufacturing method
JP2016201479A (en) Manufacturing method of electronic control unit
JP3795417B2 (en) Shield connector

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030609

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081204

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term