JP2004361236A - ジャイロスコープ - Google Patents

ジャイロスコープ Download PDF

Info

Publication number
JP2004361236A
JP2004361236A JP2003159712A JP2003159712A JP2004361236A JP 2004361236 A JP2004361236 A JP 2004361236A JP 2003159712 A JP2003159712 A JP 2003159712A JP 2003159712 A JP2003159712 A JP 2003159712A JP 2004361236 A JP2004361236 A JP 2004361236A
Authority
JP
Japan
Prior art keywords
roll
pitch
gyroscope
axis
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003159712A
Other languages
English (en)
Inventor
Yasukazu Fujimoto
靖一 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP2003159712A priority Critical patent/JP2004361236A/ja
Publication of JP2004361236A publication Critical patent/JP2004361236A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Gyroscopes (AREA)
  • Micromachines (AREA)

Abstract

【課題】傾斜角度を精度よく検出することができるコンパクトなジャイロスコープを提供する。
【解決手段】3軸レートジャイロは角速度の計測にのみ用い、ロール及びピッチの角度については、角速度を積分するのではなく、球体1を歪抵抗ワイヤW1〜W8で支持する傾斜計100において、ロール及びピッチの角度に応じた歪抵抗ワイヤW1〜W8の支持負担の変化(抵抗変化)に基づいて、演算により求める。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、ジャイロスコープに関する。
【0002】
【従来の技術】
ジャイロスコープは、例えば移動体のロール、ピッチ、ヨーの動きを検出する装置として使用されており、原理的には、機械式、光学式(例えば特許文献1参照。)、流体式、振動式(例えば特許文献2)が知られている。このようなジャイロスコープでは、コリオリの力やサンニャック効果等に基づいて、X,Y,Z3軸周りのロール、ピッチ、ヨーの各角速度を計測する。また、角速度を積分してロール及びピッチの傾斜角度を求める。
【0003】
【特許文献1】
特開平10−122865号公報(第4〜5頁、図1)
【特許文献2】
特許番号第2899664号公報(第3〜4頁、図1)
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような従来のジャイロスコープでは、ロール及びピッチの傾斜角度を求めるにあたって角速度の積分を行うことにより、角速度の計測値のドリフト(ゼロ点のずれ)に基づく誤差が出る。この誤差を小さく抑え込むには、ドリフトの許容値を厳しく制限する必要があり、その結果として、装置が大型化・複雑化し、高価なものとなる、という問題点があった。
【0005】
上記のような従来の問題点に鑑み、本発明は、傾斜角度を精度よく検出することができるコンパクトなジャイロスコープを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明のジャイロスコープは、ロール、ピッチ及びヨーの各角速度を検出する3軸レートジャイロと、質量mの物体に作用する重力mgを複数の方向から支持し、当該複数の方向における支持負担を、ロール及びピッチの姿勢変化に応じて変化させる傾斜センサ部と、前記支持負担に基づいてロール及びピッチの角度を演算する装置とを備えたものである。
上記のように構成されたジャイロスコープでは、角速度は3軸レートジャイロにより計測され、ロール及びピッチの角度については、角速度を積分するのではなく、傾斜センサ部において変化する支持負担に基づいて演算される。従って、ドリフトを含む角速度を積分することによる誤差の発生を回避して、ロール及びピッチの傾斜角度を精度よく検出することができる。また、3軸レートジャイロには厳しい許容ドリフトが求められることもないので、全体としてコンパクトなジャイロスコープを提供することができる。
【0007】
また、本発明のジャイロスコープは、ロール、ピッチ及びヨーの各角速度を検出する3軸レートジャイロと、質量mの物体に作用する重力mgを、当該物体の上下方向からそれぞれ少なくとも3本の複数の歪抵抗ワイヤによって支持し、ロール及びピッチの姿勢変化に応じて当該歪抵抗ワイヤの抵抗を変化させる傾斜センサ部と、前記歪抵抗ワイヤの抵抗変化に基づいてロール及びピッチの角度を演算する装置とを備えたものであってもよい。
上記のように構成されたジャイロスコープでは、角速度は3軸レートジャイロにより計測され、ロール及びピッチの角度については、角速度を積分するのではなく、歪抵抗ワイヤの抵抗変化に基づいて演算される。従って、ドリフトを含む角速度を積分することによる誤差の発生を回避して、ロール及びピッチの傾斜角度を精度よく検出することができる。また、3軸レートジャイロには厳しい許容ドリフトが求められることもないので、全体としてコンパクトなジャイロスコープを提供することができる。
【0008】
また、本発明のジャイロスコープは、ロール、ピッチ及びヨーの各角速度を検出する3軸レートジャイロと、質量mの物体に作用する重力mgを、互いに直交する3軸方向に配置された支持力発生装置により磁気的に非接触支持する支持装置と、前記支持装置の各軸に一対配置され、前記物体の変位を検出する変位センサと、前記物体を前記支持装置によって支持する構成全体が重力方向に対して姿勢を傾斜させたとき、前記変位センサの出力に基づいて前記物体を所定位置に支持すべく前記支持装置を制御し、各軸の前記支持力発生装置に供給する電流又は電圧に基づいてロール及びピッチの角度を演算する装置とを備えたものであってもよい。
上記のように構成されたジャイロスコープでは、角速度は3軸レートジャイロにより計測され、ロール及びピッチの角度については、角速度を積分するのではなく、各軸の支持力発生装置に流れる電流に基づいて演算される。従って、ドリフトを含む角速度を積分することによる誤差の発生を回避して、ロール及びピッチの傾斜角度を精度よく検出することができる。また、3軸レートジャイロには厳しい許容ドリフトが求められることもないので、全体としてコンパクトなジャイロスコープを提供することができる。
【0009】
また、上記ジャイロスコープにおいて、少なくとも支持装置及び変位センサが、MEMS技術により基板にマイクロ化して構成されたものであってもよい。
この場合、基板に全部品又は一部の部品をマイクロ化して作り込むことにより、これらを、小型で、高精度なものとすることができる。
【0010】
【発明の実施の形態】
図1は、本発明の第1実施形態によるジャイロスコープの一部を構成する傾斜計100における機械系の概略構造を示す斜視図である。図において、互いに直交する3軸を、X軸、Y軸及びZ軸とし、X−Y平面が水平面、Z軸の下向き方向が重力方向とする。当該傾斜計は、自動車やロボット等のX−Y2次元平面内で運動する対象について、X軸周り(ロール)の傾斜角度及びY軸周り(ピッチ)の傾斜角度を計測するために用いられ、これに基づいて姿勢の自動制御が行われる。なお、Z軸周り(ヨー)の傾斜角度は、自動車であれば運転手により制御されるものであり、自動制御されるべきものではないため、計測は不要である。
【0011】
図において、導電性材料からなる質量mの球体1は、X−Y−Z3軸の原点Oに位置している。一方、絶縁性材料からなり、X−Y平面に平行な支持リング2及び3は、Z軸上にある中心点から一定半径の円を描くものであり、原点OからZ方向へ上下に等距離離れた位置に固定されている。
【0012】
球体1は、上方の支持リング2及び下方の支持リング3から、それぞれ4本の歪抵抗ワイヤW1〜W4及びW5〜W8によって引っ張られ、これにより、原点Oに安定して支持されている。歪抵抗ワイヤW1〜W4は、その上端が支持リング2に対して位相角π/2で等配された位置に接続され、下端は、その延長線上に原点Oが存在するように球体1に接続されている。同様に、歪抵抗ワイヤW5〜W8は、その下端が支持リング3に対して位相角π/2で等配された位置に接続され、上端は、その延長線上に原点Oが存在するように球体1に接続されている。また、W1−W5,W2−W6,W3−W7,W4−W8が原点Oを挟んで同一線上にある。このようにして、支持リング2,3と、歪抵抗ワイヤW1〜W8とからなる支持体により、球体1に作用する重力mgが支えられ、球体1は原点Oに安定して支持される。
【0013】
上記歪抵抗ワイヤW1〜W8は、張力(支持力)に応じて歪を生じ、その抵抗値が変化するものである。従って、例えば球体1を接地して、歪抵抗ワイヤW1〜W8に電流を流すことにより支持リング2,3側の端部にそれぞれ生じる電位V1〜V8は、歪に応じて変化する。なお、支持リング2,3は、導電性材料からなるものであってもよいが、その場合には、歪抵抗ワイヤW1〜W8との接続箇所に絶縁を施し、各電位V1〜V8を独立して生じさせることが必要である。
【0014】
図2は、上記のような機械系の構造を有する傾斜計100について、その電気系の構成を示す図である。図において、ジャイロスコープ300は、傾斜計100と、既知の3軸レートジャイロ200とにより、構成されている。3軸レートジャイロ200は、機械式、光学式、流体式、振動式等、いずれのタイプを用いてもよい。
【0015】
傾斜計100は、接地された球体1に対して、所定電圧Vsの電源4から図示のように抵抗を介して回路を形成したものと、図示の各電圧V1〜V4及びV5〜V8に対して必要に応じて所定の信号処理(サンプルホールドや増幅等)を行う信号処理回路5と、信号処理回路5の出力をA/D変換して出力するA/Dコンバータ6と、A/Dコンバータ6の出力を取り込む演算装置7とを備えたものである。抵抗R0はすべて同一の抵抗値であり、また、抵抗R1〜R8は、それぞれ、歪抵抗ワイヤW1〜W8の有する抵抗値である。ここで、R0>>R1〜R8となるように抵抗R0を選択することにより、例えば、
V1=Vs(R1/(R0+R1))≒Vs(R1/R0)
となり、抵抗R1に比例する電圧V1を得ることができる。V2〜V8についても同様である。
【0016】
なお、支持力に応じた電圧V1〜V8を得る回路としては、図2の構成の他、例えば図3に示すように、一定の電流Isを供給する定電流源8を用いてもよい。この場合、電圧Vn(n=1〜8)は、Vn=Is・Rnとなり、各抵抗R1〜R8に比例する電圧V1〜V8を得ることができる。
【0017】
上記の構成において、図1に示す傾斜計100の機械系は、重力の方向(Z軸のマイナス方向)に対して傾斜していない場合には、上部側の4本の歪抵抗ワイヤW1〜W4による支持力(張力)は互いに均等であり、電圧V1〜V4は互いに同一である。また、下部側の4本の歪抵抗ワイヤW5〜W8による支持力(張力)も互いに均等であり、電圧V5〜V8は互いに同一である。一方、機械系が重力の方向に対してX軸、Y軸周りの傾斜、すなわちロール、ピッチの姿勢変化を生じると、各歪抵抗ワイヤW1〜W8の負担する支持力が変化する。ロール及びピッチの傾斜角度と各歪抵抗ワイヤW1〜W8の負担する支持力とは、一定の幾何学的関係から1対1に対応し、支持力がわかればロール及びピッチの傾斜角度がわかる。そこで、演算装置7は、入力された電圧V1〜V8に基づいて各歪抵抗ワイヤW1〜W8の負担する支持力を求め、ロール及びピッチの傾斜角度を演算する。このようにして、ロール及びピッチの傾斜角度は、傾斜計100の演算装置7から出力される。また、3軸レートジャイロ200は、ロール、ピッチ、ヨーの各角速度を出力する。
【0018】
以上のように、各歪抵抗ワイヤW1〜W8に対してどのように支持負担がかかっているかによって、ロール、ピッチの傾斜角度がわかる。従って、球体1を支持リング2,3及び歪抵抗ワイヤW1〜W8によって支持する構成全体により、当該構成の姿勢の傾斜に応じて歪抵抗ワイヤW1〜W8の支持負担を変化させる「傾斜センサ部」が構成されている、と考えることができる。
【0019】
このようにして、角速度を積分して角度を演算するのではなく、3軸レートジャイロ200は角速度の計測のみを担当し、角度については傾斜計100から出力することとしたので、ドリフトを含む角速度を積分することによる誤差の発生を回避して、傾斜角度を精度よく検出することができる。なお、傾斜計100自体にもドリフトは存在するが、積分を行わないため、それによる誤差は、角速度を積分することで生じる誤差に比べて非常に小さく、無視し得るレベルである。また、3軸レートジャイロ200には厳しい許容ドリフトが求められることもないので、全体としてコンパクトなジャイロスコープ300を提供することができる。
【0020】
なお、上記実施形態においては、球体1を、その上下方向からそれぞれ4本の歪抵抗ワイヤにより支持したが、この支持本数は4本に限られるものではない。すなわち、5本以上でもよいし、3本でもよい。2本でも、互いに180度位相がずれた2本を上下で互いに90度位相をずらして配置すれば支持及び傾斜角度の演算が可能ではあるが、安定性に欠けるので、少なくとも3本設けることが好ましい。
また、歪抵抗ワイヤに一定の剛性が確保できる場合(ほぼ一定の線状形態を維持できる場合)には、上方の歪抵抗ワイヤのみで球体1を吊り下げるように支持するか、又は、下方の歪抵抗ワイヤのみで球体1を持ち上げるように支持することもできる。
【0021】
図4は、第2実施形態によるジャイロスコープの一部を構成する傾斜計100における機械系の概略構造を示す斜視図である。図において、互いに直交する3軸を、X軸、Y軸及びZ軸とし、X−Y平面が水平面、Z軸の下向き方向が重力方向とする。X,Y,Z軸には、磁性体からなる質量mの球体1を挟んで各一対合計三組の電磁石Mx1,Mx2,My1,My2,Mz1,Mz2が配置されている。また、各電磁石Mx1,Mx2,My1,My2,Mz1,Mz2の軸心にはそれぞれ、変位センサSx1,Sx2,Sy1,Sy2,Sz1,Sz2が埋め込まれている。変位センサSx1,Sx2,Sy1,Sy2,Sz1,Sz2の出力に基づいて後述の制御回路により電磁石Mx1,Mx2,My1,My2,Mz1,Mz2を制御することによって、球体1に作用する重力mgは磁力(吸引力)により支持され、球体1がX−Y−Z各軸の原点に磁気浮上の状態で位置する。
【0022】
図5は、上記第2実施形態による傾斜計100の制御系の構成を示すブロック回路図である。第1実施形態と同様に、傾斜計100及び3軸レートジャイロ200により、ジャイロスコープ300が構成されている。図において、変位センサSx1,Sx2の出力電圧はそれぞれ、A/Dコンバータ9によりディジタル信号VX1,VX2に変換された後、演算装置10に入力される。演算装置10は、これらの信号に基づいて、電磁石Mx1,Mx2の駆動信号を決定する。駆動信号はD/Aコンバータ11によってアナログ信号に変換された後、増幅器やフィードバック回路を含む駆動回路12,13によって増幅され、その出力により電磁石Mx1,Mx2が励磁される。電磁石Mx1,Mx2に流れる電流はそれぞれ電流検出回路14,15によって検出され、駆動回路12,13にフィードバックされるとともに、A/Dコンバータ9によりディジタル信号に変換され、演算装置10に入力される。なお、図示しているのはX軸の電磁石Mx1,Mx2についての回路であるが、Y軸の電磁石My1,My2、Z軸の電磁石Mz1,Mz2についても同様の回路が構成されている。電磁石Mx1,Mx2,My1,My2,Mz1,Mz2及びこれらを駆動する演算装置10、D/Aコンバータ11及び駆動回路12,13は、球体1の支持装置を構成している。
【0023】
上記のような第2実施形態の傾斜計100において、Z軸が重力の方向と一致し、球体1が目標位置であるX軸原点にあるときは、(VX1−VX2)の値は0である。しかし、もし球体1がX方向の変位を生じると、その変位に応じて(VX1−VX2)の値が0以外の値となる。その場合、演算装置10は、PID制御により、(VX1−VX2)の値が0に向かうように、電磁石Mx1,Mx2の駆動信号を決定する。従って、外乱加速度等に対して十分に速い応答速度を制御系に確保することによって、球体1がX方向に変位を生じると、元の位置(原点)に戻す制御が高速に実行され、球体1は常に原点位置に支持されるように制御が行われる。Y,Z方向についても全く同様の制御が行われる。従って、球体1は常に、X−Y−Z3次元の原点位置にある、と考えることができる。
【0024】
上記のような前提の下で、ロール、ピッチによってZ軸が重力の方向と一致しない状態になったとき、過渡的に球体1に変位が生じ、これを元に戻そうとする制御が行われる。その結果、球体1を原点に支持しようとすると、各電磁石Mx1,Mx2,My1,My2,Mz1,Mz2による重力mgの支持負担が変化する。すなわち、本実施形態の傾斜計100は、電磁石の支持負担の変化に基づいて、ロール、ピッチの傾斜角度を求めようとするものである。また、球体1を電磁石によって支持する構成全体により、当該構成の姿勢の傾斜に応じて電磁石の支持負担を変化させる「傾斜センサ部」が構成されている、と考えることができる。
【0025】
次に、電磁石の支持力と傾斜角度との関係について説明する。今、仮に、重力mgの方向とZ軸とが互いに一致しない状態になったとする。このとき、重力mgを支えるためには、それと逆方向に同じ大きさの力が、電磁石によって作り出されていることが必要であるので、X,Y,Z各軸とmはベクトル)との関係は図6のように表現できる。なお、実際にはmが鉛直上向きで、X,Y,Zが全体として傾くが、便宜上、図6のように考えても同じである。
【0026】
図6において、m方向の単位ベクトルを とし、その極角はθ、方位角はφとする。この場合、単位ベクトル を、X,Y,Z成分で表すと、
=(cosφsinθ,sinφsinθ,cosθ)
となる。また、mは、
=(mgcosφsinθ,mgsinφsinθ,mgcosθ)
である(但し、右辺のgはスカラー)。すなわち、重力のX方向、Y方向、Z方向成分をそれぞれGx,Gy,Gzとすると、
Gx=mgcosφsinθ ...(1)
Gy=mgsinφsinθ ...(2)
Gz=mgcosθ ...(3)
となる。
【0027】
積分型フィードバックによる磁気浮上制御を行うと、平衡点(球体1がX−Y−Z空間の原点に静止浮上する状態)では、磁力と重力との平衡により、電磁石Mx1,Mx2,My1,My2,Mz1,Mz2に流れる電流をそれぞれix1,ix2,iy1,iy2,iz1,iz2とすると、以下の式が成り立つ。
Gx=K(ix1−ix2) ...(4)
Gy=K(iy1−iy2) ...(5)
Gz=K(iz1−iz2) ...(6)
但し、Kは電磁石定数であり、各電磁石Mx1,Mx2,My1,My2,Mz1,Mz2で同じ値とする。ここで、式(1)〜(3)と式(4)〜(6)とにより、
Gx=mgcosφsinθ=K(ix1−ix2) ...(7)
Gy=mgsinφsinθ=K(iy1−iy2) ...(8)
Gz=mgcosθ=K(iz1−iz2) ...(9)
となる。
【0028】
ここで、tanφ=sinφ/cosφ=Gy/Gxであり、式(7),(8)より、
tanφ=Gy/Gx=(iy1−iy2)/(ix1−ix2)
である。従って、
φ=tan−1{(iy1−iy2)/(ix1−ix2)} ...(10)
となる。すなわち、電流ix1,ix2,iy1,iy2に基づいて、方位角φを求めることができる。電流ix1,ix2,iy1,iy2は、電流検出回路14,15等で検出され、演算装置10に入力されるので、式(10)により方位角φを演算することができる。
【0029】
次に、極角θを求める関係式を導く。まず、式(1),(2)より、
Figure 2004361236
である。また、式(4),(5)より、
Gx+Gy=K (ix1−ix2)+K (iy1−iy2)...(12)
であるから、式(11),(12)より、
sinθ=K (ix1−ix2)+K (iy1−iy2)
である。ここで、K>0であり、0≦θ≦πではsinθ≧0であるから、
mgsinθ=K{(ix1−ix2)+(iy1−iy2)1/2...(13)
となる。
【0030】
tanθは、mgsinθを用いて表すと、tanθ=(mgsinθ)/(mgcosθ)であるから、式(9),(13)より、
Figure 2004361236
である。従って、
θ=tan−1〔{(ix1−ix2)+(iy1−iy2)1/2 /(iz1−iz2)〕 ...(15)
となる。すなわち、極角θは、電流ix1,ix2,iy1,iy2,iz1,iz2に基づいて、演算装置10内で式(15)の演算を行うことにより、求めることができる。なお、θが、0≦θ≦π/2又はπ/2≦θ≦πのいずれにあるかは、(iz1−iz2)の符号により、これを判断することができる。
【0031】
以上のように、電磁石Mx1,Mx2,My1,My2,Mz1,Mz2の電流に基づいて、傾斜の方位角φ及び極角θを、演算装置10における演算によって求めることができる。また、ロールの角度θrは、単位ベクトル をY−Z平面上に投影した、Z軸からの角度であるから、
tanθr=sinφsinθ/cosθ=sinφtanθ
であり、
θr=tan−1(sinφtanθ) ...(16)
により求めることができる。同様に、ピッチの角度θpは、単位ベクトル をX−Z平面上に投影した、Z軸からの角度であるから、
tanθp=cosφsinθ/cosθ=cosφtanθ
であり、
θp=tan−1(cosφtanθ) ...(17)
により求めることができる。従って、演算装置10は、ロール及びピッチの角度θr及びθpを式(16),(17)により演算し、出力することができる。
【0032】
このようにして、第1実施形態の場合と同様に、角速度を積分して角度を演算するのではなく、3軸レートジャイロ200は角速度の計測のみを担当し、角度については傾斜計100から出力することとしたので、ドリフトを含む角速度を積分することによる誤差の発生を回避して、傾斜角度を精度よく検出することができる。また、3軸レートジャイロ200には厳しい許容ドリフトが求められることもないので、全体としてコンパクトなジャイロスコープ300を提供することができる。
なお、変位センサSx1,Sx2,Sy1,Sy2,Sz1,Sz2によって検出される球体1の変位に基づいて、演算装置10において、球体1の運動軌跡を解析することができる。これにより、X−Y−Z3軸方向の加速度を計測することが可能である。
【0033】
次に、上記第2実施形態による傾斜計100を、MEMS(Micro Electro−Mechanical System)技術を利用して、マイクロ化して実現した一例を示す。図7の(a)は、MEMS技術により基板に形成した傾斜計の平面図であり、(b)は、その側面図である。(a)において、強磁性体からなる球体1は基板51の中央に埋設され、その周りに電磁石Mx1,Mx2,My1,My2を構成する磁性体と、変位センサSx1,Sx2,Sy1,Sy2とが配置されている。また、基板51上には、各軸用の、図5に示す傾斜計100の回路101〜106が設けられている。但し、場合によっては、傾斜計100の回路の一部は外部に設けてもよい。
【0034】
一方、(b)において、球体1の周りに電磁石Mz1,Mz2を構成する磁性体と、変位センサSz1,Sz2とが配置されている。基板51は、電磁石Mz1及び変位センサSz1を含む第1層シリコン基板51aと、電磁石Mx1,Mx2,My1,My2及び変位センサSx1,Sx2,Sy1,Sy2を含む第2層シリコン基板51bと、電磁石Mz2及び変位センサSz2を含む第3層シリコン基板51cとにより、構成されている。
【0035】
上記のようにして、基板51に全部品又は一部の部品をマイクロ化して作り込むことにより、傾斜計100を、小型で、高精度なものとすることができる。
【0036】
なお、上記各実施形態では球体1を使用したが、必ずしも球体に限定されるものではなく、基本的には、他の形状の物体であってもよい。
また、上記第2実施形態においては電磁石が発生する磁力を、電磁石に流れる電流に基づいて求めたが、電流を電圧に置き換えて、電圧に基づいて磁力を求めてもよい。
【0037】
【発明の効果】
以上のように構成された本発明のジャイロスコープによれば、ロール及びピッチの角度については、角速度を積分するのではなく、傾斜センサ部において変化する支持負担に基づいて演算されるので、ドリフトを含む角速度を積分することによる誤差の発生を回避して、ロール及びピッチの傾斜角度を精度よく検出することができる。また、3軸レートジャイロには厳しい許容ドリフトが求められることもないので、全体としてコンパクトなジャイロスコープを提供することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態によるジャイロスコープの一部を構成する傾斜計における機械系の概略構造を示す斜視図である。
【図2】図1に示す機械系の構造を有する傾斜計について、その電気系の構成を示す図である。
【図3】図2とは異なる他の構成を示す図である。
【図4】第2実施形態によるジャイロスコープの一部を構成する傾斜計における機械系の概略構造を示す斜視図である。
【図5】上記第2実施形態による傾斜計の制御系の構成を示すブロック回路図である。
【図6】上記第2実施形態による傾斜計におけるX,Y,Z各軸とmgとの関係を示す図である。
【図7】(a)は、MEMS技術により基板に形成した傾斜計の平面図であり、(b)は、その側面図である。
【符号の説明】
1 球体
2,3 支持リング
6,9 A/Dコンバータ
7,10 演算装置
11 D/Aコンバータ
12,13 駆動回路
14,15 電流検出回路
51 基板
200 3軸レートジャイロ
300 ジャイロスコープ
Mx1,Mx2,My1,My2,Mz1,Mz2 電磁石(支持力発生装置)
(10〜13、Mx1,Mx2,My1,My2,Mz1,Mz2) 支持装置
Sx1,Sx2,Sy1,Sy2,Sz1,Sz2 変位センサ
W1〜W8 歪抵抗ワイヤ

Claims (4)

  1. ロール、ピッチ及びヨーの各角速度を検出する3軸レートジャイロと、
    質量mの物体に作用する重力mgを複数の方向から支持し、当該複数の方向における支持負担を、ロール及びピッチの姿勢変化に応じて変化させる傾斜センサ部と、
    前記支持負担に基づいてロール及びピッチの角度を演算する装置と
    を備えたことを特徴とするジャイロスコープ。
  2. ロール、ピッチ及びヨーの各角速度を検出する3軸レートジャイロと、
    質量mの物体に作用する重力mgを、当該物体の上下方向からそれぞれ少なくとも3本の複数の歪抵抗ワイヤによって支持し、ロール及びピッチの姿勢変化に応じて当該歪抵抗ワイヤの抵抗を変化させる傾斜センサ部と、
    前記歪抵抗ワイヤの抵抗変化に基づいてロール及びピッチの角度を演算する装置と
    を備えたことを特徴とするジャイロスコープ。
  3. ロール、ピッチ及びヨーの各角速度を検出する3軸レートジャイロと、
    質量mの物体に作用する重力mgを、互いに直交する3軸方向に配置された支持力発生装置により磁気的に非接触支持する支持装置と、
    前記支持装置の各軸に一対配置され、前記物体の変位を検出する変位センサと、
    前記物体を前記支持装置によって支持する構成全体が重力方向に対して姿勢を傾斜させたとき、前記変位センサの出力に基づいて前記物体を所定位置に支持すべく前記支持装置を制御し、各軸の前記支持力発生装置に供給する電流又は電圧に基づいてロール及びピッチの角度を演算する装置と
    を備えたことを特徴とするジャイロスコープ。
  4. 少なくとも前記支持装置及び変位センサが、MEMS技術により基板にマイクロ化して構成された請求項3に記載のジャイロスコープ。
JP2003159712A 2003-06-04 2003-06-04 ジャイロスコープ Withdrawn JP2004361236A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159712A JP2004361236A (ja) 2003-06-04 2003-06-04 ジャイロスコープ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159712A JP2004361236A (ja) 2003-06-04 2003-06-04 ジャイロスコープ

Publications (1)

Publication Number Publication Date
JP2004361236A true JP2004361236A (ja) 2004-12-24

Family

ID=34052703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159712A Withdrawn JP2004361236A (ja) 2003-06-04 2003-06-04 ジャイロスコープ

Country Status (1)

Country Link
JP (1) JP2004361236A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035385A (ko) * 2010-10-05 2012-04-16 현대모비스 주식회사 운전 환경 제어 시스템 및 방법
KR101357599B1 (ko) 2013-08-19 2014-02-05 한국항공우주연구원 3차원 구체 구동 장치
CN106123883A (zh) * 2016-08-31 2016-11-16 大连民族大学 球体转子三轴陀螺仪
CN113267168A (zh) * 2021-06-21 2021-08-17 甘肃第四建设集团有限责任公司 一种物体倾斜测量装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035385A (ko) * 2010-10-05 2012-04-16 현대모비스 주식회사 운전 환경 제어 시스템 및 방법
KR101709175B1 (ko) * 2010-10-05 2017-02-22 현대모비스 주식회사 운전 환경 제어 시스템 및 방법
KR101357599B1 (ko) 2013-08-19 2014-02-05 한국항공우주연구원 3차원 구체 구동 장치
CN106123883A (zh) * 2016-08-31 2016-11-16 大连民族大学 球体转子三轴陀螺仪
CN113267168A (zh) * 2021-06-21 2021-08-17 甘肃第四建设集团有限责任公司 一种物体倾斜测量装置

Similar Documents

Publication Publication Date Title
Fang et al. Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG
JP4892189B2 (ja) 反磁性浮上システム
JP2005140727A (ja) 歪みゲージ型センサおよびこれを利用した歪みゲージ型センサユニット
JP2006300880A (ja) 傾斜センサおよびこれを用いた方位計測装置
Bernstein et al. Development of air spindle and triaxial air bearing testbeds for spacecraft dynamics and control experiments
JPH0911999A (ja) 非接触型かつ分離安定型の微重力プラットフォームシステム
Aktakka et al. A six-axis micro platform for in situ calibration of MEMS inertial sensors
JP2004361236A (ja) ジャイロスコープ
JP2004361237A (ja) 傾斜計
US20040244486A1 (en) Inertial navigation device for ion propulsion driven spacecraft
JP5017527B2 (ja) 電子コンパスシステム
JP4942173B2 (ja) 非接触型剛体回転制御装置
Alandry et al. A CMOS-MEMS inertial measurement unit
RU163835U1 (ru) Трехкомпонентный измеритель угловой скорости на основе гироскопа ковалевской сферической формы с электростатическим подвесом
US20100275686A1 (en) Inertial sensing system with a curved base and a diamagnetic mass
CN110967522A (zh) 一种风场梯度的测量方法
JP5697149B2 (ja) 加速度センサ特性評価方法及びプログラム
JP6763749B2 (ja) 移動体制御システム及び移動体
JPH07198407A (ja) 磁気測定器
RU2542793C1 (ru) Устройство для определения положения объекта в пространстве
RU175218U1 (ru) Трехкомпонентный измеритель угловой скорости на основе гироскопа Ковалевской с пружинным подвесом
JP2011069633A (ja) 携帯機器
JP5341861B2 (ja) 磁界検知装置
CN114295863B (zh) 一种基于单磁悬浮控制敏感陀螺的三轴加速度测量方法
Wang et al. Application of rotation vector algorithm for SINS attitude updating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905