JP2004361158A - 生化学検出装置及び検出方法 - Google Patents

生化学検出装置及び検出方法 Download PDF

Info

Publication number
JP2004361158A
JP2004361158A JP2003157711A JP2003157711A JP2004361158A JP 2004361158 A JP2004361158 A JP 2004361158A JP 2003157711 A JP2003157711 A JP 2003157711A JP 2003157711 A JP2003157711 A JP 2003157711A JP 2004361158 A JP2004361158 A JP 2004361158A
Authority
JP
Japan
Prior art keywords
detection target
microparticles
detection
observation image
visible light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003157711A
Other languages
English (en)
Inventor
Seitaro Fujishima
島 清太郎 藤
Yoshinori Moriya
屋 美 紀 守
Koji Horio
尾 浩 司 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moritex Corp
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Priority to JP2003157711A priority Critical patent/JP2004361158A/ja
Priority to PCT/JP2004/008066 priority patent/WO2004109283A1/ja
Publication of JP2004361158A publication Critical patent/JP2004361158A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

【課題】極めて安価にしかも簡単な演算処理で、多数の検出対象を正確にしかも短時間で検出できるようにする。
【解決手段】可視光で識別することができる識別特性を備えた多数の微小粒子(A〜A100)の夫々に、予め選定された検出対象(C〜C100)に対して特異的に結合する特異的結合物質(B〜B100)を識別特性ごとに担持させておき、微小粒子(A〜A100)にサンプル中に存在する検出対象を付着させた後、その検出対象に蛍光標識(R)を付着させ、全微小粒子の蛍光観察画像(G)及び可視光観察画像(G)を取り込み、検出対象が結合した微小粒子の二次元位置情報を蛍光観察画像(G)に基づいて取得し、その識別特性を前記二次元位置情報と可視光観察画像(G)に基づいて抽出し、微小粒子に結合された検出対象の種類を予め設定された識別特性−検出対象対照データに基づいて特定するようにした。
【選択図】図1

Description

【0001】
【発明の属する技術分野】
本発明は、サンプル内にどのような生化学物質・微生物・細胞などが存在するかを分析するための生化学検出装置及び検出方法に関する。
【0002】
【従来の技術】
近年、社会の高齢化と共に重症肺炎で入院・死亡する患者が増加している。また、集中治療室などで治療を受けて一命を取りとめた重症患者が、症状が落ち着いてきたときに院内肺炎にかかり、再び重篤な状態に陥ることが珍しくない。
このため、肺炎に関する早期診断システムの確立が求められており、気管支肺胞洗浄(BAL)液や喀痰中における病原菌の特定を早期に行うことができれば、早期診断・早期治療を行うことができる。
【0003】従来、人の血液、喀痰等のサンプルに存在する病原菌を特定する場合、一般的には、希釈されたサンプルを寒天培地に滴下して、孵卵器内で一日以上かけて培養させ、培養された菌を顕微鏡観察することにより特定しているが、このような手法では培養に時間がかかり過ぎ、早期診断は不可能である。
【0004】このため、マイクロビーズ等の微小粒子を用い、抗原抗体反応を利用して、サンプル中にどのような病原菌や微生物(検出対象)が存在するかを早期に診断するシステムが提案されている(特許文献1及び2)
【0005】
【特許文献1】特開2001−520323号公報
【特許文献2】特開2002−501184号公報
【0006】これらによれば、例えば赤色蛍光顔料とオレンジ蛍光顔料を夫々8段階に色付けして、8×8=合計64色のカラーマトリックスに色分けされた直径5μm程度のマイクロビーズを製造し、夫々のビーズに、特定の病原菌に対する抗体を付けておく。
ここで、マイクロビーズは64色に色分けされているから、最大64種類の病原菌に対する抗体をつけることができ、このときのビーズの色−病原菌データを予め設定しておく。
【0007】そして、このマイクロビーズを人の血液、痰等のサンプルと接触させることにより抗原抗体反応を起こさせれば、個々のビーズ上抗体に対して病原菌が選択的に付着する。
次いで、蛍光標識を付した二次抗体とビーズを接触させれば、ビーズ上抗体と結合している病原菌に蛍光標識が付着する。
【0008】このように反応させたマイクロビーズをフローサイトメータにより一つずつ流しながら、赤色レーザによりビーズの色を判別すると共に、緑色レーザで蛍光標識の結合量を計測する。
これにより、蛍光標識有りと判断されたビーズの色に基づき、色−病原菌データを参照すれば、どの種類の病原菌が付着しているかが簡単にわかり、その蛍光強度により付着量も知ることができる。
【0009】
【発明が解決しようとする課題】
しかしながら、この検出方法に用いる検出装置は、1式1000万円程度と極めて高価なだけでなく、一種類のタンパク質やDNAなどの生化学物質を検出する試薬キットが約10万円もするため、多種類の物質を低コストで同定することが必要な各種検査での実用化は困難である。さらに、現状では、一部のサイトカイン等のタンパク質を検出するための試薬キットしか市販されていないため、病原菌の同定・定量を行えるようにすることが要望されている。
【0010】また、測定原理上は8×8=64色に限らず、市販品では10段階に色分けした10×10=100色のカラーマトリックスも形成可能であるため、何種類でもタンパク質を識別可能である。
しかし、現実には同系色の濃淡を正確に8段階に色分けすることが品質管理上困難であるばかりでなく、極めて高精度の測定機器を用いても誤差を含む8段階の濃淡を正確に識別することは困難であり、通常は各色3〜4段階の濃淡を付して3×3=9色、または、4×4=16色のカラーマトリックスを形成し、9−16種類のタンパク質を識別するに止まる。
【0011】また、検出にあっては、サンプルと接触させた多数のマイクロビーズをフローサイトメータにより一つずつ流して、マイクロビーズの色及び蛍光標識の有無を判断しているが、この場合に、光源としてマイクロビーズの色を識別するためのレーザと、蛍光標識の無を識別するためのレーザを必要とする。
さらに、赤系の蛍光色を呈するマイクロビーズの色を検出するためにアバランシュ型ホトダイオードや、蛍光標識となる緑系の蛍光を検出するために光電子増倍管を用いているため、装置が大掛かりで処理も複雑化し面倒になるという問題があった。
【0012】そこで本発明は、極めて安価にしかも簡単な演算処理で、多数の検出対象を正確にしかも短時間で検出できるようにすることを技術的課題としている。
【0013】
【課題を解決するための手段】
この課題を解決するために、本発明は、予め選定された検出対象の夫々に対して特異的に結合する特異的結合物質を検出対象別に担持させた多数の微小粒子をサンプルと接触させ、そのサンプルに存在する検出対象を微小粒子に付着させた後、その検出対象にルミネッセンス標識を付着させて観察することにより検出対象の種類を特定する生化学検出装置であって、前記微小粒子が、可視光で識別することができ、且つ、前記検出対象の種類ごとに異なる識別特性を備えており、前記ルミネッセンス標識の付着後に、微小粒子のルミネッセンス観察画像及び可視光観察画像を取り込む撮像装置と、その画像に基づいて微小粒子に結合した検出対象の種類を特定する画像処理装置とを備え、前記画像処理装置は、検出対象が結合した微小粒子の二次元位置情報をルミネッセンス観察画像に基づいて取得する位置情報検出手段と、その識別特性を前記二次元位置情報と可視光観察画像に基づいて抽出する識別特性抽出手段と、微小粒子に結合された検出対象の種類を予め設定された識別特性−検出対象対照データに基づいて特定する検出対象特定手段を備えたことを特徴とする。
【0014】本発明によれば、例えば、検出対象が例えば病原菌である場合、色(識別特性)の異なるマイクロビーズ(微小粒子)を検出しようとする病原菌の数に応じた色数分用意する。そして、各色のマイクロビーズに、その色と病原菌を対応させて、夫々の病原菌に対して抗原抗体反応により特異的に結合する抗体(特異的結合物質)を担持させておく。
このマイクロビーズを気管支肺胞洗浄液等のサンプルと接触させると、そのサンプルに存在する病原菌が抗原抗体反応により、ビーズ上抗体と結合し、さらに、ルミネッセンス標識となる蛍光標識が付された二次抗体をビーズに接触させることにより、ビーズ上抗体と結合したその病原菌に蛍光標識が付される。
【0015】ここで、全てのマイクロビーズを観察面上に分散させ、蛍光観察画像と可視光観察画像を撮像する。
蛍光観察画像からは、蛍光点の位置から病原菌が付着したマイクロビーズの二次元位置情報が得られ、蛍光量から付着量を計測することができるが、病原菌の菌種を特定することはできない。
一方、可視光観察画像からは、全てのマイクロビーズの二次元位置情報と、色情報(識別特性情報)が得られる。
【0016】ここで、マイクロビーズの色と病原菌の菌種は1:1に対応しているので、蛍光観察画像で得られた二次元位置情報に基づき、同じ位置にある可視光観察画像のビーズの色を参照すれば、個々のビーズに付着している病原菌の菌種が特定される。
【0017】したがって、100種類の病原菌を検出する場合でも、100色に色分けされたマイクロビーズを用いて、2種類の画像を取り込むだけで、病原菌の菌種が特定され、菌量が計測される。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて具体的に説明する。
図1は本発明に係る生化学検出装置を示す説明図、図2は画像処理装置のプログラムを示すフローチャート、図3は各プログラムの具体的処理を示すフローチャート、図4〜図8は本発明に係る生化学検出方法の一例を示す説明図である。
【0019】図1に示す生化学検出装置1は、例えば、予め100種類の病原菌C〜C100を検出対象として選定しておき、気管支肺胞洗浄液などのサンプルに、検出対象となっている病原菌C〜C100のうちどれが存在するかを特定するために用いられるものである。
【0020】本例では、100種類の病原菌C〜C100を種類別に付着させる100種類のマイクロクビーズ(微小粒子)A〜A100が用いられると共に、各マイクロビーズA〜A100に付着した病原菌の菌種を特定して菌量を計測するために、全てのマイクロビーズA〜A100を二次元的に分散させた状態で蛍光観察(ルミネッセンス観察)及び可視光観察を行う倒立顕微鏡2と、その観察画像を撮像する撮像装置3と、その観察画像を画像処理する画像処理装置4を備えている。
【0021】マイクロビーズA〜A100は、例えばポリスチレン製で直径1〜50μm程度に形成され、検出しようとする病原菌C〜C100の種類に対応する数分の異なる識別特性を備えている(図4参照)。
この識別特性として、本例では色を用いており、100種類の病原菌C〜C100を検出する場合は、夫々の病原菌C〜C100に対応して100色に色分けされた100種類のマイクロビーズA〜A100が用いられる。
また、マイクロビーズA〜A100の表面には、夫々の病原菌C〜C100に対して抗原抗体反応により特異的に結合する抗体(特異的結合物質)B〜B100が種類別に担持されている。
【0022】倒立顕微鏡2は、サンプルと接触させたマイクロビーズA〜A100に蛍光標識を付着させた後、これらの蛍光観察及び可視光観察を行うもので、蛍光観察用光源(ルミネッセンス観察用光源)5と可視光観察用光源6を備えると共に、その観察画像を取り込む撮像装置3が設けられている。
蛍光観察用光源5としては、Arレーザ、赤色LED、青色LED、緑色LED等が用いられ、可視光観察用光源6としてはハロゲンランプ、白色LED、キセノンランプ、水銀ランプなどが用いられ、撮像装置3としてはCCDカメラが用いられている。
この顕微鏡2で観察する場合、例えば、底部がフラットに形成された96穴のマイクロプレート7を用いて、各ウェル8…に100種類のマイクロビーズA〜A100を同数程度ずつ均一に分散させた検出液を入れ、任意のサンプルを滴下することにより、サンプルとマイクロビーズA〜A100を接触させる(図5参照)。
例えば、サンプルに病原菌C〜Cが存在する場合、各病原菌C〜Cは抗原抗体反応により夫々に対応する抗体B〜Bが付されたマイクロビーズA〜Aに結合する(図6(a)参照)。
次いで、蛍光標識Rが付された二次抗体D〜D100をウェル8内に滴下させると、病原菌C〜Cと結合しているマイクロビーズA〜Aにのみ蛍光標識Rが付されることになる(図6(b)参照)。
なお、二次抗体D〜D100としては、各病原菌C〜C100に対して抗原抗体反応により特異的に結合する抗体を用い、蛍光標識Rはどの二次抗体D〜D100に対しても同じものを付しておく。
本例ではArレーザを照射することにより緑色蛍光を呈する緑色蛍光物質を付してある。
【0023】なお、顕微鏡2で観察するときに、マイクロビーズA〜A100が3次元的に浮遊していると、対物レンズの焦点深度の関係から全てのビーズA〜A100を同時に観察することができないので、これらを同一観察面上に二次元的に分散させる必要があり、本例では、静電気力及び磁力を利用してみた。
静電気力による場合は、マイクロビーズA〜A100を予め帯電させると共に、ウェル8の底面に透明電極(図示せず)を貼り付けておき、この透明電極によりウェル8の底面をマイクロビーズA〜A100と反対極の極性に帯電させれば、その静電気力によりマイクロビーズA〜A100がウェル8の底面に引き付けられて二次元的に並ぶ。
また磁力による場合は、マイクロビーズA〜A100を磁化して磁性粒子とし、各ウェル8の底面も磁化させれば、その磁力によりマイクロビーズA〜A100は各ウェル8の底面に並ぶ。
その他、誘電泳動法により粒子を底面にならべたり、レーザー干渉計を用いた光ピンセットにより粒子を底面に並べたり、さらには、ポリリジンなどの接着剤を用いて予め微小粒子を底面に接着させたりしてもよい。
このようにして、二次元的に分散されたマイクロビーズA〜A100を蛍光観察及び可視光観察し、その画像を撮像装置3で取り込む。
【0024】撮像装置3は、倒立顕微鏡2で観察される蛍光観察画像(ルミネッセンス観察画像)と可視光観察画像を取り込むもので、前記各光源5及び6の照明光をシャッターS及びS、フィルター、ミラー等で切り換えることにより、暗視野で蛍光観察画像Gを撮像した直後に、明視野で可視光観察画像G(図7参照)を撮像することにより二種類の画像を略同時に取り込むことができ、夫々の画像G及びGが画像処理装置4に対して出力される。
【0025】画像処理装置4では、入力された蛍光観察画像Gと可視光観察画像Gに基づいて病原菌の菌種の特定と菌量の計測を行う。
画像処理装置4は、蛍光観察画像Gから得られる蛍光点の二次元位置情報及び夫々に対応する蛍光量を記憶させる座標−光量テーブル9と、可視光観察画像Gから得られる、全てのマイクロビーズA〜A100の二次元位置情報及びこれに対応する色情報λ〜λ100を記憶させる座標−色テーブル10と、マイクロビーズA〜A100の色と病原菌の関係を予め記憶させた色−病原菌テーブル11と、蛍光量に基づいて算出された菌量を菌種ごとに記憶する菌種−菌量テーブル12を備えている。
なお、色情報λ〜λ100は、可視光観察画像Gで取り込まれた画像データから抽出された波長やRGB値が用いられる。
【0026】図2及び図3は画像処理装置4の処理手順を示す。
図2は処理手順の全体の流れを示すもので、蛍光観察画像Gが入力されるとプログラムPGM1の蛍光画像処理を行い、処理可視光観察画像Gが入力されるとプログラムPGM2の可視光画像処理を行い、夫々の処理が終了するとプログラムPGM3の分析処理を行う。
【0027】図3(a)はプログラムPGM1の蛍光画像処理の具体的手順を示し、蛍光観察画像Gが入力されると実行開始されて、ステップSTP11でインデックスnをリセットし、ステップSTP12で画像をスキャンして蛍光点の有無を判別し、蛍光点が検出されたときはステップSTP13に移行してインデックスn=n+1に置き換え、ステップSTP14で蛍光点の二次元位置情報となる座標を検出し、ステップSTP15でその蛍光点の光量を検出し、ステップSTP16で座標データと光量データを座標−光量テーブル9に記録し、ステップSTP12に戻る。
また、ステップSTP12で蛍光点が検出されなかったときは、ステップSTP17に移行して、入力された蛍光観察画像Gのスキャンが終了したか否かが判断され、NOの場合はステップSTP12に戻ってスキャンを続行し、YESの場合はステップSTP18でnの最大値nmaxを記憶して、プログラムPGM1の蛍光画像処理を終了する。
なお、ここでステップSTP14の処理が、病原菌が結合したマイクロビーズの二次元位置情報を取得する位置情報検出手段である。
【0028】図3(b)はプログラムPGM2の可視光画像処理の具体的手順を示し、可視光観察画像Gが入力されると実行開始されて、ステップSTP21でインデックスmをリセットし、ステップSTP22で画像をスキャンしてビーズの有無を判断し、ビーズが検出されたときはステップSTP23に移行してインデックスm=m+1に置き換え、ステップSTP24でビーズの二次元位置情報となるその座標を検出し、ステップSTP25でその色を検出し、ステップSTP26で座標データと色データを座標−色テーブル10に記録し、ステップSTP22に戻る。
また、ステップSTP22でビーズが検出されなかったときは、ステップSTP27に移行して、入力された可視光観察画像Gのスキャンが終了したか否かが判断され、NOの場合はステップSTP22に戻ってスキャンを続行し、YESの場合はプログラムPGM2の可視光画像処理を終了する。
【0029】図3(c)は示すプログラムPGM3の分析処理の具体的手順を示し、プログラムPGM1の蛍光画像処理と、プログラムPGM2の可視光画像処理が終了すると実行開始されて、ステップSTP31でインデックスn=1とし、ステップSTP32で座標−光量テーブル9からインデックスnの座標データを読み出し、ステップSTP33で座標−色テーブル10を参照して、その座標データに対応した色データを読み出し、ステップSTP34で色−病原菌テーブル11を参照してその色データに対応する病原菌の菌種を特定し、ステップSTP35で座標−光量テーブル9を参照してその光量を読み出し、その光量から菌量を算出する。
これにより、n=1の蛍光点について、病原菌の菌種が特定され、菌量が算出されたので、ステップSTP36で菌種−菌量テーブル12に記録する。
次いで、ステップSTP37でkがプログラムPGM1のステップSTP18で記録されたnmaxと等しいか否か判断され、NOの場合はステップSTP38でn=n+1と置き換えてステップSTP32に戻り、YESの場合は、ステップSTP39で菌種−菌量テーブル12のデータを図8に示すようにグラフ化して出力し、処理を終了する。
なお、ここでステップSTP33の処理が、マイクロビーズの識別特性である色を抽出する識別特性抽出手段の具体例であり、ステップSTP34の処理がマイクロビーズに結合された病原菌の菌種を特定する検出対象特定手段の具体例であり、ステップSTP35〜36の処理が病原菌の菌量を計測する検出対象計量手段の具体例である。
【0030】これにより、各ウェル8に注入した夫々のサンプルについて、蛍光観察画像Gと可視光観察画像Gに基づいて、サンプル中にどのような病原菌がどの程度存在するか、その菌種と菌量を瞬時に分析することができる。
この結果より、サンプルを提供した患者が何らかの病原菌に感染しているか否かを極めて簡単に、且つ、即座に知ることができる。
【0031】以上が本発明に係る生化学検出装置の一構成例であって、次に、本発明に係る生化学検出方法を説明する。
まず、図4に示すように、100色のマイクロビーズA〜A100を用意し、その夫々に、検出しようとする100種類の病原菌C〜C100と抗原抗体反応を起こす100種類の抗体B〜B100を個別に担持させる。
そして、各ビーズA〜A100を略同数ずつ均一に分散させた検出液を生成し、図5に示すように、これをマイクロプレート7の各ウェル8…に入れ、サンプルとなる気管支肺胞洗浄液などを200〜300μリットルずつ注入して、サンプルとビーズA〜A100を接触させる。
このとき、例えば、サンプルに病原菌C〜Cのみが存在すれば、図6(a)に示すように、その病原菌C〜Cは抗原抗体反応を起こして抗体B〜Bに結合するので、その抗体B〜Bを担持しているビーズA〜Aに付着し、他のビーズA〜A100には病原菌が付着しない。
【0032】次いで、各ウェル8…に蛍光標識R付きの二次抗体D〜D100を滴下すると、図6(b)に示すように、ビーズA〜Aに付着している病原菌C〜Cに対して、抗原抗体反応を起こす二次抗体D〜Dのみが結合するので、蛍光標識RはビーズA〜Aにのみ付され、他のビーズA〜A100には蛍光標識Rが付されることはない。
【0033】このようにして、病原菌C〜Cの付着したビーズA〜Aにのみ蛍光標識Rを付した後、全てのビーズA〜A100を静電気力又は磁力によりウェル8の底面に並べて、顕微鏡2により蛍光観察及び可視光観察を行い、撮像装置3により蛍光観察画像G及び可視光観察画像Gを取り込み、夫々の画像データに基づいて画像処理装置4で病原菌の菌種の特定を行う。
【0034】各ウェル8を倒立顕微鏡2で蛍光観察すると、図7(a)に示すようにビーズA〜Aに付着された蛍光標識Rから発する蛍光点が観察され、可視光観察をすると、図7(b)に示すように全ビーズA〜A100が映し出される。
【0035】そして、撮像装置3により撮像された蛍光観察画像Gと可視光観察画像Gが画像処理装置4で分析される。
まず、蛍光観察画像Gを分析することにより、病原菌C〜Cが結合したマイクロビーズA〜Aの二次元位置情報(座標)と蛍光量が取得され、座標−蛍光量テーブル9に記録される。
次いで、可視光観察画像Gを分析することにより、マイクロビーズA〜A100の二次元位置情報(座標)と色λ〜λ100が可視光観察画像に基づいて抽出され、座標−色テーブル10に記録される。
最後に、これらの結果に基づいて、マイクロビーズA〜Aに結合された病原菌C〜Cの菌種が特定され、蛍光量に基づいて菌量が算出されて、そのデータが菌種ごとに積算されて菌種−菌量テーブル12に記録されるので、菌種−菌量テーブル12に記録されたデータを基づいて図8に示すようにグラフ化して出力すれば、菌種と菌量の分析結果を容易に把握できる。
【0036】なお、サンプルとしては、気管支肺胞洗浄液に限らず、喀痰、血液、尿などの体液、その他任意のものを用いることができる。
また、本発明に係る生化学検出装置及び検出方法の検出対象としては、上述した病原菌に限らず、抗原、タンパク、DNA、アミノ酸、酵素など任意の生化学物質や、微生物、細胞などを検出対象とすることができる。
さらに、検出対象を微小粒子(マイクロビーズ)に結合させる特異的結合物質としては、抗原抗体反応を生じる抗体に限らず、検出対象を個別に結合することができれば任意の物質を利用できる。
【0037】微小粒子の識別特性は、色に限らず、形状、大きさ、あるいはこれらの組み合わせなど、可視的に識別可能なものであればよい。また、静止画像により直接観察できる識別特性に限らず、例えば、水中における微小流体のゼータ電位を測定する際の移動量の違いを識別特性として用いることもできる。
即ち、表面改質により各微小粒子を異なる電荷量に帯電させた状態で、平行電界を形成すれば、微小粒子の単位時間あたりの移動量はその電荷量に応じて異なる。このとき、サンプルの粘性及び誘電率を水と略等しく設定しておけば、移動量は水中における移動量に等しい。したがって、可視光画像として所定時間間隔で撮像した2枚の静止画像又は動画像に基づき、これを画像処理することにより各微小粒子の移動量を検出すれば、その移動量に基づき微小粒子の種類を特定できる。このような電荷量の違いと、前述の色・形状・大きさの違いを組み合わせても良い。
【0038】ルミネッセンス標識としては蛍光標識に限らず、化学発光標識やその他任意のルミネッセンス標識を用いることができる。化学発光の場合は、特に励起光を必要とせず、暗視野にするだけで観察できるので、装置をより簡素化することができる。
【0039】
【発明の効果】
以上述べたように、本発明によれば、100種類の病原菌を検出する場合でも、例えば100色に色分けされたマイクロビーズを用いて、2種類の画像を取り込むだけで、極めて簡単に病原菌の菌種の特定と菌量の計測を行うことができるので、多数の検出対象を正確にしかも短時間で分析することができるという大変優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る生化学検出装置を示す説明図。
【図2】画像処理装置の処理手順を示すフローチャート。
【図3】その具体的処理内容を示すフローチャート。
【図4】本発明に使用するマイクロビースの概念図。
【図5】反応実験を示す説明図。
【図6】反応モデルを示す説明図。
【図7】観察画像を示す説明図。
【図8】検出結果を示すグラフ。
【符号の説明】
1………………生化学検出装置
〜A100……マイクロクビーズ(微小粒子)
〜B100……抗体(特異的結合物質)
〜C100……病原菌(検出対象)
〜D100……二次抗体
R………………蛍光標識
2………………倒立顕微鏡
3………………撮像装置
4………………画像処理装置
5………………蛍光観察用光源(ルミネッセンス観察用光源)
6………………可視光観察用光源
7………………マイクロプレート
8………………ウェル

Claims (5)

  1. 予め選定された検出対象の夫々に対して特異的に結合する特異的結合物質を検出対象別に担持させた多数の微小粒子をサンプルと接触させ、そのサンプルに存在する検出対象を微小粒子に付着させた後、その検出対象にルミネッセンス標識を付着させて観察することにより検出対象の種類を特定する生化学検出装置であって、
    前記微小粒子が、可視光で識別することができ、且つ、前記検出対象の種類ごとに異なる識別特性を備えており、
    前記ルミネッセンス標識の付着後に、微小粒子のルミネッセンス観察画像及び可視光観察画像を取り込む撮像装置と、その画像に基づいて微小粒子に結合した検出対象の種類を特定する画像処理装置とを備え、
    前記画像処理装置は、検出対象が結合した微小粒子の二次元位置情報をルミネッセンス観察画像に基づいて取得する位置情報検出手段と、その識別特性を前記二次元位置情報と可視光観察画像に基づいて抽出する識別特性抽出手段と、微小粒子に結合された検出対象の種類を予め設定された識別特性−検出対象対照データに基づいて特定する検出対象特定手段を備えたことを特徴とする生化学検出装置。
  2. 前記微小粒子の識別特性が、色、大きさ又は形状である請求項1記載の生化学検出装置。
  3. 前記検出対象特定手段で特定された検出対象の夫々について、ルミネッセンス観察画像の微小粒子から発せられる光量に基づき、検出対象の付着量を計測する検出対象計量手段を備えた請求項1記載の生化学検出装置。
  4. 予め選定された検出対象の夫々に対して特異的に結合する特異的結合物質を検出対象ごとに担持させた多数の微小粒子をサンプルと接触させ、そのサンプルに存在する検出対象を種類ごとに微小粒子に付着させた後、その検出対象にルミネッセンス標識を付着させて観察することにより検出対象の種類を特定する生化学検出方法であって、
    前記微小粒子が、可視光で識別することができ、且つ、前記検出対象の種類ごとに異なる識別特性を備えており、
    前記ルミネッセンス標識の付着後に、全微小粒子のルミネッセンス観察画像及び可視光観察画像を取り込み、検出対象が結合した微小粒子の二次元位置情報をルミネッセンス観察画像に基づいて取得し、その識別特性を前記二次元位置情報と可視光観察画像に基づいて抽出し、その微小粒子に結合された検出対象の種類を予め設定された識別特性−検出対象対照データに基づいて特定することを特徴とする生化学検出方法。
  5. 前記サンプルが気管支肺胞洗浄液である請求項4記載の生化学検出方法。
JP2003157711A 2003-06-03 2003-06-03 生化学検出装置及び検出方法 Pending JP2004361158A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003157711A JP2004361158A (ja) 2003-06-03 2003-06-03 生化学検出装置及び検出方法
PCT/JP2004/008066 WO2004109283A1 (ja) 2003-06-03 2004-06-03 生化学検出装置及び検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003157711A JP2004361158A (ja) 2003-06-03 2003-06-03 生化学検出装置及び検出方法

Publications (1)

Publication Number Publication Date
JP2004361158A true JP2004361158A (ja) 2004-12-24

Family

ID=33508402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003157711A Pending JP2004361158A (ja) 2003-06-03 2003-06-03 生化学検出装置及び検出方法

Country Status (2)

Country Link
JP (1) JP2004361158A (ja)
WO (1) WO2004109283A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194830A (ja) * 2005-01-17 2006-07-27 Toppan Printing Co Ltd カラービーズ製造装置、カラービーズ製造方法及びバイオ分析装置
WO2007139201A1 (ja) * 2006-05-31 2007-12-06 Olympus Corporation 生体試料撮像方法および生体試料撮像装置
JP2014523526A (ja) * 2011-06-06 2014-09-11 アボット・ラボラトリーズ 空間分解リガンド−受容体結合アッセイ
JP7393836B1 (ja) 2023-04-25 2023-12-07 株式会社写真化学 菌体観察装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214237A (ja) * 2000-12-22 2002-07-31 Dade Behring Marburg Gmbh 検出方法
JP2002525587A (ja) * 1998-08-28 2002-08-13 フェビット フェラリウス バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料中の分析物を測定するための方法および装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000178309A (ja) * 1998-12-16 2000-06-27 Y M Shii:Kk 着色ポリマー粒子およびその製造法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525587A (ja) * 1998-08-28 2002-08-13 フェビット フェラリウス バイオテクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング 試料中の分析物を測定するための方法および装置
JP2002214237A (ja) * 2000-12-22 2002-07-31 Dade Behring Marburg Gmbh 検出方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194830A (ja) * 2005-01-17 2006-07-27 Toppan Printing Co Ltd カラービーズ製造装置、カラービーズ製造方法及びバイオ分析装置
WO2007139201A1 (ja) * 2006-05-31 2007-12-06 Olympus Corporation 生体試料撮像方法および生体試料撮像装置
US8179597B2 (en) 2006-05-31 2012-05-15 Olympus Corporation Biological specimen imaging method and biological specimen imaging apparatus
JP5307539B2 (ja) * 2006-05-31 2013-10-02 オリンパス株式会社 生体試料撮像方法および生体試料撮像装置
JP2014523526A (ja) * 2011-06-06 2014-09-11 アボット・ラボラトリーズ 空間分解リガンド−受容体結合アッセイ
US10190986B2 (en) 2011-06-06 2019-01-29 Abbott Laboratories Spatially resolved ligand-receptor binding assays
JP2019148590A (ja) * 2011-06-06 2019-09-05 アボット・ラボラトリーズAbbott Laboratories 空間分解リガンド−受容体結合アッセイ
US11307141B2 (en) 2011-06-06 2022-04-19 Abbott Laboratories Spatially resolved ligand-receptor binding assays
JP7393836B1 (ja) 2023-04-25 2023-12-07 株式会社写真化学 菌体観察装置

Also Published As

Publication number Publication date
WO2004109283A1 (ja) 2004-12-16

Similar Documents

Publication Publication Date Title
US7764821B2 (en) Methods and algorithms for cell enumeration in a low-cost cytometer
AU2008207835B2 (en) System and probe composition for cell counting and analysis
US20230071162A1 (en) Methods and apparatus for magnetic multi-bead assays
US8189899B2 (en) Methods and algorithms for cell enumeration in a low-cost cytometer
JP2019168471A (ja) サンプルを代表する光を検出すること及び利用すること
US11112347B2 (en) Classifying microbeads in near-field imaging
JP2008514955A (ja) サンプル分析システムおよび方法
CN106841127B (zh) 空间分辨的配体-受体结合试验
CN101432739A (zh) 超灵敏传感器和分析物的快速检测
JP4779518B2 (ja) 蛍光読取装置および微生物計数装置
JP2004361158A (ja) 生化学検出装置及び検出方法
US20230221319A1 (en) A Method, A System, An Article, A Kit And Use Thereof For Biomolecule, Bioorganelle, Bioparticle, Cell And Microorganism Detection
JP7148616B2 (ja) 目的物質の検出方法
Iyengar et al. Spectral analysis and sorting of microbial organisms using a spectral sorter
US20120202189A1 (en) Rapid, semi-automated method to detect respiratory virus infected cells in direct specimens
JP2008096157A (ja) 微粒子検出装置
JP2007101412A (ja) フローサイトメトリーを用いた物質の測定方法及びフローサイトメトリーにおける測定用微粒子
Narayanaswamy et al. Rapid, Multiplex Optical Biodetection for Point-of-Care Applications
JP2008096156A (ja) 微粒子検出装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104