JP2004360630A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2004360630A
JP2004360630A JP2003162070A JP2003162070A JP2004360630A JP 2004360630 A JP2004360630 A JP 2004360630A JP 2003162070 A JP2003162070 A JP 2003162070A JP 2003162070 A JP2003162070 A JP 2003162070A JP 2004360630 A JP2004360630 A JP 2004360630A
Authority
JP
Japan
Prior art keywords
flow path
gas flow
discharge
discharge gas
outer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162070A
Other languages
Japanese (ja)
Other versions
JP4277587B2 (en
Inventor
Takashi Shimizu
孝志 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2003162070A priority Critical patent/JP4277587B2/en
Publication of JP2004360630A publication Critical patent/JP2004360630A/en
Application granted granted Critical
Publication of JP4277587B2 publication Critical patent/JP4277587B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor in which a Helmholtz resonator is constituted in a sound attenuation member to enhance sound attenuation effect in the case of reducing noise of a gas flowing in a gas flow-path by the sound attenuation member. <P>SOLUTION: A recess (52) is formed on the top surface of a stationary scroll (21) of a scroll compressor (20). A discharge hole (54) is made on the bottom face of the recess (52). The recess (52) is blocked up with the sound attenuation member (60), in which a through hole (61) is made in order to allow discharge gas in the recess (52) to flow into a closed vessel (10). A discharge gas flow-path (56) is constituted of the sound attenuation member (60) and the recess (52). The sound attenuation member (60) is made of an inside layer (62) on the down side and an outside layer (63) on the upper side. The inside layer (62) is made of a perforated metal sheet, and the outside layer (63) is made of a foam metal. The Helmholtz resonator (64) is constituted by connecting a 2nd vacancy of the inside layer (62) to a 1st vacancy of the outside layer (63), and making an opening at the discharge gas flow-path (56). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば冷凍サイクルの冷媒圧縮行程を行う圧縮機に関し、特に、吸入ガスや吐出ガスの圧力脈動により発生する騒音を低減する構造の技術分野に属する。
【0002】
【従来の技術】
従来より、圧縮機構及び該圧縮機構を駆動する電動機を密閉容器に収容した圧縮機がある(例えば、特許文献1参照)。この圧縮機では、圧縮室に吸入ガスを導くための吸入ガス流路が吸入管により構成されている。
【0003】
また、一般に、圧縮機構の運転時には、吸入行程が終った後も吸入ガスが慣性力により圧縮室側へ流れ続ける。このため、吸入ガス流路を流れる吸入ガスに圧力脈動が起こり騒音が発生する。
【0004】
この圧力脈動に起因する騒音の対策として、前記特許文献1の圧縮機では、吸入管にその内外を連通する孔部を形成し、この吸入管の孔部形成箇所に該吸入管の外周面を囲むように筒状に形成された消音部材を配設している。この消音部材は多孔質材料から構成されている。このため、吸入ガス流路を流れる吸入ガスに圧力脈動が起こると、その吸入ガスの一部が吸入管の孔部及び消音部材の多数の空孔を流れて吸入管の外部に流出する。その結果、圧力脈動が小さくなり、騒音が低減される。
【0005】
【特許文献1】
特開平5―256259号公報
【0006】
【発明が解決しようとする課題】
ところが、前記特許文献1の圧縮機のように吸入ガス流路の吸入ガスを外部に流出させるようにしただけでは、圧力脈動に起因する騒音の音エネルギは十分に低減されず、消音効果が十分でない。
【0007】
本発明は斯かる点に鑑みてなされたものであり、その目的とするところは、ある閉鎖された空間とこの空間に接続される比較的小さい孔部とから構成される共鳴器、即ちヘルムホルツ共鳴器で音を共鳴させることにより音エネルギが熱エネルギに変換されて音エネルギが減少することに着目し、消音部材にヘルムホルツ共鳴器を構成して消音効果を十分に得ることにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明では、消音部材の内部に第1空孔を形成し、ガス流路に臨む面側に、第1空孔とガス流路とを連通させる比較的小さい第2空孔を形成するようにした。
【0009】
具体的には、請求項1の発明では、圧縮室(26)へガスを吸入して圧縮する圧縮機構(20)と、前記圧縮室(26)に連通するガス流路(56)に臨むように設けられ、該ガス流路(56)を流れるガスの騒音を低減する消音部材(60)とを備え、前記消音部材(60)を多孔質材料から構成し、前記消音部材(60)の内部には第1空孔(63a)を多数形成する一方、消音部材(60)のガス流路(56)に臨む面側には、前記第1空孔(63a)よりも小さくかつ該第1空孔(63a)と前記ガス流路(56)とを連通させる第2空孔(62a)を多数形成する構成とする。
【0010】
この発明によれば、第1空孔(63a)が第2空孔(62a)によりガス流路(56)と連通し、これら両空孔(63a),(62a)により、ガス流路(56)へ開口するヘルムホルツ共鳴器(64)が消音部材(60)に多数構成される。そして、圧縮機の運転中には、ガス流路(56)を流れるガスが、ヘルムホルツ共鳴器(64)を構成する第2空孔(62a)及び第1空孔(63a)へ流れて両空孔(62a),(63a)がガスにより満たされる。このとき、例えば、前記ガス流路(56)を流れるガスに圧力脈動が起こって騒音が発生すると、その音波が第1及び第2空孔(63a),(62a)を満たしたガスを介してこれら両空孔(63a),(62a)へ侵入して共鳴する。その結果、ガスの騒音の音エネルギが熱エネルギに変換され、音エネルギが減少する。
【0011】
請求項2の発明では、請求項1の発明において、消音部材(60)は、ガス流路(56)に臨む面側及びその反対側にそれぞれ位置する内側層(62)及び外側層(63)を有し、前記外側層(63)には第1空孔(63a)を形成する一方、前記内側層(62)には第2空孔(62a)を形成する構成とする。
【0012】
この構成によれば、外側層(63)の第1空孔(63a)が内側層(62)の第2空孔(62a)に接続され、ガス流路(56)へ開口するヘルムホルツ共鳴器(64)が構成される。ガス流路(56)を流れるガスの騒音の音波が内側層(62)及び外側層(63)の空孔(62a),(63a)へ侵入して共鳴し、音エネルギが減少する。
【0013】
請求項3の発明では、請求項2の発明において、消音部材(60)の内側層(62)及び外側層(63)を別部材により構成する。
【0014】
この構成によれば、内側層(62)及び外側層(63)を別々に形成した後、重ね合わせることによりヘルムホルツ共鳴器(64)を有する消音部材(60)が得られる。
【0015】
請求項4の発明では、請求項2または3の発明において、消音部材(60)の外側層(63)を発泡金属から構成する。
【0016】
この構成によれば、一般に、発泡金属に形成される空孔の大きさは不均一であるため、外側層(63)の各第1空孔(63a)の内容積は互いに異なることとなる。従って、消音部材(60)に大きさの異なるヘルムホルツ共鳴器(64)が構成されるので、周波数の異なる音波が対応するヘルムホルツ共鳴器(64)でそれぞれ共鳴して熱エネルギに変換され、音エネルギが減少する。
【0017】
請求項5の発明では、請求項2〜4のいずれか1つの発明において、消音部材(60)の内側層(62)をパンチングメタルから構成する。
【0018】
この構成によれば、比較的安価なパンチングメタルから内側層(62)が構成される。
【0019】
請求項6の発明では、請求項2〜5のいずれか1つの発明において、圧縮機構(20)は回転圧縮機構(20)であり、消音部材(60)を前記圧縮機構(20)の圧縮室(26)からの吐出ガスが流れる吐出ガス流路(56)に臨むように設ける構成とする。
【0020】
この構成によれば、圧縮機の運転中には、圧縮室(26)からの吐出ガスが周期的に吐出ガス流路(56)に吐出される。このため、吐出ガス流路(56)を流れる吐出ガスに圧力脈動が起こり騒音が発生する。この騒音の音エネルギが消音部材(60)のヘルムホルツ共鳴器(64)により熱エネルギに変換されて減少する。
【0021】
請求項7の発明では、請求項6の発明において、圧縮機構(20)を密閉容器(10)に収容し、該密閉容器(10)には、吸入ガスを導入する吸入管(11)と吐出ガスを導出する吐出管(12)とを接続し、前記圧縮機構(20)の吐出ガス流路(56)を前記密閉容器(10)の内部空間に連通させる一方、前記圧縮機構(20)の圧縮室(26)に連通する吸入ガス流路(50)を前記吸入管(11)に接続し、消音部材(60)を、その内側層(62)が前記吐出ガス流路(56)に臨みかつ外側層(63)が前記密閉容器(10)の内部空間に臨むように設ける構成とする。
【0022】
この構成によれば、吸入ガスが密閉容器(10)の外部から吸入管(11)及び吸入ガス流路(50)を流れて圧縮室(26)に吸入される。一方、吐出ガスは吐出ガス流路(56)を流れて密閉容器(10)の内部空間に吐出された後、吐出管(12)を流れて密閉容器(10)の外部へ導出される。吐出ガスが吐出ガス流路(56)を流れる際には、消音部材(60)により騒音の音エネルギが減少する。加えて、消音部材(60)が多孔質材料からなるため、吐出ガス流路(56)を流れる吐出ガスの一部は、消音部材(60)の内側層(62)から外側層(63)を通過し、密閉容器(10)の内部空間に洩れる。この吐出ガスが消音部材(60)から密閉容器(10)の内部空間に洩れるときに膨張するため、消音部材(60)に膨張作用による消音効果が付加される。
【0023】
請求項8の発明では、請求項6の発明において、圧縮機構(20)を密閉容器(10)に収容し、該密閉容器(10)には、吸入ガスを導入する吸入管(11)と吐出ガスを導出する吐出管(12)とを接続し、前記圧縮機構(20)には、圧縮室(26)に連通する吸入ガス流路(50)を設け、前記密閉容器(10)の内部空間を、前記圧縮機構(20)の吸入ガス流路(50)及び前記吸入管(11)が開口する低圧室(3L)と、前記圧縮機構(20)の吐出ガス流路(56)及び前記吐出管(12)が開口する高圧室(4)とに仕切り、消音部材(60)を、その内側層(62)が吐出ガス流路(56)に臨んだ状態で該吐出ガス流路(56)と前記密閉容器(10)の低圧室(3L)とを仕切るように設け、前記消音部材(60)の外側層(63)の外面をカバー部材(70)により覆う構成とする。
【0024】
この構成によれば、吸入ガスは吸入管(11)を流れて密閉容器(10)の低圧室(3L)に導入され、該低圧室(3L)は吸入ガスにより満たされる。この低圧室(3L)の吸入ガスが吸入ガス流路(50)を流れて圧縮室(26)に吸入される。一方、吐出ガスは圧縮室(26)から吐出ガス流路(56)を流れて密閉容器(10)の高圧室(4)に吐出され、該高圧室(4)は吐出ガスにより満たされる。この高圧室(4)の吐出ガスが吐出管(12)を流れて密閉容器(10)の外部に導出される。
【0025】
また、吐出ガスが吐出ガス流路(56)を流れる際、消音部材(60)により騒音の音エネルギが減少する。この吐出ガス流路(56)の吐出ガスの一部は、消音部材(60)の内側層(62)及び外側層(63)を通過して該外側層(63)の外面に達する。このとき、カバー部材(70)により吐出ガスが密閉容器(10)の低圧室(3L)へ洩れ出すのが防止される。
【0026】
請求項9の発明では、請求項8の発明において、消音部材(60)の外側層(63)とカバー部材(70)との間には空間(71)を設け、該空間(71)は密閉容器(10)の高圧室(4)と連通している構成とする。
【0027】
この構成によれば、吐出ガス流路(56)の吐出ガスの一部が消音部材(60)を通過して外側層(63)とカバー部材(70)との間の空間(71)に流れる。この空間(71)に流れた吐出ガスは密閉容器(10)の高圧室(4)へ流れる。従って、消音部材(60)の空孔(62a),(63a)に冷凍機油が浸入した場合に、該冷凍機油が吐出ガスの流れにより密閉容器(10)の高圧室(4)に導かれる。
【0028】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。
【0029】
図1は、本発明をスクロール圧縮機(1)に適用した実施形態を示す。この圧縮機(1)は空気調和装置の冷凍サイクルにおいて冷媒圧縮行程を行うものである。
【0030】
前記圧縮機(1)は、いわゆる全密閉型に構成されている。この圧縮機(1)は、上下方向に長い円筒形の密閉容器(10)を備えている。密閉容器(10)の内部には、上から順に圧縮機構(20)及び電動機(30)が配置されており、電動機(30)は駆動軸(31)により圧縮機構(20)に連結されている。また、密閉容器(10)の内部の電動機(30)よりも下側には、駆動軸(31)の下端部を支持する下部軸受部材(2)が配置されている。
【0031】
密閉容器(10)の内部空間は、圧縮機構(20)の固定スクロール(21)及び後述のフレーム部材(22)によって上下に仕切られている。この密閉容器(10)の内部空間は、固定スクロール(21)よりも上方の空間が第1室(3)となり、その下方の空間が第2室(4)となっている。尚、第2室(4)の下部には冷凍機油が貯留されている。
【0032】
密閉容器(10)の上側鏡板の外周側には、該上側鏡板を貫通して上下方向に延びる吸入管(11)が取り付けられている。この吸入管(11)により密閉空間(10)内に吸入ガスが導入される。一方、密閉容器(10)の胴部には、固定スクロール(21)よりも下側で胴部を貫通して該胴部の径方向に延びる吐出管(12)が取り付けられている。該吐出管(12)は密閉容器(10)の第2室(4)に開口しており、この吐出管(12)により密閉容器(10)内の吐出ガスが外部に導出される。また、密閉容器(10)の胴部には、電動機(30)に給電するためのターミナル(13)が取り付けられている。
【0033】
駆動軸(31)は、密閉容器(10)の下側鏡板近傍から上方へ延びる主軸部(31a)と、この主軸部(31a)の上端面に突設された偏心部(31b)とを備えている。この偏心部(31b)は主軸部(31a)よりも小径の円柱状となっており、その軸心が主軸部(31a)の軸心に対して偏心している。
【0034】
駆動軸(31)の主軸部(31a)は、圧縮機構(20)のフレーム部材(22)を貫通している。この主軸部(31a)の上端部は、軸受(40)を介してフレーム部材(22)に支持されている。一方、下部軸受部材(2)は密閉容器(10)の胴部内面に固定されている。駆動軸(31)の主軸部(31a)の下端部は、下部軸受部材(2)を貫通しており、この主軸部(31a)の下端部は軸受(41)を介して下部軸受部材(2)に支持されている。
【0035】
電動機(30)は、固定子(32)と回転子(33)とによって構成されている。固定子(32)は、円筒形に形成されて、密閉容器(10)の胴部内側に嵌め込まれて固定されている。回転子(33)は、固定子(32)の内側に挿入されている。回転子(33)の中心孔(33a)には、駆動軸(31)の主軸部(31a)が挿入されて固定されている。
【0036】
圧縮機構(20)は、固定スクロール(21)やフレーム部材(22)の他に、これら固定スクロール(21)及びフレーム部材(22)の間に配置される可動スクロール(23)とオルダムリング(24)とを備えている。固定スクロール(21)及びフレーム部材(22)の外周面は、密閉容器(10)の胴部内周面全周に亘って密着するように形成され、この胴部内側に嵌め込まれて固定されている。
【0037】
可動スクロール(23)は、円板状に形成された可動側平板部(23a)を備えている。この可動側平板部(23a)の上面には可動側ラップ(23b)が上方へ突設されている。可動側平板部(23a)の下面には、下方へ突出する円筒状の突出部(23c)が形成されている。該突出部(23c)は可動側平板部(23a)の略中央に位置している。この突出部(23c)の内側には駆動軸(31)の偏心部(31b)が挿入されており、突出部(23c)の内周面と偏心部(31b)の外周面とが摺接するようになっている。また、可動側ラップ(23b)は、巻始め部が駆動軸(31)の主軸部(31a)の軸線近傍に位置付けられている。この可動側ラップ(23b)は、平面視でインボリュート曲線を描く渦巻き状で、かつ高さが一定の壁状に形成されている。
【0038】
可動スクロール(23)は、オルダムリング(24)を介してフレーム部材(22)の上に載置されている。オルダムリング(24)の上面及び下面には、図示しないが、一対のキーがそれぞれ形成されている。オルダムリング(24)の上側のキーが可動スクロール(23)の可動側平板部(23a)に係合し、下側のキーがフレーム部材(22)に係合している。可動スクロール(23)は、このオルダムリング(24)により自転運動が規制されて公転運動だけを行う。
【0039】
固定スクロール(21)は、厚肉な円板状に形成された固定側平板部(21a)を備えている。該固定側平板部(21a)の下面外周側には、厚肉な周壁(21b)が下方へ突設されている。また、固定側平板部(21a)の下面の周壁(21b)内側には、可動側ラップ(23b)と同様な渦巻き壁状の固定側ラップ(21c)が下方へ突設されている。固定側ラップ(21c)は、可動側ラップ(23b)に噛合するように構成されている。そして、固定スクロール(21)はフレーム部材(22)に固定されており、この圧縮機構(20)には、前記可動側ラップ(23b)、固定側ラップ(21c)、可動側平板部(23a)の上面及び固定側平板部(21a)の下面に囲まれた圧縮室(26)が形成される。
【0040】
尚、図示しないが、この圧縮機(1)には、給油ポンプが設けられている。この給油ポンプにより、第2室(4)に貯留された冷凍機油が駆動軸(31)の軸受面や両スクロール(21),(23)の摺動面等に供給されるようになっている。
【0041】
固定スクロール(21)の外周側には、吸入ガス流路(50)が形成されている。この吸入ガス流路(50)は、固定側平板部(21a)の上面に開口して該開口から下方へ延び、下側が周壁(21b)に形成されて圧縮室(26)に連通している。吸入ガス流路(50)の上側には、吸入管(11)の下側が挿入されている。また、固定スクロール(21)及びフレーム部材(22)の吸入ガス流路(50)と反対側には、第1室(3)と第2室(4)とを連通させる連通路(51)が形成されている。この連通路(51)は、固定側平板部(21a)の上面に開口して該開口から下方へ延び、周壁(21b)及びフレーム部材(22)を貫通して形成されている。
【0042】
図2に仮想線で示すように、固定側平板部(21a)の上面には、横断面が円形状の凹部(52)が形成されている。この凹部(52)は、その中心が駆動軸(31)の主軸部(31a)の軸線上に位置している。凹部(52)の底面は、略平坦に形成されている。該凹部(52)の底面の中心部には、圧縮室(26)の吐出ガスが吐出する吐出孔(54)が固定側平板部(21a)を貫通するように形成されている。
【0043】
凹部(52)の上端開口は、円板状に形成された消音部材(60)により閉塞されている。すなわち、この消音部材(60)により凹部(52)の内部と密閉容器(10)の第1室(3)とが仕切られており、凹部(52)の底面、該凹部(52)の内周面及び消音部材(60)の下面により囲まれた部分には、吐出ガス流路(56)が形成されている。
【0044】
凹部(52)の底面には、吐出ガス流路(56)の形状を設定するための縦板部材(57)が立設されている。該縦板部材(57)の上端縁は、固定側平板部(21a)の上面と略同一面上に位置付けられていて、消音部材(60)の下面に接している。縦板部材(57)は、吐出孔(54)を囲むように円弧状に延びる円弧状部(57a)を備えている。この円弧状部(57a)は、平面視で吐出孔(54)の外周の約3/4の範囲を囲むように形成されている。従って、円弧状部(57a)の周方向の一端と他端との間には隙間が形成されている。また、この縦板部材(57)は、円弧状部(57a)の周方向一端部から凹部(52)の内周面まで直線状に延びる平坦部(57b)を備えている。
【0045】
前記消音部材(60)の外周側には上下方向に延びる貫通孔(61)が形成されている。この貫通孔(61)は、平面視で縦板部材(57)の平坦部(57b)を挟んで円弧状部(57a)の隙間と反対側に位置している。そして、凹部(52)の底面の吐出孔(54)から吐出された吐出ガスは、図2に矢印で示すように、円弧状部(57a)の隙間から径方向外側へ流れた後、円弧状部(57a)の外側をその周面に沿って流れる。この吐出ガスが平坦部(57b)まで流れると、その流れが上向きとなって消音部材(60)の貫通孔(61)を流れて密閉容器(10)の第1室(3)へ流出する。そして、前記第1室(3)へ流出した吐出ガスは、連通路(51)を流れて第2室(4)へ流入し、吐出管(12)から密閉容器(10)の外部へ導出される。
【0046】
つまり、この圧縮機(1)は、圧縮機構(20)の吸入ガス流路(50)に吸入管(11)を接続する一方、吐出ガス流路(56)を密閉容器(10)の内部空間に連通させた、いわゆる高圧ドーム型に構成されている。
【0047】
前記消音部材(60)は、吐出ガス流路(56)側、即ち下側に位置する内側層(62)と、その反対側、即ち上側に位置する外側層(63)とからなる2層構造とされている。図3に示すように、外側層(63)は発泡金属から構成される一方、内側層(62)は外側層(63)よりも薄いパンチングメタルから構成されており、これら両部材が一体的に接合されている。外側層(63)の発泡金属は、例えばアルミニウムを用いて製造された周知のものであり、大きさや形状が異なる多数の第1空孔(63a)を有している。これら第1空孔(63a)の一部は内側層(62)との境界面に開口している。一方、パンチングメタルは、多数の小さい貫通孔を金属製の薄板材に金型により打ち抜き加工して得られるものである。これら貫通孔により内側層(62)の第2空孔(62a)が構成されている。また、この内側層(62)の第2空孔(62a)の大きさは、前記外側層(63)の第1空孔(63a)の平均的な大きさよりも小さく設定されている。従って、内側層(62)の第2空孔(62a)の開口は、外側層(63)の大部分の第1空孔(63a)の開口よりも小さくなる。
【0048】
そして、内側層(62)を外側層(63)に接合させると、内側層(62)の第2空孔(62a)の開口と外側層(63)の第1空孔(63a)の開口とが重なる部分ができる。この内側層(62)及び外側層(63)の空孔(62a),(63a)の開口が重なった部分では、外側層(63)の第1空孔(63a)が内側層(62)の第2空孔(62a)を介して吐出ガス流路(56)と連通する。つまり、内側層(62)及び外側層(63)の空孔(62a),(63a)により、吐出ガス流路(56)に開口するヘルムホルツ共鳴器(64)が構成される。
【0049】
前記のように構成された圧縮機(1)では、電動機(30)が起動して駆動軸(31)が回転すると、可動スクロール(23)が固定スクロール(21)に対して公転運動を行う。この可動スクロール(23)の公転運動に伴って、圧縮室(26)の容積が周期的に増減する。圧縮室(26)の容積が増大すると、吸入管(11)から導入された吸入ガスが吸入ガス流路(50)を流れて圧縮室(26)に吸い込まれる。圧縮室(26)に吸い込まれた吸入ガスは圧縮室(26)の容積が減少することにより、圧縮され、吐出孔(54)から吐出ガス流路(56)へ吐出される。この吐出ガス流路(56)を流れた吐出ガスは、消音部材(60)の貫通孔(61)から密閉容器(10)の第1室(3)に流入して該第1室(3)が吐出ガスにより満たされる。この第1室(3)の吐出ガスは連通路(51)から第2室(4)へ流れ込み、この第2室(4)も吐出ガスにより満たされる。そして、この第2室(4)の吐出ガスは吐出管(12)から密閉容器(10)の外部に導出される。
【0050】
−実施形態の効果−
圧縮機(1)の運転中には、消音部材(60)の内側層(62)及び外側層(63)の空孔(62a),(63a)が、吐出ガス流路(56)を流れる吐出ガスにより満たされる。また、吐出ガスが吐出孔(54)から周期的に吐出されるため、吐出ガス流路(56)を流れる吐出ガスに圧力脈動が起こり、この圧力脈動に起因して騒音が発生する。
【0051】
このとき、消音部材(60)の内側層(62)が吐出ガス流路(56)に臨んでいるため、騒音の音波が吐出ガスを介して内側層(62)の第2空孔(62a)から外側層(63)の第1空孔(63a)へ侵入する。そして、これら空孔(62a),(63a)により構成されたヘルムホルツ共鳴器(64)で共鳴し、音エネルギが熱エネルギに変換される。その結果、音エネルギが減少するので、消音効果が十分に得られて騒音を低減できる。
【0052】
また、消音部材(60)の外側層(63)が発泡金属から構成されているため、吐出ガス流路(56)の吐出ガスが内側層(62)の第2空孔(62a)から外側層(63)の第1空孔(63a)を通って第1室(3)へ洩れる。この吐出ガスが外側層(63)の第1空孔(63a)から第1室(3)へ洩れるときには膨張する。従って、消音部材(60)に膨張作用による消音効果が付加され、よって、騒音をより一層低減できる。
【0053】
また、外側層(63)が発泡金属から構成されていて第1空孔(63a)の内容積が互いに異なっているため、消音部材(60)に大きさの異なるヘルムホルツ共鳴器(64)を容易に構成できる。そして、周波数の異なる音波が対応するヘルムホルツ共鳴器(64)でそれぞれ共鳴して熱エネルギに変換される。これにより、幅広い周波数帯域の騒音を低減できる。
【0054】
また、消音部材(60)の内側層(62)及び外側層(63)は、共に耐熱性を有する金属材料から構成されているので、消音部材(60)が、例えば100℃くらいの高温の吐出ガスに曝されても損傷することはない。このため、安定した消音性能を長期間に亘り得ることができる。さらに、内側層(62)が比較的安価なパンチングメタルから構成されているので、消音部材(60)のコストを低廉化できる。
【0055】
また、消音部材(60)は、空孔(62a),(63a)の大きさが異なる内側層(62)及び外側層(63)を別々に形成した後に重ね合わせて一体化される。このため、内側層(62)及び外側層(63)で空孔(62a),(63a)の大きさが異なる消音部材(60)を容易に形成することができる。
【0056】
また、縦板部材(57)により吐出孔(54)から第1室(3)までの吐出ガス流路(56)が長く確保され、消音部材(60)がこの吐出ガス流路(56)に臨むように配設されている。このため、騒音をより効果的に低減できる。
【0057】
尚、消音部材(60)の内側層(62)及び外側層(63)を構成する材料として、この実施形態以外のものを用いることも可能である。例えば、内側層(62)の材料として、発泡金属、粉末焼結体、繊維焼結体等を用いてもよい。また、外側層(63)の材料として、蜂の巣形状のアルミニウム箔材とアルミニウム表面材とをシート状接着材により接合してなる、いわゆるハニカムパネルや、例えばチタンの精錬途中に得られるスポンジチタン等のスポンジ金属を用いてもよい。さらに、内側層(62)及び外側層(63)を同じ材料により構成してもよく、この場合、内側層(62)及び外側層(63)を一体成形することもできる。さらにまた、消音部材(60)を一層構造にしてもよい。この場合、消音部材(60)の内部に比較的大きい第1空孔を形成し、吐出ガス流路(56)側に第2空孔を形成して、該第2空孔により第1空孔と吐出ガス流路(56)とを連通させるようにする。
【0058】
(他の実施形態)
本発明は前記実施形態に限定されるものではなく、その他の種々の実施形態を包含するものである。すなわち、前記実施形態では、本発明を高圧ドーム型の密閉型圧縮機(1)に適用した場合について説明したが、これに限らず、図4に示すように、圧縮機構(20)の吸入ガス流路(50)及び吸入管(11)を密閉容器(10)の低圧室としての第1室(3L)に連通させる一方、吐出ガス流路(56)及び吐出管(12)を密閉容器(10)の高圧室としての第2室(4)に連通させた高低圧ドーム型の密閉型圧縮機(1)に適用することもできる。以下、この実施形態について、前記実施形態と同一の部分には同一の符号を付し、異なる部分を説明する。
【0059】
具体的には、この実施形態では、吸入管(11)の下側が吸入ガス流路(50)に挿入されておらず、第1室(3L)に開口している。また、凹部(52)の内部と第2室(4)とが、固定スクロール(21)及びフレーム部材(22)に形成された連通路(51)により連通している。この連通路(51)は、凹部(52)の内周面に開口してこの開口から固定側平板部(21a)及び周壁(21b)を外周側へ延びた後、フレーム部材(22)を下方へ貫通して形成されている。
【0060】
また、消音部材(60)の外面は、金属製の板材を成形してなるカバー部材(70)により覆われている。このカバー部材(70)には、消音部材(60)の外形状と概ね一致する窪み(70a)が形成されている。消音部材(60)は、カバー部材(70)の窪み(70a)に嵌め込まれて固定されていて、この消音部材(60)が窪み(70a)に嵌め込まれた状態で、消音部材(60)の外面は窪み(70a)の内面に接触している。
【0061】
この実施形態では、圧縮機(1)が運転を開始すると、吸入管(11)から導入された吸入ガスにより第1室(3L)が満たされる。この第1室(3L)の吸入ガスは吸入ガス流路(50)を流れて圧縮室(26)に吸い込まれる。一方、吐出孔(54)からの吐出ガスは、吐出ガス流路(56)及び連通路(51)を順に流れて第2室(4)へ流入し、この第2室(4)が吐出ガスにより満たされる。第2室(4)の吐出ガスは、吐出管(12)から密閉容器(10)の外部に導出される。
【0062】
この圧縮機(1)の運転中には、吐出ガス流路(56)の吐出ガスが消音部材(60)の外側層(63)及び内側層(62)を流れて外側層(63)の外面に達する。この外側層(63)の外面に達した吐出ガスはカバー部材(70)により相対的に低圧な第1室(3L)に洩れるのが防止される。また、この実施形態においても、前記実施形態と同様に、吐出ガス流路(56)の吐出ガスに圧力脈動が起こり騒音が発生するが、消音部材(60)により騒音の音エネルギが減少し、よって、騒音を低減できる。
【0063】
つまり、この実施形態では、従来例の圧縮機のようにガス流路のガスを流路外へ洩らすことなく消音効果を十分に得ることができる。
【0064】
また、図5に示す変形例のように、消音部材(60)の外側層(63)の上面とカバー部材(70)との間に上部空間(71)を設けるようにしてもよい。この変形例では、上部空間(71)と凹部(52)の内部とを連通させる上部連通路(72)が消音部材(60)に形成されている。
【0065】
この場合、吐出ガス流路(56)の吐出ガスが消音部材(60)の内側層(62)及び外側層(63)を通過して上部空間(71)に流入し、このときに膨張作用による消音効果が得られる。その後、上部空間(71)に流入した吐出ガスは、上部連通路(72)を流れて凹部(52)の内部へ流入する。この凹部(52)の内部に流入した吐出ガスは連通路(51)を流れて第2室(4)へ流入し、吐出管(12)を流れて密閉容器(10)の外部へ導出される。
【0066】
前記のように吐出ガス流路(56)の吐出ガスが消音部材(60)を通過して第2室(4)へ流れるようになっている。このため、消音部材(60)の各空孔(62a),(63a)に冷凍機油が浸入しても、該冷凍機油は吐出ガスの流れにより第2室(4)に導かれる。これにより、消音部材(60)の各空孔(62a),(63a)に冷凍機油が詰った状態となることはなく、消音効果の低下を未然に防止できる。
【0067】
【発明の効果】
以上説明したように、請求項1の発明に係る圧縮機によると、消音部材(60)を多孔質材料から構成し、消音部材(60)のガス流路(56)に臨む面側に、内部に形成した第1空孔(63a)よりも小さくかつ該第1空孔(63a)とガス流路(56)とを連通させる第2空孔(62a)を形成したので、消音部材(60)にガス流路(56)へ開口するヘルムホルツ共鳴器(64)が構成される。これにより、ガス流路(56)を流れるガスの騒音の音波が内側層(62)及び外側層(63)の空孔(62a),(63a)へ侵入して共鳴する。その結果、騒音の音エネルギが減少し、よって、消音効果が十分に得られて騒音を低減できる。
【0068】
請求項2記載の発明によると、消音部材(60)の外側層(63)に第1空孔(63a)を形成する一方、内側層(62)に第2空孔(62a)を形成したので、外側層(63)の第1空孔(63a)及び内側層(62)の第2空孔(62a)によりヘルムホルツ共鳴器(64)が構成される。このヘルムホルツ共鳴器(64)により、ガス流路(56)を流れるガスの騒音を低減できる。
【0069】
請求項3記載の発明によると、内側層(62)及び外側層(63)を別々に形成した後、重ね合わせることにより消音部材(60)を得ることができる。このため、内側層(62)及び外側層(63)で空孔(62a),(63a)の大きさが異なる消音部材(60)を容易に形成することができる。
【0070】
請求項4記載の発明によると、消音部材(60)の外側層(63)を発泡金属から構成したので、消音部材(60)に大きさの異なるヘルムホルツ共鳴器(64)を容易に構成することができる。そして、周波数の異なる音波が対応するヘルムホルツ共鳴器(64)でそれぞれ共鳴して音エネルギが減少し、よって、幅広い周波数帯の騒音を低減できる。
【0071】
請求項5記載の発明によると、消音部材(60)の内側層(62)をパンチングメタルから構成したので、消音部材(60)のコストを低廉化できる。
【0072】
請求項6記載の発明によると、消音部材(60)を吐出ガス流路(56)に臨むように設けたので、吐出ガス流路(56)を流れる吐出ガスの圧力脈動に起因する騒音を低減できる。
【0073】
請求項7記載の発明によると、消音部材(60)の内側層(62)を吐出ガス流路(56)に臨ませたので、吐出ガス流路(56)を流れる吐出ガスの圧力脈動に起因する騒音を低減できる。また、密閉容器(10)の内部空間に消音部材(60)の外側層(63)を臨ませたので、吐出ガス流路(56)を流れる吐出ガスの一部が消音部材(60)を通過して密閉容器(10)の内部空間に洩れる。このときに吐出ガスが膨張するため、消音部材(60)に膨張作用による消音効果が付加され、騒音をより一層低減できる。
【0074】
請求項8記載の発明によると、消音部材(60)の内側層(62)を吐出ガス流路(56)に臨ませたので、吐出ガス流路(56)を流れる吐出ガスの圧力脈動に起因する騒音を低減できる。また、消音部材(60)により吐出ガス流路(56)と低圧室(3L)とを仕切り、消音部材(60)の外側層(63)の外面をカバー部材(70)により覆ったので、吐出ガス流路(56)の吐出ガスの一部が低圧室(3L)へ洩れ出すことはない。このため、従来例の圧縮機のように、ガス流路のガスを流路外へ洩らすことなく、圧力脈動に起因する騒音を低減できる。
【0075】
請求項9記載の発明によると、消音部材(60)の外側層(63)とカバー部材(70)との間の空間(71)を密閉容器(10)の高圧室(4)に連通させたので、吐出ガス流路(56)を流れる吐出ガスが消音部材(60)を通過してカバー部材(70)との間の空間(71)に流入した後、高圧室(4)へ流れる。従って、消音部材(60)の空孔(62a),(63a)に冷凍機油が浸入した場合に、該冷凍機油が吐出ガスの流れにより密閉容器(10)の高圧室(4)に導かれる。その結果、消音部材(60)の空孔(62a),(63a)に冷凍機油が詰まることはなく、消音効果が低下するのを未然に防止できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る圧縮機の概略構成を示す縦断面図である。
【図2】消音部材の平面図である。
【図3】消音部材の縦断面図である。
【図4】他の実施形態に係る図1相当図である。
【図5】他の実施形態の変形例に係る図1相当図である。
【符号の説明】
(1) 圧縮機
(3L) 第1室(低圧室)
(4) 第2室(高圧室)
(10) 密閉容器
(11) 吸入管
(12) 吐出管
(20) 圧縮機構
(26) 圧縮室
(50) 吸入ガス流路
(56) 吐出ガス流路
(60) 消音部材
(62) 内側層
(62a) 空孔
(63) 外側層
(63a) 空孔
(70) カバー部材
(71) 上部空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a compressor that performs, for example, a refrigerant compression process of a refrigeration cycle, and particularly to a technical field of a structure that reduces noise generated by pressure pulsation of suction gas and discharge gas.
[0002]
[Prior art]
BACKGROUND ART Conventionally, there is a compressor in which a compression mechanism and an electric motor for driving the compression mechanism are housed in a closed container (for example, see Patent Document 1). In this compressor, a suction gas passage for guiding the suction gas to the compression chamber is constituted by a suction pipe.
[0003]
In general, during operation of the compression mechanism, the suction gas continues to flow toward the compression chamber due to inertial force even after the suction stroke is completed. For this reason, pressure pulsation occurs in the suction gas flowing through the suction gas flow path, and noise is generated.
[0004]
As a countermeasure against the noise caused by the pressure pulsation, in the compressor of Patent Document 1, a hole communicating with the inside and outside of the suction pipe is formed, and an outer peripheral surface of the suction pipe is formed at a hole forming portion of the suction pipe. A muffling member formed in a cylindrical shape is provided so as to surround it. This silencing member is made of a porous material. Therefore, when pressure pulsation occurs in the suction gas flowing through the suction gas flow path, a part of the suction gas flows through the holes of the suction pipe and the many holes of the sound deadening member and flows out of the suction pipe. As a result, pressure pulsation is reduced and noise is reduced.
[0005]
[Patent Document 1]
JP-A-5-256259
[0006]
[Problems to be solved by the invention]
However, if the suction gas in the suction gas passage is caused to flow out to the outside as in the compressor of Patent Document 1, the sound energy of the noise due to the pressure pulsation is not sufficiently reduced, and the noise reduction effect is not sufficient. Not.
[0007]
The present invention has been made in view of such a point, and an object of the present invention is to provide a resonator comprising a closed space and a relatively small hole connected to the space, that is, a Helmholtz resonance. Attention is paid to the fact that sound energy is converted into heat energy by resonating the sound with a vessel, and the sound energy is reduced, and it is an object to form a Helmholtz resonator in the sound deadening member to obtain a sufficient sound deadening effect.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, a first hole is formed inside a sound deadening member, and a relatively small first hole communicating with the first hole and the gas passage is provided on a surface facing the gas passage. Two holes were formed.
[0009]
Specifically, according to the first aspect of the present invention, the compression mechanism (20) sucks gas into the compression chamber (26) and compresses the gas, and faces the gas passage (56) communicating with the compression chamber (26). And a noise reduction member (60) for reducing noise of gas flowing through the gas flow path (56), wherein the noise reduction member (60) is made of a porous material, and the inside of the noise reduction member (60) is provided. On the surface side of the silencing member (60) facing the gas flow path (56), the first holes (63a) are smaller than the first holes (63a). A large number of second holes (62a) for communicating the holes (63a) with the gas flow paths (56) are formed.
[0010]
According to the present invention, the first hole (63a) communicates with the gas flow path (56) by the second hole (62a), and the gas flow path (56) is formed by these two holes (63a) and (62a). A number of Helmholtz resonators (64) opening to the muffling member (60) are formed. During the operation of the compressor, the gas flowing through the gas flow path (56) flows to the second hole (62a) and the first hole (63a) constituting the Helmholtz resonator (64), and both air flows. The holes (62a) and (63a) are filled with gas. At this time, for example, when pressure pulsation occurs in the gas flowing in the gas flow path (56) and noise is generated, the sound wave is transmitted through the gas filling the first and second holes (63a) and (62a). These holes (63a) and (62a) penetrate and resonate. As a result, the sound energy of the gas noise is converted to heat energy, and the sound energy is reduced.
[0011]
According to a second aspect of the present invention, in the first aspect, the muffling member (60) includes an inner layer (62) and an outer layer (63) located on the surface side facing the gas flow path (56) and on the opposite side thereof. And a first hole (63a) is formed in the outer layer (63), while a second hole (62a) is formed in the inner layer (62).
[0012]
According to this configuration, the first hole (63a) of the outer layer (63) is connected to the second hole (62a) of the inner layer (62), and the Helmholtz resonator ( 64). Sound waves of the noise of the gas flowing through the gas flow path (56) penetrate into the holes (62a) and (63a) of the inner layer (62) and the outer layer (63) and resonate, thereby reducing sound energy.
[0013]
According to a third aspect of the present invention, in the second aspect, the inner layer (62) and the outer layer (63) of the sound deadening member (60) are formed by separate members.
[0014]
According to this configuration, the silencing member (60) having the Helmholtz resonator (64) is obtained by separately forming the inner layer (62) and the outer layer (63) and then superimposing them.
[0015]
According to a fourth aspect of the present invention, in the second or third aspect, the outer layer (63) of the sound deadening member (60) is made of a foamed metal.
[0016]
According to this configuration, in general, the sizes of the holes formed in the metal foam are not uniform, so that the inner volumes of the first holes (63a) of the outer layer (63) are different from each other. Therefore, since the Helmholtz resonators (64) having different sizes are formed in the sound deadening member (60), sound waves having different frequencies resonate in the corresponding Helmholtz resonators (64) and are converted into heat energy, and the sound energy is changed. Decreases.
[0017]
According to a fifth aspect of the present invention, in any one of the second to fourth aspects of the present invention, the inner layer (62) of the silencing member (60) is made of a punching metal.
[0018]
According to this configuration, the inner layer (62) is formed from relatively inexpensive punching metal.
[0019]
According to a sixth aspect of the present invention, in any one of the second to fifth aspects of the invention, the compression mechanism (20) is a rotary compression mechanism (20), and the noise reduction member (60) is provided in a compression chamber of the compression mechanism (20). The structure is provided so as to face the discharge gas flow path (56) through which the discharge gas from (26) flows.
[0020]
According to this configuration, during operation of the compressor, the discharge gas from the compression chamber (26) is periodically discharged to the discharge gas flow path (56). For this reason, pressure pulsation occurs in the discharge gas flowing through the discharge gas flow path (56), and noise is generated. The sound energy of this noise is converted to heat energy by the Helmholtz resonator (64) of the silencing member (60) and reduced.
[0021]
According to a seventh aspect of the present invention, in the sixth aspect, the compression mechanism (20) is housed in a closed vessel (10), and the closed vessel (10) has a suction pipe (11) for introducing a suction gas and a discharge pipe. A discharge pipe (12) for discharging gas is connected, and a discharge gas flow path (56) of the compression mechanism (20) is communicated with the internal space of the closed vessel (10). A suction gas flow path (50) communicating with the compression chamber (26) is connected to the suction pipe (11), and a sound deadening member (60) whose inner layer (62) faces the discharge gas flow path (56). The outer layer (63) is provided so as to face the inner space of the closed container (10).
[0022]
According to this configuration, the suction gas flows from the outside of the closed vessel (10) through the suction pipe (11) and the suction gas flow path (50) and is sucked into the compression chamber (26). On the other hand, the discharge gas flows through the discharge gas flow path (56) and is discharged into the internal space of the closed container (10), and then flows through the discharge pipe (12) and is led out of the closed container (10). When the discharge gas flows through the discharge gas flow path (56), the sound energy of noise is reduced by the noise reduction member (60). In addition, since the silencing member (60) is made of a porous material, part of the discharge gas flowing through the discharge gas flow path (56) passes from the inner layer (62) to the outer layer (63) of the silencing member (60). It passes through and leaks into the internal space of the sealed container (10). Since the discharged gas expands when it leaks from the silencing member (60) into the internal space of the closed container (10), the silencing member (60) is provided with a silencing effect by an expansion action.
[0023]
According to an eighth aspect of the present invention, in the sixth aspect, the compression mechanism (20) is housed in a closed container (10), and the closed container (10) has a suction pipe (11) for introducing a suction gas and a discharge pipe. The compression mechanism (20) is provided with a suction gas flow path (50) communicating with a compression chamber (26), and is connected to a discharge pipe (12) for drawing out gas. A low-pressure chamber (3L) where the suction gas flow path (50) of the compression mechanism (20) and the suction pipe (11) are opened, the discharge gas flow path (56) of the compression mechanism (20) and the discharge The pipe (12) is divided into a high-pressure chamber (4) having an opening, and the sound deadening member (60) is placed in a state where the inner layer (62) faces the discharge gas flow path (56). And a low-pressure chamber (3L) of the closed container (10). Configured to cover the outer surface of the outer layer (63) by a cover member (70).
[0024]
According to this configuration, the suction gas flows through the suction pipe (11) and is introduced into the low-pressure chamber (3L) of the closed container (10), and the low-pressure chamber (3L) is filled with the suction gas. The suction gas in the low pressure chamber (3L) flows through the suction gas flow path (50) and is sucked into the compression chamber (26). On the other hand, the discharge gas flows from the compression chamber (26) through the discharge gas flow path (56) and is discharged to the high-pressure chamber (4) of the closed vessel (10), and the high-pressure chamber (4) is filled with the discharge gas. The discharge gas from the high-pressure chamber (4) flows through the discharge pipe (12) and is led out of the closed vessel (10).
[0025]
Further, when the discharge gas flows through the discharge gas flow path (56), the sound energy of noise is reduced by the noise reduction member (60). A part of the discharge gas in the discharge gas flow path (56) passes through the inner layer (62) and the outer layer (63) of the silencing member (60) and reaches the outer surface of the outer layer (63). At this time, the discharge gas is prevented from leaking to the low-pressure chamber (3L) of the sealed container (10) by the cover member (70).
[0026]
In a ninth aspect of the present invention, in the eighth aspect, a space (71) is provided between the outer layer (63) of the sound deadening member (60) and the cover member (70), and the space (71) is sealed. It is configured to communicate with the high-pressure chamber (4) of the container (10).
[0027]
According to this configuration, a part of the discharge gas in the discharge gas flow path (56) passes through the muffling member (60) and flows into the space (71) between the outer layer (63) and the cover member (70). . The discharged gas flowing into this space (71) flows into the high-pressure chamber (4) of the closed vessel (10). Therefore, when the refrigerating machine oil enters the holes (62a) and (63a) of the silencing member (60), the refrigerating machine oil is guided to the high-pressure chamber (4) of the sealed container (10) by the flow of the discharge gas.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
FIG. 1 shows an embodiment in which the present invention is applied to a scroll compressor (1). This compressor (1) performs a refrigerant compression process in a refrigeration cycle of an air conditioner.
[0030]
The compressor (1) is of a so-called hermetic type. The compressor (1) includes a cylindrical closed container (10) that is long in the vertical direction. Inside the sealed container (10), a compression mechanism (20) and a motor (30) are arranged in order from the top, and the motor (30) is connected to the compression mechanism (20) by a drive shaft (31). . A lower bearing member (2) for supporting a lower end portion of the drive shaft (31) is disposed below the electric motor (30) inside the closed casing (10).
[0031]
The internal space of the sealed container (10) is vertically partitioned by a fixed scroll (21) of the compression mechanism (20) and a frame member (22) described later. In the internal space of the sealed container (10), a space above the fixed scroll (21) is a first chamber (3), and a space below the fixed scroll (21) is a second chamber (4). Refrigeration oil is stored in the lower part of the second chamber (4).
[0032]
A suction pipe (11) that extends vertically through the upper head plate is attached to the outer peripheral side of the upper head plate of the sealed container (10). The suction gas is introduced into the closed space (10) by the suction pipe (11). On the other hand, a discharge pipe (12) that penetrates through the body below the fixed scroll (21) and extends in the radial direction of the body is attached to the body of the closed container (10). The discharge pipe (12) is open to the second chamber (4) of the closed vessel (10), and discharge gas in the closed vessel (10) is led out to the outside by the discharge pipe (12). A terminal (13) for supplying power to the electric motor (30) is attached to the body of the sealed container (10).
[0033]
The drive shaft (31) includes a main shaft portion (31a) extending upward from the vicinity of the lower end plate of the sealed container (10), and an eccentric portion (31b) protruding from an upper end surface of the main shaft portion (31a). ing. The eccentric part (31b) has a cylindrical shape with a smaller diameter than the main shaft part (31a), and its axis is eccentric with respect to the axis of the main shaft part (31a).
[0034]
The main shaft part (31a) of the drive shaft (31) passes through the frame member (22) of the compression mechanism (20). The upper end of the main shaft (31a) is supported by a frame member (22) via a bearing (40). On the other hand, the lower bearing member (2) is fixed to the inner surface of the trunk of the sealed container (10). The lower end of the main shaft (31a) of the drive shaft (31) penetrates the lower bearing member (2), and the lower end of the main shaft (31a) passes through the bearing (41). ) Is supported.
[0035]
The electric motor (30) includes a stator (32) and a rotor (33). The stator (32) is formed in a cylindrical shape, and is fitted and fixed inside the body of the sealed container (10). The rotor (33) is inserted inside the stator (32). The main shaft portion (31a) of the drive shaft (31) is inserted and fixed in the center hole (33a) of the rotor (33).
[0036]
The compression mechanism (20) includes, in addition to the fixed scroll (21) and the frame member (22), a movable scroll (23) disposed between the fixed scroll (21) and the frame member (22) and an Oldham ring (24). ). The outer peripheral surfaces of the fixed scroll (21) and the frame member (22) are formed so as to be in close contact with the entire inner peripheral surface of the body of the closed vessel (10), and are fitted and fixed inside the body. .
[0037]
The movable scroll (23) includes a movable-side flat plate portion (23a) formed in a disk shape. A movable wrap (23b) protrudes upward from the upper surface of the movable flat plate portion (23a). A cylindrical protruding portion (23c) that protrudes downward is formed on the lower surface of the movable-side flat plate portion (23a). The protruding portion (23c) is located substantially at the center of the movable-side flat plate portion (23a). The eccentric part (31b) of the drive shaft (31) is inserted inside the protruding part (23c) so that the inner peripheral surface of the protruding part (23c) and the outer peripheral surface of the eccentric part (31b) are in sliding contact. It has become. Further, the movable side wrap (23b) has a winding start portion positioned near the axis of the main shaft portion (31a) of the drive shaft (31). The movable side wrap (23b) is formed in a spiral shape that draws an involute curve in plan view, and is formed in a wall shape having a constant height.
[0038]
The orbiting scroll (23) is mounted on the frame member (22) via the Oldham ring (24). Although not shown, a pair of keys are formed on the upper and lower surfaces of the Oldham ring (24), respectively. The upper key of the Oldham ring (24) is engaged with the movable flat plate portion (23a) of the movable scroll (23), and the lower key is engaged with the frame member (22). The orbiting scroll (23) performs only a revolving motion with its rotation being restricted by the Oldham ring (24).
[0039]
The fixed scroll (21) includes a fixed-side flat plate portion (21a) formed in a thick disk shape. A thick peripheral wall (21b) protrudes downward on the outer peripheral side of the lower surface of the fixed-side flat plate portion (21a). A fixed-side wrap (21c) having a spiral wall shape similar to the movable-side wrap (23b) protrudes downward on the inner side of the peripheral wall (21b) on the lower surface of the fixed-side plate portion (21a). The fixed wrap (21c) is configured to mesh with the movable wrap (23b). The fixed scroll (21) is fixed to the frame member (22), and the compression mechanism (20) includes the movable wrap (23b), the fixed wrap (21c), and the movable flat plate (23a). And a compression chamber (26) surrounded by the lower surface of the fixed-side plate portion (21a).
[0040]
Although not shown, the compressor (1) is provided with an oil supply pump. With this oil supply pump, the refrigerating machine oil stored in the second chamber (4) is supplied to the bearing surface of the drive shaft (31) and the sliding surfaces of the scrolls (21) and (23). .
[0041]
A suction gas flow path (50) is formed on the outer peripheral side of the fixed scroll (21). The suction gas flow path (50) opens to the upper surface of the fixed-side flat plate portion (21a) and extends downward from the opening, and the lower side is formed in the peripheral wall (21b) and communicates with the compression chamber (26). . The lower side of the suction pipe (11) is inserted above the suction gas flow path (50). A communication path (51) for communicating the first chamber (3) and the second chamber (4) is provided on the fixed scroll (21) and the frame member (22) on the side opposite to the suction gas flow path (50). Is formed. The communication path (51) is opened on the upper surface of the fixed-side flat plate portion (21a), extends downward from the opening, and is formed through the peripheral wall (21b) and the frame member (22).
[0042]
As shown by phantom lines in FIG. 2, a concave portion (52) having a circular cross section is formed on the upper surface of the fixed-side flat plate portion (21a). The center of the concave portion (52) is located on the axis of the main shaft portion (31a) of the drive shaft (31). The bottom surface of the concave portion (52) is formed substantially flat. At the center of the bottom surface of the concave portion (52), a discharge hole (54) for discharging the discharge gas from the compression chamber (26) is formed so as to penetrate the fixed-side flat plate portion (21a).
[0043]
The upper end opening of the concave portion (52) is closed by a sound absorbing member (60) formed in a disk shape. That is, the inside of the concave portion (52) and the first chamber (3) of the closed container (10) are partitioned by the sound absorbing member (60), and the bottom surface of the concave portion (52) and the inner periphery of the concave portion (52) are separated. A discharge gas flow path (56) is formed in a portion surrounded by the surface and the lower surface of the sound deadening member (60).
[0044]
A vertical plate member (57) for setting the shape of the discharge gas flow path (56) is provided upright on the bottom surface of the concave portion (52). The upper edge of the vertical plate member (57) is located on substantially the same plane as the upper surface of the fixed flat plate portion (21a), and is in contact with the lower surface of the sound deadening member (60). The vertical plate member (57) includes an arc-shaped portion (57a) extending in an arc shape so as to surround the discharge hole (54). The arc-shaped portion (57a) is formed so as to surround a range of about / of the outer periphery of the discharge hole (54) in plan view. Therefore, a gap is formed between one end and the other end in the circumferential direction of the arc-shaped portion (57a). The vertical plate member (57) includes a flat portion (57b) extending linearly from one circumferential end of the arc-shaped portion (57a) to the inner circumferential surface of the concave portion (52).
[0045]
A through hole (61) extending in the vertical direction is formed on the outer peripheral side of the silencing member (60). The through hole (61) is located on the opposite side of the gap between the arc-shaped portions (57a) with the flat portion (57b) of the vertical plate member (57) therebetween in plan view. Then, the discharge gas discharged from the discharge hole (54) on the bottom surface of the concave portion (52) flows radially outward from the gap of the circular arc portion (57a) as shown by an arrow in FIG. It flows outside the portion (57a) along its peripheral surface. When the discharged gas flows to the flat portion (57b), the flow is directed upward, flows through the through hole (61) of the sound deadening member (60), and flows out to the first chamber (3) of the sealed container (10). The discharge gas flowing out to the first chamber (3) flows through the communication path (51), flows into the second chamber (4), and is led out of the discharge pipe (12) to the outside of the closed container (10). You.
[0046]
That is, the compressor (1) connects the suction pipe (11) to the suction gas flow path (50) of the compression mechanism (20), and connects the discharge gas flow path (56) to the internal space of the closed container (10). , The so-called high-pressure dome type.
[0047]
The silencing member (60) has a two-layer structure including an inner layer (62) located on the side of the discharge gas flow path (56), ie, a lower side, and an outer layer (63) located on the opposite side, ie, an upper side. It has been. As shown in FIG. 3, the outer layer (63) is made of a foamed metal, while the inner layer (62) is made of a punching metal thinner than the outer layer (63). Are joined. The foam metal of the outer layer (63) is a well-known metal manufactured using, for example, aluminum, and has a large number of first holes (63a) having different sizes and shapes. Some of these first holes (63a) are open at the interface with the inner layer (62). On the other hand, punching metal is obtained by punching a large number of small through holes into a thin metal plate using a die. These through holes form second holes (62a) in the inner layer (62). The size of the second holes (62a) in the inner layer (62) is set smaller than the average size of the first holes (63a) in the outer layer (63). Therefore, the openings of the second holes (62a) in the inner layer (62) are smaller than the openings of most of the first holes (63a) in the outer layer (63).
[0048]
Then, when the inner layer (62) is joined to the outer layer (63), the opening of the second hole (62a) of the inner layer (62) and the opening of the first hole (63a) of the outer layer (63) are changed. Is formed. In the portion where the holes (62a) and (63a) of the inner layer (62) and the outer layer (63) overlap, the first hole (63a) of the outer layer (63) is formed by the inner layer (62). It communicates with the discharge gas flow path (56) through the second hole (62a). That is, the holes (62a) and (63a) of the inner layer (62) and the outer layer (63) constitute a Helmholtz resonator (64) that opens to the discharge gas flow path (56).
[0049]
In the compressor (1) configured as described above, when the electric motor (30) starts and the drive shaft (31) rotates, the movable scroll (23) revolves with respect to the fixed scroll (21). With the orbital movement of the movable scroll (23), the volume of the compression chamber (26) periodically increases and decreases. When the volume of the compression chamber (26) increases, the suction gas introduced from the suction pipe (11) flows through the suction gas flow path (50) and is sucked into the compression chamber (26). The suction gas sucked into the compression chamber (26) is compressed by reducing the volume of the compression chamber (26), and is discharged from the discharge hole (54) to the discharge gas flow path (56). The discharge gas flowing through the discharge gas flow path (56) flows into the first chamber (3) of the closed container (10) from the through hole (61) of the silencing member (60), and flows into the first chamber (3). Is filled with the discharge gas. The gas discharged from the first chamber (3) flows into the second chamber (4) from the communication path (51), and the second chamber (4) is also filled with the discharged gas. Then, the discharge gas from the second chamber (4) is led out of the closed vessel (10) from the discharge pipe (12).
[0050]
-Effects of Embodiment-
During the operation of the compressor (1), the holes (62a) and (63a) of the inner layer (62) and the outer layer (63) of the silencing member (60) discharge the gas flowing through the discharge gas flow path (56). Filled with gas. Further, since the discharge gas is periodically discharged from the discharge holes (54), pressure pulsation occurs in the discharge gas flowing through the discharge gas flow path (56), and noise is generated due to the pressure pulsation.
[0051]
At this time, since the inner layer (62) of the sound deadening member (60) faces the discharge gas flow path (56), sound waves of noise are generated through the discharge gas and the second holes (62a) of the inner layer (62). From the first hole (63a) of the outer layer (63). Then, resonance occurs in the Helmholtz resonator (64) formed by the holes (62a) and (63a), and sound energy is converted to heat energy. As a result, the sound energy is reduced, so that a sufficient silencing effect can be obtained and the noise can be reduced.
[0052]
Further, since the outer layer (63) of the sound deadening member (60) is made of a foamed metal, the discharge gas of the discharge gas flow path (56) flows from the second hole (62a) of the inner layer (62) to the outer layer. It leaks to the first chamber (3) through the first hole (63a) of (63). When the discharged gas leaks from the first holes (63a) of the outer layer (63) to the first chamber (3), it expands. Therefore, a noise reduction effect by the expansion action is added to the noise reduction member (60), and thus noise can be further reduced.
[0053]
Further, since the outer layer (63) is made of a foamed metal and the inner volumes of the first holes (63a) are different from each other, the Helmholtz resonators (64) having different sizes can be easily provided in the sound deadening member (60). Can be configured. Then, sound waves having different frequencies resonate in the corresponding Helmholtz resonators (64), and are converted into heat energy. Thereby, noise in a wide frequency band can be reduced.
[0054]
Further, since both the inner layer (62) and the outer layer (63) of the sound deadening member (60) are made of a heat-resistant metal material, the sound deadening member (60) is discharged at a high temperature of, for example, about 100 ° C. No damage is caused by exposure to gas. For this reason, stable noise reduction performance can be obtained for a long period of time. Further, since the inner layer (62) is made of a relatively inexpensive punching metal, the cost of the silencing member (60) can be reduced.
[0055]
Further, the silencing member (60) is formed by separately forming the inner layer (62) and the outer layer (63) having different sizes of the holes (62a) and (63a), and thereafter, is superposed and integrated. For this reason, the silencing member (60) in which the sizes of the holes (62a) and (63a) are different between the inner layer (62) and the outer layer (63) can be easily formed.
[0056]
Further, a long discharge gas flow path (56) from the discharge hole (54) to the first chamber (3) is secured by the vertical plate member (57), and the muffling member (60) is connected to the discharge gas flow path (56). It is arranged to face. For this reason, noise can be reduced more effectively.
[0057]
It should be noted that a material other than this embodiment can be used as a material for forming the inner layer (62) and the outer layer (63) of the sound deadening member (60). For example, as a material of the inner layer (62), a foamed metal, a powder sintered body, a fiber sintered body, or the like may be used. Further, as a material of the outer layer (63), a so-called honeycomb panel formed by bonding a honeycomb-shaped aluminum foil material and an aluminum surface material with a sheet-like adhesive material, for example, sponge titanium obtained during refining of titanium, and the like. Sponge metal may be used. Further, the inner layer (62) and the outer layer (63) may be made of the same material. In this case, the inner layer (62) and the outer layer (63) may be integrally formed. Furthermore, the silencing member (60) may have a single-layer structure. In this case, a relatively large first hole is formed inside the silencing member (60), a second hole is formed on the discharge gas flow path (56) side, and the first hole is formed by the second hole. And the discharge gas flow path (56).
[0058]
(Other embodiments)
The present invention is not limited to the above-described embodiments, but includes other various embodiments. That is, in the above embodiment, the case where the present invention is applied to the high-pressure dome type hermetic compressor (1) has been described. However, the present invention is not limited to this, and as shown in FIG. The flow path (50) and the suction pipe (11) are communicated with the first chamber (3L) as a low-pressure chamber of the closed vessel (10), while the discharge gas flow path (56) and the discharge pipe (12) are connected to the closed vessel (3). The present invention can also be applied to a high / low pressure dome-type hermetic compressor (1) communicating with a second chamber (4) as a high pressure chamber of 10). Hereinafter, in this embodiment, the same portions as those in the above embodiment are denoted by the same reference numerals, and different portions will be described.
[0059]
Specifically, in this embodiment, the lower side of the suction pipe (11) is not inserted into the suction gas flow path (50), but opens to the first chamber (3L). Further, the inside of the concave portion (52) and the second chamber (4) communicate with each other by a communication path (51) formed in the fixed scroll (21) and the frame member (22). The communication path (51) is opened in the inner peripheral surface of the concave portion (52), extends from the opening to the fixed side plate portion (21a) and the peripheral wall (21b) to the outer peripheral side, and then moves the frame member (22) downward. To be formed.
[0060]
The outer surface of the sound deadening member (60) is covered with a cover member (70) formed by molding a metal plate. The cover member (70) is formed with a depression (70a) which substantially matches the outer shape of the sound deadening member (60). The muffling member (60) is fitted and fixed in the recess (70a) of the cover member (70). The outer surface is in contact with the inner surface of the recess (70a).
[0061]
In this embodiment, when the compressor (1) starts operating, the first chamber (3L) is filled with the suction gas introduced from the suction pipe (11). The suction gas in the first chamber (3L) flows through the suction gas flow path (50) and is sucked into the compression chamber (26). On the other hand, the discharge gas from the discharge hole (54) flows sequentially through the discharge gas flow path (56) and the communication path (51) and flows into the second chamber (4). Is satisfied by The discharge gas in the second chamber (4) is led out of the closed vessel (10) from the discharge pipe (12).
[0062]
During operation of the compressor (1), the discharge gas of the discharge gas flow path (56) flows through the outer layer (63) and the inner layer (62) of the sound deadening member (60), and the outer surface of the outer layer (63). Reach The discharge gas that has reached the outer surface of the outer layer (63) is prevented from leaking to the relatively low-pressure first chamber (3L) by the cover member (70). Also in this embodiment, as in the previous embodiment, pressure pulsation occurs in the discharge gas in the discharge gas flow path (56) and noise is generated, but the sound energy of the noise is reduced by the noise reduction member (60). Therefore, noise can be reduced.
[0063]
That is, in this embodiment, a sufficient silencing effect can be obtained without causing the gas in the gas flow path to leak out of the flow path as in the conventional compressor.
[0064]
Further, as in a modification shown in FIG. 5, an upper space (71) may be provided between the upper surface of the outer layer (63) of the sound deadening member (60) and the cover member (70). In this modified example, an upper communication path (72) for communicating the upper space (71) with the inside of the concave portion (52) is formed in the muffling member (60).
[0065]
In this case, the discharge gas from the discharge gas flow path (56) passes through the inner layer (62) and the outer layer (63) of the sound deadening member (60) and flows into the upper space (71). A silencing effect is obtained. Thereafter, the discharge gas flowing into the upper space (71) flows through the upper communication path (72) and flows into the recess (52). The discharge gas that has flowed into the recess (52) flows through the communication path (51), flows into the second chamber (4), flows through the discharge pipe (12), and is led out of the sealed container (10). .
[0066]
As described above, the discharge gas in the discharge gas flow path (56) flows through the silencing member (60) to the second chamber (4). For this reason, even if the refrigerating machine oil enters each of the holes (62a) and (63a) of the noise reduction member (60), the refrigerating machine oil is guided to the second chamber (4) by the flow of the discharge gas. Thereby, the holes (62a) and (63a) of the silencing member (60) do not become clogged with the refrigerating machine oil, and a decrease in the silencing effect can be prevented.
[0067]
【The invention's effect】
As described above, according to the compressor of the first aspect of the present invention, the sound deadening member (60) is made of a porous material, and the sound deadening member (60) is provided with an internal Since the second hole (62a) which is smaller than the first hole (63a) formed and communicates the first hole (63a) with the gas flow path (56) is formed, the sound deadening member (60) is formed. A Helmholtz resonator (64) opening to the gas flow path (56) is formed. Thereby, sound waves of the noise of the gas flowing through the gas flow path (56) penetrate into the holes (62a) and (63a) of the inner layer (62) and the outer layer (63) and resonate. As a result, the sound energy of the noise is reduced, so that the noise reduction effect can be sufficiently obtained and the noise can be reduced.
[0068]
According to the second aspect of the present invention, since the first holes (63a) are formed in the outer layer (63) of the sound deadening member (60), the second holes (62a) are formed in the inner layer (62). The first hole (63a) of the outer layer (63) and the second hole (62a) of the inner layer (62) constitute a Helmholtz resonator (64). The Helmholtz resonator (64) can reduce noise of gas flowing through the gas flow path (56).
[0069]
According to the third aspect of the present invention, the muffler (60) can be obtained by separately forming the inner layer (62) and the outer layer (63) and then superposing them. For this reason, the silencing member (60) in which the sizes of the holes (62a) and (63a) are different between the inner layer (62) and the outer layer (63) can be easily formed.
[0070]
According to the fourth aspect of the present invention, since the outer layer (63) of the sound deadening member (60) is made of a foamed metal, the Helmholtz resonators (64) having different sizes can be easily formed on the sound deadening member (60). Can be. Then, sound waves having different frequencies resonate in the corresponding Helmholtz resonators (64), and the sound energy is reduced, so that noise in a wide frequency band can be reduced.
[0071]
According to the fifth aspect of the present invention, since the inner layer (62) of the silencing member (60) is made of punched metal, the cost of the silencing member (60) can be reduced.
[0072]
According to the sixth aspect of the present invention, since the noise reduction member (60) is provided so as to face the discharge gas flow path (56), noise caused by pressure pulsation of the discharge gas flowing through the discharge gas flow path (56) is reduced. it can.
[0073]
According to the seventh aspect of the present invention, since the inner layer (62) of the muffling member (60) faces the discharge gas flow path (56), the inner layer (62) is caused by the pressure pulsation of the discharge gas flowing through the discharge gas flow path (56). Noise can be reduced. In addition, since the outer layer (63) of the silencing member (60) faces the internal space of the sealed container (10), a part of the discharge gas flowing through the discharge gas flow path (56) passes through the silencing member (60). And leaks into the internal space of the sealed container (10). At this time, since the discharge gas expands, a noise reduction effect by the expansion effect is added to the noise reduction member (60), and the noise can be further reduced.
[0074]
According to the eighth aspect of the present invention, since the inner layer (62) of the muffling member (60) faces the discharge gas flow path (56), the inner layer (62) is caused by the pressure pulsation of the discharge gas flowing through the discharge gas flow path (56). Noise can be reduced. Further, the discharge gas flow path (56) and the low-pressure chamber (3L) are partitioned by the silencing member (60), and the outer surface of the outer layer (63) of the silencing member (60) is covered by the cover member (70). Part of the gas discharged from the gas flow path (56) does not leak to the low-pressure chamber (3L). For this reason, unlike the conventional compressor, it is possible to reduce the noise caused by the pressure pulsation without causing the gas in the gas flow path to leak out of the flow path.
[0075]
According to the ninth aspect of the present invention, the space (71) between the outer layer (63) of the silencing member (60) and the cover member (70) is communicated with the high-pressure chamber (4) of the closed casing (10). Therefore, the discharge gas flowing through the discharge gas flow path (56) passes through the silencing member (60), flows into the space (71) between the cover member (70), and then flows into the high-pressure chamber (4). Therefore, when the refrigerating machine oil enters the holes (62a) and (63a) of the silencing member (60), the refrigerating machine oil is guided to the high-pressure chamber (4) of the sealed container (10) by the flow of the discharge gas. As a result, the holes (62a) and (63a) of the sound deadening member (60) are not clogged with the refrigerating machine oil, so that the sound deadening effect can be prevented from being reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a compressor according to an embodiment of the present invention.
FIG. 2 is a plan view of the muffling member.
FIG. 3 is a longitudinal sectional view of the muffling member.
FIG. 4 is a diagram corresponding to FIG. 1 according to another embodiment.
FIG. 5 is a diagram corresponding to FIG. 1 according to a modified example of another embodiment.
[Explanation of symbols]
(1) Compressor
(3L) 1st room (low pressure room)
(4) 2nd room (high pressure room)
(10) Closed container
(11) Suction pipe
(12) Discharge pipe
(20) Compression mechanism
(26) Compression chamber
(50) Inhalation gas flow path
(56) Discharge gas flow path
(60) Noise reduction member
(62) Inner layer
(62a) Void
(63) Outer layer
(63a) Vacancy
(70) Cover member
(71) Upper space

Claims (9)

圧縮室(26)へガスを吸入して圧縮する圧縮機構(20)と、
前記圧縮室(26)に連通するガス流路(56)に臨むように設けられ、該ガス流路(56)を流れるガスの騒音を低減する消音部材(60)とを備え、
前記消音部材(60)は多孔質材料から構成されており、
前記消音部材(60)の内部には第1空孔(63a)が多数形成される一方、消音部材(60)のガス流路(56)に臨む面側には、前記第1空孔(63a)よりも小さくかつ該第1空孔(63a)と前記ガス流路(56)とを連通させる第2空孔(62a)が多数形成されていることを特徴とする圧縮機。
A compression mechanism (20) that draws gas into the compression chamber (26) and compresses the gas;
A noise reduction member (60) provided so as to face a gas flow path (56) communicating with the compression chamber (26) and reducing noise of gas flowing through the gas flow path (56);
The sound deadening member (60) is made of a porous material;
A large number of first holes (63a) are formed inside the silencing member (60), while the first holes (63a) are formed on the surface of the silencing member (60) facing the gas flow path (56). ), Wherein a plurality of second holes (62a) are formed to communicate the first holes (63a) with the gas flow path (56).
請求項1において、
消音部材(60)は、ガス流路(56)に臨む面側及びその反対側にそれぞれ位置する内側層(62)及び外側層(63)を有し、
前記外側層(63)には第1空孔(63a)が形成される一方、前記内側層(62)には第2空孔(62a)が形成されていることを特徴とする圧縮機。
In claim 1,
The silencing member (60) has an inner layer (62) and an outer layer (63) located on the surface side facing the gas flow path (56) and on the opposite side, respectively.
A compressor, wherein a first hole (63a) is formed in the outer layer (63), and a second hole (62a) is formed in the inner layer (62).
請求項2において、
消音部材(60)の内側層(62)及び外側層(63)は別部材により構成されていることを特徴とする圧縮機。
In claim 2,
A compressor characterized in that the inner layer (62) and the outer layer (63) of the silencing member (60) are constituted by separate members.
請求項2または3において、
消音部材(60)の外側層(63)は発泡金属から構成されていることを特徴とする圧縮機。
In claim 2 or 3,
The compressor according to claim 1, wherein the outer layer (63) of the silencing member (60) is made of a foamed metal.
請求項2〜4のいずれか1つにおいて、
消音部材(60)の内側層(62)はパンチングメタルから構成されていることを特徴とする圧縮機。
In any one of claims 2 to 4,
The compressor according to claim 1, wherein an inner layer (62) of the silencing member (60) is made of punched metal.
請求項2〜5のいずれか1つにおいて、
圧縮機構(20)は回転圧縮機構であり、
消音部材(60)は、前記圧縮機構(20)の圧縮室(26)からの吐出ガスが流れる吐出ガス流路(56)に臨むように設けられていることを特徴とする圧縮機。
In any one of claims 2 to 5,
The compression mechanism (20) is a rotary compression mechanism,
The compressor, wherein the muffling member (60) is provided so as to face a discharge gas flow path (56) through which discharge gas flows from the compression chamber (26) of the compression mechanism (20).
請求項6において、
圧縮機構(20)は密閉容器(10)に収容され、該密閉容器(10)には、吸入ガスを導入する吸入管(11)と吐出ガスを導出する吐出管(12)とが接続され、
前記圧縮機構(20)の吐出ガス流路(56)が前記密閉容器(10)の内部空間に連通する一方、前記圧縮機構(20)の圧縮室(26)に連通する吸入ガス流路(50)が前記吸入管(11)に接続され、
消音部材(60)は、その内側層(62)が前記吐出ガス流路(56)に臨みかつ外側層(63)が前記密閉容器(10)の内部空間に臨むように設けられていることを特徴とする圧縮機。
In claim 6,
The compression mechanism (20) is housed in a closed container (10), and the closed container (10) is connected to a suction pipe (11) for introducing a suction gas and a discharge pipe (12) for leading a discharge gas.
The discharge gas flow path (56) of the compression mechanism (20) communicates with the internal space of the closed container (10), while the suction gas flow path (50) communicates with the compression chamber (26) of the compression mechanism (20). ) Is connected to the suction pipe (11),
The sound deadening member (60) is provided such that an inner layer (62) faces the discharge gas flow path (56) and an outer layer (63) faces the internal space of the closed container (10). Features compressor.
請求項6において、
圧縮機構(20)は密閉容器(10)に収容され、該密閉容器(10)には、吸入ガスを導入する吸入管(11)と吐出ガスを導出する吐出管(12)とが接続され、
前記圧縮機構(20)には、圧縮室(26)に連通する吸入ガス流路(50)が設けられ、
前記密閉容器(10)の内部空間は、前記圧縮機構(20)の吸入ガス流路(50)及び前記吸入管(11)が開口する低圧室(3L)と、前記圧縮機構(20)の吐出ガス流路(56)及び前記吐出管(12)が開口する高圧室(4)とに仕切られ、
消音部材(60)は、その内側層(62)が吐出ガス流路(56)に臨んだ状態で該吐出ガス流路(56)と前記密閉容器(10)の低圧室(3L)とを仕切るように設けられ、
前記消音部材(60)の外側層(63)の外面はカバー部材(70)により覆われていることを特徴とする圧縮機。
In claim 6,
The compression mechanism (20) is housed in a closed container (10), and the closed container (10) is connected to a suction pipe (11) for introducing a suction gas and a discharge pipe (12) for leading a discharge gas.
The compression mechanism (20) is provided with a suction gas flow path (50) communicating with the compression chamber (26),
The internal space of the closed container (10) includes a low-pressure chamber (3L) in which the suction gas flow path (50) of the compression mechanism (20) and the suction pipe (11) are opened, and the discharge of the compression mechanism (20). A gas flow path (56) and a high-pressure chamber (4) in which the discharge pipe (12) opens,
The muffling member (60) separates the discharge gas flow path (56) from the low-pressure chamber (3L) of the closed container (10) with the inner layer (62) facing the discharge gas flow path (56). Is provided as
The compressor according to claim 1, wherein an outer surface of the outer layer (63) of the silencing member (60) is covered by a cover member (70).
請求項8において、
消音部材(60)の外側層(63)とカバー部材(70)との間には空間(71)が設けられ、該空間(71)は密閉容器(10)の高圧室(4)と連通していることを特徴とする圧縮機。
In claim 8,
A space (71) is provided between the outer layer (63) of the silencing member (60) and the cover member (70), and the space (71) communicates with the high-pressure chamber (4) of the sealed container (10). A compressor.
JP2003162070A 2003-06-06 2003-06-06 Compressor Expired - Fee Related JP4277587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162070A JP4277587B2 (en) 2003-06-06 2003-06-06 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162070A JP4277587B2 (en) 2003-06-06 2003-06-06 Compressor

Publications (2)

Publication Number Publication Date
JP2004360630A true JP2004360630A (en) 2004-12-24
JP4277587B2 JP4277587B2 (en) 2009-06-10

Family

ID=34054318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162070A Expired - Fee Related JP4277587B2 (en) 2003-06-06 2003-06-06 Compressor

Country Status (1)

Country Link
JP (1) JP4277587B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292195A1 (en) 2016-04-12 2017-10-12 United Technologies Corporation Light weight component with internal reinforcement and method of making
US20170292452A1 (en) * 2016-04-12 2017-10-12 United Technologies Corporation Light weight component with acoustic attenuation and method of making
CN107542656A (en) * 2017-09-11 2018-01-05 珠海格力电器股份有限公司 Screw compressor and there is its heat pump type air conditioning system
US10323325B2 (en) 2016-04-12 2019-06-18 United Technologies Corporation Light weight housing for internal component and method of making
US10335850B2 (en) 2016-04-12 2019-07-02 United Technologies Corporation Light weight housing for internal component and method of making
US10619949B2 (en) 2016-04-12 2020-04-14 United Technologies Corporation Light weight housing for internal component with integrated thermal management features and method of making
US10724131B2 (en) 2016-04-12 2020-07-28 United Technologies Corporation Light weight component and method of making

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170292195A1 (en) 2016-04-12 2017-10-12 United Technologies Corporation Light weight component with internal reinforcement and method of making
US20170292452A1 (en) * 2016-04-12 2017-10-12 United Technologies Corporation Light weight component with acoustic attenuation and method of making
US10302017B2 (en) * 2016-04-12 2019-05-28 United Technologies Corporation Light weight component with acoustic attenuation and method of making
US10323325B2 (en) 2016-04-12 2019-06-18 United Technologies Corporation Light weight housing for internal component and method of making
US10335850B2 (en) 2016-04-12 2019-07-02 United Technologies Corporation Light weight housing for internal component and method of making
US10399117B2 (en) * 2016-04-12 2019-09-03 United Technologies Corporation Method of making light weight component with internal metallic foam and polymer reinforcement
US10619949B2 (en) 2016-04-12 2020-04-14 United Technologies Corporation Light weight housing for internal component with integrated thermal management features and method of making
US10724131B2 (en) 2016-04-12 2020-07-28 United Technologies Corporation Light weight component and method of making
US11040372B2 (en) 2016-04-12 2021-06-22 Raytheon Technologies Corporation Light weight component with internal reinforcement
CN107542656A (en) * 2017-09-11 2018-01-05 珠海格力电器股份有限公司 Screw compressor and there is its heat pump type air conditioning system

Also Published As

Publication number Publication date
JP4277587B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP3980886B2 (en) Noise reduction and vibration reduction structure of scroll compressor
JP6187267B2 (en) Electric compressor
WO2007027168A1 (en) Compressor muffler
JP2009030469A (en) Scroll compressor
JP4277587B2 (en) Compressor
JP4992948B2 (en) Scroll compressor
WO2007010668A1 (en) Rotary compressor
KR20060024739A (en) Multi-cylinder type compressor
JP5195774B2 (en) Scroll compressor
EP3015709B1 (en) Scroll-type compressor
JP2010007550A (en) Scroll fluid machine
JP2000018184A (en) Rotary compressor
JP2708908B2 (en) Compressor silencer
JPH09303277A (en) Scroll compressor
KR100480126B1 (en) Hermetic rotary compressor with resonator
JP6739660B1 (en) Scroll compressor
JP2017172498A (en) Compressor and design method of the same
JP4844642B2 (en) Scroll compressor
JP5179955B2 (en) Positive displacement compressor
JP4576081B2 (en) Scroll compressor
KR100533045B1 (en) Scroll compressor with function of noise attenuation
KR20130028567A (en) Scroll compressor
JP2001329974A (en) Scroll compressor
JP3873813B2 (en) Scroll compressor
KR20040097810A (en) Muffler for hermetic rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090302

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4277587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees