JP2004360079A - Method for producing precursor, flameproofed fiber and carbon fiber - Google Patents

Method for producing precursor, flameproofed fiber and carbon fiber Download PDF

Info

Publication number
JP2004360079A
JP2004360079A JP2003156039A JP2003156039A JP2004360079A JP 2004360079 A JP2004360079 A JP 2004360079A JP 2003156039 A JP2003156039 A JP 2003156039A JP 2003156039 A JP2003156039 A JP 2003156039A JP 2004360079 A JP2004360079 A JP 2004360079A
Authority
JP
Japan
Prior art keywords
precursor
temperature
steam
specific gravity
draw ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003156039A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshikawa
秀和 吉川
Taro Oyama
太郎 尾山
Toshitsugu Matsuki
寿嗣 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2003156039A priority Critical patent/JP2004360079A/en
Publication of JP2004360079A publication Critical patent/JP2004360079A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide methods for producing a precursor for a highly oriented and high-strength carbon fiber and the carbon fiber with which the operation conditions of an apparatus for production is stabilized. <P>SOLUTION: The method for producing the precursor is carried out as follows. A steam treatment of the precursor drawn by varying the steam temperature at an optional draw ratio is conducted at a temperature within the temperature range of (T-4) to (T+6)°C including a temperature T°C exhibiting the maximum specific gravity of a specific gravity-steam treating temperature curve determined under measuring conditions of 250°C, 1 h and a constant length and at the draw ratio, etc., at that time. Furthermore, the method for producing the carbon fiber comprises flame-proofing the precursor in an oxidizing gas atmosphere, providing the flameproofed fiber and then heat-treating the resultant flameproofed fiber in an inert gas atmosphere. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、耐炎化繊維及び炭素繊維製造用プリカーサー(前駆体繊維)の製造方法、並びに、前記プリカーサーを用いた耐炎化繊維及び炭素繊維の製造方法に関する。
【0002】
【従来の技術】
通常、炭素繊維製造用のプリカーサーは、ノズルから凝固液中に吐出された紡糸用液が凝固して得た粗プリカーサーを更に延伸して製造する。
【0003】
高配向、高強度の耐炎化繊維及び炭素繊維製造用のプリカーサーを得るためには、粗プリカーサーの延伸倍率は適度に高いことが望ましく、このため 延伸操作は比較的高温の浴中やスチーム中で行われている。この延伸条件に応じ、得られるプリカーサーの性質が大きく左右し、ひいては得られる耐炎化繊維及び炭素繊維の物性に大きく影響している。延伸条件の検討も行われている(例えば、特許文献1〜3)。
【0004】
【特許文献1】
特開平10−292240号公報(特許請求の範囲)
【特許文献2】
特開平8−158162号公報(特許請求の範囲)
【特許文献3】
特開2000−345429号公報(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
本発明者は、紡糸用液を紡糸し、必要により浴中延伸し、更に必要により乾燥、緻密化して粗プリカーサーを得た。この粗プリカーサーを、任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを得た。この延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で比重(250℃/1hr定長処理比重)を求めた。この250℃/1hr比重と、その時のスチーム処理温度との関係を示すグラフ(250℃/1hr比重−スチーム処理温度曲線)における最大比重を示す温度から所定範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーの250℃/1hr定長処理比重−スチーム処理温度曲線の最大比重を示す延伸倍率から所定範囲内の延伸倍率及びその時の温度でスチーム処理をすることにより、高強度及び高配向度の炭素繊維を製造することのできるプリカーサーが得られること知得し、本発明を完成するに到った。
【0006】
よって、本発明の目的とするところは、上記問題を解決した、高配向、高強度の耐炎化繊維及び炭素繊維製造用のプリカーサー、並びに、前記プリカーサーを用いた耐炎化繊維及び炭素繊維の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明は、以下に記載のものである。
【0008】
〔1〕 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理すること、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理することを特徴とするプリカーサーの製造方法。
【0009】
〔2〕 延伸したプリカーサーを用い、TMA定長測定により求められる、150℃におけるTMA収縮応力荷重−スチーム処理温度曲線の最大収縮応力荷重を示す温度S℃を含み(S−5)〜(S+5)℃の範囲内の温度とその時の延伸倍率でスチーム処理する〔1〕に記載のプリカーサーの製造方法。
【0010】
〔3〕 延伸したプリカーサーを150℃で1hr且つフリー荷重の条件で求めた収縮率−スチーム処理温度曲線の最小収縮率を示す温度R℃を含み(R−5)〜(R+5)℃の範囲内の温度とその時の延伸倍率でスチーム処理する〔2〕に記載のプリカーサーの製造方法。
【0011】
〔4〕 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をしてプリカーサーを得、その後前記プリカーサーを酸化性ガス雰囲気下で、プリカーサーの比重が1.14〜1.25の間、延伸倍率を1.00〜1.10の範囲で耐炎化処理することを特徴とする耐炎化繊維の製造方法。
【0012】
〔5〕 耐炎化処理時、プリカーサーの比重が1.18〜1.21の間、広角X線測定(回折角17°)における配向度が低下しないように延伸して耐炎化処理する〔4〕に記載の耐炎化繊維の製造方法。
【0013】
〔6〕 耐炎化処理時、プリカーサーのガラス転移温度が低下し続ける間、延伸倍率を1.00〜1.10の範囲で耐炎化処理する〔4〕に記載の耐炎化繊維の製造方法。
【0014】
〔7〕 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をしてプリカーサーを得、その後前記プリカーサーを酸化性ガス雰囲気下で耐炎化処理して耐炎化繊維を得、その後前記耐炎化繊維を不活性ガス雰囲気下で熱処理することを特徴とする炭素繊維の製造方法。
【0015】
〔8〕 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をしてプリカーサーを得、その後前記プリカーサーを酸化性ガス雰囲気下で、プリカーサーの比重が1.14〜1.25の間、延伸倍率を1.00〜1.10の範囲で耐炎化処理して耐炎化繊維を得、その後前記耐炎化繊維を不活性ガス雰囲気下で熱処理することを特徴とする炭素繊維の製造方法。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0017】
<製造条件の決定>
本発明は、プリカーサーの製造に際し、粗プリカーサーの延伸温度(スチーム温度)及び延伸倍率等の延伸条件を決定し、これにより良好なプリカーサーを製造する方法、並びに、前記プリカーサーを耐炎化処理、炭素化処理することにより炭素繊維を製造する方法に関する。
【0018】
上記延伸条件の決定は、先ず予め決めた任意の延伸倍率でスチーム温度を変えて繰返しスチーム延伸処理をして得たプリカーサーについて、250℃/1hr定長処理比重とスチーム処理温度との関係を測定し、250℃/1hr定長処理比重−スチーム処理温度曲線を求める。なお、上記250℃/1hr定長処理比重は、上記各延伸条件のプリカーサーを用いて250℃で1hr且つ定長の測定条件で求められる比重である。
【0019】
このようにして得られた250℃/1hr定長処理比重−スチーム処理温度曲線(図1参照)から、最大比重を示すスチーム温度T℃を求める。
【0020】
又は、先ず予め決めた任意の温度のスチーム中で延伸倍率を変えて繰返しスチーム延伸処理して得たプリカーサーについて、250℃/1hr定長処理比重とスチーム処理温度との関係を測定し、250℃/1hr定長処理比重−スチーム処理温度曲線を求める。このようにして得られた250℃/1hr定長処理比重−スチーム処理温度曲線(図4参照)から、最大比重を示す延伸倍率P倍を求める。
【0021】
前記求めたT℃から(T−4)〜(T+6)℃を決定し、その温度と、その時の延伸倍率を、又は、前記求めたP倍から(P−1.5)〜(P+0.5)倍を決定し、その延伸倍率と、その時の温度を、最適なプリカーサーの製造条件とするものである。
【0022】
<プリカーサーの製造>
本発明の耐炎化繊維及び炭素繊維製造用のプリカーサーとしては、ポリアクリロニトリル(PAN)系、ピッチ系、フェノール系、レーヨン系等のものが挙げられる。PAN系のものが最も高強度の耐炎化繊維及び炭素繊維が得られる。
【0023】
このPAN系のプリカーサーは、PAN系重合体を常法により紡糸し、必要により浴中延伸し、更に必要により乾燥、緻密化し、更にまた必要により含水率を調節して粗プリカーサーを得る。これらの工程自体は当業者に周知のもの例えば特開2002−309438号公報に記載されたものである。
【0024】
PAN系重合体としては、アクリロニトリルの単独重合体、及びイタコン酸、メタクリル酸、アクリル酸等の極性単量体を5質量%以下共重合したPAN系共重合体を用いることができる。
【0025】
上記の粗プリカーサーは、必要によりその含水率が調節された後、スチーム延伸機に送られ、スチーム中で延伸(スチーム延伸)が行われる。
【0026】
スチーム延伸では、任意の延伸倍率においてスチーム温度を変えてプリカーサーを延伸する。これら延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で比重(250℃/1hr定長処理比重)を求める。この250℃/1hr定長処理比重と、その時のスチーム処理温度とから250℃/1hr定長処理比重−スチーム処理温度曲線を作成する(図1参照)。
【0027】
この250℃/1hr定長処理比重−スチーム処理温度曲線は、あるスチーム処理温度以下ではスチーム温度が高い程、250℃/1hr定長処理比重は上昇し、そのスチーム処理温度以上ではスチーム処理温度が高い程250℃/1hr定長処理比重は低下する。
【0028】
即ち、本発明のプリカーサーの製造方法は、250℃/1hr定長処理比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理することを特徴とする。
【0029】
このスチーム延伸条件によって延伸処理されたプリカーサーは、パッキングが良好である。これに対し、パッキングが悪いと、得られる耐炎化繊維の比重(緻密性)が低くなるばかりでなく、最終的に高強度の炭素繊維を得る事が困難となる。さらに焼成工程での毛羽発生の原因ともなる。
【0030】
プリカーサーのパッキングを更に良くするには、上記粗プリカーサーは、上記スチーム延伸条件に加えて、任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用い、TMA定長測定により求められる、150℃におけるTMA収縮応力−スチーム処理温度曲線の最大収縮応力を示す温度S℃を含み(S−5)〜(S+5)℃の温度範囲、好ましくは(S−4)〜(S+4)℃の温度範囲とその時の延伸倍率でスチーム処理されることが望ましい(図2参照)。
【0031】
このスチーム延伸により得られるプリカーサーは、TMA定長測定により求められる、150℃におけるTMA収縮応力が大きいが、実際の(フリー荷重の条件での)収縮率は小さい。すなわち、このプリカーサー中の分子間力相互作用において縮もうとする力は強いが、パッキングがしっかりしているので、実際には縮みにくい(少ししか縮まない)。つまり、このプリカーサーは、フリー荷重の耐炎化処理条件において縮みにくいパッキング構造を有する。
【0032】
そこで、上記粗プリカーサーは、上記スチーム延伸条件に加えて、任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを150℃で1hr且つフリー荷重の条件で耐炎化処理して求めた収縮率−スチーム処理温度曲線の最小収縮率を示す温度R℃を含み(R−5)〜(R+5)℃の温度範囲、好ましくは(R−4.5)〜(R+5)℃の温度範囲、更に好ましくは(R−4)〜(R+5)℃の温度範囲とその時の延伸倍率でスチーム処理されることが望ましい(図3参照)。
【0033】
<耐炎化繊維の製造>
以上の条件下で延伸処理されたプリカーサーは、酸化性ガス雰囲気下で熱処理されて耐炎化繊維になる。前述したように、耐炎化処理前のプリカーサーはパッキングが良好であり、得られる耐炎化繊維もパッキングが良好である。この耐炎化繊維は、高配向、且つ高強度を有し、毛羽や糸切れの少ない繊維でもある。
【0034】
得られる耐炎化繊維のパッキング構造、配向度、強度等の物性を更に向上させるには、プリカーサーは、その配向が弛まないように耐炎化処理されることが好ましい。
【0035】
具体的には、プリカーサーは、処理中の比重が1.14〜1.25の間、延伸倍率を1.00〜1.10の範囲で耐炎化処理されることが好ましい。
【0036】
この耐炎化処理時、プリカーサーは、そのガラス転移温度(Tg温度)が低下し続ける間、延伸倍率を1.00〜1.10の範囲で耐炎化処理されることが好ましい。
【0037】
Tg温度を求める公知の手段のうち、本発明では、動的粘弾性測定手段を用いることが好ましい。具体的には、貯蔵弾性率(E‘)に対する損失貯蔵弾性率(E“)の尺度を表す損失正接(tanδ)のピーク温度をプリカーサーのTg温度としている。なお、プリカーサーの耐炎化処理時間とTg温度との関係は、図5のようになる。
【0038】
上記耐炎化処理時、プリカーサーは、その比重が1.18〜1.21の間、広角X線測定(回折角17°)における配向度が低下しないように延伸して耐炎化処理されることが好ましい。
【0039】
広角X線測定(回折角17°)における配向度は、次のようにして求めることができる。
【0040】
延伸処理後のプリカーサーの単繊維約12000本を束にし、アセトンを用いて束を収束させながら繊維軸方向に繊維を引揃える。
【0041】
直径1.0cmの穴をあけた台紙に、繊維束の中央が穴の中央に来るように、繊維を緊張させた状態で貼付ける。その後、繊維軸と治具の軸が平行になるように、台紙を試料調整用治具に固定する。
【0042】
更に、この治具を透過法による広角X線回折測定試料台に固定する。X線源として、CuのKα線を使用し、試料に照射すると、2θ17度付近に回折パターン(二つのピークを有する)が現れる。
【0043】
この回折パターンのピーク角度を求め、それらの角度を含む360度の範囲について測定を行う。次いで得られたX線回折チャートのグラフ上にベースラインを引き、ピークの半値幅H1/2、H’1/2(度)を求め、下式
【0044】
【数1】
配向度=[360−(H1/2+H’1/2)]/360 (1)
によって配向度を計算する。
【0045】
<炭素繊維の製造>
次に、前記耐炎化繊維は不活性ガス雰囲気下で熱処理されて炭素繊維となり得る。さらに、炭素繊維の後加工をしやすくし、取扱性を向上させる目的で、サイジング処理することが好ましい。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。
【0046】
このようにして得られた炭素繊維は、高配向、且つ高強度を有し、毛羽や糸切れの少ない炭素繊維である。
【0047】
【実施例】
以下、本発明を検討例、実施例及び比較例により更に具体的に説明する。また、各検討例、実施例及び比較例における延伸後のプリカーサー、耐炎化繊維及び炭素繊維の諸物性についての評価方法は、前述の方法又は以下の方法により実施した。
【0048】
<250℃/1hr定長処理比重>
以下の手法により測定した。
1. プリカーサーを一定長採取し、長さが変化しないようにきっちりと固定する。
2. 250℃に設定した熱風循環式乾燥機に入れ、1時間処理する。
3. 取り出して、放冷後、アルキメデス法により測定する。試料繊維はアセトン中にて脱気処理し測定する。
【0049】
<TMA収縮応力>
マックサイエンス社製の熱機械特性試験機(TMA)4000Sを用い、以下の手法により測定した。
1. プリカーサーを採取し、測定有効長1cmとして繊維測定用の治具に固定する。
2. 定長モードに設定し、25〜400℃の間で昇温速度20℃/分の条件で、この間の荷重を測定する。
3. 測定された150℃における荷重(150℃測定荷重)を、下式
【0050】
【数2】
TMA収縮応力=150℃測定荷重/プリカーサーサンプルの断面積により繊維断面積当たりに換算し、TMA収縮応力とする。
【0051】
<150℃/1hr収縮率>
以下の手法により測定した。
1. プリカーサーを1m計測する。
2. 金網状の棚にフリーの状態で上記プリカーサーを載せ、150℃に設定した熱風循環式乾燥機に入れる。
3. 1時間後に取り出し、サンプル長を測定し、収縮率を求める。
4. 測定はn=3で測定し、平均値を求める。
【0052】
<ガラス転移温度(Tg)>
動的粘弾性測定装置により測定した。
【0053】
装置は、(株)UBM製 動的粘弾性測定装置 型式:Rhogl E−4000を用いて、昇温速度3℃/分、周波数3Hzの条件下で0〜180℃の間で測定した。また、測定試料はプリカーサー繊維束 12000本 25mmを用いた。
【0054】
<広角X線測定(回折角17°)における配向度>
X線回折装置:理学電機製RINT2050を使用し、回折角17°における配向度を半値幅H1/2、H’1/2から前述の式(1)により求めた。
【0055】
<広角X線測定(回折角26°)における配向度>
回折角を26°にした以外は、上記広角X線測定(回折角17°)における配向度と同様にして求めた。
【0056】
<引張り強度>
JIS R 7601に規定された方法により測定した。
【0057】
<プリカーサー比重>
アルキメデス法により測定した。試料繊維はアセトン中にて脱気処理し測定した。
【0058】
検討例1
アクリロニトリル95質量%/アクリル酸メチル4質量%/イタコン酸1質量%よりなる共重合体紡糸原液を湿式又は乾湿式紡糸し、水洗・乾燥して繊維直径22.0μmの粗プリカーサーを得た。この粗プリカーサーをスチーム延伸機に送り、ここで延伸倍率5.5倍、スチーム温度(処理温度)107℃、110℃、113℃、117℃、120℃、123℃、127℃の条件でスチーム延伸し、図1〜3に示す諸物性のプリカーサーを得た。
【0059】
図1は、上記の各スチーム延伸条件で得たプリカーサーを250℃で1hr且つ定長の条件で耐炎化処理して得られた耐炎化繊維の比重(250℃/1hr定長処理比重)と、スチーム延伸時の処理温度とをプロットして得たグラフ(250℃/1hr定長処理比重−スチーム処理温度曲線)である。
【0060】
図1に示すように、スチーム温度115℃以下ではスチーム温度が高い程250℃/1hr定長処理比重は上昇し、スチーム温度116℃以上ではスチーム温度が高い程、250℃/1hr定長処理比重は低下した。このように、250℃/1hr定長処理比重が最大となるスチーム温度115℃(T℃)T℃を含み111(T−4)〜121(T+6)℃において、250℃/1hr定長処理比重は1.35以上であった。
【0061】
図2は、上記の各スチーム延伸条件で得たプリカーサーをTMAにおいて150℃で且つ定長の条件で耐炎化処理し、その処理中にプリカーサーに掛かる応力(TMA収縮応力)と、スチーム延伸時の処理温度とをプロットして得たグラフである。
【0062】
図2に示すように、スチーム温度が116℃以下ではスチーム温度が高い程、TMA収縮応力が上昇し、スチーム温度が116℃以上ではスチーム温度が高い程、TMA収縮応力が低下した。このように、TMA収縮応力が最大(37MPa)となるスチーム温度116℃(S℃)を含み111(S−5)〜121(S+5)℃の範囲において、TMA収縮応力は35.1MPa(37MPaの−5%)以上であった。
【0063】
図3は、上記の各スチーム延伸条件で得たプリカーサーを150℃で1hr且つフリー荷重の条件で耐炎化処理し、その処理におけるプリカーサーの収縮率(150℃/1hr収縮率)と、スチーム延伸時の処理温度とをプロットして得たグラフである。
【0064】
図3に示すように、スチーム温度が116℃以下ではスチーム温度が高い程、150℃/1hr収縮率が低下し、スチーム温度が116℃以上ではスチーム温度が高い程、150℃/1hr収縮率が上昇した。このように、150℃/1hr収縮率が最小(8.5%)となるスチーム温度116℃(R℃)を含み111(R−5)〜121(R+5)の範囲において、150℃/1hr収縮率は8.84%(8.5%の+4%)%以下であった。
【0065】
実施例1〜3
検討例1の各スチーム延伸条件で得たプリカーサーのうち、延伸倍率5.5倍、スチーム温度(処理温度)113℃、117℃、120℃の条件で得たプリカーサーを、酸化性ガス雰囲気下で耐炎化処理を施して耐炎化繊維を製造した。
【0066】
これらのプリカーサーの耐炎化処理時、プリカーサーの比重が1.14〜1.25の間、延伸倍率は1.05に保った。
【0067】
しかも、プリカーサーの比重が1.18〜1.21の間、広角X線測定(回折角17°)における配向度が89.5%から低下しないように延伸して耐炎化処理した。
【0068】
また、プリカーサーの比重が1.15〜1.20の間、プリカーサーのガラス転移温度が107.2℃から97.0℃まで低下し続けた。この間、延伸倍率は上記の1.05に保った。
【0069】
以上の耐炎化処理時、プリカーサーの耐炎化処理時間とガラス転移温度(Tg温度)との関係は、図5のようになった。
【0070】
次に、上記の各耐炎化繊維を、炭素化処理を施して炭素繊維を製造した。これらの製造条件及び製造装置は通常のものであった。
【0071】
これらのスチーム延伸以後の工程における耐炎化繊維及び炭素繊維製造の際において、毛羽や糸切れの発生は少なく、製造装置の運転状態を安定化させることができた。
【0072】
なお、各スチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、スチーム温度(処理温度)113℃、117℃、120℃で、それぞれ6350MPa、6400MPa、6300MPaであった。
【0073】
このように、各スチーム延伸条件のプリカーサーから得られた炭素繊維の引張り強度は何れも高いものであった。
【0074】
更に、各スチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、スチーム温度(処理温度)113℃、117℃、120℃で、それぞれ78.1%、78.0%、77.8%であった。更にまた、各スチーム延伸条件のプリカーサーから得られた上記耐炎化繊維を経由して炭素繊維の広角X線測定(回折角26°)における配向度は、スチーム温度(処理温度)113℃、117℃、120℃で、それぞれ81.7%、81.5%、81.4%であった。
【0075】
このように、各スチーム延伸条件のプリカーサーから得られた、耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも高いものであった。
【0076】
比較例1
検討例1の各スチーム延伸条件で得たプリカーサーのうち、延伸倍率5.5倍、スチーム温度(処理温度)107℃の条件で得たプリカーサーを用いた以外は、実施例1〜3と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0077】
本比較例で用いたプリカーサーは、これを得るためのスチーム延伸工程の延伸処理、及びこのプリカーサーを耐炎化処理後焼成する炭素化工程において毛羽発生が多いものであった。このように、炭素繊維製造装置(スチーム延伸装置、炭素化装置)の運転状態を安定化させることはできなかった。
【0078】
なお、本比較例のスチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、6000MPaと低いものであった。
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、77.5%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、81.2%であった。
【0079】
このように、本比較例のスチーム延伸条件のプリカーサーから得られた、耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも低いものであった。
【0080】
比較例2
検討例1の各スチーム延伸条件で得たプリカーサーのうち、延伸倍率5.5倍、スチーム温度(処理温度)110℃の条件で得たプリカーサーを用いた以外は、実施例1〜3と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0081】
本比較例で用いたプリカーサーは、これを耐炎化処理後炭素化工程の焼成において毛羽発生が多いものであった。このように、炭素繊維製造装置(炭素化装置)の運転状態を安定化させることはできなかった。
【0082】
なお、本比較例のスチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、6220MPaと低いものであった。
【0083】
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、77.8%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、81.6%であった。
【0084】
比較例3
検討例1の各スチーム延伸条件で得たプリカーサーのうち、延伸倍率5.5倍、スチーム温度(処理温度)123℃の条件で得たプリカーサーを用いた以外は、実施例1〜3と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0085】
本比較例で用いたプリカーサーは、比重が1.14と低く、耐炎化処理して得られた耐炎化繊維の比重も低かった。ひいては、この耐炎化繊維を炭素化処理して得られた炭素繊維は、その引張り強度が6200MPaと低いものであった。
【0086】
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、77.5%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、81.3%であった。
【0087】
このように、本比較例のスチーム延伸条件のプリカーサーから得られた、耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも低いものであった。
【0088】
比較例4
検討例1の各スチーム延伸条件で得たプリカーサーのうち、延伸倍率5.5倍、スチーム温度(処理温度)127℃の条件で得たプリカーサーを用いた以外は、実施例1〜3と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0089】
本比較例で用いたプリカーサーは、比重が1.12と低く、耐炎化処理して得られた耐炎化繊維の比重も低かった。ひいては、この耐炎化繊維を炭素化処理して得られた炭素繊維は、その引張り強度が6050MPaと低いものであった。
【0090】
本比較例で用いたプリカーサーは、広角X線測定(回折角17°)における配向度が90.0%と低く、このプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、77.2%と低いものであった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維も、その広角X線測定(回折角26°)における配向度は81.1%と低いものであった。
【0091】
検討例2
検討例1で得た粗プリカーサーをスチーム延伸機に送り、ここでスチーム温度(処理温度)113℃、延伸倍率3.5倍、4.5倍、5.0倍、5.5倍、6.0倍、6.5倍、6.9倍、7.2倍の条件でスチーム延伸し、スチーム延伸条件検討用のプリカーサーを得た。
【0092】
図4は、上記の各スチーム延伸条件で得たプリカーサーを250℃で1hr且つ定長の条件で耐炎化処理して得られた耐炎化繊維の比重(250℃/1hr定長処理比重)と、スチーム延伸時の延伸倍率とをプロットして得たグラフである。
【0093】
図4に示すように、延伸倍率が6.0倍以下では延伸倍率が高い程、250℃/1hr定長処理比重が上昇し、延伸倍率が6.0倍以上では延伸倍率が高い程、250℃/1hr定長処理比重が低下した。このように、250℃/1hr定長処理比重が最大(1.362)となる延伸倍率が6.3倍(P倍)を含み4.8(P−1.5)〜6.8(P+0.5)倍の範囲において、250℃/1hr定長処理比重は1.35以上であった。
【0094】
実施例4〜7
検討例2の各スチーム延伸条件で得たプリカーサーのうち、スチーム温度(処理温度)113℃、延伸倍率5.0倍、5.5倍、6.0倍、6.5倍の条件で得たプリカーサーを、耐炎化処理、炭素化処理を施し、実施例1〜3と同様にして耐炎化繊維、炭素繊維を製造した。
【0095】
これらの後工程における炭素繊維製造の際において、毛羽や糸切れの発生は少なく、製造装置の運転状態を安定化させることができた。
【0096】
なお、各スチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、延伸倍率5.0倍、5.5倍、6.0倍、6.5倍で、それぞれ6260MPa、6350MPa、6390MPa、6300MPaであった。
【0097】
このように、各スチーム延伸条件のプリカーサーから得られた炭素繊維の引張り強度は何れも高いものであった。
【0098】
また、各スチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、延伸倍率5.0倍、5.5倍、6.0倍、6.5倍で、それぞれ77.8%、78.1%、78.3%、78.4%であった。更に、各スチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、延伸倍率5.0倍、5.5倍、6.0倍、6.5倍で、それぞれ81.4%、81.7%、82.0、82.0%であった。
【0099】
このように、各スチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも高いものであった。
【0100】
比較例5
検討例1の各スチーム延伸条件で得たプリカーサーのうち、スチーム温度(処理温度)113℃、延伸倍率3.5倍の条件で得たプリカーサーを用いた以外は、実施例4〜7と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0101】
本比較例で用いたプリカーサーは、これを耐炎化処理後焼成する炭素化工程において毛羽発生が多いものであった。このように、炭素繊維製造装置(スチーム延伸装置、炭素化装置)の運転状態を安定化させることはできなかった。
【0102】
なお、本比較例のスチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、5700MPaと低いものであった。
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、76.8%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、80.4%であった。
【0103】
このように、本比較例のスチーム延伸条件のプリカーサーから得られた、耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも低いものであった。
【0104】
比較例6
検討例1の各スチーム延伸条件で得たプリカーサーのうち、スチーム温度(処理温度)113℃、延伸倍率4.5倍の条件で得たプリカーサーを用いた以外は、実施例4〜7と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0105】
本比較例で用いたプリカーサーは、炭素繊維製造装置(スチーム延伸装置、炭素化装置)の運転状態を安定化させることはできなかった。
【0106】
なお、本比較例のスチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、6100MPaと低いものであった。
【0107】
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、77.5%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、80.9%であった。
【0108】
このように、本比較例のスチーム延伸条件のプリカーサーから得られた、耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも低いものであった。
【0109】
比較例7
検討例1の各スチーム延伸条件で得たプリカーサーのうち、スチーム温度(処理温度)113℃、延伸倍率6.9倍の条件で得たプリカーサーを用いた以外は、実施例4〜7と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0110】
本比較例で用いたプリカーサーは、これを耐炎化処理後焼成する炭素化工程において毛羽発生が多いものであった。このように、炭素繊維製造装置(スチーム延伸装置、炭素化装置)の運転状態を安定化させることはできなかった。
【0111】
なお、本比較例のスチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、6200MPaと低いものであった。
【0112】
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、78.2%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、81.6%であった。
【0113】
比較例8
検討例1の各スチーム延伸条件で得たプリカーサーのうち、スチーム温度(処理温度)113℃、延伸倍率7.2倍の条件で得たプリカーサーを用いた以外は、実施例4〜7と同様の条件で耐炎化繊維、炭素繊維を製造した。
【0114】
本比較例で用いたプリカーサーは、これを得るためのスチーム延伸工程の延伸処理、及びこのプリカーサーを耐炎化処理後焼成する炭素化工程において毛羽発生が多いものであった。このように、炭素繊維製造装置(スチーム延伸装置、炭素化装置)の運転状態を安定化させることはできなかった。
【0115】
なお、本比較例のスチーム延伸条件のプリカーサーから耐炎化繊維を経由して得られた炭素繊維の引張り強度は、6000MPaと低いものであった。
【0116】
更に、本比較例のスチーム延伸条件のプリカーサーから得られた耐炎化繊維の広角X線測定(回折角26°)における配向度は、77.9%であった。更にまた、本比較例のスチーム延伸条件のプリカーサーから上記耐炎化繊維を経由して得られた炭素繊維の広角X線測定(回折角26°)における配向度は、81.0%であった。
【0117】
このように、本比較例のスチーム延伸条件のプリカーサーから得られた、耐炎化繊維の広角X線測定(回折角26°)における配向度、及び炭素繊維の広角X線測定(回折角26°)における配向度は何れも低いものであった。
【0118】
実施例1〜7及び比較例1〜8におけるスチーム延伸条件、製造工程の状況、得られた炭素繊維評価を表1に示す。
【0119】
【表1】

Figure 2004360079
【0120】
【発明の効果】
本発明のプリカーサーの製造方法によれば、任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを250℃で1hr且つ定長の測定条件で求めた比重(250℃/1hr定長処理比重)−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーの250℃/1hr定長処理比重−スチーム処理温度曲線の最大比重を示す延伸倍率であって最も低い延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をするようにしているので、スチーム延伸処理するに際し、更に後工程の耐炎化繊維及び炭素繊維製造の際において、毛羽や糸切れを低減させ、製造装置の運転状態を安定化させることができる。
【0121】
また、本発明の製造方法によって得られるプリカーサー、耐炎化繊維及び炭素繊維は、高配向、高強度のものである。
【図面の簡単な説明】
【図1】検討例1における各スチーム延伸条件で得たプリカーサーについて、スチーム温度と250℃/1hr比重との関係を示すグラフである。
【図2】検討例1における各スチーム延伸条件で得たプリカーサーについて、スチーム温度とTMA収縮応力との関係を示すグラフである。
【図3】検討例1における各スチーム延伸条件で得たプリカーサーについて、スチーム温度と150℃/1hr収縮率との関係を示すグラフである。
【図4】検討例2における各スチーム延伸条件で得たプリカーサーについて、延伸倍率と250℃/1hr比重との関係を示すグラフである。
【図5】検討例1、2における各スチーム延伸条件で得たプリカーサーについて、引続き耐炎化処理した時のプリカーサーの耐炎化処理時間とTg温度との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a precursor (precursor fiber) for producing an oxidized fiber and a carbon fiber, and a method for producing an oxidized fiber and a carbon fiber using the precursor.
[0002]
[Prior art]
Usually, a precursor for producing carbon fiber is produced by further stretching a coarse precursor obtained by solidifying a spinning solution discharged from a nozzle into a coagulating solution.
[0003]
In order to obtain a precursor for the production of highly oriented, high-strength flame-resistant fibers and carbon fibers, it is desirable that the stretching ratio of the coarse precursor is appropriately high, so that the stretching operation is performed in a relatively high-temperature bath or steam. Is being done. Depending on the drawing conditions, the properties of the obtained precursor are greatly affected, and thus have a great influence on the properties of the obtained oxidized fiber and carbon fiber. Studies have been made on stretching conditions (for example, Patent Documents 1 to 3).
[0004]
[Patent Document 1]
JP-A-10-292240 (Claims)
[Patent Document 2]
JP-A-8-158162 (Claims)
[Patent Document 3]
Japanese Patent Application Laid-Open No. 2000-345429 (Claims)
[0005]
[Problems to be solved by the invention]
The present inventor spinned the spinning solution, stretched it in a bath as necessary, and further dried and densified it as necessary to obtain a crude precursor. The precursor was obtained by stretching the crude precursor while changing the steam temperature at an arbitrary stretching ratio. Using this stretched precursor, the specific gravity (250 ° C./1 hr constant-length treatment specific gravity) was determined at 250 ° C. for 1 hr and at a constant length measurement condition. In the graph showing the relationship between the specific gravity of 250 ° C./1 hr and the steam processing temperature at that time (250 ° C./1 hr specific gravity-steam processing temperature curve), the steam is drawn at a temperature within a predetermined range from the temperature showing the maximum specific gravity and the draw ratio at that time. The stretching ratio within a predetermined range from the stretching ratio indicating the maximum specific gravity of the constant-temperature-specific-gravity treatment-steam-processing temperature curve at 250 ° C./1 hr of the precursor stretched by changing the stretching ratio at an arbitrary steam temperature and the temperature at that time It has been found that a precursor capable of producing a carbon fiber having a high strength and a high degree of orientation can be obtained by performing the steam treatment with, and the present invention has been completed.
[0006]
Therefore, it is an object of the present invention to solve the above-mentioned problems and to provide a highly oriented, high-strength flame-resistant fiber and a precursor for producing carbon fiber, and a method for producing the flame-resistant fiber and carbon fiber using the precursor. Is to provide.
[0007]
[Means for Solving the Problems]
The present invention that achieves the above object is as described below.
[0008]
[1] Including a temperature T ° C. showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C. for 1 hour and under a constant length measurement condition using a precursor stretched by changing the steam temperature at an arbitrary stretching ratio (T -4) to perform steam treatment at a temperature in the range of (T + 6) ° C. and a draw ratio at that time, or at 250 ° C. for 1 hour and a constant length using a precursor drawn by changing the draw ratio at an arbitrary steam temperature. The steam treatment is performed at the draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P, which indicates the maximum specific gravity of the specific gravity-steam treatment temperature curve obtained under the measurement conditions, and the temperature at that time. A method for producing a precursor.
[0009]
[2] Including the temperature S ° C indicating the maximum shrinkage stress load of the TMA shrinkage stress load at 150 ° C-steam treatment temperature curve obtained by TMA constant length measurement using the stretched precursor (S-5) to (S + 5) The method for producing a precursor according to [1], wherein steam treatment is performed at a temperature in the range of ° C. and a draw ratio at that time.
[0010]
[3] The temperature of the stretched precursor is 150 ° C. for 1 hour and the minimum shrinkage rate of the steam treatment temperature curve obtained under the conditions of a free load and a shrinkage rate of R ° C. is from (R-5) to (R + 5) ° C. The method for producing a precursor according to [2], wherein steam treatment is performed at the temperature and the draw ratio at that time.
[0011]
[4] Including a temperature T ° C. showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C. for 1 hour using a precursor stretched by changing the steam temperature at an arbitrary draw ratio under a constant length (T -4) Steam treatment at a temperature in the range of (T + 6) ° C. and a draw ratio at that time, or measurement at 250 ° C. for 1 hour and a constant length using a precursor drawn by changing the draw ratio at an arbitrary steam temperature. The steam treatment was performed at the draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P times showing the maximum specific gravity of the specific gravity-steam treatment temperature curve obtained under the conditions, and the temperature at that time. To obtain a precursor, and then subjecting the precursor to an oxidizing gas atmosphere with a flame resistance treatment at a specific gravity of the precursor of 1.14 to 1.25 and a stretching ratio of 1.00 to 1.10. A method for producing a flame-resistant fiber.
[0012]
[5] At the time of the flame-proof treatment, the precursor is stretched so that the degree of orientation in wide-angle X-ray measurement (diffraction angle 17 °) does not decrease while the specific gravity of the precursor is 1.18 to 1.21 [4] 3. The method for producing an oxidized fiber according to item 1.
[0013]
[6] The method for producing an oxidized fiber according to [4], wherein the oxidized fiber is subjected to an oxidization treatment at a draw ratio of 1.00 to 1.10 while the glass transition temperature of the precursor continues to decrease during the oxidization treatment.
[0014]
[7] Including a temperature T ° C. showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C. for 1 hour using a precursor stretched while changing the steam temperature at an arbitrary stretching ratio under a constant length (T -4) Steam treatment at a temperature in the range of (T + 6) ° C. and a draw ratio at that time, or measurement at 250 ° C. for 1 hour and a constant length using a precursor drawn by changing the draw ratio at an arbitrary steam temperature. The steam treatment was performed at the draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P times showing the maximum specific gravity of the specific gravity-steam treatment temperature curve obtained under the conditions, and the temperature at that time. To obtain a precursor, after which the precursor is oxidized in an oxidizing gas atmosphere to obtain an oxidized fiber, and then the oxidized fiber is heat-treated in an inert gas atmosphere. Method for producing carbon fiber.
[0015]
[8] Including a temperature T ° C. showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C. for 1 hour using a precursor stretched while changing the steam temperature at an arbitrary draw ratio under a constant length (T -4) Steam treatment at a temperature in the range of (T + 6) ° C. and a draw ratio at that time, or measurement at 250 ° C. for 1 hour and a constant length using a precursor drawn by changing the draw ratio at an arbitrary steam temperature. The steam treatment was performed at the draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P times showing the maximum specific gravity of the specific gravity-steam treatment temperature curve obtained under the conditions, and the temperature at that time. To obtain a precursor, and then subjecting the precursor to an oxidizing gas atmosphere with a flame resistance treatment at a specific gravity of the precursor of 1.14 to 1.25 and a stretching ratio of 1.00 to 1.10. And obtaining a fire-resistant fiber, and then heat-treating the fire-resistant fiber in an inert gas atmosphere.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0017]
<Determination of manufacturing conditions>
The present invention determines a stretching condition such as a stretching temperature (steam temperature) and a stretching ratio of a coarse precursor in the production of a precursor, thereby producing a good precursor, and a method of subjecting the precursor to flame-resistant treatment and carbonization. The present invention relates to a method for producing carbon fibers by treating.
[0018]
The above stretching conditions are determined by first measuring the relationship between the specific gravity at 250 ° C./1 hr and the steaming temperature for a precursor obtained by repeatedly performing steam stretching at a predetermined arbitrary stretching ratio while changing the steam temperature. Then, a 250 ° C./1 hr constant-length treatment specific gravity-steam treatment temperature curve is obtained. The specific gravity at 250 ° C./1 hr constant-length treatment is a specific gravity determined at 250 ° C. for 1 hr and a constant-length measurement condition using a precursor under each of the above stretching conditions.
[0019]
From the thus obtained 250 ° C./1 hr constant-length treatment specific gravity-steam treatment temperature curve (see FIG. 1), a steam temperature T ° C. showing the maximum specific gravity is determined.
[0020]
Alternatively, the relationship between the specific gravity of the constant-length treatment at 250 ° C./1 hr and the steam treatment temperature was measured for the precursor obtained by repeatedly performing the steam stretching treatment while changing the stretching ratio in steam at a predetermined temperature. / Lhr constant-length processing specific gravity-steam processing temperature curve is determined. From the thus obtained 250 ° C./1 hr constant length treatment specific gravity-steam treatment temperature curve (see FIG. 4), a draw ratio P times showing the maximum specific gravity is determined.
[0021]
(T-4) to (T + 6) ° C. is determined from the obtained T ° C., and the temperature and the draw ratio at that time are determined, or (P−1.5) to (P + 0.5) from the obtained P times. ) Is determined, and the stretching ratio and the temperature at that time are determined as the optimum precursor production conditions.
[0022]
<Manufacture of precursor>
Examples of the precursor for producing the flame-resistant fiber and the carbon fiber of the present invention include polyacrylonitrile (PAN) -based, pitch-based, phenol-based, and rayon-based ones. PAN-based ones provide the highest strength flame-resistant fibers and carbon fibers.
[0023]
This PAN-based precursor is obtained by spinning a PAN-based polymer by a conventional method, stretching in a bath as necessary, further drying and densifying as necessary, and further adjusting the water content as necessary to obtain a crude precursor. These steps themselves are well known to those skilled in the art, for example, those described in JP-A-2002-309438.
[0024]
As the PAN-based polymer, a homopolymer of acrylonitrile and a PAN-based copolymer obtained by copolymerizing a polar monomer such as itaconic acid, methacrylic acid, and acrylic acid at 5% by mass or less can be used.
[0025]
The above crude precursor is sent to a steam stretching machine after its moisture content is adjusted if necessary, and is stretched in the steam (steam stretching).
[0026]
In steam stretching, the precursor is stretched at an arbitrary stretching ratio while changing the steam temperature. Using these stretched precursors, the specific gravity (250 ° C./1 hour constant-length treatment specific gravity) is determined at 250 ° C. for 1 hr and under the constant length measurement conditions. A 250 ° C./1 hr constant length processing specific gravity-steam processing temperature curve is created from the 250 ° C./1 hr constant length processing specific gravity and the steam processing temperature at that time (see FIG. 1).
[0027]
This 250 ° C./1 hr constant length processing specific gravity-steam processing temperature curve shows that the 250 ° C./1 hr constant length processing specific gravity increases as the steam temperature increases below a certain steam processing temperature, and the steam processing temperature increases above the steam processing temperature. The higher the temperature, the lower the specific gravity at 250 ° C./hr for the constant length treatment.
[0028]
That is, the method for producing a precursor according to the present invention includes a temperature T ° C which indicates the maximum specific gravity of a 250 ° C / 1 hr constant length processing specific gravity-steam processing temperature curve, and a temperature in the range of (T-4) to (T + 6) ° C. It is characterized in that steam treatment is performed at the stretching ratio at that time.
[0029]
The precursor stretched under the steam stretching conditions has good packing. On the other hand, if the packing is poor, not only the specific gravity (density) of the obtained oxidized fiber becomes low, but also it becomes difficult to finally obtain high-strength carbon fiber. In addition, it causes fluff in the firing step.
[0030]
In order to further improve the packing of the precursor, the coarse precursor is, in addition to the steam stretching conditions, using a precursor stretched by changing the steam temperature at an arbitrary stretching ratio, at 150 ° C. determined by TMA constant length measurement. The temperature range of (S-5) to (S + 5) ° C, preferably the temperature range of (S-4) to (S + 4) ° C, including the temperature S ° C indicating the maximum shrinkage stress in the TMA shrinkage stress-steam treatment temperature curve. It is desirable to carry out steam treatment at a draw ratio of (see FIG. 2).
[0031]
The precursor obtained by this steam stretching has a large TMA shrinkage stress at 150 ° C., as determined by TMA constant length measurement, but has a small actual shrinkage (under free load conditions). In other words, although the force to shrink in the intermolecular force interaction in the precursor is strong, the packing is firm, so that it is hardly shrunk in practice (slightly shrinks). In other words, this precursor has a packing structure that does not easily shrink under the conditions of the oxidation resistance treatment under a free load.
[0032]
Therefore, in addition to the steam stretching conditions, the crude precursor is obtained by subjecting a precursor stretched by changing the steam temperature at an arbitrary stretching magnification to 150 ° C. for 1 hour and subjected to oxidizing treatment under the conditions of a free load—the shrinkage ratio−steam Including the temperature R ° C showing the minimum shrinkage of the processing temperature curve, the temperature range is (R-5) to (R + 5) ° C, preferably the temperature range (R-4.5) to (R + 5) ° C, and more preferably (R−5) to (R + 5) ° C. It is desirable to carry out steam treatment in a temperature range of R-4) to (R + 5) ° C. and a draw ratio at that time (see FIG. 3).
[0033]
<Manufacture of flame-resistant fiber>
The precursor that has been drawn under the above conditions is subjected to a heat treatment in an oxidizing gas atmosphere to become an oxidized fiber. As described above, the precursor before the oxidizing treatment has good packing, and the oxidized fiber obtained also has good packing. The flame-resistant fiber has high orientation and high strength, and is a fiber with little fluff or breakage.
[0034]
In order to further improve the physical properties such as the packing structure, the degree of orientation, and the strength of the obtained flame-resistant fiber, the precursor is preferably subjected to a flame-proof treatment so that the orientation is not loosened.
[0035]
Specifically, it is preferable that the precursor be subjected to flame-resistant treatment at a specific gravity during processing of 1.14 to 1.25 and a stretching ratio of 1.00 to 1.10.
[0036]
During the flame-proofing treatment, the precursor is preferably subjected to the flame-proofing treatment at a stretching ratio of 1.00 to 1.10. While its glass transition temperature (Tg temperature) continues to decrease.
[0037]
Among the known means for determining the Tg temperature, in the present invention, it is preferable to use a dynamic viscoelasticity measuring means. Specifically, the peak temperature of the loss tangent (tan δ) representing the scale of the loss storage modulus (E ″) with respect to the storage modulus (E ′) is defined as the Tg temperature of the precursor. The relationship with the Tg temperature is as shown in FIG.
[0038]
At the time of the above-mentioned flameproofing treatment, the precursor may be stretched so that the degree of orientation in wide-angle X-ray measurement (diffraction angle 17 °) does not decrease while the specific gravity is 1.18 to 1.21. preferable.
[0039]
The degree of orientation in wide-angle X-ray measurement (diffraction angle 17 °) can be obtained as follows.
[0040]
Approximately 12,000 single fibers of the precursor after the drawing treatment are bundled, and the fibers are aligned in the fiber axis direction while converging the bundle with acetone.
[0041]
The fiber is stuck on a backing with a hole of 1.0 cm in diameter such that the center of the fiber bundle is in the center of the hole while the fibers are in tension. Then, the mount is fixed to the sample adjusting jig so that the fiber axis and the jig axis are parallel to each other.
[0042]
Further, this jig is fixed to a sample table for wide-angle X-ray diffraction measurement by a transmission method. When a sample is irradiated with Cu Kα radiation as an X-ray source, a diffraction pattern (having two peaks) appears around 2θ17 °.
[0043]
The peak angles of the diffraction pattern are obtained, and the measurement is performed in a range of 360 degrees including those angles. Then, a base line is drawn on the graph of the obtained X-ray diffraction chart, and the peak half width H 1/2 , H ' 1/2 (Degrees)
[0044]
(Equation 1)
Degree of orientation = [360− (H 1/2 + H ' 1/2 )] / 360 (1)
To calculate the degree of orientation.
[0045]
<Manufacture of carbon fiber>
Next, the oxidized fiber may be heat-treated in an inert gas atmosphere to become a carbon fiber. Furthermore, it is preferable to perform a sizing treatment for the purpose of facilitating post-processing of the carbon fiber and improving the handleability. The sizing method can be performed by a conventionally known method, and it is preferable that the sizing agent is used after changing the composition as appropriate according to the application, and that the sizing agent is uniformly adhered and then dried.
[0046]
The carbon fiber obtained in this manner is a carbon fiber having high orientation and high strength, and having less fluff and thread breakage.
[0047]
【Example】
Hereinafter, the present invention will be described more specifically with reference to study examples, examples, and comparative examples. Moreover, the evaluation method of the various physical properties of the precursor, the oxidized fiber and the carbon fiber after stretching in each of the examination examples, examples and comparative examples was carried out by the method described above or the following method.
[0048]
<250 ° C / 1hr constant length processing specific gravity>
It was measured by the following method.
1. Take a certain length of precursor and fix it firmly so that the length does not change.
2. Place in a hot air circulating dryer set at 250 ° C. and treat for 1 hour.
3. After being taken out and allowed to cool, measurement is performed by the Archimedes method. The sample fiber is degassed in acetone and measured.
[0049]
<TMA shrinkage stress>
The measurement was performed by the following method using a thermomechanical property tester (TMA) 4000S manufactured by Mac Science.
1. The precursor is collected and fixed to a fiber measuring jig as an effective length of 1 cm.
2. The constant-length mode is set, and the load is measured between 25 and 400 ° C. at a heating rate of 20 ° C./min.
3. The measured load at 150 ° C (150 ° C measured load) is calculated by the following formula.
[0050]
(Equation 2)
TMA shrinkage stress = 150 ° C. Measured load / precursor sample cross-sectional area is converted to fiber cross-sectional area to obtain TMA shrinkage stress.
[0051]
<150 ° C / 1hr shrinkage>
It was measured by the following method.
1. Measure 1 m of the precursor.
2. The precursor is placed on a wire mesh shelf in a free state, and is placed in a hot air circulating dryer set at 150 ° C.
3. One hour later, the sample is taken out, the sample length is measured, and the shrinkage is determined.
4. The measurement is performed with n = 3, and the average value is obtained.
[0052]
<Glass transition temperature (Tg)>
It was measured by a dynamic viscoelasticity measuring device.
[0053]
The measurement was performed between 0 and 180 ° C. using a dynamic viscoelasticity measuring apparatus manufactured by UBM Co., Ltd., model: Rhogl E-4000, at a temperature rising rate of 3 ° C./min and a frequency of 3 Hz. As a measurement sample, 12,000 precursor fiber bundles and 25 mm were used.
[0054]
<Degree of orientation in wide-angle X-ray measurement (diffraction angle 17 °)>
X-ray diffractometer: Using RINT2050 manufactured by Rigaku Denki, the degree of orientation at a diffraction angle of 17 ° was measured at a half width H 1/2 , H ' 1/2 From the above equation (1).
[0055]
<Degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °)>
The degree of orientation was determined in the same manner as in the above-mentioned wide-angle X-ray measurement (diffraction angle: 17 °) except that the diffraction angle was 26 °.
[0056]
<Tensile strength>
It was measured by the method specified in JIS R 7601.
[0057]
<Precursor specific gravity>
It was measured by the Archimedes method. The sample fiber was degassed in acetone and measured.
[0058]
Study example 1
A stock spinning solution of a copolymer consisting of 95% by mass of acrylonitrile / 4% by mass of methyl acrylate / 1% by mass of itaconic acid was wet- or dry-wet spinning, washed with water and dried to obtain a crude precursor having a fiber diameter of 22.0 μm. The crude precursor is sent to a steam stretching machine, where the stretching ratio is 5.5 times, and the steam temperature (treatment temperature) is 107 ° C., 110 ° C., 113 ° C., 117 ° C., 120 ° C., 123 ° C., and 127 ° C. under steam stretching conditions. Then, precursors having various physical properties shown in FIGS. 1 to 3 were obtained.
[0059]
FIG. 1 shows the specific gravity (250 ° C./1 hr constant-length specific gravity) of the oxidized fiber obtained by oxidizing the precursor obtained at each of the above steam stretching conditions at 250 ° C. for 1 hour and at a constant length. 5 is a graph (250 ° C./1 hr constant length processing specific gravity-steam processing temperature curve) obtained by plotting the processing temperature during steam stretching.
[0060]
As shown in FIG. 1, at a steam temperature of 115 ° C. or lower, the specific gravity of the 250 ° C./1 hr constant-length treatment increases as the steam temperature increases, and at a steam temperature of 116 ° C. or higher, the specific gravity of the 250 ° C./hr constant-length treatment increases as the steam temperature increases. Fell. As described above, at a steam temperature of 115 ° C. (T ° C.) T ° C. and a temperature of 111 (T-4) to 121 (T + 6) ° C., at which the specific gravity of the 250 ° C./1 hr constant length treatment is the maximum, the 250 ° C./1 hr constant length treatment specific gravity. Was 1.35 or more.
[0061]
FIG. 2 shows that the precursor obtained under each of the above-mentioned steam stretching conditions was subjected to a flameproofing treatment at 150 ° C. and a fixed length in TMA, and the stress (TMA shrinkage stress) applied to the precursor during the treatment and the time of steam stretching. It is the graph obtained by plotting processing temperature.
[0062]
As shown in FIG. 2, when the steam temperature is 116 ° C. or lower, the TMA shrinkage stress increases as the steam temperature increases, and when the steam temperature is 116 ° C. or higher, the TMA shrinkage stress decreases as the steam temperature increases. As described above, in the range of 111 (S-5) to 121 (S + 5) ° C. including the steam temperature of 116 ° C. (S ° C.) at which the TMA shrinkage stress becomes maximum (37 MPa), the TMA shrinkage stress is 35.1 MPa (37 MPa). -5%) or more.
[0063]
FIG. 3 shows that the precursor obtained under each of the above-mentioned steam stretching conditions was subjected to a flameproofing treatment at 150 ° C. for 1 hour and under a free load, and the precursor shrinkage rate (150 ° C./1 hr shrinkage rate) in the treatment and the steam stretching time. 3 is a graph obtained by plotting the processing temperature of the present invention.
[0064]
As shown in FIG. 3, when the steam temperature is 116 ° C. or lower, the higher the steam temperature, the lower the 150 ° C./1 hr shrinkage ratio. Rose. As described above, 150 ° C./1 hr shrinkage in the range of 111 (R−5) to 121 (R + 5) including the steam temperature of 116 ° C. (R ° C.) at which the 150 ° C./1 hr shrinkage rate becomes the minimum (8.5%). The rate was less than 8.84% (8.5% +4%)%.
[0065]
Examples 1-3
Among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained under the conditions of a draw ratio of 5.5 times, steam temperature (treatment temperature) of 113 ° C., 117 ° C., and 120 ° C. was placed in an oxidizing gas atmosphere. A flame-resistant fiber was produced by performing a flame-proof treatment.
[0066]
During the oxidation treatment of these precursors, the stretching ratio was kept at 1.05 while the specific gravity of the precursor was 1.14 to 1.25.
[0067]
In addition, while the specific gravity of the precursor was 1.18 to 1.21, the film was stretched and flame-proofed so that the degree of orientation in wide-angle X-ray measurement (diffraction angle: 17 °) did not decrease from 89.5%.
[0068]
Further, while the specific gravity of the precursor was 1.15 to 1.20, the glass transition temperature of the precursor continued to decrease from 107.2 ° C. to 97.0 ° C. During this time, the draw ratio was kept at 1.05.
[0069]
At the time of the above-described oxidation treatment, the relationship between the oxidation treatment time of the precursor and the glass transition temperature (Tg temperature) is as shown in FIG.
[0070]
Next, each of the oxidized fibers was subjected to a carbonization treatment to produce carbon fibers. These production conditions and production equipment were conventional.
[0071]
During the production of the flame-resistant fiber and the carbon fiber in the process after the steam stretching, the generation of fluff and breakage was small, and the operation state of the production apparatus could be stabilized.
[0072]
The tensile strength of the carbon fibers obtained from the precursors under the respective steam stretching conditions via the oxidized fibers was 6350 MPa, 6400 MPa, and 6300 MPa at steam temperatures (treatment temperatures) of 113 ° C., 117 ° C., and 120 ° C., respectively. Was.
[0073]
Thus, the tensile strengths of the carbon fibers obtained from the precursors under the respective steam stretching conditions were all high.
[0074]
Further, the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °) of the oxidized fiber obtained from the precursor under each steam stretching condition was 78.degree. At a steam temperature (treatment temperature) of 113 ° C., 117 ° C. and 120 ° C., respectively. 1%, 78.0%, and 77.8%. Furthermore, the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °) of the carbon fiber via the oxidized fiber obtained from the precursor under each steam stretching condition was as follows: steam temperature (treatment temperature) 113 ° C, 117 ° C , 120 ° C., respectively, 81.7%, 81.5% and 81.4%.
[0075]
As described above, the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °) of the oxidized fiber and the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °) of the carbon fiber obtained from the precursor under each steam stretching condition. Were all high.
[0076]
Comparative Example 1
The same as Examples 1 to 3 except that among the precursors obtained under the respective steam stretching conditions in Study Example 1, the precursor obtained under the conditions of a draw ratio of 5.5 times and a steam temperature (treatment temperature) of 107 ° C. was used. Flame-resistant fibers and carbon fibers were produced under the conditions.
[0077]
The precursor used in this comparative example had a large amount of fluff in the stretching process of the steam stretching process for obtaining the same, and in the carbonization process of baking the precursor after the oxidation treatment. As described above, the operation state of the carbon fiber production device (steam drawing device, carbonization device) could not be stabilized.
[0078]
The tensile strength of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was as low as 6000 MPa.
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 77.5%. Furthermore, the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the above oxidized fiber had a degree of orientation of 81.2% in wide-angle X-ray measurement (diffraction angle: 26 °).
[0079]
As described above, the degree of orientation in the wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber and the wide-angle X-ray measurement of the carbon fiber (diffraction angle: 26 °) obtained from the precursor under the steam stretching conditions of this comparative example. Were all low.
[0080]
Comparative Example 2
The same as Examples 1 to 3 except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained under the conditions of a stretching ratio of 5.5 times and a steam temperature (treatment temperature) of 110 ° C. was used. Flame-resistant fibers and carbon fibers were produced under the conditions.
[0081]
The precursor used in this comparative example had a large amount of fluff during firing in the carbonization step after the oxidation treatment. As described above, the operating state of the carbon fiber production device (carbonization device) could not be stabilized.
[0082]
In addition, the tensile strength of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was as low as 6220 MPa.
[0083]
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 77.8%. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the carbon fiber obtained from the precursor under the steam stretching conditions of the present comparative example through the above-described oxidized fiber was 81.6%.
[0084]
Comparative Example 3
The same as in Examples 1 to 3, except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained under the conditions of a draw ratio of 5.5 times and a steam temperature (treatment temperature) of 123 ° C. was used. Flame-resistant fibers and carbon fibers were produced under the conditions.
[0085]
The precursor used in this comparative example had a low specific gravity of 1.14, and the specific gravity of the flame-resistant fiber obtained by the flame-resistant treatment was also low. As a result, the carbon fiber obtained by carbonizing the oxidized fiber had a low tensile strength of 6200 MPa.
[0086]
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 77.5%. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the above oxidized fiber was 81.3%.
[0087]
As described above, the degree of orientation in the wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber and the wide-angle X-ray measurement of the carbon fiber (diffraction angle: 26 °) obtained from the precursor under the steam stretching conditions of this comparative example. Were all low.
[0088]
Comparative Example 4
The same as in Examples 1 to 3, except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained under the conditions of a draw ratio of 5.5 times and a steam temperature (treatment temperature) of 127 ° C. was used. Flame-resistant fibers and carbon fibers were produced under the conditions.
[0089]
The precursor used in this comparative example had a low specific gravity of 1.12, and also had a low specific gravity of the oxidized fiber obtained by the oxidization treatment. Consequently, the carbon fiber obtained by carbonizing the oxidized fiber had a low tensile strength of 6050 MPa.
[0090]
The precursor used in this comparative example had a low degree of orientation of 90.0% in wide-angle X-ray measurement (diffraction angle 17 °), and wide-angle X-ray measurement (diffraction angle 26 °) of the oxidized fiber obtained from this precursor. Was as low as 77.2%. Furthermore, the carbon fiber obtained from the precursor under the steam stretching conditions of the present comparative example via the above oxidized fiber also has a low degree of orientation of 81.1% in wide-angle X-ray measurement (diffraction angle 26 °). Met.
[0091]
Study example 2
The crude precursor obtained in Study Example 1 was sent to a steam stretching machine, where the steam temperature (treatment temperature) was 113 ° C., the stretching ratio was 3.5, 4.5, 5.0, 5.5, and 6. Steam stretching was performed under the conditions of 0, 6.5, 6.9, and 7.2 times to obtain a precursor for examining the steam stretching conditions.
[0092]
FIG. 4 shows the specific gravity of the oxidized fiber obtained by oxidizing the precursor obtained at each of the above-mentioned steam stretching conditions at 250 ° C. for 1 hr and at a constant length (specific gravity at 250 ° C./1 hr constant-length treatment). It is the graph obtained by plotting the stretching ratio at the time of steam stretching.
[0093]
As shown in FIG. 4, when the draw ratio is 6.0 or less, the specific gravity at 250 ° C./1 hr increases as the draw ratio increases, and when the draw ratio is 6.0 or more, the higher the draw ratio, the higher the draw ratio. C./1 hr. As described above, the stretching ratio at which the specific gravity at 250 ° C./hr for the constant length treatment reaches the maximum (1.362) includes 6.3 times (P times), from 4.8 (P-1.5) to 6.8 (P + 0). In the range of 0.5) times, the specific gravity at 250 ° C./1 hr for the fixed length treatment was 1.35 or more.
[0094]
Examples 4 to 7
Among the precursors obtained under the respective steam stretching conditions of Study Example 2, the precursors were obtained under the conditions of a steam temperature (treatment temperature) of 113 ° C., a stretching ratio of 5.0 times, 5.5 times, 6.0 times, and 6.5 times. The precursor was subjected to a flameproofing treatment and a carbonizing treatment, and flameproofed fibers and carbon fibers were produced in the same manner as in Examples 1 to 3.
[0095]
During the production of carbon fibers in these post-processes, the generation of fluff and yarn breakage was small, and the operation state of the production apparatus could be stabilized.
[0096]
In addition, the tensile strength of the carbon fiber obtained from the precursor of each steam stretching condition via the oxidized fiber was 5.0 times, 5.5 times, 6.0 times, and 6.5 times at the draw ratio. It was 6260 MPa, 6350 MPa, 6390 MPa, 6300 MPa.
[0097]
Thus, the tensile strengths of the carbon fibers obtained from the precursors under the respective steam stretching conditions were all high.
[0098]
The degree of orientation of the oxidized fiber obtained from the precursor under each steam stretching condition in the wide-angle X-ray measurement (diffraction angle: 26 °) was determined to be 5.0 times, 5.5 times, 6.0 times, and 6.0 times. Five-fold, 77.8%, 78.1%, 78.3%, and 78.4%, respectively. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °) of the carbon fiber obtained from the precursor under each steam stretching condition via the above-described oxidized fiber was determined to be a stretching ratio of 5.0 times, 5.5 times, 6.0 times and 6.5 times, respectively, 81.4%, 81.7%, 82.0, and 82.0%.
[0099]
Thus, the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °) of the oxidized fiber obtained from the precursor under each steam stretching condition and the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °) of the carbon fiber are as follows. All were high.
[0100]
Comparative Example 5
The same as Examples 4 to 7 except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained at a steam temperature (treatment temperature) of 113 ° C. and a stretching ratio of 3.5 was used. Under the conditions, an oxidized fiber and a carbon fiber were manufactured.
[0101]
The precursor used in this comparative example had a large amount of fluff in the carbonization step of baking it after the oxidization treatment. As described above, the operation state of the carbon fiber production device (steam drawing device, carbonization device) could not be stabilized.
[0102]
In addition, the tensile strength of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was as low as 5700 MPa.
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 76.8%. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the carbon fiber obtained from the precursor under the steam stretching conditions of the present comparative example via the above-described oxidized fiber was 80.4%.
[0103]
As described above, the degree of orientation in the wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber and the wide-angle X-ray measurement of the carbon fiber (diffraction angle: 26 °) obtained from the precursor under the steam stretching conditions of this comparative example. Were all low.
[0104]
Comparative Example 6
The same as Examples 4 to 7 except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained at a steam temperature (treatment temperature) of 113 ° C. and a stretching ratio of 4.5 was used. Under the conditions, an oxidized fiber and a carbon fiber were manufactured.
[0105]
The precursor used in this comparative example could not stabilize the operation state of the carbon fiber production device (steam drawing device, carbonization device).
[0106]
In addition, the tensile strength of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was as low as 6100 MPa.
[0107]
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 77.5%. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was 80.9%.
[0108]
As described above, the degree of orientation in the wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber and the wide-angle X-ray measurement of the carbon fiber (diffraction angle: 26 °) obtained from the precursor under the steam stretching conditions of this comparative example. Were all low.
[0109]
Comparative Example 7
The same as Examples 4 to 7 except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained at a steam temperature (treatment temperature) of 113 ° C. and a stretching ratio of 6.9 times was used. Under the conditions, an oxidized fiber and a carbon fiber were manufactured.
[0110]
The precursor used in this comparative example had a large amount of fluff in the carbonization step of baking it after the oxidization treatment. As described above, the operation state of the carbon fiber production device (steam drawing device, carbonization device) could not be stabilized.
[0111]
In addition, the tensile strength of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was as low as 6200 MPa.
[0112]
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 78.2%. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the carbon fiber obtained from the precursor under the steam stretching conditions of the present comparative example through the above-described oxidized fiber was 81.6%.
[0113]
Comparative Example 8
The same as Examples 4 to 7 except that among the precursors obtained under the respective steam stretching conditions of Study Example 1, the precursor obtained under the conditions of a steam temperature (treatment temperature) of 113 ° C. and a stretching ratio of 7.2 was used. Under the conditions, an oxidized fiber and a carbon fiber were manufactured.
[0114]
The precursor used in this comparative example had a large amount of fluff in the stretching process of the steam stretching process for obtaining the same, and in the carbonization process of baking the precursor after the oxidation treatment. As described above, the operation state of the carbon fiber production device (steam drawing device, carbonization device) could not be stabilized.
[0115]
The tensile strength of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was as low as 6000 MPa.
[0116]
Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber obtained from the precursor under the steam drawing conditions of this comparative example was 77.9%. Furthermore, the degree of orientation in wide-angle X-ray measurement (diffraction angle: 26 °) of the carbon fiber obtained from the precursor under the steam stretching conditions of this comparative example via the oxidized fiber was 81.0%.
[0117]
As described above, the degree of orientation in the wide-angle X-ray measurement (diffraction angle: 26 °) of the oxidized fiber and the wide-angle X-ray measurement of the carbon fiber (diffraction angle: 26 °) obtained from the precursor under the steam stretching conditions of this comparative example. Were all low.
[0118]
Table 1 shows steam stretching conditions, production process conditions, and obtained carbon fiber evaluations in Examples 1 to 7 and Comparative Examples 1 to 8.
[0119]
[Table 1]
Figure 2004360079
[0120]
【The invention's effect】
According to the precursor manufacturing method of the present invention, the specific gravity of the precursor stretched by changing the steam temperature at an arbitrary stretching ratio at 250 ° C. for 1 hr and the constant length measurement condition (250 ° C./1 hr constant length processing specific gravity) − The steam treatment is performed at a temperature in the range of (T-4) to (T + 6) ° C. including the temperature T ° C. indicating the maximum specific gravity of the steam treatment temperature curve and the draw ratio at that time, or the draw ratio is changed at an arbitrary steam temperature. Stretching ratio showing the maximum specific gravity of the 250 ° C./1 hr constant length treatment specific gravity-steam treatment temperature curve of the precursor stretched by stretching, including the lowest draw ratio P times (P-1.5) to (P + 0.5) times The steam treatment is performed at the draw ratio and the temperature at that time in the range of the above. Te reduces fuzz and yarn breakage, it is possible to stabilize the operation state of the manufacturing apparatus.
[0121]
Further, the precursor, the oxidized fiber and the carbon fiber obtained by the production method of the present invention have high orientation and high strength.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between steam temperature and specific gravity at 250 ° C./1 hr for a precursor obtained under each steam stretching condition in Study Example 1.
FIG. 2 is a graph showing the relationship between steam temperature and TMA shrinkage stress for a precursor obtained under each steam stretching condition in Study Example 1.
FIG. 3 is a graph showing the relationship between the steam temperature and the shrinkage at 150 ° C./1 hr for the precursor obtained under each steam stretching condition in Study Example 1.
FIG. 4 is a graph showing the relationship between the stretching ratio and the specific gravity at 250 ° C./1 hr for the precursor obtained under each steam stretching condition in Study Example 2.
FIG. 5 is a graph showing the relationship between the oxidizing treatment time of the precursor and the Tg temperature when the oxidizing treatment was performed on the precursors obtained under the respective steam stretching conditions in Study Examples 1 and 2.

Claims (8)

任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理すること、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理することを特徴とするプリカーサーの製造方法。Including a temperature T ° C showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C for 1 hour and under a constant length measurement condition using a precursor stretched by changing the steam temperature at an arbitrary draw ratio (T-4). Steam treatment at a temperature in the range of (T + 6) ° C. and a stretching ratio at that time, or under a measuring condition of 1 hour and a constant length at 250 ° C. using a precursor stretched by changing the stretching ratio at an arbitrary steam temperature. The steam treatment is carried out at a draw ratio in the range of (P-1.5) to (P + 0.5) times including a draw ratio P times showing the maximum specific gravity of the obtained specific gravity-steam treatment temperature curve and the temperature at that time. Manufacturing method of precursor. 延伸したプリカーサーを用い、TMA定長測定により求められる、150℃におけるTMA収縮応力−スチーム処理温度曲線の最大収縮応力を示す温度S℃を含み(S−5)〜(S+5)℃の範囲内の温度とその時の延伸倍率でスチーム処理する請求項1に記載のプリカーサーの製造方法。Including the temperature S ° C indicating the maximum shrinkage stress of the TMA shrinkage stress at 150 ° C-steam treatment temperature curve obtained by TMA constant length measurement using the stretched precursor, within the range of (S-5) to (S + 5) ° C. The method for producing a precursor according to claim 1, wherein steam treatment is performed at a temperature and a draw ratio at that time. 延伸したプリカーサーを150℃で1hr且つフリー荷重の条件で求めた収縮率−スチーム処理温度曲線の最小収縮率を示す温度R℃を含み(R−5)〜(R+5)℃の範囲内の温度とその時の延伸倍率でスチーム処理する請求項2に記載のプリカーサーの製造方法。A temperature in the range of (R-5) to (R + 5) ° C, including the temperature R ° C showing the minimum shrinkage rate of the shrinkage rate-steam treatment temperature curve obtained at 150 ° C for 1 hour and a free load at 150 ° C. The method for producing a precursor according to claim 2, wherein steam treatment is performed at the stretching ratio at that time. 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をしてプリカーサーを得、その後前記プリカーサーを酸化性ガス雰囲気下で、プリカーサーの比重が1.14〜1.25の間、延伸倍率を1.00〜1.10の範囲で耐炎化処理することを特徴とする耐炎化繊維の製造方法。Including a temperature T ° C showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C for 1 hour and under a constant length measurement condition using a precursor stretched by changing the steam temperature at an arbitrary draw ratio (T-4). To steam treatment at a temperature within the range of (T + 6) ° C. and a draw ratio at that time, or using a precursor stretched by changing the draw ratio at an arbitrary steam temperature, at 250 ° C. for 1 hr and under a constant length measurement condition. The precursor is subjected to steam treatment at a draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P times showing the maximum specific gravity of the specific gravity-steam treatment temperature curve, and the precursor at that time. Then, the precursor is subjected to oxidizing treatment in an oxidizing gas atmosphere at a specific gravity of the precursor of 1.14 to 1.25 and a stretching ratio of 1.00 to 1.10. Method for producing a flame-resistant fiber characterized. 耐炎化処理時、プリカーサーの比重が1.18〜1.21の間、広角X線測定(回折角17°)における配向度が低下しないように延伸して耐炎化処理する請求項4に記載の耐炎化繊維の製造方法。5. The flame-resistant treatment according to claim 4, wherein during the flame-resistance treatment, the precursor is stretched so that the degree of orientation in wide-angle X-ray measurement (diffraction angle 17 °) is not reduced while the specific gravity of the precursor is 1.18 to 1.21. 6. Method for producing flame-resistant fiber. 耐炎化処理時、プリカーサーのガラス転移温度が低下し続ける間、延伸倍率を1.00〜1.10の範囲で耐炎化処理する請求項4に記載の耐炎化繊維の製造方法。The method for producing an oxidized fiber according to claim 4, wherein during the oxidization treatment, the oxidization treatment is performed at a draw ratio of 1.00 to 1.10 while the glass transition temperature of the precursor continues to decrease. 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をしてプリカーサーを得、その後前記プリカーサーを酸化性ガス雰囲気下で耐炎化処理して耐炎化繊維を得、その後前記耐炎化繊維を不活性ガス雰囲気下で熱処理することを特徴とする炭素繊維の製造方法。Including a temperature T ° C showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C for 1 hour and under a constant length measurement condition using a precursor stretched by changing the steam temperature at an arbitrary draw ratio (T-4). To steam treatment at a temperature within the range of (T + 6) ° C. and a draw ratio at that time, or using a precursor stretched by changing the draw ratio at an arbitrary steam temperature, at 250 ° C. for 1 hr and under a constant length measurement condition. The precursor is subjected to steam treatment at a draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P times showing the maximum specific gravity of the specific gravity-steam treatment temperature curve, and the precursor at that time. Obtaining, after that, the precursor is subjected to an oxidizing gas atmosphere in an oxidizing gas atmosphere to obtain an oxidized fiber, and thereafter, the oxidized fiber is heat-treated in an inert gas atmosphere. Method of manufacturing carbon fiber. 任意の延伸倍率においてスチーム温度を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す温度T℃を含み(T−4)〜(T+6)℃の範囲内の温度とその時の延伸倍率でスチーム処理を、又は、任意のスチーム温度において延伸倍率を変えて延伸したプリカーサーを用いて250℃で1hr且つ定長の測定条件で求めた比重−スチーム処理温度曲線の最大比重を示す延伸倍率P倍を含み(P−1.5)〜(P+0.5)倍の範囲内の延伸倍率及びその時の温度でスチーム処理をしてプリカーサーを得、その後前記プリカーサーを酸化性ガス雰囲気下で、プリカーサーの比重が1.14〜1.25の間、延伸倍率を1.00〜1.10の範囲で耐炎化処理して耐炎化繊維を得、その後前記耐炎化繊維を不活性ガス雰囲気下で熱処理することを特徴とする炭素繊維の製造方法。Including a temperature T ° C showing the maximum specific gravity of a specific gravity-steam treatment temperature curve obtained at 250 ° C for 1 hour and under a constant length measurement condition using a precursor stretched by changing the steam temperature at an arbitrary draw ratio (T-4). To steam treatment at a temperature within the range of (T + 6) ° C. and a draw ratio at that time, or using a precursor stretched by changing the draw ratio at an arbitrary steam temperature, at 250 ° C. for 1 hr and under a constant length measurement condition. The precursor is subjected to steam treatment at a draw ratio in the range of (P-1.5) to (P + 0.5) times including the draw ratio P times showing the maximum specific gravity of the specific gravity-steam treatment temperature curve, and the precursor at that time. After that, the precursor is subjected to oxidizing treatment in an oxidizing gas atmosphere at a specific gravity of the precursor of 1.14 to 1.25 and a stretching ratio of 1.00 to 1.10. The method of producing a carbon fiber characterized by fibers give, heat treated then the oxidized fiber in an inert gas atmosphere.
JP2003156039A 2003-05-30 2003-05-30 Method for producing precursor, flameproofed fiber and carbon fiber Pending JP2004360079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156039A JP2004360079A (en) 2003-05-30 2003-05-30 Method for producing precursor, flameproofed fiber and carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156039A JP2004360079A (en) 2003-05-30 2003-05-30 Method for producing precursor, flameproofed fiber and carbon fiber

Publications (1)

Publication Number Publication Date
JP2004360079A true JP2004360079A (en) 2004-12-24

Family

ID=34050239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156039A Pending JP2004360079A (en) 2003-05-30 2003-05-30 Method for producing precursor, flameproofed fiber and carbon fiber

Country Status (1)

Country Link
JP (1) JP2004360079A (en)

Similar Documents

Publication Publication Date Title
US8236273B2 (en) Method of producing pre-oxidation fiber and carbon fiber
WO2016068034A1 (en) Carbon fiber bundle and method for manufacturing same
JP2018145541A (en) Carbon fiber bundle and method for production of the same
JP2011162898A (en) Carbon fiber precursor fiber and method for producing carbon fiber by using the same
JP4662450B2 (en) Carbon fiber manufacturing method
JP5907321B1 (en) Carbon fiber bundle and method for producing the same
JP2008163537A (en) Method for producing carbon fiber
JPH1112856A (en) Acrylic precursor fiber for carbon fiber and its production
JP4271019B2 (en) Carbon fiber manufacturing method
JP4088500B2 (en) Carbon fiber manufacturing method
JP2004197278A (en) Method for producing carbon fiber
JP2004360079A (en) Method for producing precursor, flameproofed fiber and carbon fiber
JP2007186802A (en) Method for producing flame retardant fiber and carbon fiber
JP2004060069A (en) Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JP4565978B2 (en) Carbon fiber manufacturing method
JPS58214534A (en) Carbon fiber bundle having high strength and elongation and production thereof
JP2004156161A (en) Polyacrylonitrile-derived carbon fiber and method for producing the same
JP2004060126A (en) Carbon fiber and method for producing the same
JP2004360078A (en) Method for producing precursor and carbon fiber
JP2005008995A (en) Method for producing precursor, flameproofed fiber and carbon fiber
JP4454364B2 (en) Carbon fiber manufacturing method
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP4626939B2 (en) Carbon fiber manufacturing method
JP7343538B2 (en) Carbon fiber and its manufacturing method