JP4626939B2 - Carbon fiber manufacturing method - Google Patents

Carbon fiber manufacturing method Download PDF

Info

Publication number
JP4626939B2
JP4626939B2 JP2004060075A JP2004060075A JP4626939B2 JP 4626939 B2 JP4626939 B2 JP 4626939B2 JP 2004060075 A JP2004060075 A JP 2004060075A JP 2004060075 A JP2004060075 A JP 2004060075A JP 4626939 B2 JP4626939 B2 JP 4626939B2
Authority
JP
Japan
Prior art keywords
fiber
flame
carbon fiber
strength
draw ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004060075A
Other languages
Japanese (ja)
Other versions
JP2005248368A (en
Inventor
秀和 吉川
太郎 尾山
寿嗣 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004060075A priority Critical patent/JP4626939B2/en
Publication of JP2005248368A publication Critical patent/JP2005248368A/en
Application granted granted Critical
Publication of JP4626939B2 publication Critical patent/JP4626939B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

本発明は、高強度の炭素繊維の製造方法に関する。   The present invention relates to a method for producing a high-strength carbon fiber.

従来、炭素繊維製造用のプリカーサー(前駆体繊維)を用い、これに耐炎化処理を施して耐炎化繊維を得ること、更にこの耐炎化繊維に炭素化処理を施して高性能炭素繊維を得ることは広く知られている。また、この方法は工業的にも実施されている。   Conventionally, a precursor (precursor fiber) for producing carbon fiber is used to obtain a flame resistant fiber by subjecting it to a flame resistant treatment, and further, a high performance carbon fiber is obtained by subjecting this flame resistant fiber to a carbonization treatment. Is widely known. This method is also practiced industrially.

特に、近年炭素繊維の用途はスポーツ・レジャー用品から航空宇宙分野、特に航空機の一次構造材にまで展開されている。さらに、炭素繊維の高い比強度、比弾性の特性を生かして製品の軽量化を図ることにより省エネルギー化を図り、これにより排出CO2の削減に寄与することを目的として各産業界は炭素繊維の新しい利用方法に注目し、また研究を進めている。 In particular, in recent years, the use of carbon fiber has been expanded from sports and leisure goods to the aerospace field, particularly to primary structural materials for aircraft. In addition, various industries have made efforts to save energy by reducing the weight of products by taking advantage of the high specific strength and specific elasticity of carbon fibers, thereby contributing to the reduction of CO 2 emissions. We are focusing on new ways of using and researching them.

このような状況下において、炭素繊維にも更なる高性能化、低製造コスト化、また取扱性に優れる高品質化等の課題の解決が要請されている。   Under such circumstances, carbon fibers are also required to solve problems such as higher performance, lower manufacturing costs, and higher quality with excellent handling properties.

一般に原料繊維であるプリカーサーとしてはアクリル繊維が用いられる。このアクリル繊維から炭素繊維を製造する場合、アクリル繊維を200〜300℃の酸化性雰囲気下で延伸又は収縮を行いながら酸化処理(耐炎化処理)を行った後、300以上、又は1000℃以上の不活性ガス雰囲気中で炭素化して炭素繊維を製造する。   In general, an acrylic fiber is used as a precursor which is a raw material fiber. When producing carbon fiber from this acrylic fiber, after carrying out oxidation treatment (flameproofing treatment) while stretching or shrinking the acrylic fiber in an oxidizing atmosphere of 200 to 300 ° C., 300 or more, or 1000 ° C. or more Carbon fiber is produced by carbonization in an inert gas atmosphere.

とりわけ300〜900℃付近での炭素化工程の繊維処理方法は、炭素繊維の強度発現に大きく影響を及ぼし、これまでに多くの検討が行われてきた。   In particular, the fiber treatment method in the carbonization process at around 300 to 900 ° C. greatly affects the strength expression of the carbon fiber, and many studies have been made so far.

特許文献1では、耐炎化繊維を300〜800℃において、不活性雰囲気中25%までの範囲で伸長を加えながら炭素化し、耐炎化繊維の原長に対し負とならないように処理することによって、高強度の炭素繊維を得ることが開示されている。   In Patent Document 1, the flame-resistant fiber is carbonized at 300 to 800 ° C. while being stretched in an inert atmosphere in a range of up to 25%, and processed so as not to be negative with respect to the original length of the flame-resistant fiber. It is disclosed to obtain high strength carbon fibers.

また、特許文献2、特許文献3では、500℃付近での繊維長さの急激な変化をコントロールするため、300〜500℃、500〜800℃と、工程を2つに分けることで高強度の炭素繊維が得られることが開示されている。   Moreover, in patent document 2 and patent document 3, in order to control the rapid change of the fiber length in 500 degreeC vicinity, 300-500 degreeC, 500-800 degreeC, and a high intensity | strength are divided by dividing a process into two. It is disclosed that carbon fibers can be obtained.

しかしながら、これらの方法に記載されている温度範囲などの条件や比重などパラメーターだけでは繊維の物性をコントロールする事は難しい。そこで、従来より繊維の物性をコントロールしつつ高強度の炭素繊維を得るための方法が求められている。
特開昭54−147222号公報 (第1〜3頁) 特開昭59−150116号公報 (第1〜2頁) 特公平3−23651号公報 (第1〜3頁)
However, it is difficult to control the physical properties of the fiber only with parameters such as temperature range and specific gravity described in these methods. Therefore, a method for obtaining a high-strength carbon fiber while controlling the physical properties of the fiber has been demanded.
JP 54-147222 A (pages 1 to 3) JP 59-150116 A (pages 1 and 2) Japanese Patent Publication No. 3-23651 (pages 1 to 3)

本発明者は、上記問題を解決するために種々検討しているうちに、TMA測定より得られる最大延伸率、広角X線測定より得られる26°における配向度が所定範囲の耐炎化繊維を、前記最大延伸率を基準として、その所定割合の延伸率で炭素化して得られる炭素繊維は高強度であることを知得し、本発明を完成するに到った。   While the present inventor has been variously studied to solve the above problems, the maximum stretch ratio obtained by TMA measurement, the flameproof fiber having an orientation degree at 26 ° obtained by wide-angle X-ray measurement of a predetermined range, Based on the maximum draw ratio, the carbon fiber obtained by carbonization at a predetermined stretch ratio is known to have high strength, and the present invention has been completed.

従って、本発明の目的とするところは、上記問題を解決した、高強度の炭素繊維の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a high-strength carbon fiber that solves the above problems.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 TMA測定より得られる最大延伸率[A]%が10%以上、且つ広角X線測定より得られる26°における配向度が75%以上である耐炎化繊維を、不活性雰囲気中、温度300〜600℃、且つ前記最大延伸率[A]%で示される延伸率[A×0.35]〜[A×0.55]%で熱処理した後、不活性雰囲気中、温度600〜1600℃で熱処理する炭素繊維の製造方法。   [1] A flame-resistant fiber having a maximum draw ratio [A]% obtained by TMA measurement of 10% or more and an orientation degree at 26 ° of 75% or more obtained by wide-angle X-ray measurement is measured in an inert atmosphere at a temperature. After heat treatment at 300 to 600 ° C. and a stretching ratio [A × 0.35] to [A × 0.55]% indicated by the maximum stretching ratio [A]%, the temperature is 600 to 1600 ° C. in an inert atmosphere. A method for producing carbon fiber, which is heat-treated at a temperature.

本発明の炭素繊維の製造方法によれば、TMA測定より得られる最大延伸率、広角X線測定より得られる26°における配向度が所定範囲の耐炎化繊維を、前記最大延伸率で示される延伸率の所定範囲の設定を含む条件で炭素化処理しているので、処理中の繊維物性のコントロールが確実にでき、安定して高強度の炭素繊維の生産ができる。   According to the carbon fiber production method of the present invention, the maximum stretch ratio obtained by TMA measurement and the flameproof fiber having a predetermined degree of orientation at 26 ° obtained by wide-angle X-ray measurement are stretched by the maximum stretch ratio. Since the carbonization treatment is performed under conditions including the setting of a predetermined range of the rate, it is possible to reliably control the physical properties of the fiber during the treatment, and stably produce high-strength carbon fibers.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の炭素繊維の製造方法において出発原料として用いる耐炎化繊維は、TMA測定より得られる最大延伸率[A]%が10%以上、広角X線測定より得られる26°における配向度が75%以上のものである。   The flame-resistant fiber used as a starting material in the carbon fiber production method of the present invention has a maximum draw ratio [A]% obtained by TMA measurement of 10% or more, and an orientation degree at 26 ° obtained by wide-angle X-ray measurement of 75%. That's all.

TMA測定における耐炎化繊維の任意の応力(TMA応力)に対する最大延伸率(TMAmax)[A]%は、以下の方法により求めることができる。
1. 耐炎化繊維を採取し、測定有効長1cmとして繊維測定用の治具に固定する。
2. N2ガス雰囲気下で耐炎化繊維を任意の単位断面積当りの応力で延伸しながら、25℃から400℃まで昇温速度20℃/分の条件で昇温し、この延伸熱処理中の耐炎化繊維についてTMA延伸率測定を測定する。
3. 測定された延伸熱処理中におけるTMA測定延伸率のうち最大のTMA測定延伸率を、TMA最大延伸率とする。
The maximum draw ratio (TMA max ) [A]% with respect to an arbitrary stress (TMA stress) of the flameproof fiber in the TMA measurement can be obtained by the following method.
1. Flame-resistant fibers are collected and fixed to a fiber measuring jig with a measurement effective length of 1 cm.
2. While stretching the flame-resistant fiber with an arbitrary stress per unit cross-sectional area in an N 2 gas atmosphere, the temperature is increased from 25 ° C. to 400 ° C. at a rate of temperature increase of 20 ° C./min. TMA stretch ratio measurements are measured on the fibers.
3. The maximum TMA measurement stretch ratio among the measured TMA measurement stretch ratios during the stretching heat treatment is defined as the TMA maximum stretch ratio.

TMAより得られる最大延伸率(TMAmax)[A]%が10%未満である繊維は、耐炎化工程に続く第一炭素化工程において、高強度化に必要な配向度の向上ができないだけでなく、強度低下を抑制することが困難である。さらに、毛羽や単糸切れを生じ易く、安定生産ができない。 Fibers with a maximum draw ratio (TMA max ) [A]% obtained from TMA of less than 10% cannot be improved in the degree of orientation required for high strength in the first carbonization process following the flame resistance process. Therefore, it is difficult to suppress the strength reduction. Furthermore, fluff and single yarn breakage are likely to occur, and stable production cannot be achieved.

広角X線測定(回折角26°)における配向度は、次のようにして求めることができる。   The degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °) can be determined as follows.

耐炎化繊維の単繊維約12000本を束にし、アセトンを用いて束を収束させながら繊維軸方向に繊維を引揃える。
1. 耐炎化繊維の単繊維約12000本を束にし、アセトンを用いて束を収束させながら繊維軸方向に繊維を引揃える。
2. 直径1.0cmの穴をあけた台紙に、繊維束の中央が穴の中央に来るように、繊維を緊張させた状態で貼付ける。その後、繊維軸と治具の軸が平行になるように、台紙を試料調整用治具に固定する。
3. 更に、この治具を透過法による広角X線回折測定試料台に固定する。X線源として、CuのKα線を使用し、試料に照射すると、2θ26度付近に回折パターン(二つのピークを有する)が現れる。
4. この回折パターンのピーク角度を求め、それらの角度を含む360度の範囲について測定を行う。次いで得られたX線回折チャートのグラフ上にベースラインを引き、ピークの半値幅H1/2、H'1/2(度)を求め、下式
配向度=[360−(H1/2+H'1/2)]/360
によって配向度を計算する。
About 12,000 single fibers of flame resistant fiber are bundled, and the fibers are aligned in the fiber axis direction using acetone to converge the bundle.
1. About 12,000 single fibers of flame resistant fiber are bundled, and the fibers are aligned in the fiber axis direction using acetone to converge the bundle.
2. The fiber is affixed to a mount having a hole with a diameter of 1.0 cm in a tensioned state so that the center of the fiber bundle comes to the center of the hole. Thereafter, the mount is fixed to the sample adjusting jig so that the fiber axis and the axis of the jig are parallel to each other.
3. Furthermore, this jig is fixed to a wide-angle X-ray diffraction measurement sample stage by a transmission method. When Cu Kα rays are used as the X-ray source and the sample is irradiated, a diffraction pattern (having two peaks) appears in the vicinity of 2θ26 degrees.
4). The peak angle of this diffraction pattern is obtained, and measurement is performed for a range of 360 degrees including these angles. Next, a base line is drawn on the graph of the obtained X-ray diffraction chart to determine peak half-value widths H 1/2 and H ′ 1/2 (degrees), and the following degree of orientation = [360− (H 1/2 + H'1 / 2 )] / 360
Calculate the degree of orientation.

耐炎化繊維の広角X線測定より得られる26°における配向度が75%未満では、この耐炎化繊維を第一炭素化処理する際において配向度の向上を行わなければならないため、高い延伸率が必要となる。しかし、高い延伸率は単糸切れを招き、安定な工程状態を保つことが困難となる。従って、上記配向度は75%以上が必要である。   If the degree of orientation at 26 ° obtained from the wide-angle X-ray measurement of the flame-resistant fiber is less than 75%, the degree of orientation must be improved when the flame-resistant fiber is subjected to the first carbonization treatment. Necessary. However, a high draw ratio causes breakage of single yarn, and it becomes difficult to maintain a stable process state. Therefore, the degree of orientation needs to be 75% or more.

また、上記耐炎化繊維は、以下の方法で製造したものを用いても良い。この耐炎化繊維製造用のプリカーサーとしては、ポリアクリロニトリル(PAN)系、ピッチ系、フェノール系、レーヨン系等のものが挙げられる。これらのプリカーサーのうちでも、PAN系のもの(アクリル繊維)を用いることで、最も高強度の炭素繊維が得られる。   Moreover, you may use the said flameproof fiber manufactured with the following method. Examples of the precursor for producing the flame resistant fiber include polyacrylonitrile (PAN), pitch, phenol, rayon and the like. Among these precursors, the highest strength carbon fiber can be obtained by using a PAN-based one (acrylic fiber).

このアクリル繊維は、例えばアクリロニトリルを95質量%以上含有する単量体を重合した単独重合体又は共重合体を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸・水洗・乾燥・延伸等の処理を行うことによって得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。   This acrylic fiber is prepared by, for example, treating a spinning solution containing a homopolymer or copolymer obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a wet or dry-wet spinning method, such as spinning, washing, drying and stretching. Can be obtained by doing As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

紡糸・水洗・乾燥処理後の延伸処理における延伸倍率を調節することにより、次工程で耐炎化処理して得られる耐炎化繊維のTMA測定より得られる最大延伸率や広角X線測定より得られる26°における配向度等の物性を上記範囲内にすることができる。この延伸倍率は、3.1〜6.4倍に調節することが好ましく、3.3〜6.2倍に調節することが更に好ましい。   By adjusting the draw ratio in the drawing treatment after spinning, washing and drying, the maximum draw ratio obtained from TMA measurement of flame-resistant fiber obtained by flame-proofing treatment in the next step and obtained from wide-angle X-ray measurement 26 Physical properties such as the degree of orientation at ° can be within the above range. The draw ratio is preferably adjusted to 3.1 to 6.4 times, and more preferably adjusted to 3.3 to 6.2 times.

このようにして得られるアクリル繊維を、公知の方法に従って耐炎化して耐炎化繊維を得る。この耐炎化繊維を、本発明の炭素繊維の製造方法に従って炭素化することによって高強度の炭素繊維を得ることができる。   The acrylic fibers thus obtained are flame-resistant according to a known method to obtain flame-resistant fibers. High-strength carbon fibers can be obtained by carbonizing the flame-resistant fibers according to the carbon fiber production method of the present invention.

本発明の炭素繊維の製造方法における炭素化工程は、上記耐炎化繊維を、不活性雰囲気中、温度300〜600℃、且つ上記最大延伸率[A]%で示される延伸率[A×0.35]〜[A×0.55]%で熱処理して第一炭素化処理繊維を得る第一炭素化工程と、この第一炭素化処理繊維を、不活性雰囲気中、温度600〜1600℃で熱処理して第二炭素化処理繊維を得る第二炭素化工程とからなる。   In the carbonization step in the carbon fiber production method of the present invention, the flame-resistant fiber is stretched at a temperature of 300 to 600 ° C. in an inert atmosphere and the stretch ratio [A × 0. 35] to [A × 0.55]% to obtain a first carbonized fiber obtained by heat treatment, and the first carbonized fiber in an inert atmosphere at a temperature of 600 to 1600 ° C. A second carbonization step of obtaining a second carbonized fiber by heat treatment.

第一炭素化工程における延伸率が[A×0.35]%未満では、延伸が乏しいため、高強度の炭素繊維を得ることができない。一方、第一炭素化工程における延伸率が[A×0.55]%より大きい場合は、過度の延伸により毛羽や糸切れを生じ易く、また配向度の向上も望めず、結果として工程の安定性を損なう可能性がある。   If the stretch rate in the first carbonization step is less than [A × 0.35]%, the stretch is poor, and thus high-strength carbon fibers cannot be obtained. On the other hand, when the stretch ratio in the first carbonization step is larger than [A × 0.55]%, fluff and thread breakage are liable to occur due to excessive stretching, and improvement in the degree of orientation cannot be expected, resulting in stable process. There is a possibility of impairing sex.

得られた第二炭素化処理繊維、即ち第二炭素化工程終了後に得られる炭素繊維は、引き続き公知の方法により、表面処理を施しても良い。さらに、炭素繊維の後加工をしやすくし、取扱性を向上させる目的で、サイジング処理することが好ましい。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。   The obtained second carbonized fiber, that is, the carbon fiber obtained after completion of the second carbonization step may be subsequently subjected to surface treatment by a known method. Furthermore, it is preferable to perform sizing treatment for the purpose of facilitating the post-processing of the carbon fiber and improving the handleability. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

なお、第二炭素化処理後の単繊維径は4.0〜7.5μmであることが好ましい。   In addition, it is preferable that the single fiber diameter after a 2nd carbonization process is 4.0-7.5 micrometers.

このようにして得られた炭素繊維は、高強度であり、本発明の製造方法によりなし得るものである。   The carbon fiber thus obtained has high strength and can be produced by the production method of the present invention.

炭素繊維の強度は、引張り強度などで示すことができる。但し、この引張り強度の測定値は、実質の強度が同等であっても繊維直径が小さい程、高くなる傾向にある。そこで、炭素繊維の実質強度を評価するため、測定強度[B]MPaを繊維直径[d]μmにより補正した強度[C]MPaを、下式
C=B×(d/10)0.65
を用いて算出する。
The strength of the carbon fiber can be indicated by tensile strength or the like. However, the measured value of the tensile strength tends to be higher as the fiber diameter is smaller even if the actual strength is the same. Therefore, in order to evaluate the real strength of the carbon fiber, the strength [C] MPa obtained by correcting the measured strength [B] MPa with the fiber diameter [d] μm is expressed by the following formula: C = B × (d / 10) 0.65
Calculate using.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例におけるアクリル繊維、耐炎化繊維及び炭素繊維の諸物性についての評価方法は、前述の方法又は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the evaluation method about the various physical properties of the acrylic fiber in each Example and a comparative example, a flame-resistant fiber, and carbon fiber was implemented by the above-mentioned method or the following methods.

<TMA最大延伸率>
マックサイエンス社製の熱機械特性試験機(TMA)4000Sを用い、前述の方法により測定した。
<TMA maximum stretch ratio>
Measurement was performed by the above-described method using a thermomechanical property tester (TMA) 4000S manufactured by Mac Science.

<広角X線測定(回折角26°)における配向度>
X線回折装置:理学電機製RINT2050を使用し、前述の方法により測定した。
<Degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °)>
X-ray diffractometer: RINT2050 manufactured by Rigaku Corporation was used, and measurement was performed by the method described above.

<引張り強度>
JIS R 7601に規定された方法により測定した。
<Tensile strength>
It was measured by the method defined in JIS R7601.

作製例1
アクリロニトリル95質量%、アクリル酸メチル4質量%、及びイタコン酸1質量%の共重合体を含有する紡糸原液を湿式紡糸し、水洗・乾燥・延伸(延伸倍率3.5倍)・オイリングして繊維直径11.4μmのアクリル繊維を得た。
Production Example 1
A spinning stock solution containing a copolymer of 95% by mass of acrylonitrile, 4% by mass of methyl acrylate, and 1% by mass of itaconic acid is wet-spun, washed with water, dried, stretched (stretching ratio: 3.5 times), and oiled. An acrylic fiber having a diameter of 11.4 μm was obtained.

作製例2
紡糸・水洗・乾燥後の延伸操作時の延伸倍率を3.0倍にした以外は作製例1と同様の条件でアクリル繊維を作製し、繊維直径12.3μmのアクリル繊維を得た。
Production Example 2
Acrylic fibers were produced under the same conditions as in Production Example 1 except that the draw ratio during the drawing operation after spinning, washing and drying was 3.0 times to obtain acrylic fibers having a fiber diameter of 12.3 μm.

作製例3
紡糸・水洗・乾燥後の延伸操作時の延伸倍率を6.0倍にした以外は作製例1と同様の条件でアクリル繊維を作製し、繊維直径8.7μmのアクリル繊維を得た。
Production Example 3
Acrylic fibers were produced under the same conditions as in Production Example 1 except that the draw ratio during the drawing operation after spinning, washing and drying was 6.0 times, and acrylic fibers having a fiber diameter of 8.7 μm were obtained.

作製例4
紡糸・水洗・乾燥後の延伸操作時の延伸倍率を6.5倍にした以外は作製例1と同様の条件でアクリル繊維を作製し、繊維直径8.3μmのアクリル繊維を得た。
Production Example 4
An acrylic fiber was produced under the same conditions as in Production Example 1 except that the draw ratio during the drawing operation after spinning, washing and drying was 6.5 times, and an acrylic fiber having a fiber diameter of 8.3 μm was obtained.

実施例1〜4及び比較例1〜6
作製例1〜4のアクリル繊維について、加熱空気中、炉内温度分布25〜250℃の熱風循環式耐炎化炉において、延伸倍率1.06倍で耐炎化処理し、表1に示す、TMA最大延伸率、広角X線測定(回折角26°)における配向度の耐炎化繊維を得た。
Examples 1-4 and Comparative Examples 1-6
The acrylic fibers of Production Examples 1 to 4 were subjected to flameproofing treatment at a draw ratio of 1.06 times in a hot air circulation type flameproofing furnace having a temperature distribution in the furnace of 25 to 250 ° C. in heated air. A flame-resistant fiber having a degree of orientation and an orientation degree in wide-angle X-ray measurement (diffraction angle 26 °) was obtained.

次いで、得られた耐炎化繊維を、不活性雰囲気中、炉内温度分布300〜600℃の第一炭素化炉において、表1に示す延伸率で熱処理して第一炭素化処理繊維を得た。   Next, the obtained flame-resistant fiber was heat-treated at a drawing rate shown in Table 1 in a first carbonization furnace having an in-furnace temperature distribution of 300 to 600 ° C. in an inert atmosphere to obtain a first carbonized fiber. .

その後、得られた第一炭素化処理繊維を、不活性雰囲気中、炉内温度分布600〜1400℃の第二炭素化炉において、延伸倍率0.94倍で熱処理し、引き続き、公知の方法で表面処理、サイジングを施し、乾燥して表1に示す繊維直径、ストランド強度、繊維直径による補正強度の炭素繊維を得た。   Thereafter, the obtained first carbonized fiber was heat-treated at a draw ratio of 0.94 times in a second carbonization furnace having an in-furnace temperature distribution of 600 to 1400 ° C. in an inert atmosphere, and subsequently by a known method. Surface treatment, sizing, and drying were performed to obtain carbon fibers having fiber diameters, strand strengths, and correction strengths based on fiber diameters as shown in Table 1.

表1に示すように、実施例1〜4については何れも、中間原料の耐炎化繊維は、TMA最大延伸率が10%以上であり、且つ広角X線測定(回折角26°)における配向度が75%以上であった。更に、実施例1〜4については何れも、第一炭素化処理時の延伸率は対TMAmax比で0.35〜0.55の範囲であった。 As shown in Table 1, in all of Examples 1 to 4, the flame-resistant fiber as an intermediate raw material has a TMA maximum draw ratio of 10% or more, and the degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °). Was 75% or more. Further, in all of Examples 1 to 4, the stretch ratio during the first carbonization treatment was in the range of 0.35 to 0.55 in terms of the ratio of TMA max .

これら実施例1〜4の条件で得られた炭素繊維は何れも、繊維直径による補正強度が高いものであった。   All of the carbon fibers obtained under the conditions of Examples 1 to 4 had high correction strength based on the fiber diameter.

これに対し、比較例1〜6については、中間原料の耐炎化繊維の、TMA最大延伸率、広角X線測定(回折角26°)における配向度、並びに、第一炭素化処理時の対TMAmax比で示した延伸率の条件の少なくとも一が本発明の構成から逸脱している。これら比較例1〜6の条件で得られた炭素繊維は何れも、繊維直径による補正強度が低いもの及び/又は第一炭素化工程において毛羽が発生するものであった。 On the other hand, for Comparative Examples 1 to 6, the TMA maximum draw ratio, the degree of orientation in the wide-angle X-ray measurement (diffraction angle 26 °), and the TMA at the time of the first carbonization treatment of the flame-resistant fiber of the intermediate material At least one of the conditions of the stretch ratio indicated by the max ratio deviates from the configuration of the present invention. All of the carbon fibers obtained under the conditions of Comparative Examples 1 to 6 had low correction strength due to the fiber diameter and / or fluffed in the first carbonization step.

Figure 0004626939
Figure 0004626939

Claims (1)

紡糸・水洗・乾燥処理後の延伸処理における延伸倍率が3.1〜3.5倍であるアクリル繊維を耐炎化処理して得られる耐炎化繊維であって、TMA測定より得られる最大延伸率[A]%が10%以上、且つ広角X線測定より得られる26°における配向度が75〜77.5%である耐炎化繊維を、不活性雰囲気中、温度300〜600℃、且つ前記最大延伸率[A]%で示される延伸率[A×0.35]〜[A×0.50]%で熱処理した後、不活性雰囲気中、温度600〜1600℃で熱処理する炭素繊維の製造方法。
A flame-resistant fiber obtained by flame-treating an acrylic fiber having a draw ratio of 3.1 to 3.5 times in a drawing process after spinning, washing and drying, and a maximum draw ratio obtained by TMA measurement [ A] 10% or more of a flame-resistant fiber having a degree of orientation at 26 ° of 75 to 77.5% obtained by wide-angle X-ray measurement in an inert atmosphere at a temperature of 300 to 600 ° C. and the maximum stretch A method for producing carbon fiber, which is heat-treated at a temperature of 600 to 1600 ° C. in an inert atmosphere after heat treatment at a draw ratio [A × 0.35] to [A × 0.50]% indicated by a rate [A]%.
JP2004060075A 2004-03-04 2004-03-04 Carbon fiber manufacturing method Expired - Fee Related JP4626939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004060075A JP4626939B2 (en) 2004-03-04 2004-03-04 Carbon fiber manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060075A JP4626939B2 (en) 2004-03-04 2004-03-04 Carbon fiber manufacturing method

Publications (2)

Publication Number Publication Date
JP2005248368A JP2005248368A (en) 2005-09-15
JP4626939B2 true JP4626939B2 (en) 2011-02-09

Family

ID=35029120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060075A Expired - Fee Related JP4626939B2 (en) 2004-03-04 2004-03-04 Carbon fiber manufacturing method

Country Status (1)

Country Link
JP (1) JP4626939B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119719A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Production of carbon fiber of high strength
JP2000141472A (en) * 1998-11-11 2000-05-23 Toray Ind Inc Polyester film and its production
JP2002173832A (en) * 2000-12-06 2002-06-21 Mitsubishi Kagaku Sanshi Corp Carbon fiber bundle
JP2003306836A (en) * 2002-04-17 2003-10-31 Toho Tenax Co Ltd Carbon fiber strand and method for producing the same
JP2004060126A (en) * 2002-07-31 2004-02-26 Toho Tenax Co Ltd Carbon fiber and method for producing the same
JP2004060069A (en) * 2002-07-25 2004-02-26 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber, and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119719A (en) * 1984-11-14 1986-06-06 Toho Rayon Co Ltd Production of carbon fiber of high strength
JP2000141472A (en) * 1998-11-11 2000-05-23 Toray Ind Inc Polyester film and its production
JP2002173832A (en) * 2000-12-06 2002-06-21 Mitsubishi Kagaku Sanshi Corp Carbon fiber bundle
JP2003306836A (en) * 2002-04-17 2003-10-31 Toho Tenax Co Ltd Carbon fiber strand and method for producing the same
JP2004060069A (en) * 2002-07-25 2004-02-26 Toho Tenax Co Ltd Polyacrylonitrile-based carbon fiber, and method for producing the same
JP2004060126A (en) * 2002-07-31 2004-02-26 Toho Tenax Co Ltd Carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP2005248368A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
JP5324472B2 (en) Flame-resistant fiber and carbon fiber manufacturing method
JP6119168B2 (en) Method for producing flame-resistant fiber bundle and method for producing carbon fiber bundle
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
WO2017204026A1 (en) Carbon fiber bundle and method for manufacturing same
JP4662450B2 (en) Carbon fiber manufacturing method
JP2008163537A (en) Method for producing carbon fiber
JP2010242249A (en) Flame-proof fiber for high strength carbon fiber, and method for producing the same
JP6020202B2 (en) Carbon fiber bundle and method for producing the same
JP4088500B2 (en) Carbon fiber manufacturing method
JP4271019B2 (en) Carbon fiber manufacturing method
JP4626939B2 (en) Carbon fiber manufacturing method
JP4565978B2 (en) Carbon fiber manufacturing method
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2004197278A (en) Method for producing carbon fiber
JP2004060126A (en) Carbon fiber and method for producing the same
JP4454364B2 (en) Carbon fiber manufacturing method
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
JP3964011B2 (en) Acrylonitrile-based precursor fiber for carbon fiber and method for producing the same
JP2006104604A (en) Method for producing flameproofed fiber and carbon fiber
JP4307233B2 (en) Flame resistant fiber and carbon fiber manufacturing method
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
WO2023042597A1 (en) Carbon fiber bundle and production method therefor
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JP7286987B2 (en) Carbon fiber bundle and its manufacturing method
JP6881090B2 (en) Carbon fiber bundle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4626939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees