JP2006104604A - Method for producing flameproofed fiber and carbon fiber - Google Patents

Method for producing flameproofed fiber and carbon fiber Download PDF

Info

Publication number
JP2006104604A
JP2006104604A JP2004291148A JP2004291148A JP2006104604A JP 2006104604 A JP2006104604 A JP 2006104604A JP 2004291148 A JP2004291148 A JP 2004291148A JP 2004291148 A JP2004291148 A JP 2004291148A JP 2006104604 A JP2006104604 A JP 2006104604A
Authority
JP
Japan
Prior art keywords
precursor
flame
stress
fiber
draw ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004291148A
Other languages
Japanese (ja)
Inventor
Hidekazu Yoshikawa
秀和 吉川
Taro Oyama
太郎 尾山
Takafumi Munetsugi
啓文 宗次
Takaya Suzuki
貴也 鈴木
Toshitsugu Matsuki
寿嗣 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Toho Tenax Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Tenax Co Ltd filed Critical Toho Tenax Co Ltd
Priority to JP2004291148A priority Critical patent/JP2006104604A/en
Publication of JP2006104604A publication Critical patent/JP2006104604A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a flameproofed fiber for carbon fibers of high orientation, high strength and high grade by stabilizing operating conditions of an apparatus for production. <P>SOLUTION: A precursor running by forming paths in a plurality of stages while performing drawing or shrinking in an oxidizing atmosphere is heat-treated. Tests for measuring the knot strength are carried out by forming a knot in a precursor single filament in the path in an optional stage, applying tension to the knotted single filament and measuring a change in stress while increasing the strain of the single filament. In the resultant stress-strain curve, the draw ratio corresponding to a point P of stress fall and re-rise at which the stress rises according to an increase in strain, then rapidly falls once, passes through the point P of stress fall and re-rise and further re-rises is taken as the upper limit of the draw ratio of the precursor in the path in the optional stage. The total draw ratio (total draw ratio in the flameproofing step) in the flameproofing step is 1.01-1.08 and the precursor is heat-treated to produce the flameproofed fiber. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高配向、高強度、高品位の炭素繊維の製造用等に有用な耐炎化繊維の製造方法、並びに、この耐炎化繊維を用いた炭素繊維の製造方法に関する。   The present invention relates to a method for producing flame-resistant fibers useful for producing highly oriented, high-strength, high-grade carbon fibers, and the like, and a method for producing carbon fibers using the flame-resistant fibers.

従来、炭素繊維製造用のプリカーサー(前駆体繊維)を用い、これに耐炎化処理を施して耐炎化繊維を得ること、更にこの耐炎化繊維に炭素化処理を施して高性能炭素繊維を得ることは広く知られており、またこの方法は工業的にも実施されている。   Conventionally, a precursor (precursor fiber) for producing carbon fiber is used to obtain a flame resistant fiber by subjecting it to a flame resistant treatment, and further, a high performance carbon fiber is obtained by subjecting this flame resistant fiber to a carbonization treatment. Is widely known, and this method is also practiced industrially.

特に、近年炭素繊維の用途はスポーツ・レジャー用品から航空宇宙分野、特に航空機の一次構造材にまで展開されている。さらに、炭素繊維の高い比強度、比弾性の特性を生かして製品の軽量化を図ることにより省エネルギー化を図り、これにより排出CO2の削減に寄与することを目的として各産業界は炭素繊維の新しい利用方法に注目し、また研究を進めている。 In particular, in recent years, the use of carbon fiber has been expanded from sports and leisure goods to the aerospace field, particularly to primary structural materials for aircraft. In addition, various industries have made efforts to reduce energy consumption by reducing the weight of products by taking advantage of the high specific strength and specific elasticity of carbon fibers, thereby contributing to the reduction of CO 2 emissions. We are paying attention to new usages and are conducting research.

このような状況下において、炭素繊維にも更なる高性能化、低製造コスト化、また取扱性に優れる高品質化等の課題の解決が要請されている。   Under such circumstances, carbon fibers are also required to solve problems such as higher performance, lower manufacturing costs, and higher quality with excellent handling properties.

一方、炭素繊維を製造する場合、原料繊維であるプリカーサーの性質は目的物である炭素繊維の性能に直接影響する。従って、高性能、低製造コストで且つ取扱性のよい炭素繊維製造用プリカーサーの開発が望まれている。   On the other hand, when producing carbon fiber, the properties of the precursor, which is the raw fiber, directly affect the performance of the target carbon fiber. Therefore, it is desired to develop a precursor for carbon fiber production that has high performance, low production cost, and good handleability.

一般に原料繊維であるプリカーサーとしてはポリアクリロニトリル(PAN)系繊維が用いられる。このPAN系繊維から炭素繊維を製造する場合、PAN系繊維を200〜260℃の酸化性雰囲気下で延伸又は収縮を行いながら酸化処理(耐炎化処理)を行った後、260℃以上、通常は1000℃以上の不活性ガス雰囲気中で炭素化して製造する方法が知られている。   Generally, a polyacrylonitrile (PAN) type fiber is used as a precursor which is a raw material fiber. When producing carbon fiber from this PAN-based fiber, after subjecting the PAN-based fiber to an oxidation treatment (flame-proofing treatment) while stretching or shrinking in an oxidizing atmosphere of 200 to 260 ° C., 260 ° C. or more, usually A method of carbonizing and producing in an inert gas atmosphere at 1000 ° C. or higher is known.

とりわけ耐炎化処理工程における繊維の処理方法は、炭素繊維の強度発現に大きく影響を及ぼし、これまでに多くの検討が行われてきた(例えば、特許文献1〜3)。   In particular, the fiber processing method in the flameproofing process greatly affects the development of the strength of the carbon fiber, and many studies have been made so far (for example, Patent Documents 1 to 3).

特許文献1には、耐炎化伸長率を−10〜10%(延伸倍率0.9〜1.1)の範囲とし、繊維密度が1.30〜1.42g/cm3である耐炎化処理糸を炭素化することにより高強度炭素繊維が得られることが開示されている。しかし、この耐炎化処理方法では、長時間を要する耐炎化処理工程全てにおいて収縮若しくは延伸をさせており、強度発現に最適な緊縮を施すことは行われてない。 Patent Document 1 discloses a flameproof treated yarn having a flameproof elongation rate in the range of −10 to 10% (drawing ratio 0.9 to 1.1) and a fiber density of 1.30 to 1.42 g / cm 3. It is disclosed that a high-strength carbon fiber can be obtained by carbonizing. However, in this flameproofing treatment method, shrinkage or stretching is performed in all the flameproofing treatment steps that require a long time, and no optimum contraction is performed for strength development.

特許文献2には、繊維密度が1.22g/cm3に達するまで3%以上の伸長率(1.03以上の延伸倍率)を与え、以後の収縮を実質的に抑制して耐炎化処理を行い、続いて炭素化することにより高強度の炭素繊維が得られることが開示されている。 In Patent Document 2, an elongation rate of 3% or more (stretching ratio of 1.03 or more) is given until the fiber density reaches 1.22 g / cm 3 , and the subsequent shrinkage is substantially suppressed and flameproofing treatment is performed. It is disclosed that high strength carbon fibers can be obtained by carrying out and then carbonizing.

特許文献3には、繊維密度が1.22g/cm3に達するまで3%以上の伸長率(1.03以上の延伸倍率)で耐炎化処理を行った後、更に1%以上の伸長率(1.01以上の延伸倍率)で延伸処理を行うことによりストランド強度460kgf/mm2以上の炭素繊維が得られることが開示されている。 In Patent Document 3, after the flameproofing treatment is performed at an elongation rate of 3% or more (stretching ratio of 1.03 or more) until the fiber density reaches 1.22 g / cm 3 , an elongation rate of 1% or more ( It is disclosed that a carbon fiber having a strand strength of 460 kgf / mm 2 or more can be obtained by performing a drawing treatment at a draw ratio of 1.01 or more.

これら特許文献2及び3の方法によれば、従来の方法によるもののなかでは、高強度の炭素繊維が得られる。しかし、繊維密度が1.22g/cm3以上になった時点以後の延伸持続の耐炎化処理工程においては単糸切れ、毛羽等を多く発生し、安定した耐炎化繊維、炭素繊維の生産が損なわれる。
特公昭63−28132号公報(第2〜3頁) 特公平3−23649号公報(特許請求の範囲) 特公平3−23650号公報(特許請求の範囲)
According to the methods of Patent Documents 2 and 3, high-strength carbon fibers can be obtained by the conventional methods. However, in the flame-proofing process of continuous stretching after the fiber density becomes 1.22 g / cm 3 or more, a lot of single yarn breakage, fluff and the like occur, and the production of stable flame-resistant fiber and carbon fiber is impaired. It is.
Japanese Examined Patent Publication No. 63-28132 (pages 2 and 3) Japanese Patent Publication No. 3-23649 (Claims) Japanese Patent Publication No. 3-23650 (Claims)

本発明者は、上記問題を解決するために種々検討しているうちに、プリカーサーの耐炎化進行状態に応じて、結節強度測定試験における応力の変化を測定しながら延伸倍率を調節しつつプリカーサーを延伸して耐炎化処理することにより、単糸切れ、毛羽等が無くなり、安定した耐炎化繊維の生産ができ、且つこの耐炎化繊維を炭素化して得られる炭素繊維は、高配向、高強度、高品位であることを知得し、本発明を完成するに到った。   While the present inventor has made various studies in order to solve the above problems, the precursor is adjusted while adjusting the draw ratio while measuring the change in stress in the nodule strength measurement test according to the progress of the flame resistance of the precursor. Stretching and flame resistance treatment eliminates single yarn breakage, fluff, etc., and stable production of flame resistant fibers is possible.Carbon fibers obtained by carbonizing the flame resistant fibers are highly oriented, high strength, It was learned that the quality is high, and the present invention has been completed.

従って、本発明の目的とするところは、上記問題を解決した、高配向、高強度、高品位の炭素繊維の中間原料としての耐炎化繊維の製造方法、並びに、この耐炎化繊維を用いた炭素繊維の製造方法を提供することにある。   Accordingly, the object of the present invention is to solve the above problems, a method for producing flame-resistant fibers as an intermediate raw material for high-orientation, high-strength, high-grade carbon fibers, and carbon using the flame-resistant fibers. It is in providing the manufacturing method of a fiber.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 酸化性雰囲気下で延伸又は収縮を行いながら複数段のパスを形成して走行するプリカーサーを熱処理する耐炎化繊維の製造方法であって、任意段のパスのプリカーサー単糸について、単糸に結節を形成させ、この結節単糸に張力を掛けて単糸のひずみを増加させつつ応力の変化を測定する結節強度測定試験で得られる応力−ひずみ曲線において、ひずみの増加に伴って応力が上昇し、次いで一旦急激に降下する応力降下再上昇点を過ぎて再び上昇する応力降下再上昇点に相当する延伸倍率を、前記任意段のパスにおけるプリカーサーの延伸倍率の上限とし、且つ耐炎化工程でのトータルの延伸倍率(耐炎化工程全延伸倍率)を1.01〜1.08としてプリカーサーを熱処理することを特徴とする耐炎化繊維の製造方法。   [1] A method for producing a flame-resistant fiber by heat-treating a precursor that travels by forming a plurality of passes while stretching or shrinking in an oxidizing atmosphere, wherein In the stress-strain curve obtained in the knot strength measurement test in which the change in stress is measured while increasing the strain of the single yarn by applying tension to the single knot yarn, the stress increases as the strain increases. The stretch ratio corresponding to the stress drop re-rise point that rises and then rises again after the stress drop re-rise point that suddenly drops is the upper limit of the stretch ratio of the precursor in the optional pass, and the flameproofing step A method for producing flame-resistant fibers, characterized in that the precursor is heat-treated at a total draw ratio (total stretch ratio of flameproofing step) of 1.01 to 1.08.

〔2〕 得られる耐炎化繊維の比重が1.45以下である〔1〕に記載の耐炎化繊維の製造方法。   [2] The method for producing flame-resistant fibers according to [1], wherein the obtained flame-resistant fibers have a specific gravity of 1.45 or less.

〔3〕 〔1〕に記載の方法で製造された耐炎化繊維を不活性ガス雰囲気で熱処理することを特徴とする炭素繊維の製造方法。   [3] A method for producing carbon fiber, comprising heat-treating the flameproof fiber produced by the method according to [1] in an inert gas atmosphere.

本発明の耐炎化繊維の製造方法によれば、プリカーサーの耐炎化進行状態に応じて、結節強度測定試験における応力の変化を測定しながら延伸倍率を調節しつつプリカーサーを延伸して耐炎化処理しているので、単糸切れ、毛羽等が無くなり、安定した耐炎化繊維の生産ができ、且つこの耐炎化繊維を炭素化して得られる炭素繊維は、高配向、高強度を有し、毛羽や糸切れの少ない高品位なものである。   According to the method for producing a flame-resistant fiber of the present invention, the precursor is stretched and flame-proofed while adjusting the stretch ratio while measuring the change in stress in the nodule strength measurement test according to the progress of the flame resistance of the precursor. Therefore, there is no breakage of single yarn, fluff, etc., stable production of flame-resistant fibers can be achieved, and carbon fibers obtained by carbonizing this flame-resistant fiber have high orientation and high strength, and fluff and yarn High quality with few slices.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の耐炎化繊維の原料であるプリカーサーについては、最も高品位の炭素繊維を得る中間原料として適した耐炎化繊維が得られることから、PAN系プリカーサーが好ましい。なお、PAN系プリカーサー以外には、ピッチ系、フェノール系、セルロース系、レーヨン系等のプリカーサーを用いることもできる。   The precursor, which is a raw material for the flame-resistant fiber of the present invention, is preferably a PAN-based precursor because a flame-resistant fiber suitable as an intermediate raw material for obtaining the highest quality carbon fiber can be obtained. In addition to the PAN-based precursor, a pitch-based, phenol-based, cellulose-based or rayon-based precursor can also be used.

PAN系プリカーサーは、例えばアクリロニトリルを95質量%以上含有する単量体を重合した単独重合体又は共重合体を含む紡糸溶液を、湿式又は乾湿式紡糸法において紡糸・水洗・乾燥・延伸等の処理を行うことによって得ることができる。共重合する単量体としては、アクリル酸メチル、イタコン酸、メタクリル酸メチル、アクリル酸等が好ましい。   PAN-based precursors, for example, a spinning solution containing a homopolymer or copolymer obtained by polymerizing a monomer containing 95% by mass or more of acrylonitrile in a wet or dry-wet spinning method such as spinning, washing, drying, stretching, etc. Can be obtained by doing As the monomer to be copolymerized, methyl acrylate, itaconic acid, methyl methacrylate, acrylic acid and the like are preferable.

このようにして得られるプリカーサーを、本発明の耐炎化繊維の製造方法に従って耐炎化して耐炎化繊維を得る。この耐炎化繊維を炭素化することによって高配向、高強度の炭素繊維を得ることができる。   The precursor thus obtained is flame-resistant according to the method for producing flame-resistant fibers of the present invention to obtain flame-resistant fibers. By carbonizing this flame resistant fiber, highly oriented and high strength carbon fiber can be obtained.

本発明の耐炎化繊維の製造方法における耐炎化処理過程では、酸化性雰囲気下で延伸又は収縮を行いながら複数段のパスを形成して走行するプリカーサーを熱処理する。この際に各パスのプリカーサーの結節強度測定試験における応力の変化を測定し、得られるデータに基づいて延伸倍率を調節しつつプリカーサーを延伸して耐炎化処理する。   In the flameproofing process in the method for producing flameproofed fibers of the present invention, a precursor that travels in a multi-stage path is heat-treated while stretching or shrinking in an oxidizing atmosphere. At this time, the stress change in the knot strength measurement test of the precursor in each pass is measured, and the precursor is stretched and flameproofed while adjusting the stretch ratio based on the obtained data.

プリカーサーの結節強度測定試験は、JIS L 1015により行う。即ち、任意段のパスでサンプリングしたプリカーサー単糸について、単糸に結節を形成させ、この結節単糸に張力を掛けて単糸のひずみを増加させつつ応力の変化を測定する。   The test for measuring the knot strength of the precursor is performed according to JIS L 1015. That is, with respect to the precursor single yarn sampled in an arbitrary pass, a knot is formed in the single yarn, and the change in stress is measured while increasing the strain of the single yarn by applying tension to the knotted single yarn.

この結節強度測定試験において、前記任意段のパスにおけるプリカーサーの耐炎化が進むに従って、応力がひずみに応じて上昇し、その後急激に応力が降下し、その後再び上昇する[ひずみの地点(応力降下再上昇点)を有する]応力−ひずみ曲線(結節SSC)が得られる(図1参照)。ここで、前記急激に応力が降下するひずみ点を応力降下再上昇点Pと称する。   In this nodule strength measurement test, as the precursor flame resistance increases in the pass of the arbitrary stage, the stress rises according to the strain, then drops sharply and then rises again. A stress-strain curve (nodule SSC) with an ascending point) is obtained (see FIG. 1). Here, the strain point at which the stress rapidly drops is referred to as a stress drop re-rise point P.

なお、プリカーサーの耐炎化の進行につれて、プリカーサーの比重は漸次上昇する傾向にある。そのため、プリカーサーの耐炎化進行状態は、プリカーサーの比重によって判断することができる(図2参照)。   Note that the specific gravity of the precursor tends to gradually increase as the precursor becomes flame resistant. Therefore, the progress of the precursor in flame resistance can be determined by the specific gravity of the precursor (see FIG. 2).

例えば、前記任意段のパスにおけるプリカーサーの比重が1.22のとき、前記応力降下再上昇点Pにおけるひずみ(伸び)は、プリカーサー試料長さ10mmに対して0.16mm程度である。このひずみ[1.6%]に相当する延伸倍率は[1.016]である。一般式で示せば、[a%]のひずみが得られた場合、[1+(a/100)]を延伸倍率とする。   For example, when the specific gravity of the precursor in the arbitrary-stage pass is 1.22, the strain (elongation) at the stress drop re-elevation point P is about 0.16 mm with respect to the precursor sample length of 10 mm. The draw ratio corresponding to this strain [1.6%] is [1.016]. If expressed by the general formula, when a strain of [a%] is obtained, [1+ (a / 100)] is set as the draw ratio.

なお、耐炎化処理が初期の状態にある場合は、明確な応力降下再上昇点Pを示さない場合がある。このため、結節強度測定試験は、プリカーサーの比重等の耐炎化進行状態を示す指標に応じて行う。一般には、プリカーサーの比重が1.19以上になると応力降下再上昇点Pを示すようになる。   In addition, when the flameproofing treatment is in an initial state, a clear stress drop re-elevation point P may not be shown. For this reason, the nodule strength measurement test is performed according to an index indicating the progress of flame resistance such as the specific gravity of the precursor. Generally, when the specific gravity of the precursor is 1.19 or more, the stress drop re-rise point P is indicated.

本発明の耐炎化繊維の製造工程においては、この応力降下再上昇点Pのひずみに相当する延伸倍率を、前記任意段のパスにおけるプリカーサーの延伸倍率の上限としてプリカーサーを熱処理する。延伸倍率がこの上限値を超えると、耐炎化工程及び/又は後述の炭素化工程において単糸切れが多く発生し、安定した生産を行うことができなくなるので好ましくない。しかも、得られる炭素繊維の強度が低くなるので好ましくない。   In the production process of the flame-resistant fiber of the present invention, the precursor is heat-treated with the draw ratio corresponding to the strain at the stress drop re-elevation point P as the upper limit of the draw ratio of the precursor in the optional step. If the draw ratio exceeds this upper limit value, many single yarn breaks occur in the flameproofing step and / or the carbonization step described later, and it is not preferable because stable production cannot be performed. And since the intensity | strength of the carbon fiber obtained becomes low, it is unpreferable.

他方、前記任意段のパスにおけるプリカーサーの延伸倍率の下限は、特に限定されるものではない。但し、高品位、高配向の耐炎化繊維にするためには、耐炎化工程でのトータルの延伸倍率(耐炎化工程全延伸倍率)を1.01〜1.08、好ましくは1.02〜1.07にする。   On the other hand, the lower limit of the stretch ratio of the precursor in the optional pass is not particularly limited. However, in order to obtain a high-quality, highly-oriented flameproof fiber, the total draw ratio in the flameproofing process (total stretch ratio of the flameproofing process) is 1.01-1.08, preferably 1.02-1. .07.

耐炎化工程全延伸倍率が1.01未満の場合は、得られる耐炎化繊維の配向度が低くなるので好ましくない。更に、この耐炎化繊維を中間原料として炭素化して得られる炭素繊維の配向度、強度が低くなるので好ましくない。   When the total draw ratio of the flameproofing process is less than 1.01, the degree of orientation of the resulting flameproof fiber is lowered, which is not preferable. Furthermore, the orientation degree and strength of the carbon fiber obtained by carbonizing this flame resistant fiber as an intermediate raw material is not preferable.

耐炎化工程全延伸倍率が1.08を超える場合は、耐炎化工程及び/又は後述の炭素化工程において単糸切れが多く発生し、安定した生産を行うことができなくなるので好ましくない。しかも、得られる炭素繊維の強度が低くなるので好ましくない。   When the total stretching ratio of the flameproofing step exceeds 1.08, it is not preferable because many single yarn breaks occur in the flameproofing step and / or the carbonization step described later, and stable production cannot be performed. And since the intensity | strength of the carbon fiber obtained becomes low, it is unpreferable.

結節強度測定試験ではなく通常の強度測定試験における応力−ひずみ曲線(通常のSSC)は、プリカーサーのひずみの増加につれて応力は途中で降下することなく漸次上昇する(図1参照)。そのため、通常のSSCは、前記任意段のパスにおけるプリカーサーの延伸倍率の調節用判断材料としては不適である。   In the stress-strain curve (normal SSC) in the normal strength measurement test, not the nodule strength measurement test, the stress gradually increases without decreasing in the middle as the precursor strain increases (see FIG. 1). Therefore, normal SSC is not suitable as a judgment material for adjusting the stretch ratio of the precursor in the arbitrary-stage pass.

また、耐炎化処理前のプリカーサーの応力−ひずみ曲線(プリカーサーのSSC)、及び、耐炎化が充分に進んでいないパスにおけるプリカーサーの応力−ひずみ曲線も、プリカーサーのひずみの増加につれて応力は途中で降下することなく漸次上昇する(図1参照)。   In addition, the stress-strain curve of the precursor before the flameproofing treatment (precursor SSC) and the stress-strain curve of the precursor in the path where flameproofing is not sufficiently advanced are also reduced as the precursor strain increases. It rises gradually without doing (refer to FIG. 1).

耐炎化が充分に進んでいないパスにおけるプリカーサーの延伸倍率は、特に限定されるものではない。但し、高品位、高配向の耐炎化繊維にするためには、前述したように耐炎化工程全延伸倍率を1.01〜1.08、好ましくは1.02〜1.07にする。   The stretch ratio of the precursor in the pass where the flame resistance is not sufficiently advanced is not particularly limited. However, in order to obtain a high-quality, highly-oriented flame-resistant fiber, as described above, the total stretching ratio of the flame-proofing process is set to 1.01 to 1.08, preferably 1.02 to 1.07.

プリカーサーについての配向度は、広角X線測定(回折角17°)における配向度で評価できる。この広角X線測定(回折角17°)における配向度は、次のようにして求めることができる。   The degree of orientation of the precursor can be evaluated by the degree of orientation in wide-angle X-ray measurement (diffraction angle 17 °). The degree of orientation in this wide-angle X-ray measurement (diffraction angle 17 °) can be determined as follows.

延伸処理後のプリカーサーの単繊維約12000本を束にし、アセトンを用いて束を収束させながら繊維軸方向に繊維を引揃える。   About 12,000 single fibers of the precursor after the drawing treatment are bundled, and the fibers are aligned in the fiber axis direction using acetone to converge the bundle.

直径1.0cmの穴をあけた台紙に、繊維束の中央が穴の中央に来るように、繊維を緊張させた状態で貼付ける。その後、繊維軸と治具の軸が平行になるように、台紙を試料調整用治具に固定する。   The fiber is affixed to a mount having a hole with a diameter of 1.0 cm in a tensioned state so that the center of the fiber bundle comes to the center of the hole. Thereafter, the mount is fixed to the sample adjusting jig so that the fiber axis and the axis of the jig are parallel to each other.

更に、この治具を透過法による広角X線回折測定試料台に固定する。X線源として、CuのKα線を使用し、試料に照射すると、2θ17度付近に回折パターン(二つのピークを有する)が現れる。   Furthermore, this jig is fixed to a wide-angle X-ray diffraction measurement sample stage by a transmission method. When Cu Kα rays are used as the X-ray source and the sample is irradiated, a diffraction pattern (having two peaks) appears at around 2θ17 degrees.

この回折パターンのピーク角度を求め、それらの角度を含む360度の範囲について測定を行う。次いで得られたX線回折チャートのグラフ上にベースラインを引き、ピークの半値幅H1/2、H'1/2(度)を求め、下式
配向度=[360−(H1/2+H'1/2)]/360 (1)
によって配向度を計算する。
The peak angle of this diffraction pattern is obtained, and measurement is performed for a range of 360 degrees including these angles. Next, a base line is drawn on the graph of the obtained X-ray diffraction chart to determine peak half-value widths H 1/2 and H ′ 1/2 (degrees), and the following degree of orientation = [360− (H 1/2 + H'1 / 2 )] / 360 (1)
The degree of orientation is calculated by

以上の耐炎化工程での耐炎化進行状態、即ち得られる耐炎化繊維の比重は、1.45以下とすることが好ましく、1.42以下とすることが更に好ましい。耐炎化繊維の比重が1.45を超える場合は、繊維の延伸性が低下し、炭素化工程での糸切れが生じ、高強度の炭素繊維を得ることができないので好ましくない。   The progress of flameproofing in the above flameproofing step, that is, the specific gravity of the obtained flameproofed fiber is preferably 1.45 or less, and more preferably 1.42 or less. When the specific gravity of the flame resistant fiber exceeds 1.45, the stretchability of the fiber is lowered, yarn breakage occurs in the carbonization step, and high strength carbon fiber cannot be obtained, which is not preferable.

次に、この耐炎化繊維を、窒素雰囲気下などの不活性ガス雰囲気下で焼成し炭素化することにより炭素繊維を得ることができる。さらに、炭素繊維の後加工をしやすくし、取扱性を向上させる目的で、炭素繊維のサイジング処理することが好ましい。サイジング方法は、従来の公知の方法で行うことができ、サイジング剤は、用途に即して適宜組成を変更して使用し、均一付着させた後に、乾燥することが好ましい。   Next, the flame-resistant fiber is baked and carbonized in an inert gas atmosphere such as a nitrogen atmosphere to obtain a carbon fiber. Further, for the purpose of facilitating the post-processing of the carbon fiber and improving the handleability, it is preferable to perform a sizing treatment of the carbon fiber. The sizing method can be carried out by a conventionally known method, and the sizing agent is preferably used after changing its composition as appropriate according to the application, and after uniformly adhering.

このようにして得られた炭素繊維は、高配向、且つ高強度を有し、毛羽や糸切れの少ない炭素繊維である。   The carbon fiber thus obtained is a carbon fiber having high orientation and high strength, and having less fuzz and yarn breakage.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、各実施例及び比較例におけるプリカーサー、耐炎化繊維及び炭素繊維の諸物性についての評価方法は、前述の方法又は以下の方法により実施した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, the evaluation method about the various physical properties of the precursor in each Example and a comparative example, a flame-resistant fiber, and carbon fiber was implemented by the above-mentioned method or the following methods.

<広角X線測定(回折角17°)における配向度>
X線回折装置:理学電機製RINT2050を使用し、回折角17°における配向度を半値幅H1/2、H'1/2から前述の式(1)により求めた。
<Orientation degree in wide angle X-ray measurement (diffraction angle 17 °)>
X-ray diffractometer: RINT2050 manufactured by Rigaku Corporation was used, and the degree of orientation at a diffraction angle of 17 ° was determined from the half-value widths H 1/2 and H ′ 1/2 by the above formula (1).

<広角X線測定(回折角26°)における配向度>
回折角を26°にした以外は、上記広角X線測定(回折角17°)における配向度と同様にして求めた。
<Degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °)>
It was determined in the same manner as the degree of orientation in the wide-angle X-ray measurement (diffraction angle 17 °) except that the diffraction angle was 26 °.

<引張り強度>
JIS R 7601に規定された方法により測定した。
<Tensile strength>
It was measured by the method defined in JIS R7601.

<繊維比重>
アルキメデス法により測定した。プリカーサー又は耐炎化繊維の試料繊維はアセトン中にて脱気処理し測定した。
<Fiber specific gravity>
Measured by Archimedes method. Precursor or flameproof fiber sample fibers were degassed in acetone and measured.

実施例1
アクリロニトリル95質量%、アクリル酸メチル4質量%、及びイタコン酸1質量%を共重合させたアクリル繊維を含有する紡糸原液を湿式紡糸し、水洗・乾燥・延伸・オイリングして繊維直径12.0μm、フィラメント数24000、比重1.16のプリカーサーを得た。また、このプリカーサーの広角X線測定(回折角17°)における配向度は88.5%であった。
Example 1
A spinning stock solution containing acrylic fiber copolymerized with 95% by mass of acrylonitrile, 4% by mass of methyl acrylate, and 1% by mass of itaconic acid was wet-spun, washed with water, dried, drawn, and oiled to obtain a fiber diameter of 12.0 μm. A precursor having 24,000 filaments and a specific gravity of 1.16 was obtained. Further, the degree of orientation of this precursor in wide-angle X-ray measurement (diffraction angle 17 °) was 88.5%.

このプリカーサーを、炉内温度分布230〜260℃の熱風循環式耐炎化炉において耐炎化処理した。   The precursor was flameproofed in a hot air circulation flameproofing furnace having a furnace temperature distribution of 230 to 260 ° C.

耐炎化炉に導入されたプリカーサーは、水平面に多数本並んだパス[1パス]を形成して耐炎化炉内を水平走行した後、耐炎化炉外に出、耐炎化炉外に備えられた折返しローラーにより折返されて耐炎化炉に戻る。   The precursor introduced into the flameproofing furnace formed a number of paths [1 pass] lined up in a horizontal plane and traveled horizontally in the flameproofing furnace, then moved out of the flameproofing furnace and provided outside the flameproofing furnace. It is folded back by the folding roller and returned to the flameproofing furnace.

耐炎化炉に戻ったプリカーサーは、上記1パスの下方に水平面に多数本並んだパス[2パス]を形成して耐炎化炉内を水平走行する。以下、耐炎化炉内外の出入を7パスまで繰返し、プリカーサーを耐炎化処理した。   The precursor that has returned to the flameproofing furnace forms a plurality of paths [2 passes] arranged in a horizontal plane below the one pass, and travels horizontally in the flameproofing furnace. Thereafter, the inside and outside of the flameproofing furnace was repeated up to 7 passes, and the precursor was flameproofed.

なお、本例においては、各パスのプリカーサー試料は、耐炎化炉外に出た時点で採取している。即ち、nパスのプリカーサーは、n番目のパスが耐炎化炉外に出たところで採取されたプリカーサー試料である。また、7パスのプリカーサーは、耐炎化処理後の繊維いわゆる耐炎化繊維である。   In this example, the precursor sample for each pass is collected when the precursor sample goes out of the flameproofing furnace. That is, the n-pass precursor is a precursor sample collected when the n-th pass goes out of the flameproofing furnace. The 7-pass precursor is a so-called flame-resistant fiber after the flame resistance treatment.

各パスのプリカーサーの比重、延伸倍率を表1の条件に調節して耐炎化処理した。各パスのプリカーサーをサンプリングして結節強度測定試験をして求めた応力降下再上昇点Pは、1パス〜7パスのプリカーサーについて見られた。即ち、1パスでも少なくとも応力降下再上昇点Pを示す程度は耐炎化が進んでいることが認められた。これら応力降下再上昇点Pにおけるひずみの延伸倍率(測定試験延伸倍率)を表1に示す。   Flame proofing treatment was performed by adjusting the specific gravity and stretch ratio of the precursor in each pass to the conditions shown in Table 1. The stress drop re-elevation point P obtained by sampling the precursor of each pass and performing the nodule strength measurement test was observed for the precursor of 1 pass to 7 passes. That is, it was recognized that the flame resistance was advanced to the extent that at least the stress drop re-elevation point P was exhibited even in one pass. Table 1 shows strain stretch ratios (measurement test stretch ratios) at the stress drop re-elevation point P.

1パス〜7パスのプリカーサーに実際に掛けた延伸倍率(実操作延伸倍率)は、上記応力降下再上昇点Pにおけるひずみの延伸倍率(前述の上限値)以下に調節されている。   The draw ratio (actual operation draw ratio) actually applied to the 1-pass to 7-pass precursor is adjusted to be equal to or less than the stretch ratio of the strain at the stress drop re-elevation point P (the above-described upper limit value).

1パス〜7パスにおけるトータルの実操作延伸倍率(耐炎化工程全延伸倍率)は、表1に示すように1.030と前述の本発明の範囲1.01〜1.08ばかりでなく、好ましい範囲1.02〜1.07内に調節されている。なお、1パス〜7パスを通してプリカーサーの比重は、表1に示すように最大でも1.36と前述の好ましい範囲1.45以下に調節されている。   The total actual operation stretching ratio in 1 pass to 7 passes (total stretching ratio of flameproofing process) is preferably not only 1.030 and the above-mentioned range of 1.01 to 1.08 of the present invention as shown in Table 1. It is adjusted within the range of 1.02 to 1.07. In addition, as shown in Table 1, the specific gravity of the precursor through the first to seventh passes is adjusted to 1.36 at the maximum, which is less than the above-described preferable range of 1.45.

得られた耐炎化繊維は、広角X線測定(回折角26°)における配向度が75.3%と高く、毛羽や糸切れの発生が少ない良好な繊維であった。   The obtained flame-resistant fiber was a good fiber having a high degree of orientation of 75.3% in wide-angle X-ray measurement (diffraction angle 26 °) and less occurrence of fluff and yarn breakage.

次に、この耐炎化繊維を、炭素化処理を施して炭素繊維を製造した。この製造条件及び製造装置は通常のものであった。   Next, this flame resistant fiber was carbonized to produce carbon fiber. The production conditions and production equipment were normal.

本実施例は、その耐炎化処理及び炭素化処理において、毛羽や糸切れの発生が少なく、製造装置の運転状態を安定化させることができた。   In this example, in the flameproofing treatment and carbonization treatment, the occurrence of fluff and yarn breakage was small, and the operating state of the production apparatus could be stabilized.

表2に示すように、本実施例の耐炎化繊維を経由して得られた炭素繊維の引張り強度は、5200MPaと高いものであった。また、この炭素繊維の広角X線測定(回折角26°)における配向度は、80.1%と高いものであった。   As shown in Table 2, the tensile strength of the carbon fiber obtained through the flameproof fiber of this example was as high as 5200 MPa. Further, the degree of orientation of this carbon fiber in wide-angle X-ray measurement (diffraction angle 26 °) was as high as 80.1%.

実施例2〜5及び比較例1〜6
実施例1で得たプリカーサーを、表−1に示す各パスにおける実操作延伸倍率、耐炎化工程全延伸倍率の条件に調節した以外は実施例1と同様にして耐炎化処理をし、表−2に示す繊維品位、広角X線測定(回折角26°)における配向度の耐炎化繊維を得た。
Examples 2-5 and Comparative Examples 1-6
The precursor obtained in Example 1 was subjected to flameproofing treatment in the same manner as in Example 1 except that the conditions of the actual operation stretching ratio and the flameproofing process total stretching ratio in each pass shown in Table 1 were adjusted. A flame-resistant fiber having an orientation degree in the fiber quality and wide-angle X-ray measurement (diffraction angle 26 °) shown in 2 was obtained.

なお、1パス〜7パスを通してプリカーサーの比重は、実施例1と同様の熱処理を受けているため、表1に示すように最大でも1.36と前述の好ましい範囲1.45以下に調節されている。   Note that the specific gravity of the precursor through the first pass to the seventh pass was subjected to the same heat treatment as that of Example 1, and as shown in Table 1, it was adjusted to 1.36 at the maximum and the above-mentioned preferable range of 1.45 or less. Yes.

実施例2〜5では何れも、1パス〜7パスのプリカーサーに実際に掛けた延伸倍率(実操作延伸倍率)は、表1に示すように上記応力降下再上昇点Pにおけるひずみの延伸倍率(前述の上限値)以下に調節されている。   In each of Examples 2 to 5, the draw ratio actually applied to the 1-pass to 7-pass precursor (actual operation draw ratio) is the strain draw ratio at the stress drop re-elevation point P as shown in Table 1 ( The above upper limit value) has been adjusted.

また、実施例2〜5では何れも、1パス〜7パスにおけるトータルの実操作延伸倍率(耐炎化工程全延伸倍率)は、表1に示すように前述の本発明の範囲1.01〜1.08内に調節されている。   Further, in all of Examples 2 to 5, the total actual operation stretching ratio in 1 pass to 7 passes (flame-proofing process total stretching ratio) is within the range of 1.01 to 1 of the present invention described above as shown in Table 1. Adjusted within 0.08.

その結果、実施例2〜5で得られた耐炎化繊維は何れも、表2に示すように広角X線測定(回折角26°)における配向度が高く、毛羽や糸切れの発生が少ない良好な繊維であった。   As a result, all of the flame-resistant fibers obtained in Examples 2 to 5 have a high degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °) as shown in Table 2, and good generation of fluff and yarn breakage is low. Fiber.

次に、実施例2〜5の各耐炎化繊維を、実施例1と同様にして炭素化処理を施し、表−2に示す繊維品位、広角X線測定(回折角26°)における配向度、引張り強度の炭素繊維を得た。   Next, each flame-resistant fiber of Examples 2 to 5 was subjected to carbonization treatment in the same manner as in Example 1. The fiber quality shown in Table-2, the degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °), Tensile strength carbon fibers were obtained.

実施例2〜5では何れも、その耐炎化処理及び炭素化処理において、毛羽や糸切れの発生が少なく、製造装置の運転状態を安定化させることができた。   In each of Examples 2 to 5, in the flameproofing treatment and carbonization treatment, the occurrence of fluff and yarn breakage was small, and the operating state of the production apparatus could be stabilized.

表2に示すように、実施例2〜5の耐炎化繊維を経由して得られた炭素繊維の引張り強度は何れも高いものであった。また、実施例2〜5の炭素繊維の広角X線測定(回折角26°)における配向度は何れも高いものであった。   As shown in Table 2, the tensile strength of the carbon fibers obtained via the flameproof fibers of Examples 2 to 5 was high. In addition, the degree of orientation of each of the carbon fibers of Examples 2 to 5 in the wide-angle X-ray measurement (diffraction angle 26 °) was high.

表1に示すように、比較例1〜4は1パス〜7パスの実操作延伸倍率のうち少なくとも一のパスの実操作延伸倍率が、上記応力降下再上昇点Pにおけるひずみの延伸倍率(前述の上限値)を超えた値に調節されている。   As shown in Table 1, in Comparative Examples 1 to 4, the actual operation draw ratio of at least one pass among the actual operation draw ratios of 1 pass to 7 passes is the strain draw ratio at the stress drop re-elevation point P (described above). The value has been adjusted to exceed the upper limit value.

具体的には、比較例1では1パス、比較例2では2パス、比較例3では3パス、比較例4では5パスにおいて実操作延伸倍率が、上記応力降下再上昇点Pにおけるひずみの延伸倍率(前述の上限値)を超えた値に調節されている。   Specifically, in Comparative Example 1, 1 pass, in Comparative Example 2 in 2 passes, in Comparative Example 3 in 3 passes, and in Comparative Example 4 in 5 passes, the actual operation stretching ratio is the strain stretching at the stress drop re-elevation point P. It is adjusted to a value that exceeds the magnification (the upper limit mentioned above).

表1に示すように、比較例5は、1パス〜7パスにおけるトータルの実操作延伸倍率(耐炎化工程全延伸倍率)が、前述の本発明の範囲から逸脱した1.01未満の1.000に調節されている。   As shown in Table 1, the comparative example 5 has a total actual operation stretching ratio (total stretching ratio of the flameproofing process) in 1 pass to 7 passes of less than 1.01, which deviates from the scope of the present invention described above. It is adjusted to 000.

表1に示すように、比較例6は、1パス〜7パスにおけるトータルの実操作延伸倍率(耐炎化工程全延伸倍率)が、前述の本発明の範囲から逸脱した1.08を超えた1.083に調節されている。   As shown in Table 1, in Comparative Example 6, the total actual operation stretching ratio (total stretching ratio of the flameproofing process) in 1 to 7 passes exceeded 1.08, which deviated from the scope of the present invention described above. .083 is adjusted.

その結果、表2に示すように、比較例1、2及び6で得られた耐炎化繊維は何れも、広角X線測定(回折角26°)における配向度が高く、毛羽や糸切れの発生が少ない良好な繊維であったが、比較例3及び4で得られた耐炎化繊維は何れも、毛羽や糸切れの発生が多い低品位の繊維であった。また、比較例5で得られた耐炎化繊維は広角X線測定(回折角26°)における配向度が74.8%と低配向の繊維であった。   As a result, as shown in Table 2, all of the flame-resistant fibers obtained in Comparative Examples 1, 2, and 6 have a high degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °), and generation of fluff and yarn breakage occurs. The flame-resistant fibers obtained in Comparative Examples 3 and 4 were all low-quality fibers with many occurrences of fluff and yarn breakage. The flame-resistant fiber obtained in Comparative Example 5 was a low-orientation fiber having an orientation degree of 74.8% in wide-angle X-ray measurement (diffraction angle 26 °).

次に、比較例1〜6の各耐炎化繊維を、実施例1と同様にして炭素化処理を施し、表−2に示す繊維品位、広角X線測定(回折角26°)における配向度、引張り強度の炭素繊維を得た。   Next, each flame-resistant fiber of Comparative Examples 1 to 6 was subjected to carbonization treatment in the same manner as in Example 1, and the fiber quality shown in Table-2, the degree of orientation in wide-angle X-ray measurement (diffraction angle 26 °), Tensile strength carbon fibers were obtained.

比較例5では、その炭素化処理において、毛羽や糸切れの発生が少なく、製造装置の運転状態を安定化させることができたが、比較例1〜4及び6では何れも、その炭素化処理において、毛羽や糸切れの発生が多く、製造装置の運転状態を安定化させることができなかった。   In Comparative Example 5, in the carbonization treatment, there was little occurrence of fluff and yarn breakage, and the operation state of the production apparatus could be stabilized. In Comparative Examples 1-4 and 6, all of the carbonization treatment However, there were many occurrences of fluff and yarn breakage, and the operation state of the production apparatus could not be stabilized.

表2に示すように、比較例1〜6の耐炎化繊維を経由して得られた炭素繊維の引張り強度は何れも低いものであった。また、比較例5の炭素繊維の広角X線測定(回折角26°)における配向度は79.8%と低いものであった。   As shown in Table 2, the tensile strength of the carbon fibers obtained via the flameproof fibers of Comparative Examples 1 to 6 was low. Further, the degree of orientation of the carbon fiber of Comparative Example 5 in the wide-angle X-ray measurement (diffraction angle 26 °) was as low as 79.8%.

Figure 2006104604
Figure 2006104604

Figure 2006104604
Figure 2006104604

耐炎化処理前のプリカーサー若しくは耐炎化処理中のプリカーサーについて、結節強度測定試験若しくは通常の強度測定試験におけるひずみに対する応力の変化を示すグラフである。It is a graph which shows the change of the stress with respect to the distortion in a nodule strength measurement test or a normal strength measurement test about the precursor before a flameproofing process or the precursor in a flameproofing process. 耐炎化処理中のプリカーサーについて、耐炎化処理の進行に対する比重の変化を示すグラフである。It is a graph which shows the change of specific gravity with respect to progress of a flameproofing process about the precursor in a flameproofing process.

Claims (3)

酸化性雰囲気下で延伸又は収縮を行いながら複数段のパスを形成して走行するプリカーサーを熱処理する耐炎化繊維の製造方法であって、任意段のパスのプリカーサー単糸について、単糸に結節を形成させ、この結節単糸に張力を掛けて単糸のひずみを増加させつつ応力の変化を測定する結節強度測定試験で得られる応力−ひずみ曲線において、ひずみの増加に伴って応力が上昇し、次いで一旦急激に降下する応力降下再上昇点を過ぎて再び上昇する応力降下再上昇点に相当する延伸倍率を、前記任意段のパスにおけるプリカーサーの延伸倍率の上限とし、且つ耐炎化工程でのトータルの延伸倍率(耐炎化工程全延伸倍率)を1.01〜1.08としてプリカーサーを熱処理することを特徴とする耐炎化繊維の製造方法。 A method of manufacturing a flame-resistant fiber that heat-treats a precursor that travels by forming a multi-stage pass while stretching or shrinking in an oxidizing atmosphere. In the stress-strain curve obtained by the knot strength test that measures the change in stress while increasing the strain of the single yarn by applying tension to this single knot yarn, the stress increases as the strain increases, Next, the draw ratio corresponding to the stress drop re-rise point that rises again after passing the stress drop re-rise point that suddenly drops is taken as the upper limit of the stretch ratio of the precursor in the optional step, and the total in the flame resistance process A method for producing flame-resistant fibers, characterized in that the precursor is heat-treated at a draw ratio (total draw ratio of flameproofing step) of 1.01-1.08. 得られる耐炎化繊維の比重が1.45以下である請求項1に記載の耐炎化繊維の製造方法。 The method for producing flame-resistant fibers according to claim 1, wherein the specific gravity of the obtained flame-resistant fibers is 1.45 or less. 請求項1に記載の方法で製造された耐炎化繊維を不活性ガス雰囲気で熱処理することを特徴とする炭素繊維の製造方法。 A method for producing carbon fiber, comprising heat-treating the flame-resistant fiber produced by the method according to claim 1 in an inert gas atmosphere.
JP2004291148A 2004-10-04 2004-10-04 Method for producing flameproofed fiber and carbon fiber Pending JP2006104604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004291148A JP2006104604A (en) 2004-10-04 2004-10-04 Method for producing flameproofed fiber and carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004291148A JP2006104604A (en) 2004-10-04 2004-10-04 Method for producing flameproofed fiber and carbon fiber

Publications (1)

Publication Number Publication Date
JP2006104604A true JP2006104604A (en) 2006-04-20

Family

ID=36374671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004291148A Pending JP2006104604A (en) 2004-10-04 2004-10-04 Method for producing flameproofed fiber and carbon fiber

Country Status (1)

Country Link
JP (1) JP2006104604A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
JP2012082541A (en) * 2010-10-08 2012-04-26 Toray Ind Inc Method for producing carbon fiber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219513A (en) * 1988-07-05 1990-01-23 Asahi Chem Ind Co Ltd Production of carbon fiber having high strength and high modulus of elasticity
JPH02300325A (en) * 1989-05-09 1990-12-12 Toray Ind Inc Production of flameproof fiber
JP2003138435A (en) * 2001-11-01 2003-05-14 Toho Tenax Co Ltd Method for producing flameproofed fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0219513A (en) * 1988-07-05 1990-01-23 Asahi Chem Ind Co Ltd Production of carbon fiber having high strength and high modulus of elasticity
JPH02300325A (en) * 1989-05-09 1990-12-12 Toray Ind Inc Production of flameproof fiber
JP2003138435A (en) * 2001-11-01 2003-05-14 Toho Tenax Co Ltd Method for producing flameproofed fiber

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7749479B2 (en) 2006-11-22 2010-07-06 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8591859B2 (en) 2006-11-22 2013-11-26 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8734754B2 (en) 2006-11-22 2014-05-27 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US8871172B2 (en) 2006-11-22 2014-10-28 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9121112B2 (en) 2006-11-22 2015-09-01 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9340905B2 (en) 2006-11-22 2016-05-17 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9677195B2 (en) 2006-11-22 2017-06-13 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US9938643B2 (en) 2006-11-22 2018-04-10 Hexel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
US10151051B2 (en) 2006-11-22 2018-12-11 Hexcel Corporation Carbon fibers having improved strength and modulus and an associated method and apparatus for preparing same
JP2012082541A (en) * 2010-10-08 2012-04-26 Toray Ind Inc Method for producing carbon fiber

Similar Documents

Publication Publication Date Title
CN109154109B (en) Carbon fiber bundle and method for producing same
WO1985001752A1 (en) Carbon fibers with high strength and high modulus, and process for their production
JP4662450B2 (en) Carbon fiber manufacturing method
JP2008163537A (en) Method for producing carbon fiber
JP4271019B2 (en) Carbon fiber manufacturing method
JP2006104604A (en) Method for producing flameproofed fiber and carbon fiber
JP4088500B2 (en) Carbon fiber manufacturing method
JP4565978B2 (en) Carbon fiber manufacturing method
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP2006283225A (en) Method for producing flame-proofed fiber and carbon fiber
JP2004197278A (en) Method for producing carbon fiber
JP4626939B2 (en) Carbon fiber manufacturing method
JP4307233B2 (en) Flame resistant fiber and carbon fiber manufacturing method
JP4754855B2 (en) Method for producing flame-resistant fiber, method for producing carbon fiber
JP4454364B2 (en) Carbon fiber manufacturing method
JP2005054283A (en) Method for producing fire-resistant fiber
TW201934840A (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP4088543B2 (en) High-strength carbon fiber and method for producing the same
WO2023042597A1 (en) Carbon fiber bundle and production method therefor
JP6191182B2 (en) Carbon fiber bundle and manufacturing method thereof
JP2011213774A (en) Polyacrylonitrile for producing carbon fiber, polyacrylonitrile-based precursor fiber, and method for producing carbon fiber
JP6547924B1 (en) Method of manufacturing flameproofed fiber bundle and carbon fiber bundle
JPH1181039A (en) Acrylonitrile-based precursor fiber for carbon fiber and its production
JP2006152458A (en) Method for producing flameproofed fiber
JP2023017173A (en) Carbon fiber bundle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070730

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Effective date: 20100302

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100629