JP2004360031A - Composite cast iron member, and its production method - Google Patents

Composite cast iron member, and its production method Download PDF

Info

Publication number
JP2004360031A
JP2004360031A JP2003161603A JP2003161603A JP2004360031A JP 2004360031 A JP2004360031 A JP 2004360031A JP 2003161603 A JP2003161603 A JP 2003161603A JP 2003161603 A JP2003161603 A JP 2003161603A JP 2004360031 A JP2004360031 A JP 2004360031A
Authority
JP
Japan
Prior art keywords
cast iron
metal material
cylinder block
composite
material layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003161603A
Other languages
Japanese (ja)
Other versions
JP4279604B2 (en
Inventor
Toshinari Yamazaki
登志成 山崎
Takamitsu Yamamoto
隆光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAKANO GOKIN KK
Original Assignee
NAKANO GOKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAKANO GOKIN KK filed Critical NAKANO GOKIN KK
Priority to JP2003161603A priority Critical patent/JP4279604B2/en
Publication of JP2004360031A publication Critical patent/JP2004360031A/en
Application granted granted Critical
Publication of JP4279604B2 publication Critical patent/JP4279604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Details Of Reciprocating Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite cast iron member in which a nonferrous metal material can be stacked at a high strength by using carbon-containing cast iron, and to provide its production method. <P>SOLUTION: The composite cast iron member consists of: a carbon-containing cylinder block body 12; a decarburized layer 12a formed on the surface of the cylinder block body 12a; and a nonferrous metal material layer 14 integrally stacked to the decarburized layer 12a in a joined state. The nonferrous metal material layer 14 may be made of a copper alloy, an aluminum alloy or the like. In the decarburization treatment, the surface of a cylinder tube 13 in the cylinder block body 12 is stacked with iron sand 15, heating is performed to a high temperature, and carbon in the cylinder block body 12 is oxidized and removed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、シリンダブロックとその内壁面のライナー等の複合金属材料であって、特に鋳鉄を基材とする複合鋳鉄部材とその製造方法に関する。
【0002】
【従来の技術】
【特許文献1】特開平10−277725号公報
従来、例えばシリンダブロックは、ピストンの往復運動の摺動性を高めるために、その内周面に銅合金を張り付けている。この銅合金の張り付け方法は、特許文献1に開示されているように、クロム・モリブデン鋼等によりシリンダブロック本体を形成し、このシリンダブロック本体を高温にしてフラックスを詰め込み、溶融した銅合金を流し込んで固化させている。さらに、銅合金によるライナーを所定の厚みに切削加工してシリンダブロックを形成している。
【0003】
【発明が解決しようとする課題】
上記従来の技術の場合、鋼によりシリンダブロック本体を形成するため、加工工数及びコストがかかり、シリンダブロックのコストアップの原因となっていた。
【0004】
一方、コストダウンのためには、シリンダブロック本体を鋳鉄により鋳造することが考えられるが、鋳鉄は高濃度のカーボンを含有し、シリンダ内壁に銅合金を流し込んでも接合強度が弱く、実用化できないものであった。
【0005】
この発明は上記従来の技術の問題点に鑑みてなされたものであり、カーボンを含む鋳鉄を用いて、非鉄金属材料を高強度で積層することができる複合鋳鉄部材とその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
この発明は、カーボンを含んだ鋳鉄部と、この鋳鉄部の表面に形成された脱炭層と、この脱炭層に接合して一体に積層された非鉄金属材料層とから成る複合鋳鉄部材である。
【0007】
上記非鉄金属材料層は、銅合金や、その他アルミニウム合金等でも良い。また、上記鋳鉄部は、シリンダブロック本体であり、このシリンダブロック本体の内壁面に銅合金の非鉄金属材料層が積層されている。
【0008】
またこの発明は、所定の鋳型により鋳鉄部を鋳造し、この鋳鉄部の表面のカーボンを除去する脱炭処理を行い、この脱炭処理を行った脱炭層に非鉄金属材料の溶湯を流し込んで非鉄金属材料層を一体に形成する複合鋳鉄部材の製造方法である。
【0009】
上記鋳鉄部は、シリンダブロック本体であり、このシリンダブロック本体の内壁面に、銅合金の非鉄金属材料の溶湯を流し込んで非鉄金属材料層を一体に形成するものである。
【0010】
また、上記脱炭処理は、上記鋳鉄部の表面に砂鉄を積層し、800〜1100℃に加熱して上記鋳鉄部のカーボンを酸化させるものである。または、上記脱炭処理は、上記鋳鉄部の表面を一酸化炭素と二酸化炭素を含んだ流動化ガス雰囲気中に置き、800〜1100℃に加熱して、上記鋳鉄部のカーボンを酸化させるものでも良い。
【0011】
【発明の実施の形態】
以下、この発明の実施形態の複合鋳鉄部材とその製造方法について図面に基づいて説明する。図1、図2は、この発明の第一実施形態について示したものであり、この実施形態の複合鋳鉄部材は、シリンダブロック10についてのものである。シリンダブロック10は、カーボンを含んだ鋳鉄部であるシリンダブロック本体12と、このシリンダブロック本体12のシリンダ筒13の内壁表面に形成された脱炭層12aと、この脱炭層12aに接合して一体に積層された非鉄金属材料層14とから成る。非鉄金属材料層14としては、例えばCuに、Snが12.65wt%、Pbが8.61wt%、Niが1.71wt%含まれるものを用いた。その外、黄銅、青銅、リン青銅、鉛青銅、アルミニウム青銅等の合金でも良い。
【0012】
この実施形態のシリンダブロック10の製造方法は、所定の鋳型によりシリンダブロック本体12を鋳造し、このシリンダブロック本体12のシリンダ筒13の内壁のカーボンを除去する脱炭処理を行う。この脱炭処理は、図1(a)に示すように、シリンダ筒13内に酸化第一鉄の粉末である砂鉄15を詰め込み、またはシリンダ筒13の内壁面に塗布して、800〜1100℃の高温に加熱し、シリンダのカーボンを酸化させる。この加熱温度は、例えば電気炉で930℃にし、数時間加熱する。この温度での加熱時間と脱炭層の厚みの関係は、図2のグラフに示す通りである。ここで起きている反応は、以下の通りである。
FeO+C=Fe+CO
【0013】
これにより、シリンダ筒13表面のカーボンは、一酸化炭素(CO)となって除去される。
【0014】
この後、冷却し砂鉄15をシリンダ筒13内から除去し、フラックスを入れて、図1(b)に示すように、シリンダ筒13内に非鉄金属材料層14を形成する溶融銅合金17を流し込み、冷却する。
【0015】
そして、図1(c)に示すように溶融銅合金17が固化した後、シリンダ筒13内の非鉄金属材料14aを、図1(d)に示すように円筒状に切削加工して所定の内径に形成する。これにより、シリンダ筒13の内壁面には、非鉄金属材料層14が形成される。
【0016】
この実施形態の複合鋳鉄部材とその製造方法によれば、シリンダブロック本体を鋳鉄により鋳造することができ、製造が容易で、コストが安価であり、しかもシリンダ筒13内壁面に銅合金の非鉄金属材料層14を形成しても、その積層箇所の接合強度が高く、非鉄金属材料層14が剥がれることがない。この接合強度は、この鋳造方法により形成した鋳鉄と銅合金の境界を含む試験片により引っ張り試験を行ったところ、複数の試験片とも接合部分での破断は生じず、銅合金の箇所が破断した。従って、この方法により製造した鋳鉄部分と銅合金部分の接合箇所は、銅合金自体の強度よりも高いことがわかった。
【0017】
次にこの発明の第二実施形態について、図3を基にして説明する。ここで、上記実施形態と同様の構成は同一符号を付して説明を省略する。この実施形態の複合鋳鉄部材もシリンダブロックについてのもので、この実施形態のシリンダブロック20は、中心に形成され径の大きい中心穴21と、その周囲に11個形成されたシリンダ穴23とを備え、シリンダ穴23の内壁面には銅合金による非鉄金属材料層14が形成されている。
【0018】
この実施形態のシリンダブロック20の製造方法は、まず、図3(a)に示すように、シリンダブロック本体22を鋳鉄により鋳造する。この後、シリンダ穴23に酸化第一鉄の砂鉄15を充填または塗布する。そして、900℃で2時間加熱する。これにより、シリンダ穴23の内壁面のカーボンが深さ数百μm程度除去され、図3(b)に示すように、脱炭層22aが形成される。この後、図3(c)に示すように、各シリンダ穴23内に約1200℃の溶融銅合金17を流し込む。そして、図3(d)に示すように溶融銅合金17が固化した非鉄金属材料14aに、図3(e)に示すように所定の径の穴を形成し、非鉄金属材料層14を形成する。
【0019】
この実施形態のシリンダブロック20によれば、多数のシリンダ穴23の形成を、鋳造による鋳鉄で簡単に形成することができ、シリンダ穴23内の非鉄金属材料層14も銅合金により簡単に強固に形成することができる。
【0020】
なお、この発明の複合鋳鉄部材は、上記実施形態に限定されるものではなく、シリンダブロック以外の鋳造製品に非鉄金属の層を形成するものに広く利用できるものである。
【0021】
また、脱炭処理は上記以外に、鋳鉄部の表面を一酸化炭素と二酸化炭素を含んだ流動化ガス雰囲気中に置き、800〜1100℃に加熱して、鋳鉄部のカーボンを酸化させ、除去するものでも良い。この場合、脱炭層形成の臨界温度である700℃以上の温度、好ましくは800〜1100℃の温度では、以下の反応により、鋳鉄中のカーボンが一酸化炭素(CO)となって脱炭が行われる。
C+CO2=2CO
【0022】
なお、この発明の複合鋳鉄部材は、上記実施形態に限定されるものではなく、鋳鉄はねずみ鋳鉄や、球場黒煙鋳鉄を含む。また、非鉄金属材料は、黄銅、青銅、リン青銅、鉛青銅、アルミニウム青銅等の合金でも良く、鋳鉄と適宜の非鉄金属材料との複合材料に適宜利用することができる。
【0023】
【発明の効果】
この発明の複合鋳鉄部材とその製造方法によれば、シリンダブロック本体等を鋳鉄により鋳造することができ、製造が容易で、コストが安価である。しかも鋳鉄部の表面を脱炭して非鉄金属材料層を積層しているので、鋳鉄部と非鉄金属材料層の接合部分の接合強度が極めて高く、容易に分離することがない。
【図面の簡単な説明】
【図1】この発明の第一実施形態の複合鋳鉄部材の製造工程を示す概略斜視図である。
【図2】この実施形態の複合鋳鉄部材の脱炭時間と脱炭層の関係を示すグラフである。
【図3】この発明の第二実施形態の複合鋳鉄部材の製造工程を示す概略斜視図である。
【符号の説明】
10 シリンダブロック
12 シリンダブロック本体
12a 脱炭層
13 シリンダ筒
14 非鉄金属材料層
14a 非鉄金属材料
15 砂鉄
17 溶融銅合金
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite metal material such as a cylinder block and a liner for an inner wall surface thereof, and more particularly to a composite cast iron member having cast iron as a base material and a method for producing the same.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. Hei 10-277725 Conventionally, for example, a copper alloy is adhered to the inner peripheral surface of a cylinder block in order to improve the slidability of the reciprocating motion of the piston. As disclosed in Patent Document 1, a method of attaching the copper alloy is to form a cylinder block main body with chromium / molybdenum steel or the like, heat the cylinder block main body, pack a flux, and pour a molten copper alloy. Solidified. Further, a cylinder block is formed by cutting a liner made of a copper alloy to a predetermined thickness.
[0003]
[Problems to be solved by the invention]
In the case of the above-mentioned conventional technology, since the cylinder block main body is formed of steel, processing man-hours and costs are required, which causes an increase in the cost of the cylinder block.
[0004]
On the other hand, in order to reduce costs, it is conceivable to cast the cylinder block body with cast iron.However, cast iron contains high concentration of carbon, and the bonding strength is weak even if copper alloy is poured into the cylinder inner wall, so that it cannot be put to practical use Met.
[0005]
The present invention has been made in view of the above-mentioned problems of the conventional technology, and provides a composite cast iron member capable of laminating non-ferrous metal materials with high strength using cast iron containing carbon and a method of manufacturing the same. With the goal.
[0006]
[Means for Solving the Problems]
The present invention is a composite cast iron member including a cast iron portion containing carbon, a decarburized layer formed on the surface of the cast iron portion, and a non-ferrous metal material layer joined to the decarburized layer and integrally laminated.
[0007]
The non-ferrous metal material layer may be a copper alloy, another aluminum alloy, or the like. The cast iron part is a cylinder block main body, and a non-ferrous metal material layer of a copper alloy is laminated on an inner wall surface of the cylinder block main body.
[0008]
Further, according to the present invention, a cast iron portion is cast by a predetermined mold, a decarburization process for removing carbon on the surface of the cast iron portion is performed, and a molten metal of a non-ferrous metal material is poured into the decarburized layer after the decarburization process. This is a method for manufacturing a composite cast iron member in which a metal material layer is integrally formed.
[0009]
The cast iron portion is a cylinder block main body, and a nonferrous metal material layer is integrally formed by pouring a molten metal of a copper alloy nonferrous metal material into an inner wall surface of the cylinder block main body.
[0010]
In the decarburization treatment, sand iron is laminated on the surface of the cast iron part and heated to 800 to 1100 ° C. to oxidize carbon in the cast iron part. Alternatively, the decarburization treatment may be such that the surface of the cast iron portion is placed in a fluidizing gas atmosphere containing carbon monoxide and carbon dioxide and heated to 800 to 1100 ° C. to oxidize the carbon of the cast iron portion. good.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a composite cast iron member according to an embodiment of the present invention and a method for manufacturing the same will be described with reference to the drawings. FIGS. 1 and 2 show a first embodiment of the present invention. The composite cast iron member of this embodiment relates to a cylinder block 10. The cylinder block 10 includes a cylinder block body 12 which is a cast iron portion containing carbon, a decarburized layer 12a formed on the inner wall surface of a cylinder 13 of the cylinder block body 12, and joined to the decarburized layer 12a to be integrally formed. And a non-ferrous metal material layer 14 laminated. As the non-ferrous metal material layer 14, for example, a layer containing 12.65 wt% of Sn, 8.61 wt% of Pb, and 1.71 wt% of Ni is used. In addition, alloys such as brass, bronze, phosphor bronze, lead bronze, and aluminum bronze may be used.
[0012]
In the method of manufacturing the cylinder block 10 of this embodiment, the cylinder block main body 12 is cast using a predetermined mold, and a decarburization process for removing carbon on the inner wall of the cylinder 13 of the cylinder block main body 12 is performed. In this decarburization treatment, as shown in FIG. 1 (a), iron sand 15 which is a powder of ferrous oxide is packed in a cylinder 13 or applied to the inner wall surface of the cylinder 13 to reach 800 to 1100 ° C. Heat to a high temperature to oxidize the carbon in the cylinder. The heating temperature is, for example, 930 ° C. in an electric furnace, and heating is performed for several hours. The relationship between the heating time at this temperature and the thickness of the decarburized layer is as shown in the graph of FIG. The reaction taking place here is as follows.
FeO + C = Fe + CO
[0013]
Thus, carbon on the surface of the cylinder 13 is removed as carbon monoxide (CO).
[0014]
After that, the iron iron 15 is cooled, the iron sand 15 is removed from the inside of the cylinder 13, a flux is put in, and a molten copper alloy 17 for forming the non-ferrous metal material layer 14 is poured into the cylinder 13 as shown in FIG. ,Cooling.
[0015]
After the molten copper alloy 17 is solidified as shown in FIG. 1C, the non-ferrous metal material 14a in the cylinder 13 is cut into a cylindrical shape as shown in FIG. Formed. Thus, a non-ferrous metal material layer 14 is formed on the inner wall surface of the cylinder 13.
[0016]
According to the composite cast iron member of this embodiment and the method of manufacturing the same, the cylinder block main body can be cast from cast iron, which is easy to manufacture, inexpensive, and has a non-ferrous metal of copper alloy on the inner wall surface of the cylinder cylinder 13. Even when the material layer 14 is formed, the bonding strength at the laminated portion is high, and the non-ferrous metal material layer 14 does not peel off. This joining strength, when a tensile test was performed using a test piece including the boundary between the cast iron and the copper alloy formed by this casting method, no fracture occurred at the joint portion with any of the plurality of test pieces, and the copper alloy portion broke. . Therefore, it was found that the joint between the cast iron part and the copper alloy part manufactured by this method was higher than the strength of the copper alloy itself.
[0017]
Next, a second embodiment of the present invention will be described with reference to FIG. Here, the same components as those in the above embodiment are denoted by the same reference numerals, and description thereof is omitted. The composite cast iron member of this embodiment also relates to a cylinder block. The cylinder block 20 of this embodiment includes a central hole 21 formed at the center and having a large diameter, and eleven cylinder holes 23 formed therearound. On the inner wall surface of the cylinder hole 23, a non-ferrous metal material layer 14 made of a copper alloy is formed.
[0018]
In the method of manufacturing the cylinder block 20 of this embodiment, first, as shown in FIG. 3A, the cylinder block body 22 is cast from cast iron. Thereafter, iron iron sand 15 of ferrous oxide is filled or applied to the cylinder hole 23. And it heats at 900 degreeC for 2 hours. Thereby, carbon on the inner wall surface of the cylinder hole 23 is removed at a depth of about several hundred μm, and a decarburized layer 22a is formed as shown in FIG. 3B. Thereafter, as shown in FIG. 3C, a molten copper alloy 17 at about 1200 ° C. is poured into each cylinder hole 23. Then, as shown in FIG. 3E, a hole having a predetermined diameter is formed in the non-ferrous metal material 14a in which the molten copper alloy 17 has been solidified as shown in FIG. .
[0019]
According to the cylinder block 20 of this embodiment, a large number of cylinder holes 23 can be easily formed by cast iron by casting, and the non-ferrous metal material layer 14 in the cylinder holes 23 is also easily and firmly made of a copper alloy. Can be formed.
[0020]
The composite cast iron member of the present invention is not limited to the above embodiment, but can be widely used for forming a non-ferrous metal layer on a cast product other than the cylinder block.
[0021]
In addition to the above, in the decarburization treatment, the surface of the cast iron part is placed in a fluidized gas atmosphere containing carbon monoxide and carbon dioxide and heated to 800 to 1100 ° C. to oxidize and remove the carbon in the cast iron part. What you do. In this case, at a temperature of 700 ° C. or more, which is a critical temperature for forming a decarburized layer, and preferably at a temperature of 800 to 1100 ° C., the carbon in the cast iron becomes carbon monoxide (CO) by the following reaction to perform decarburization. Is
C + CO2 = 2CO
[0022]
The composite cast iron member of the present invention is not limited to the above embodiment, and includes gray cast iron and stadium black smoke cast iron. Further, the non-ferrous metal material may be an alloy such as brass, bronze, phosphor bronze, lead bronze, and aluminum bronze, and can be appropriately used as a composite material of cast iron and an appropriate non-ferrous metal material.
[0023]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the composite cast iron member of this invention and its manufacturing method, a cylinder block main body etc. can be cast with cast iron, and manufacture is easy and cost is low. Moreover, since the surface of the cast iron portion is decarburized and the non-ferrous metal material layer is laminated, the joining strength of the joint portion between the cast iron portion and the non-ferrous metal material layer is extremely high, and the cast iron portion is not easily separated.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a manufacturing process of a composite cast iron member according to a first embodiment of the present invention.
FIG. 2 is a graph showing a relationship between a decarburization time and a decarburized layer of the composite cast iron member of the embodiment.
FIG. 3 is a schematic perspective view showing a manufacturing process of a composite cast iron member according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Cylinder block 12 Cylinder block main body 12a Decarburization layer 13 Cylinder cylinder 14 Nonferrous metal material layer 14a Nonferrous metal material 15 Sand iron 17 Molten copper alloy

Claims (8)

カーボンを含んだ鋳鉄部と、この鋳鉄部の表面に形成された脱炭層と、この脱炭層に接合して一体に積層された非鉄金属材料層とから成ることを特徴とする複合鋳鉄部材。A composite cast iron member comprising: a cast iron portion containing carbon; a decarburized layer formed on a surface of the cast iron portion; and a non-ferrous metal material layer joined to the decarburized layer and integrally laminated. 上記非鉄金属材料層は銅合金であることを特徴とする請求項1記載の複合鋳鉄部材。The composite cast iron member according to claim 1, wherein the non-ferrous metal material layer is a copper alloy. 上記鋳鉄部はシリンダブロック本体であり、このシリンダブロック本体の内壁面に上記非鉄金属材料層が積層されていることを特徴とする請求1または2記載の複合鋳鉄部材。3. The composite cast iron member according to claim 1, wherein the cast iron portion is a cylinder block main body, and the non-ferrous metal material layer is laminated on an inner wall surface of the cylinder block main body. 所定の鋳型により鋳鉄部を鋳造し、この鋳鉄部の表面のカーボンを除去する脱炭処理を行い、この脱炭処理を行った脱炭層に非鉄金属材料の溶湯を流し込んで非鉄金属材料層を一体に形成することを特徴とする複合鋳鉄部材の製造方法。A cast iron part is cast with a predetermined mold, a decarburization process for removing carbon on the surface of the cast iron portion is performed, and a molten nonferrous metal material is poured into the decarburized layer after the decarburization process to integrate the nonferrous metal material layer. Forming a composite cast iron member. 上記非鉄金属材料は銅合金であることを特徴とする請求項4記載の複合鋳鉄部材の製造方法。5. The method according to claim 4, wherein the non-ferrous metal material is a copper alloy. 上記鋳鉄部はシリンダブロック本体であり、このシリンダブロック本体の内壁面に、上記非鉄金属材料の溶湯を流し込んで非鉄金属材料層を一体に形成することを特徴とする請求4または5記載の複合鋳鉄部材の製造方法。The composite cast iron according to claim 4 or 5, wherein the cast iron portion is a cylinder block main body, and a nonferrous metal material layer is integrally formed by pouring a molten metal of the nonferrous metal material into an inner wall surface of the cylinder block main body. A method for manufacturing a member. 上記脱炭処理は、上記鋳鉄部の表面に砂鉄を積層し、高温に加熱して上記鋳鉄部のカーボンを酸化させて除去することを特徴とする請求項4,5または6記載の複合鋳鉄部材の製造方法。7. The composite cast iron member according to claim 4, 5 or 6, wherein the decarburizing treatment comprises laminating sand iron on the surface of the cast iron portion, heating the cast iron portion to a high temperature, and oxidizing and removing carbon in the cast iron portion. Manufacturing method. 上記脱炭処理は、上記鋳鉄部の表面を一酸化炭素と二酸化炭素を含んだ流動化ガス雰囲気中に置き、800〜1100℃に加熱して、上記鋳鉄部のカーボンを酸化させて除去することを特徴とする請求項4,5または6記載の複合鋳鉄部材の製造方法。In the decarburization treatment, the surface of the cast iron part is placed in a fluidized gas atmosphere containing carbon monoxide and carbon dioxide, and heated to 800 to 1100 ° C. to oxidize and remove the carbon in the cast iron part. The method for producing a composite cast iron member according to any one of claims 4, 5 and 6, wherein
JP2003161603A 2003-06-06 2003-06-06 Composite cast iron member and manufacturing method thereof Expired - Lifetime JP4279604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161603A JP4279604B2 (en) 2003-06-06 2003-06-06 Composite cast iron member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161603A JP4279604B2 (en) 2003-06-06 2003-06-06 Composite cast iron member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004360031A true JP2004360031A (en) 2004-12-24
JP4279604B2 JP4279604B2 (en) 2009-06-17

Family

ID=34053970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161603A Expired - Lifetime JP4279604B2 (en) 2003-06-06 2003-06-06 Composite cast iron member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4279604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432019B1 (en) 2012-12-20 2014-08-22 한국생산기술연구원 Method for manufacturing Fe-Al bimetal
KR20210012427A (en) * 2019-07-25 2021-02-03 한국생산기술연구원 Heat treatment method for dissimilar material gap minimizes of die-casting products

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101432019B1 (en) 2012-12-20 2014-08-22 한국생산기술연구원 Method for manufacturing Fe-Al bimetal
KR20210012427A (en) * 2019-07-25 2021-02-03 한국생산기술연구원 Heat treatment method for dissimilar material gap minimizes of die-casting products
KR102302539B1 (en) 2019-07-25 2021-09-16 한국생산기술연구원 Heat treatment method for dissimilar material gap minimizes of die-casting products

Also Published As

Publication number Publication date
JP4279604B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
JP2002343618A (en) Soft magnetic material and manufacturing method therefor
JP2004360031A (en) Composite cast iron member, and its production method
JP2007061866A (en) Method for producing composite cast iron member
JP2005509521A (en) Liquid phase sintered brazed molded product
CN1311938C (en) Continuous double-metal cast forming method
JPS5841774A (en) Manufacture of ceramic-metal composite body
JP2002086278A (en) Manufacturing method of annular and hollow machine parts
JP2007138241A (en) Cast iron for press die, and its manufacturing method
JP4750992B2 (en) Metal / ceramic composite material and method for producing the same
JPS6184304A (en) Method for joining metallic member to ceramic member
JPH067915A (en) Wear resistant aluminum alloy casting and manufacture thereof
JP3454542B2 (en) Magnesium-based molten metal supply device
JPH0621527B2 (en) Valve seat insert and cylinder head using the same
JPH07155929A (en) Production of corrosion resistant cast iron tube
JP2003079082A (en) Permanent magnet rotor and method of manufacture therefor
JP3231729B2 (en) Functional member and method of manufacturing the same
JP2003100506A (en) Composite magnetic member material having electric insulating film and its manufacturing method, composite magnetic member having electric insulating film and its manufacturing method, and motor using the same
JP3226421B2 (en) Aluminum-based composite disk rotor
TW593686B (en) Aluminum-iron ingot for steel smelting and deoxidization and method for producing the same
JP2003105507A (en) Composite magnetic member having electrical insulating film, production method therefor, and motor obtained by using the composite magnetic member having electrical insulating film
RU2002132277A (en) METHOD FOR PRODUCING NON-CARBON FOUNDRY RESISTANT FUSION ALLOYS ON A NICKEL BASIS
JPH06306511A (en) Electrode for spot welding and its production
JPS60118366A (en) Production of joined body between oxide ceramics and copper or alloy thereof
JPH11300459A (en) Sleeve for die casting machine
RU2006141078A (en) METHOD FOR PRODUCING SILICON ALUMINUM-CARBIDE COMPOSITE MATERIAL (AI-SIC)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4