JPH06306511A - Electrode for spot welding and its production - Google Patents

Electrode for spot welding and its production

Info

Publication number
JPH06306511A
JPH06306511A JP11391793A JP11391793A JPH06306511A JP H06306511 A JPH06306511 A JP H06306511A JP 11391793 A JP11391793 A JP 11391793A JP 11391793 A JP11391793 A JP 11391793A JP H06306511 A JPH06306511 A JP H06306511A
Authority
JP
Japan
Prior art keywords
electrode
powder
sintering
welding
spot welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11391793A
Other languages
Japanese (ja)
Inventor
Wataru Ishikawa
渡 石川
Kadomasa Sato
矩正 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11391793A priority Critical patent/JPH06306511A/en
Publication of JPH06306511A publication Critical patent/JPH06306511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce an electrode for spot welding excellent in electric conductivity, thermal conductivity, high temp. strength, corrosion resistance and workability and having a long service life at a low cost by immersing a green compact obtd. by mixing Cu powder and Sn powder into water-soluble flux and thereafter executing two-stage sintering in the air. CONSTITUTION:Cu powder and Sn powder are mixed in such a manner that the content of Sn is preferably regulated to 5 to 35wt.%, and this mixed powder is packed into a compacting die and is compacted by a hydraulic press or the like. Next, this green compact is immersed into water-soluble flux, is thereafter subjected to primary sintering at a low temp. of about 300 to 400 deg.C in the air and is subsequently subjected to secondary sintering at a higher temp. of about 500 to 700 deg.C. Or, the same green compact may succeedingly be subjected to secondary sintering after the primary sintering in a reducing atmosphere or in vacuum. In this way, the electrode for spot welding constituted of a sintered body in which a Cu-Sn alloy layer is formed can be obtd. Preferably, this electrode is fixed to the tip of a Cu-Cr alloy material by screwing and is used for welding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】自動車の軽量化に伴いアルミ合金
がボディーシート、フレーム(シャーシー)等に使用さ
れている。本発明はこれらの板材の接合に用いられるア
ルミ合金スポット溶接用電極とその製造方法に関するも
のである。
[Industrial application] Aluminum alloys are used for body sheets, frames (chassis), etc. as automobiles become lighter. The present invention relates to an aluminum alloy spot welding electrode used for joining these plate materials and a manufacturing method thereof.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来の
金属の溶接方法として大別すると電気、化学、機械的、
超音波、光エネルギーを利用する溶接法がある。この中
で自動車用鋼板の溶接には電気エネルギーによる抵抗ス
ポット溶接が主として利用されている。この抵抗スポッ
ト溶接法は手軽に安価に利用できるが、電極先端の摩
耗、割れ、被溶接材との溶着等のトラブルが頻繁におき
る。そこで電極の外観を良好にするためその都度ドレッ
シングを施して使用しているが工数が増えるだけでなく
電極そのものの寿命が短くなってしまうという欠点があ
った。
2. Description of the Related Art The conventional welding methods for metals are roughly classified into electrical, chemical, mechanical, and
There is a welding method that uses ultrasonic waves and light energy. Among them, resistance spot welding by electric energy is mainly used for welding steel sheets for automobiles. Although this resistance spot welding method can be used easily and inexpensively, troubles such as abrasion and cracking of the electrode tip and welding with the material to be welded frequently occur. Therefore, in order to improve the appearance of the electrode, it is dressed each time and used, but there is a drawback that not only the number of steps is increased but also the life of the electrode itself is shortened.

【0003】近年、自動車の軽量化を目的として高強度
・高加工性のボディーシートに用いるアルミ合金の検討
が進んでおり、しかもこれら部材の溶接過程のスピード
上昇と共に溶接過程そのものも複雑になってきた。しか
しながら、従来の鋼板と比較してアルミ合金はスポット
溶接時の電極寿命が極端に短く、効率的な生産を阻害す
るので問題であった。なお従来の銅−クロム合金電極の
性能を大幅に改善する材料は現在見出されていない。こ
のため、高溶接特性・耐摩耗性を有するアルミ合金スポ
ット溶接用電極の開発が強く要求されてきている。
In recent years, aluminum alloys used for body sheets having high strength and high workability have been studied for the purpose of reducing the weight of automobiles, and the welding process itself has become complicated as the speed of the welding process for these members has increased. It was However, compared with the conventional steel sheet, the aluminum alloy has a problem that the electrode life during spot welding is extremely short and hinders efficient production. Note that no material has been found so far that significantly improves the performance of the conventional copper-chromium alloy electrode. Therefore, development of an aluminum alloy spot welding electrode having high welding characteristics and wear resistance has been strongly demanded.

【0004】このアルミ合金スポット溶接電極に要求さ
れる特性は、導電率が高く熱伝導率が高いこと(これ
らは電極の温度上昇を防止させる。)、常温硬度が硬
いこと、溶接材の付着、合金化、拡散し難いこととピ
ックアップが発生し難いこと、加工(切削、研磨)し
易いことつまりドレッシングがし易いこと、価格が安
いこと、等が挙げられる。
The properties required for this aluminum alloy spot welding electrode are that it has a high electrical conductivity and a high thermal conductivity (these prevent the electrode temperature from rising), the room temperature hardness is hard, and the welding material adheres. Examples include alloying, difficulty in diffusion, difficulty in picking up, ease of processing (cutting and polishing), that is, easy dressing, low cost, and the like.

【0005】しかし現在のアルミ合金の抵抗スポット溶
接の電極では、溶接時に被溶接材と電極材料が拡散して
合金化の反応を示したり、溶着や溶接電極先端の割れ、
変形等が起き易く電極寿命が極端に短くなったり、反応
層が腐食劣化を生じて電極消耗が大きくなると同時に軟
らかい反応層が溶接熱で変形し電極消耗が大きくなる等
の問題点がある。そのため未だに未開発の部分が多い。
However, in the current electrodes for resistance spot welding of aluminum alloys, the material to be welded and the electrode material diffuse during welding to show an alloying reaction, welding or cracking of the tip of the welding electrode,
There are problems that deformation and the like are likely to occur and the life of the electrode is extremely shortened, and that the reaction layer is corroded and deteriorated to increase electrode consumption, and at the same time, the soft reaction layer is deformed by welding heat and electrode consumption is increased. Therefore, there are still many undeveloped parts.

【0006】[0006]

【課題を解決するための手段】本発明はこれに鑑み検討
の結果、溶接電極として要求される導電率、熱伝導率、
高温強度、耐食性、加工性に優れ、安価で長寿命の抵抗
溶接電極用材料を開発したものである。
The present invention has been studied in view of this, and as a result, the electrical conductivity, thermal conductivity, and
It is a material for resistance welding electrodes that has excellent high temperature strength, corrosion resistance, and workability, is inexpensive, and has a long life.

【0007】即ち本発明の電極の一つは、Cu−Sn合
金層を形成した焼結体からなるものであり、また他の一
つはCu−Sn合金層を形成した焼結体をCu−Cr合
金部材の先端に固定したものである。
That is, one of the electrodes of the present invention is a sintered body having a Cu--Sn alloy layer formed thereon, and the other is a sintered body having a Cu--Sn alloy layer formed thereon. It is fixed to the tip of a Cr alloy member.

【0008】さらに本発明の電極の製造方法の一つは、
Cu粉とSn粉とを混合して圧粉体を成形し、該圧粉体
を水溶性フラックス中に浸漬した後大気中にて低温で1
次焼結を行い、その後より高温で2次焼結を行うことを
特徴とするものである。
Further, one of the manufacturing methods of the electrode of the present invention is:
Cu powder and Sn powder are mixed to form a green compact, and the green compact is immersed in a water-soluble flux, and then 1
The secondary sintering is performed, and then the secondary sintering is performed at a higher temperature.

【0009】また他の製造方法は、Cu粉とSn粉とを
混合して圧粉体を成形し、該圧粉体を還元性ガス雰囲気
中、又は真空中にて低温で1次焼結を行い、その後還元
性ガス雰囲気中、又は真空中にてより高温で2次焼結を
行うことを特徴とするものである。
In another manufacturing method, Cu powder and Sn powder are mixed to form a green compact, and the green compact is subjected to primary sintering at a low temperature in a reducing gas atmosphere or in a vacuum. After that, secondary sintering is performed at a higher temperature in a reducing gas atmosphere or in a vacuum.

【0010】このように本発明ではCu粉とSn粉との
焼結合金を用いているが、これはCuとSnを溶解して
得た鋳塊では偏析が大きくて問題であるが、金属粉末を
用いれば均一な混合粉が得られるので偏析のない均一な
電極材料が得られる利点があるからである。またこのC
u−Sn焼結体はそのまま電極として用いることもでき
るが、従来電極である棒状のCr−Cu合金部材の先端
に上記焼結体をネジ止め、電子ビーム溶接、レーザー溶
接、機械的溶接して電極として用いてもよい。このよう
に構成することにより電極の温度上昇を防止する効果が
ある。
As described above, in the present invention, a sintered alloy of Cu powder and Sn powder is used. This is a problem because ingots obtained by melting Cu and Sn have large segregation, but metal powder This is because the use of is advantageous in that a uniform mixed powder can be obtained and a uniform electrode material without segregation can be obtained. Also this C
The u-Sn sintered body can be used as it is as an electrode, but the sintered body is screwed to the tip of a rod-shaped Cr-Cu alloy member which is a conventional electrode, and electron beam welding, laser welding and mechanical welding are performed. You may use as an electrode. With such a configuration, there is an effect of preventing the temperature rise of the electrodes.

【0011】次に本発明の製造法をより詳しく説明す
る。Cu粉末及びSn粉末をボールミル等で十分に粉砕
し、Sn粉末の含有量を5〜35重量%として両者を混合
した後成形型に充填し通常の油圧プレスやCIP(冷間
等方圧加圧装置)で成形する。その後はこの成形体を還
元性ガス雰囲気中、又は真空中にて低温で1次焼結を行
い、引き続いて還元性ガス雰囲気中、又は真空中にてよ
り高温で2次焼結を行うことにより焼結体を得ることも
できるが、次のような方法も利用できる。
Next, the manufacturing method of the present invention will be described in more detail. Cu powder and Sn powder are sufficiently pulverized by a ball mill etc., and the content of Sn powder is adjusted to 5 to 35% by weight, and the two are mixed and then filled in a molding die and then subjected to normal hydraulic press or CIP (cold isostatic pressing). Molding). After that, the molded body is subjected to primary sintering at a low temperature in a reducing gas atmosphere or in a vacuum, and subsequently to secondary sintering at a higher temperature in a reducing gas atmosphere or in a vacuum. Although a sintered body can be obtained, the following method can also be used.

【0012】即ち上記成形体を先ず水溶性フラックス中
に浸漬した後、大気中にて 300〜400 ℃の温度で10〜90
分間保持して1次焼結をすることにより表面部にCu−
Snの金属間化合物層を生成させ、引き続いて同じく大
気中にてより高温の 500〜700 ℃の温度で10〜90分間保
持する2次焼結により全体に上記化合物層を形成させて
焼結体の硬度を上昇させる。このように焼結に先立って
圧粉体をフラックス中に浸漬させるのはフラックスによ
る還元作用を用いてCu粉やSn粉表面を還元して焼結
を促進させるためであり、これにより大気中での焼結が
可能となった。なおフラックスとしては半田付け等に用
いている塩酸,塩化アンモニウム,塩化亜鉛,塩化リチ
ウムなどの塩化物、弗化カリ,弗化ソーダなどの弗化
物、硼酸,硼砂などの硼化物又はこれらの混合物を用い
ることができる。
That is, the above-mentioned molded body is first immersed in a water-soluble flux, and then in the atmosphere at a temperature of 300 to 400 ° C. for 10 to 90 ° C.
By holding for 1 minute and performing primary sintering, Cu-
An intermetallic compound layer of Sn is formed, and subsequently the above-mentioned compound layer is formed on the whole by secondary sintering which is also held in the atmosphere at a higher temperature of 500 to 700 ° C. for 10 to 90 minutes. Increase the hardness of. Thus, the reason why the green compact is immersed in the flux prior to the sintering is to reduce the surface of the Cu powder or the Sn powder by using the reducing action of the flux to accelerate the sintering, and thereby, in the atmosphere. It became possible to sinter. As the flux, chlorides such as hydrochloric acid, ammonium chloride, zinc chloride, lithium chloride, etc. used for soldering, fluorides such as potassium fluoride, sodium fluoride, boric acid, boride such as borax, or a mixture thereof are used. Can be used.

【0013】また焼結を2段で行うのは低温の1次焼結
で強度、耐ピックアップ性を改善する金属間化合物を生
成させ、さらに高温の2次焼結により緻密な電極として
の焼結構造体を得るためである。
In addition, the sintering is performed in two stages by the primary sintering at a low temperature to generate an intermetallic compound which improves the strength and the pick-up resistance, and the secondary sintering at a high temperature causes the sintering structure as a dense electrode. This is to obtain a structure.

【0014】[0014]

【実施例】以下本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0015】(実施例1)酸素量300ppm、粒径10μmの
Sn粉末を重量比で15%混合した粒径10μmのCu粉末
をボールミルで6時間粉砕ミキシング後、ふるいにかけ
油圧プレスで直径20mm×長さ20mmの成形体を作製した。
この成形体を水溶性のフラックス中に1〜5分間浸漬
後、石英ボード上に乗せ 380℃の大気炉に10分間入れて
1次焼結を行い、次に 600℃の大気炉へ20分間入れて2
次焼結を行いCu−Snの化合物層を形成させた結果、
表面酸化はほとんど起きず良好な焼結電極材料ができ
た。この焼結体の表層部のマイクロビッカース硬さは 1
30〜270 であった。
Example 1 Cu powder having a particle size of 10 μm, which was a mixture of Sn powder having an oxygen content of 300 ppm and a particle size of 10 μm in a weight ratio of 15%, was ground and mixed for 6 hours in a ball mill, sieved, and then hydraulically pressed to a diameter of 20 mm × length. A molded body having a size of 20 mm was produced.
After soaking this compact in water-soluble flux for 1 to 5 minutes, put it on a quartz board and put it in an atmospheric furnace at 380 ° C for 10 minutes to perform primary sintering, and then put it in an atmospheric furnace at 600 ° C for 20 minutes. 2
As a result of forming the Cu-Sn compound layer by the subsequent sintering,
Surface oxidation hardly occurred, and a good sintered electrode material was formed. The micro Vickers hardness of the surface layer of this sintered body is 1
It was between 30 and 270.

【0016】この焼結体を図1(a)(b)のような形
状に加工して溶接電極の先端として図2(a)(b)に
示す形状の1%Cr−Cu棒に電子ビーム溶接し図3に
示す形状の電極とした。この電極を用いて溶接電流 220
00A・加圧力300kgf、通電時間3サイクルの条件でA518
2P−0.1mmtのアルミ合金シートを連続スポット溶接した
ところ打点数3000打点を越す連続5500打点でも問題なし
という結果が得られた。
This sintered body is processed into a shape as shown in FIGS. 1A and 1B, and a 1% Cr-Cu rod having a shape shown in FIGS. Welded to form an electrode having the shape shown in FIG. Welding current 220
A518 under conditions of 00A, pressure 300kgf, and energizing time 3 cycles
When 2P-0.1mmt aluminum alloy sheet was continuously spot-welded, the result was that there was no problem even with continuous 5500 RBI exceeding 3000 RBI.

【0017】このように本発明はCuとSnが低温でも
容易に化合物層ができることに着目したもので、Cuと
Snの化合物層を早く育成させるためにCuとSnの粉
末を用いて加圧成形後1次焼結することによりCu−S
nの均一な化合物層を早期に形成したものである。更に
熱伝導、導電率の高いCr−Cu合金棒を母材に使用し
たために良好な結果が得られたものである。
As described above, the present invention focuses on the fact that a compound layer of Cu and Sn can be easily formed even at a low temperature. In order to rapidly grow the compound layer of Cu and Sn, pressure molding is performed using powders of Cu and Sn. Cu-S is obtained by subsequent primary sintering.
This is an early formation of a uniform compound layer of n. Furthermore, good results were obtained because a Cr-Cu alloy rod having high thermal conductivity and conductivity was used as the base material.

【0018】(実施例2)次に実施例1と同じCu粉末
及びSn粉末を用い、直径20mm×長さ30mmの成形体を
得、同じ条件で焼結を行って、スポット溶接用電極材料
を製造した。この電極材料を加工した電極を用いて溶接
電流 26000Aに変更し、他は実施例1と同様な条件でA5
182P−0.1mmtのアルミ合金シートを連続スポット溶接し
た。その結果連続7500打点でも問題なかった。
(Example 2) Next, using the same Cu powder and Sn powder as in Example 1, a compact having a diameter of 20 mm and a length of 30 mm was obtained and sintered under the same conditions to obtain an electrode material for spot welding. Manufactured. A welding current was changed to 26000 A using an electrode obtained by processing this electrode material, and A5 was used under the same conditions as in Example 1 except for the above.
182P-0.1mmt aluminum alloy sheet was continuously spot welded. As a result, there were no problems with 7500 RBI in a row.

【0019】(比較例1)市販品の1%Cr−Cuに30
mmAのビーム電流で部分溶解を行いCr周囲の熱容量で
急冷しCrの強制固溶を行いCr−Cuの微細組織を有
する電極材料を得た。この表面硬度はマイクロビッカー
ス硬さで 100程度であった。そしてこのCr−Cu合金
を電極形状に加工し実施例1の条件で同じアルミ合金シ
ートに連続スポット溶接を電極のドレッシングを繰り返
しながら実施したところ打点数850 打点時点で電極先端
に割れが発生し始めたため、再度ドレッシングを施した
が電極先端の割れが深く使用不能となった。
COMPARATIVE EXAMPLE 1 Commercially available 1% Cr-Cu 30%
An electrode material having a Cr—Cu microstructure was obtained by performing partial melting with a beam current of mmA, quenching with the heat capacity around Cr and forcing solid solution of Cr. The surface hardness was about 100 in terms of micro Vickers hardness. Then, this Cr-Cu alloy was processed into an electrode shape, and continuous spot welding was performed on the same aluminum alloy sheet under the conditions of Example 1 while repeating the dressing of the electrode. When the number of dots was 850, the electrode tip started to crack. Therefore, the dressing was applied again, but the electrode tip was deeply cracked and unusable.

【0020】このように本発明ではCuとSnの粉末を
ボールミル等でミキシングし当該粉末を油圧プレスやC
IP(冷間等方圧加圧装置)等で成形し、その圧粉体を
水溶性のフラックスに浸漬させ大気中の加熱炉で1次焼
結、2次焼結を行って硬度を向上させてCu−Sn合金
の焼結体を電極とし、又はこの焼結体を電極先端として
Cr−Cu棒に電子ビーム溶接し電極とした。即ちCu
とSnの粉末の圧粉体を焼結した焼結体に化合物層を形
成させ、該化合物層を電極先端とし抵抗スポット溶接機
に取り付けアルミ合金シートに溶接をしたところアルミ
合金シートと電極との溶着、電極部先端の割れや拡散、
腐食、歪がなく良好な溶接が可能となった。
As described above, according to the present invention, Cu and Sn powders are mixed by a ball mill or the like, and the powders are mixed with a hydraulic press or C
It is molded by IP (cold isotropic pressure press), etc., the green compact is immersed in a water-soluble flux, and primary sintering and secondary sintering are performed in a heating furnace in the atmosphere to improve hardness. Then, a sintered body of Cu-Sn alloy was used as an electrode, or this sintered body was used as an electrode tip to perform electron beam welding on a Cr-Cu rod to form an electrode. That is Cu
A compound layer was formed on a sintered body obtained by sintering a green compact of Sn powder and Sn powder, and the compound layer was attached to a resistance spot welder using the electrode tip as an electrode tip and welded to an aluminum alloy sheet. Welding, cracking or diffusion of the electrode tip,
Good welding is possible without corrosion and distortion.

【0021】なお、本電極は、アルミ合金板のみでな
く、Znめっき銅板においても効果がある。また、使用
する溶接機は単相交流溶接機の他に単相整流溶接機、イ
ンバータDC溶接機、三相整流溶接機等いずれの溶接機
でも効果がある。
The present electrode is effective not only for aluminum alloy plates but also for Zn-plated copper plates. Further, the welding machine to be used is not limited to the single-phase AC welding machine, and any welding machine such as a single-phase rectification welding machine, an inverter DC welding machine, or a three-phase rectification welding machine is effective.

【0022】[0022]

【発明の効果】このように本発明によれば、アルミ合金
スポット溶接過程中の電極割れや溶着等の各種トラブル
が解消し、アルミ合金シートのスポット溶接等において
高性能の溶接が可能となる等、工業上顕著な効果を得る
ものである。
As described above, according to the present invention, various troubles such as electrode cracking and welding during the aluminum alloy spot welding process are eliminated, and high-performance welding is possible in spot welding of aluminum alloy sheets, etc. That is, a remarkable effect is obtained industrially.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の電極の形状の一例を示すもので(a)
は平面図、(b)は側面図である。
FIG. 1 shows an example of the shape of an electrode of the present invention (a)
Is a plan view and (b) is a side view.

【図2】本発明電極を先端に固定するCu−Cr合金棒
の一例を示すもので(a)は平面図、(b)は側断面図
である。
FIG. 2 shows an example of a Cu—Cr alloy rod for fixing the electrode of the present invention to the tip, (a) is a plan view, and (b) is a side sectional view.

【図3】本発明を用いたスポット溶接用電極の一例を示
す説明図である。
FIG. 3 is an explanatory view showing an example of a spot welding electrode using the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Cu−Sn合金層を形成した焼結体から
なることを特徴とするスポット溶接用電極。
1. An electrode for spot welding, comprising a sintered body having a Cu—Sn alloy layer formed thereon.
【請求項2】 Cu−Sn合金層を形成した焼結体をC
u−Cr合金材料の先端に固定したことを特徴とするス
ポット溶接用電極。
2. A sintered body on which a Cu—Sn alloy layer is formed is C
An electrode for spot welding, which is fixed to the tip of a u-Cr alloy material.
【請求項3】 Cu粉とSn粉を混合して圧粉体を成形
し、該圧粉体を水溶性フラックス中に浸漬した後大気中
にて低温で1次焼結を行い、その後より高温で2次焼結
を行うことを特徴とするスポット溶接用電極の製造方
法。
3. A Cu powder and an Sn powder are mixed to form a green compact, which is immersed in a water-soluble flux and then primary-sintered at a low temperature in the atmosphere, and then at a higher temperature. A method for manufacturing an electrode for spot welding, which comprises performing secondary sintering with.
【請求項4】 Cu粉とSn粉を混合して圧粉体を成形
し、該圧粉体を還元性ガス雰囲気中、又は真空中にて低
温で1次焼結を行い、その後還元性ガス雰囲気中、又は
真空中にてより高温で2次焼結を行うことを特徴とする
スポット溶接用電極の製造方法。
4. A Cu powder and an Sn powder are mixed to form a green compact, and the green compact is subjected to primary sintering in a reducing gas atmosphere or in a vacuum at a low temperature, and then a reducing gas. A method for manufacturing an electrode for spot welding, which comprises performing secondary sintering at a higher temperature in an atmosphere or in a vacuum.
JP11391793A 1993-04-16 1993-04-16 Electrode for spot welding and its production Pending JPH06306511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11391793A JPH06306511A (en) 1993-04-16 1993-04-16 Electrode for spot welding and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11391793A JPH06306511A (en) 1993-04-16 1993-04-16 Electrode for spot welding and its production

Publications (1)

Publication Number Publication Date
JPH06306511A true JPH06306511A (en) 1994-11-01

Family

ID=14624431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11391793A Pending JPH06306511A (en) 1993-04-16 1993-04-16 Electrode for spot welding and its production

Country Status (1)

Country Link
JP (1) JPH06306511A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793982B1 (en) * 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
JP2008290079A (en) * 2007-05-22 2008-12-04 Nippon Steel Corp Electrode for spot welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6793982B1 (en) * 1998-05-13 2004-09-21 Mitsubishi Denki Kabushiki Kaisha Electrode of green compact for discharge surface treatment, method of producing the same, method of discarge surface treatment, apparatus therefor, and method of recycling electrode of green compact for discharge surface treatment
JP2008290079A (en) * 2007-05-22 2008-12-04 Nippon Steel Corp Electrode for spot welding

Similar Documents

Publication Publication Date Title
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
JPH0480081B2 (en)
US7468493B2 (en) Method of connecting aluminum alloy die cast member
TWI632959B (en) Titanium composite and titanium for hot rolling
JPS5920445A (en) Electrical contact material made of silver-tin oxide type composite sintered alloy containing dispersed tin oxide particle and solidified from liquid phase and its manufacture
JP6787428B2 (en) Titanium material for hot rolling
JPH06306511A (en) Electrode for spot welding and its production
CN114836598B (en) Hot-rolled powder high-speed steel-stainless steel composite steel plate and manufacturing method thereof
JPH0976074A (en) Material for resistance welding electrode, composite electrode for resistance welding and its manufacture
JPH06297161A (en) Electrode for spot welding and its manufacture
JP6086178B1 (en) Titanium material for hot rolling
JPH11286732A (en) Manufacture of alumina-dispersed strengthened copper
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JP6848991B2 (en) Titanium material for hot rolling
JPH06256918A (en) Production of molybdenum or molybdenum alloy sheet
US4102709A (en) Workable nickel alloy and process for making same
JP4365284B2 (en) Method for producing reinforced platinum / platinum composite material
JP2542038B2 (en) Electrode
JPH02274849A (en) Production of oxide dispersion-strengthened copper alloy stock
JPH055141A (en) Copper or copper-silver alloy metal oxide composite material and production thereof
JP2000210747A (en) Plastically worked thin formed part of magnesium alloy
JP2919896B2 (en) Manufacturing method of brazing filler metal
JPH055139A (en) Production of silver or silver-copper alloy-metal oxide composite material
JPH02214106A (en) Hot plastic-deformation magnet and manufacture thereof
JPH058083A (en) Silver-or silver copper alloy-metal oxide composite material and production thereof