JP2004359821A - Resin molded article - Google Patents

Resin molded article Download PDF

Info

Publication number
JP2004359821A
JP2004359821A JP2003159899A JP2003159899A JP2004359821A JP 2004359821 A JP2004359821 A JP 2004359821A JP 2003159899 A JP2003159899 A JP 2003159899A JP 2003159899 A JP2003159899 A JP 2003159899A JP 2004359821 A JP2004359821 A JP 2004359821A
Authority
JP
Japan
Prior art keywords
resin molded
molded product
raw material
resin
glass fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003159899A
Other languages
Japanese (ja)
Inventor
Yoshihiro Nakao
喜浩 中尾
Yuji Ishijima
勇治 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003159899A priority Critical patent/JP2004359821A/en
Publication of JP2004359821A publication Critical patent/JP2004359821A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reclaimed molding that uses as a raw material pulverents of a glass fiber-reinforced hard urethane resin foam, the pulverents which have a glass fiber content exceeding 20 wt% and a median particle size of ≤2,000 μm, and that has sufficient strengths when formed by a press molding method. <P>SOLUTION: A waste product, which is generated in processing the glass fiber-reinforced hard urethane resin foam having the glass fiber content exceeding 20 wt%, is classified so as for the median particle size by a laser diffraction method to be ≤2,000 μm to obtain cut powder. To the cut powder, a binder component fusable or curable by heating is mixed to prepare a raw material mixture, which is heated and pressurized to obtain the reclaimed molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
ガラス繊維強化硬質ウレタン樹脂発泡体の製造時に発生する切削粉を原料とした樹脂成形品に関する。
【0002】
【従来の技術】
ガラス繊維強化硬質ウレタン樹脂発泡体の製造時に発生する切削粉は、短く切断されたガラス繊維と、熱硬化性のウレタン樹脂発泡体の破片又は粉状物を主成分とした複合粉体である。ウレタン樹脂は、その分子構造上、再融解による再原料化はできず、又ガラス繊維のみを回収することも、大きな手間が掛かり、コストが高くなって実施し難いものであった。
【0003】
そのため、その殆どが燃料としてサーマルリサイクルされているが、焼却後に発生するガラス等の残滓を処分するための処分費が発生しているのが現状であり、処分費を削減できるマテリアルリサイクル化技術の開発が進められている。上記切削粉を大量に用いた成形品を得ることができるマテリアルリサイクル化技術が開発されれば、得られた成形品の材料費を、その成形品をバージン材料のみで製造する場合よりも、大幅に削減することも可能となるという効果も期待できる。
【0004】
ウレタン系樹脂の粉砕物に接着剤を混合して加熱加圧プレスし、該粉砕物を原料とした成形品を得る方法としては、例えば、「未塗装のウレタン系樹脂廃材を粉砕してなる第1粉砕品に、ウレタン系接着剤を混合して得られる第1接着剤被覆粉砕品を、製造されるプレス成形体の第1表層部を構成することとなる第1キャビティーに導入し、次いで、塗装済みのウレタン系樹脂廃材を粉砕してなる第2粉砕品に、ウレタン系接着剤を混合して得られる第2接着剤被覆粉砕品を、製造されるプレス成形体の基材部を構成することとなる第2キャビティーに導入し、上記第1接着剤被覆粉砕品を、第2表層部を構成することとなる第3キャビティーに導入し、その後、上記成型加熱、加圧して、上記プレス成形体を製造することを特徴とする再生ウレタン系プレス成形体の製造方法」が知られている(例えば、特許文献1参照。)。
【0005】
上記文献の技術では、粉砕物の平均粒径が3mm以下の、塗装されたウレタン系樹脂材料の廃棄物であり、これにウレタン系接着剤を混合した接着剤被覆粉砕物を原料としてプレスするものであり、ウレタン系樹脂はガラス繊維等を含むものであるとされている。従って、ガラス繊維等を含有するウレタン系樹脂の粉砕物全量を樹脂成形品として利用する事が可能なマテリアルリサイクル法の一例である。
【0006】
しかしながら、上記文献1では、その段落番号[0006]〜[0007]において、得られる樹脂成形品の物性(伸び率、引っ張り強度、衝撃強度等)を確保するために、原料となるウレタン系樹脂成型体中に含まれるガラス繊維等の含有量は、ウレタン製品100重量部に対し20重量部以下とすることが好ましく、又得られる樹脂成形品の外観と物性バランスの向上の為には、原料となる粉砕品の粒径分布を、粉砕品100重量部に対して、0.5mm以下の粒径を有する粉砕品を約10重量部、0.5〜2.0mmの粒径を有する粉砕品を約80重量部、2.0〜3.0mmの粒径を有する粉砕品を約10重量部とすることが好ましいとしている。
【0007】
【特許文献1】特開平6−99449号公報
【0008】
【発明が解決しようとする課題】
例えば、鉄道用枕木や軽量受圧板の材料に用いられるガラス繊維強化硬質ウレタン樹脂発泡体、即ちいわゆる合成木材、例えばエスロンネオランバーFFU(商品名、積水化学工業社製)等では、必要とされる強度が大きくそのガラス繊維含有量は製品重量の20重量%を超えるものである。また、その製造時には、製品を所定の長さに裁断したり、裁断された複数枚の製品の表面を切削、研磨しこれ等を貼り合わせて所望のサイズに成型し、更に必要に応じて穿孔する等の種々の加工が行われる。これらの工程では大量の切削粉や端材が発生し、通常これらの端材は、リサイクル工程の前に破砕される。
【0009】
これらの内、平均粒径が約2mm(レーザー回折法による)より大きい切削粉は、熱硬化性の接着剤等を混合して、長さ方向を揃えて通常の加熱加圧プレス法で成型すれば、樹脂成形品として利用可能な成形体に再生することが可能である。
【0010】
一方、平均粒径が2mm以下の切削粉の含有量は、通常、全切削粉の90重量%以上を占める。従って、2mm以下の切削粉においては、プレス前に切削粉を長さ方向を揃えることが困難であり、従って、これに、熱硬化性の接着剤等を混合して、通常の加熱加圧プレス法で成型しても、見栄えの良い樹脂成形品とはなっても元の用途(鉄道用枕木又は受圧板)に対しては不充分な強度にしかならず、その用途に用いうる樹脂成形品に再生することが不可能であるという問題点がある。
【0011】
また、従来の文献1記載の技術においては、ガラス繊維含有量が20重量%を超える合成木材等の切削粉を成型しても、上記用途(鉄道用枕木又は受圧板)に必要な強度が発現しないことは明らかである。
【0012】
本発明は上記従来の技術が有する問題点を解決し、ガラス繊維含有量が20重量%をこえ、かつ粒子のメディアン径が2000μm以下であるガラス繊維強化硬質ウレタン樹脂発泡体の切削粉を原料とし、プレス成型法により充分な強度を有する樹脂成形品を提供することを目的としてなされたものであり、得られた樹脂成形品は、鉄道用枕木又は軽量受圧板用途等高強度を必要とする場所に使用可能な樹脂成形品となるものである。
【0013】
【課題を解決するための手段】
上記目的を達成するための本発明の請求項1記載の樹脂成形品(発明1)は、ガラス繊維含有率が20重量%より大であるガラス繊維強化硬質ウレタン樹脂発泡体を加工する際に発生する廃棄物をレーザー回折法によるメディアン径が2000μm以下である切削粉に、加熱により溶融又は硬化するバインダー成分を混合して混合原料とし、混合原料を加熱、加圧して得られることを特徴とする。。
【0014】
請求項2記載の発明(発明2)は、切削粉を少なくとも50重量%以上含有することを特徴とする発明1の樹脂成形品である。
【0015】
請求項3記載の発明(発明3)は、バインダー成分が熱硬化性樹脂であることを特徴とする発明1又は2の樹脂成形品である。
【0016】
請求項4記載の発明(発明4)は、切削粉と熱硬化性樹脂とからなる混合原料層をプレス成形機を用いて50〜180℃の範囲でホットプレスにより形成されていることを特徴とする発明1乃至3のいずれかの樹脂成形品である。
【0017】
請求項5記載の発明(発明5)は、少なくとも一方の面又は中間に、プレス後の混合原料層の曲げ弾性率以上の高い曲げ弾性率を有する板状体が配置して積層されていることを特徴とする発明1乃至4のいずれかの樹脂成形品。
【0018】
発明1において用いられるガラス繊維強化硬質ウレタン樹脂発泡体の廃棄物は、ガラスロービング束に発泡性硬質ウレタン樹脂を含浸させ、金型内で発泡させて得られる成形体、いわゆる合成木材例えば「エスロンネオランバーFFU」(商品名、積水化学工業社製)(以降、FFUと略記する。)を所定の形状にの製品にするために、切断、表面研磨、孔開け、面取りなどの二次加工が行われる時に発生する切削粉や、例えば鉄道用枕木や、軽量受圧板等に用いられた後のFFUの廃棄物を処理する際に行われる切断、切削、破砕、粉砕等時に発生する切削粉である。
【0019】
上記用途に用いられるガラス繊維強化硬質ウレタン樹脂発泡体は、曲げ強度及び圧縮強度を確保するために、ガラス繊維含有率が20重量%より大とされる。
【0020】
上記切削粉は、ガラス繊維と硬質ウレタン樹脂発泡体とが主成分である。また、切削粉の平均粒径は、切削の方法により様々であるが、特に表面研磨時に大量に発生する。この切削粉は、二次加工時に発生する全発生量の90重量%以上を占める。この研磨時に発生する切削粉を、レーザー回折法により測定したところ、メディアン径が1μm〜2000μmに存在していることが確認された。
【0021】
即ち、切削粉や切削粉は、レーザー回折法によるメディアン径が2000μm以下となるように調節されることが望ましい。即ち、これより平均外径が大きい粒子は、接着剤等を混合されて長さ方向に揃えられ、通常の方法でプレス成形して樹脂成形品として再利用が可能である。
【0022】
上記廃棄物を粉砕する方法は特に限定されず、一般的な方法で行われれば良い。例えば一例として、回転刃を有するローラで廃棄物を破砕する一軸破砕機や、回転刃を有する平行に配された一対のローラの間に成形品を通過させることにより双方の回転刃を成形品に噛み込ませて破砕する2軸破砕機などを採用することができる。
【0023】
また、切削粉から所定範囲の厚さ、幅および長さを有する細長いチップ状の破砕片を選別する装置としては、例えば、ウェーブローラ方式の分級機を挙げることができる。ウェーブローラ方式の分級機は、切削粉の厚さや幅を基準にして連続的に分級する装置であり、区分された切削粉から所定範囲の厚さ、幅および長さを有する細長いチップ状の破砕片を選別することができる。このようにして得られた、レーザー回折法によるメディアン径が2000μm以下の小さいサイズの粉体が本発明の原料となる。
【0024】
上記切削粉にバインダーを混合させ、混合原料とする。本発明においては、バインダーとして、加熱により溶融又は硬化するものが用いられる。即ち、得られる樹脂成形品の物性が所定の強度を発揮するものであれば良く、更に樹脂成形品が得られた後で雰囲気湿度、温度等によって得られた樹脂成形品が変形しないものが望ましい。例えば一例として、石膏等の無機材料類;ポリエチレン、ポリプロピレン、ポリ塩化ビニル、アクリロニトリル樹脂、ポリスチレン、ポリメチルメタアクリレート、ポリカーボネート、ポリエチレンテレフタレート、アクリロニトリルブタジエンスチレン共重合樹脂等の熱可塑性樹脂類;フェノール、ユリア、メラミンジス、ウレタン、不飽和ポリエステル、イソシアネート、エポキシ等の熱硬化性樹脂類が挙げられる。
【0025】
バインダーとして無機材料類を用いる場合には、得られる製品の耐熱性が、向上する反面、同量の樹脂類を用いた場合よりも機械的物性が低下する。但し、原料となる切削粉にはガラスが含まれるため、例えばセメント成分等のアルカリ性バインダーを用いることはできない。又この場合は、その賦形方法は、一般的なプレス成型法を採ることができる。
【0026】
バインダーとして熱可塑性樹脂類を用いる場合には、製品の賦形方法として押出成型法、射出成型法等が適用可能である。但し、金型や混練押出機の摩耗の点から、樹脂の添加量が多く必要となるので、コストが高くなる可能性がある。
【0027】
熱硬化性樹脂類は主剤と硬化剤とからなる二液型のものが多く使われ、一般的に主剤と硬化剤とはいずれも液状である。バインダーとして、加熱により硬化反応が進む熱硬化性樹脂類を用いる場合には、主剤と硬化剤とを切削粉の表面に噴霧塗布することが可能であり、少量の添加量でも切削粉表面を被覆することが可能である。従って、混合されるバインダーが少量であっても、混合された混合原料を加熱しながら加圧することで、高強度成形体が得られる。
【0028】
従って、リサイクルと低コストの点で、バインダーとしては熱硬化性樹脂が特に好ましい。更に、切削粉の材質が硬質ウレタン樹脂であれば、バインダーとしては、ポリイソシアネート化合物とポリオールとからなるウレタン樹脂が好ましい。イソシアネートの場合では、一分子中にイソシアネート基の数が複数個ある化合物であれば特に限定されず、例えば一例として、精製又は未精製のMDI(メチレンジフェニルジイソシアネート)、TDI(トリレンジイソシアネート)等が挙げられる。
【0029】
切削粉にバインダーを付着させるには、例えば、コンベア上やドラムブレンダー内などに投入した切削粉に、バインダーが液状である場合には噴霧し、又はバインダーが粉〜粒子状である場合には散布して、切削粉の表面にバインダーを均一に付着させる方法を採ることができる。なお、バインダーが熱硬化性樹脂の場合は、主剤と硬化剤とを所定の比率で混合して噴霧すれば良い。
【0030】
表面に熱硬化性樹脂を付着された混合原料は、いまだ粉末状である。従って、その成形方法は、混合原料を賦形金型内に積層し、一般的な加熱加圧プレス法により賦形すれば樹脂成形品が得られる。
【0031】
プレス成形の条件は、切削粉の平均粒度、バインダーの種類と配合量、目的とする樹脂成形品の密度等によって適宜選択して決められればよい。例えば一例として、バインダーとして、イソシアネ−ト(ポリメリックMDI)とポリオール(ポリエーテルポリオール)とからなるウレタン樹脂を用いる場合では、プレス温度が50℃未満では硬化速度が非常に遅くて実用性に乏しく、180℃より高ければウレタン樹脂が炭化してしまう恐れがあるので、50℃〜180℃とされる。好ましくは110℃程度である。
【0032】
発明2の樹脂成形品では、得られる樹脂成形品中に、上記切削粉が少なくとも50重量%以上含有され、残りはバインダー等とされている。50重量%未満であると、バインダーの使用量が増加し、リサイクル性と低コスト化の観点から外れてしまう。
【0033】
発明3の樹脂成形品では、バインダー成分として熱硬化性樹脂を使用する。この場合は、最もバインダーの添加量を少なくすることができ、切削粉のリサイクル性を向上できる。
【0034】
発明4の樹脂成形品では、切削粉と熱硬化性樹脂を添加し積層された混合原料層をプレス成形機を用いて50〜180℃の範囲でホットプレスにより調整される。従って適度な速度で硬化しかつ炭化物がなく外観の良好な樹脂成形品が得られる。
【0035】
発明5の樹脂成形品では、積層された混合原料層の少なくとも一方の面又は中側に、プレス後の混合原料層の曲げ弾性率よりも高い曲げ弾性率を有する材料の板を配置して積層プレスする。
【0036】
プレス後の混合原料層の曲げ弾性率は、例えば、FFUの切削粉100重量部に、バインダーとしてウレタン樹脂25重量部を噴霧混合し、110℃に加熱して9MPaで30分間プレスし、密度1.3の樹脂成形品とした場合には、得られた樹脂成形品の曲げ弾性率は、一般的に3500〜4500MPaとなる。
【0037】
従って、それより高い曲げ弾性率を有する材料の板としては、例えば一例として、鉄板、鋼板、ステンレススチール板等の金属板類;FRPM(レジンコンクリート)、ガラス繊維、炭素繊維等で強化されたプラスチック類等の複合樹脂類が挙げられる。
【0038】
これらの板類を樹脂成形品の少なくとも一方の面上、又は樹脂成形品の中にサンドイッチ状に配置すれば、樹脂成形品に圧力が掛かかった場合に、その板類が曲げ変形に対向するので、樹脂成形品が曲がることが防がれる。
【0039】
又、樹脂成形品の中にサンドイッチする場合には、板体は必ずしも板体とする必要はなく、例えば金網、鉄筋等のテンション筋の層であっても良い。この場合は、その層を樹脂成形品に掛かる応力の作用する反対側面の近傍に配置すると、たとえ樹脂成形品が曲がろうとしても、テンション筋がそれに抗するので、曲げ強度が高くなるのである。このようなテンション筋の層は、樹脂成形品内に複数層が併用されても良い。
【0040】
このような、複合した樹脂成形品を得る方法は、バインダーを混和された混合原料を金型内に積層する際に、適当な板体を必要な箇所に配置して更に混合原料を積層して、これを所定の方法に従ってプレスすれば良い。その方法は前述の通りであるから再述しない。
【0041】
又、切削粉が80重量%程度含有され、ウレタン樹脂バインダーを用いた場合では、圧縮強度に優れた樹脂成形品が得られる。従って、これらの樹脂成形品は、特に圧縮強度が必要とされる鉄道用枕木や軽量受圧板として好適に適用が可能である。
【0042】
加えて、切削粉の流動性を考慮して、加飾を行なっても良い。即ち、所望の表面形状を有するシート状物を型内若しくはプレス加工面に設置し、プレスすることで、表面を例えばタイル調等に加飾すれば、各種壁面等の表面化粧材として用いることもできる。更に、高強度である点を考慮して、他の複合材料類の芯材として適用することも可能である。
【0043】
(作用)
本発明の樹脂成形品は、ガラス繊維含有率が20%より大きく、かつ2000μm以下の切削粉とバインダーとを併用するので、強度が高い樹脂成形品が得られ、切削粉のリサイクル性も良好である。
【0044】
【発明の実施の形態】
次に実施の形態を、実施例を参照して説明する。
【0045】
(実施例1)
ポリオール(粘度3800mPa・s/25℃、平均官能基数3のポリエーテルポリオール)403gに、ポリイソシアネート(粘度200mPa/s/25℃のポリメリックMDI)597gを計量してステンレス製ボールに入れ、ホモディスパーを用いて回転数5000rpmで60秒間撹拌し、バインダーを調整した。
【0046】
ガラス繊維強化ウレタン樹脂発泡体(エスロンネオランバーFFU、積水化学工業社製)の切削粉(メディアン径75μm)4000gを計量して混合機(容量20L、三井鉱山社製)に入れ、線速10m/秒で撹拌した。この中に、予め準備した上記バインダーを約30秒かけて徐々に添加し、投入完了後更に60秒間撹拌を継続した後、排出した。
【0047】
この混合原料5000gを奥300mm×幅500mmの金型内に積層し、その表面を均一に均した後、プレス機で圧力8.8MPa、温度110℃で30分間プレスし、厚さ25mm、奥300mm、幅500mm、密度1.3g/cmの樹脂成形品を得た。得られた樹脂成形品を、JIS Z 2101に従って所定寸法に裁断し圧縮強度を測定した。
【0048】
(実施例2)
切削粉のメディアン径を2000mmとした以外は、実施例1と同様にして樹脂成形品を得、同様に密度、曲げ強度、圧縮強度測定した。
【0049】
実施例1及び2の結果を表1に示す。
【0050】
【表1】

Figure 2004359821
【0051】
(実施例3)
鉄道用枕木として、実施例1と同様にして、樹脂成形品(密度1.1g/cm、厚さ50mm、幅200mm、長さ500mm)を製作し、同用途に対する適用の可否を確認した。同時に、実際の材料費を計算し、同サイズのガラス繊維強化硬質ウレタン樹脂発泡体の鉄道用枕木の材料費を100として比較した。なお、適用の可否確認は、得られた樹脂成形品をエスロンネオランバーFFUに貼り付け、荷重を加えた時に、目視で変形や亀裂の発生の有無を目視で観察し、観察されない場合を○印、観察された場合を×印で示した。
【0052】
(実施例4)
軽量受圧板ヘッドとして、実施例1と同様にして、樹脂成形品(密度1.3g/cm3、厚さ120mm、幅120mm、長さ500mm)を製作し、同用途に対する適用の可否を、実施例3と同様にして確認した。同時に、実際の材料費を計算し、同サイズのガラス繊維強化硬質ウレタン樹脂発泡体の軽量受圧板ヘッドの材料費を100として比較した。
【0053】
実施例3及び4の結果を表2に示す。
【0054】
【表2】
Figure 2004359821
【0055】
表1及び2より、バインダーとして熱硬化性樹脂を用いることで、切削粉配合量を80重量%として熱プレス成形すれば、圧縮強度が高く実用性が充分に高いい樹脂成形品が得られ、しかもバージン材料のみから製造された既存部材と比較して、材料費が大幅に低減する事が可能となることが分かる。
【0056】
(実施例5)
実施例1と同様にして調整された混合原料を積層し、その上下両側に、それぞれ厚さ10mmのガラス繊維強化硬質ウレタン発泡体(密度0.74g/cm、曲げ強度120MPa、曲げ弾性率8500MPa)製の板を配置し、実施例1と同様にして厚さ45mm、密度0.94g/cmの樹脂成形品を得、同様にして密度、及びJIS Z 2101により曲げ強度、曲げ弾性率を測定した。
【0057】
(比較例1)
ガラス繊維強化硬質ウレタン発泡体製の板を用いなかった以外は実施例5と同様にして、厚さ45mm、密度1.1g/cmの樹脂成形品を得、実施例5と同様にしてに密度、曲げ強度、曲げ弾性率を測定した。
【0058】
実施例5及び比較例1の結果を表3に示す。
【0059】
【表3】
Figure 2004359821
【0060】
表3より、バインダーが混合され積層された混合原料層の両面に、混合原料のみからなるプレス後の樹脂成形品の曲げ弾性率以上の高い曲げ弾性率を有する材料の板を配置して積層プレスすることで、プレスと同時に曲げ弾性率が高い板が樹脂成形品に接着され、別工程で接着することなく曲げ強度、曲げ弾性率に優れた積層樹脂成形品が得られる。しかも、切削粉を80重量%程度配合しても高い曲げ強度が得られ、材料費を大幅に低減することが可能となる。従って、鉄道用枕木や軽量受圧板、或いは角落とし等に適用が可能となる。
【0061】
【発明の効果】
以上の通りであるから、本発明の樹脂成形品は、ガラス繊維含有量が20重量%をこえ、かつ粒子のメディアン径が2000μm以下であるガラス繊維強化硬質ウレタン樹脂発泡体の切削粉を原料として、プレス成型法により充分な強度を有する樹脂成形品となり、得られる樹脂成形品は、鉄道用枕木又は軽量受圧板用途等高強度を必要とする場所に使用可能な樹脂成形品となるのである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin molded product using cutting powder generated during the production of a glass fiber reinforced hard urethane resin foam as a raw material.
[0002]
[Prior art]
The cutting powder generated during the production of the glass fiber reinforced hard urethane resin foam is a composite powder mainly composed of glass fibers cut short and fragments or powder of the thermosetting urethane resin foam. Due to its molecular structure, the urethane resin cannot be recycled as a raw material by re-melting, and the recovery of only the glass fiber requires a great deal of time and effort and is difficult to carry out.
[0003]
For this reason, most of them are thermally recycled as fuel, but at present, disposal costs for disposal of glass and other residues generated after incineration are incurred. Development is underway. If material recycling technology that can obtain molded products using a large amount of the above cutting powder is developed, the material cost of the obtained molded products will be significantly greater than if the molded products were manufactured using only virgin material. The effect of being able to reduce the number of times is also expected.
[0004]
A method of obtaining a molded product using the pulverized material as a raw material by mixing an adhesive with a pulverized urethane-based resin and pressing the mixture under heating and pressure to obtain a molded product using the pulverized material as a raw material includes, for example, a method of pulverizing unpainted urethane-based resin waste material. A first adhesive-coated pulverized product obtained by mixing a urethane-based adhesive with one pulverized product is introduced into a first cavity that will constitute a first surface layer of a press-formed body to be manufactured, A second adhesive-coated pulverized product obtained by mixing a urethane-based adhesive with a second pulverized product obtained by pulverizing a coated urethane-based resin waste material constitutes a base portion of a press-formed body to be manufactured. And the first adhesive-coated pulverized product is introduced into the third cavity that constitutes the second surface layer portion, and then the molding is heated and pressurized. Reproduction characterized by producing the above-mentioned press-formed body Method for producing a urethane-based pressed bodies "are known (e.g., see Patent Document 1.).
[0005]
In the technique of the above-mentioned literature, it is a waste of a coated urethane-based resin material having an average particle diameter of 3 mm or less, which is pressed using a material coated with an adhesive coated with a urethane-based adhesive as a raw material. It is said that the urethane-based resin contains glass fiber and the like. Therefore, this is an example of a material recycling method in which the entire pulverized urethane resin containing glass fibers and the like can be used as a resin molded product.
[0006]
However, in the above document 1, in the paragraphs [0006] to [0007], in order to secure physical properties (elongation, tensile strength, impact strength, etc.) of the obtained resin molded product, urethane-based resin molding as a raw material is performed. The content of glass fibers and the like contained in the body is preferably not more than 20 parts by weight based on 100 parts by weight of the urethane product. The particle size distribution of the pulverized product becomes 100 parts by weight of the pulverized product, about 10 parts by weight of the pulverized product having a particle size of 0.5 mm or less, and pulverized product having a particle size of 0.5 to 2.0 mm. It is stated that it is preferable to use about 80 parts by weight, and about 10 parts by weight of a pulverized product having a particle size of 2.0 to 3.0 mm.
[0007]
[Patent Document 1] JP-A-6-99449
[Problems to be solved by the invention]
For example, it is required in a glass fiber reinforced hard urethane resin foam used as a material for railroad sleepers or lightweight pressure receiving plates, that is, so-called synthetic wood, for example, Eslon Neo Lumber FFU (trade name, manufactured by Sekisui Chemical Co., Ltd.). It has high strength and its glass fiber content exceeds 20% by weight of the product weight. Also, at the time of its manufacture, the product is cut into a predetermined length, or the surfaces of the cut plurality of products are cut and polished, bonded to form a desired size, and further punched as necessary. Various processes such as performing are performed. In these processes, a large amount of cutting powder and scraps are generated, and these scraps are usually crushed before the recycling process.
[0009]
Of these, cutting powder having an average particle size of more than about 2 mm (by the laser diffraction method) is mixed with a thermosetting adhesive or the like, and is molded in a regular heating and pressing method in a uniform length direction. For example, it is possible to regenerate a molded product that can be used as a resin molded product.
[0010]
On the other hand, the content of cutting powder having an average particle diameter of 2 mm or less usually accounts for 90% by weight or more of all the cutting powder. Therefore, in the case of cutting powder of 2 mm or less, it is difficult to make the cutting powder uniform in the length direction before pressing. Even if molded by the method, even if it becomes a good-looking resin molded product, it will have insufficient strength for the original application (railway sleepers or pressure receiving plates), and it will be recycled into a resin molded product that can be used for that purpose There is a problem that it is impossible to do.
[0011]
Further, in the technology described in the conventional document 1, even if a cutting powder of synthetic wood or the like having a glass fiber content exceeding 20% by weight is formed, the strength required for the above-mentioned application (railway sleeper or pressure receiving plate) is developed. Clearly not.
[0012]
The present invention solves the above-mentioned problems of the prior art, and uses a cutting powder of a glass fiber reinforced hard urethane resin foam having a glass fiber content of more than 20% by weight and a median diameter of particles of 2000 μm or less as a raw material. The purpose of the present invention is to provide a resin molded product having sufficient strength by a press molding method, and to obtain a resin molded product obtained in a place requiring high strength such as a railroad sleeper or a light pressure receiving plate. This is a resin molded product that can be used for the above.
[0013]
[Means for Solving the Problems]
The resin molded product according to claim 1 of the present invention for achieving the above object (invention 1) is produced when processing a glass fiber reinforced hard urethane resin foam having a glass fiber content of more than 20% by weight. The waste to be mixed is mixed with a cutting powder having a median diameter of 2000 μm or less by a laser diffraction method, mixed with a binder component that is melted or cured by heating to obtain a mixed raw material, and the mixed raw material is obtained by heating and pressurizing. . .
[0014]
The invention (invention 2) according to claim 2 is the resin molded article according to invention 1, which contains at least 50% by weight or more of cutting powder.
[0015]
The invention (invention 3) according to claim 3 is the resin molded article according to invention 1 or 2, wherein the binder component is a thermosetting resin.
[0016]
The invention according to claim 4 (invention 4) is characterized in that a mixed raw material layer comprising cutting powder and a thermosetting resin is formed by hot pressing in a range of 50 to 180 ° C using a press molding machine. It is a resin molded product according to any one of Inventions 1 to 3.
[0017]
In the invention (invention 5) according to claim 5, a plate-like body having a higher bending elastic modulus than the bending elastic modulus of the mixed raw material layer after pressing is arranged and laminated on at least one surface or the middle. A resin molded product according to any one of Inventions 1 to 4, characterized by the following.
[0018]
The waste of the glass fiber reinforced hard urethane resin foam used in the invention 1 is a molded article obtained by impregnating a glass roving bundle with an expandable hard urethane resin and foaming in a mold, so-called synthetic wood such as “Eslon Neo”. Lumber FFU (trade name, manufactured by Sekisui Chemical Co., Ltd.) (hereinafter abbreviated as FFU) has been subjected to secondary processing such as cutting, surface polishing, drilling, chamfering, etc., into a product having a predetermined shape. Cutting powder that is generated when it is used, such as cutting, cutting, crushing, and crushing that is performed when processing waste of FFU after being used for railroad sleepers, lightweight pressure receiving plates, and the like. .
[0019]
The glass fiber reinforced hard urethane resin foam used for the above applications has a glass fiber content of more than 20% by weight in order to secure bending strength and compressive strength.
[0020]
The cutting powder is mainly composed of glass fibers and a hard urethane resin foam. Also, the average particle size of the cutting powder varies depending on the cutting method, but it is generated in large quantities especially during surface polishing. This cutting powder accounts for 90% by weight or more of the total amount generated during secondary processing. When the cutting powder generated during this polishing was measured by a laser diffraction method, it was confirmed that the median diameter was in the range of 1 μm to 2000 μm.
[0021]
That is, the cutting powder and the cutting powder are desirably adjusted so that the median diameter by the laser diffraction method becomes 2000 μm or less. That is, particles having an average outer diameter larger than this are mixed with an adhesive or the like, are aligned in the length direction, and can be reused as a resin molded product by press-molding by a usual method.
[0022]
The method of pulverizing the waste is not particularly limited, and may be a general method. For example, as one example, a uniaxial crusher that crushes waste with a roller having a rotary blade, or a molded product by passing a molded product between a pair of rollers arranged in parallel with a rotary blade into a molded product A twin-screw crusher that crushes by being bitten can be employed.
[0023]
Further, as an apparatus for selecting an elongated chip-shaped crushed piece having a predetermined range of thickness, width and length from the cutting powder, for example, a wave roller type classifier can be mentioned. The wave roller classifier is a device that classifies continuously based on the thickness and width of the cutting powder, and crushes into elongated chips having a predetermined range of thickness, width and length from the divided cutting powder. Pieces can be sorted. The thus obtained powder of a small size having a median diameter of 2000 μm or less by a laser diffraction method is a raw material of the present invention.
[0024]
A binder is mixed with the above cutting powder to obtain a mixed raw material. In the present invention, a binder that is melted or cured by heating is used as the binder. That is, it is sufficient that the physical properties of the obtained resin molded product exhibit a predetermined strength, and it is desirable that the obtained resin molded product is not deformed by the atmospheric humidity, temperature, etc. after the resin molded product is obtained. . For example, as an example, inorganic materials such as gypsum; thermoplastic resins such as polyethylene, polypropylene, polyvinyl chloride, acrylonitrile resin, polystyrene, polymethyl methacrylate, polycarbonate, polyethylene terephthalate, acrylonitrile butadiene styrene copolymer resin; phenol, urea And thermosetting resins such as melamine diss, urethane, unsaturated polyester, isocyanate and epoxy.
[0025]
When inorganic materials are used as the binder, the heat resistance of the obtained product is improved, but mechanical properties are lower than when the same amount of resins is used. However, since the cutting powder as a raw material contains glass, an alkaline binder such as a cement component cannot be used. In this case, a general press molding method can be used as the shaping method.
[0026]
When a thermoplastic resin is used as the binder, an extrusion molding method, an injection molding method, or the like can be applied as a method for shaping a product. However, from the viewpoint of abrasion of the mold and the kneading extruder, a large amount of the resin is required, which may increase the cost.
[0027]
As the thermosetting resin, a two-pack type thermosetting resin composed of a main agent and a curing agent is often used, and both the main agent and the curing agent are generally liquid. When using a thermosetting resin whose curing reaction progresses by heating as a binder, it is possible to spray-coat the main agent and the curing agent onto the surface of the cutting powder, and to coat the cutting powder surface even with a small amount of addition. It is possible to do. Therefore, even if the amount of the binder to be mixed is small, a high-strength molded body can be obtained by pressing the mixed raw material while heating.
[0028]
Therefore, a thermosetting resin is particularly preferable as the binder in terms of recycling and low cost. Furthermore, if the material of the cutting powder is a hard urethane resin, the binder is preferably a urethane resin composed of a polyisocyanate compound and a polyol. In the case of isocyanate, it is not particularly limited as long as it is a compound having a plurality of isocyanate groups in one molecule. For example, purified or unpurified MDI (methylene diphenyl diisocyanate), TDI (tolylene diisocyanate) and the like are exemplified. No.
[0029]
To attach the binder to the cutting powder, for example, spray the cutting powder put on a conveyor or in a drum blender when the binder is liquid, or spray when the binder is powdery to particulate. Then, a method of uniformly adhering the binder to the surface of the cutting powder can be adopted. When the binder is a thermosetting resin, the main agent and the curing agent may be mixed at a predetermined ratio and sprayed.
[0030]
The mixed raw material having the thermosetting resin adhered to the surface is still in a powder form. Therefore, in the molding method, a resin molded product can be obtained by laminating the mixed raw materials in a molding die and performing molding by a general heating and pressing method.
[0031]
The conditions for press molding may be appropriately selected and determined according to the average particle size of the cutting powder, the type and blending amount of the binder, the density of the target resin molded product, and the like. For example, as an example, when a urethane resin composed of an isocyanate (polymeric MDI) and a polyol (polyether polyol) is used as a binder, if the pressing temperature is lower than 50 ° C., the curing speed is very slow and the practicality is poor. If the temperature is higher than 180 ° C., the urethane resin may be carbonized. Preferably, it is about 110 ° C.
[0032]
In the resin molded product of the second aspect, the obtained resin molded product contains at least 50% by weight or more of the above cutting powder, and the remainder is a binder or the like. When the content is less than 50% by weight, the amount of the binder used is increased, and it is deviated from the viewpoint of recyclability and cost reduction.
[0033]
In the resin molded product of the third aspect, a thermosetting resin is used as a binder component. In this case, the addition amount of the binder can be minimized, and the recyclability of the cutting powder can be improved.
[0034]
In the resin molded product of the fourth aspect, the mixed raw material layer obtained by adding the cutting powder and the thermosetting resin is adjusted by hot pressing in a range of 50 to 180 ° C. using a press molding machine. Therefore, a resin molded product which cures at an appropriate speed and has good appearance without carbides can be obtained.
[0035]
In the resin molded product of the fifth aspect, a plate of a material having a higher bending elastic modulus than the bending elastic modulus of the mixed raw material layer after pressing is arranged on at least one surface or the middle side of the laminated mixed raw material layer. Press.
[0036]
The flexural modulus of the mixed raw material layer after pressing can be determined by, for example, spray mixing 100 parts by weight of FFU cutting powder with 25 parts by weight of a urethane resin as a binder, heating to 110 ° C. and pressing at 9 MPa for 30 minutes to obtain a density of 1%. In the case where the resin molded product is 0.3, the bending elastic modulus of the obtained resin molded product is generally 3500 to 4500 MPa.
[0037]
Accordingly, as a plate made of a material having a higher flexural modulus, for example, as an example, a metal plate such as an iron plate, a steel plate, and a stainless steel plate; a plastic reinforced with FRPM (resin concrete), glass fiber, carbon fiber, and the like. And other composite resins.
[0038]
If these plates are arranged on at least one surface of the resin molded product or in a sandwich shape in the resin molded product, when pressure is applied to the resin molded product, the plates face bending deformation. Therefore, bending of the resin molded product is prevented.
[0039]
In the case of sandwiching in a resin molded product, the plate does not necessarily have to be a plate, and may be a layer of a tension bar such as a wire mesh or a reinforcing bar. In this case, if the layer is arranged near the opposite side on which the stress applied to the resin molded product acts, even if the resin molded product tries to bend, the tension streaks against it and the bending strength is increased. . A plurality of layers of such tension streaks may be used in the resin molded product.
[0040]
Such a method for obtaining a composite resin molded article is to laminate a mixed raw material mixed with a binder in a mold, dispose an appropriate plate at a necessary position, and further laminate the mixed raw material. It may be pressed according to a predetermined method. The method is as described above, and will not be described again.
[0041]
When a cutting powder is contained in an amount of about 80% by weight and a urethane resin binder is used, a resin molded product having excellent compressive strength can be obtained. Therefore, these resin molded products can be suitably applied particularly as railway sleepers or lightweight pressure receiving plates requiring compressive strength.
[0042]
In addition, decoration may be performed in consideration of the fluidity of the cutting powder. That is, by placing a sheet-like material having a desired surface shape in a mold or on a pressed surface and pressing it to decorate the surface, for example, in a tile-like manner, it can also be used as a surface decorative material for various wall surfaces. it can. Further, in consideration of the high strength, it can be applied as a core material of other composite materials.
[0043]
(Action)
Since the resin molded article of the present invention uses a cutting powder having a glass fiber content of more than 20% and 2000 μm or less in combination with a binder, a resin molded article having high strength is obtained, and the recyclability of the cutting powder is good. is there.
[0044]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments will be described with reference to examples.
[0045]
(Example 1)
597 g of a polyisocyanate (polymeric MDI having a viscosity of 200 mPa / s / 25 ° C.) was put into 403 g of a polyol (a polyether polyol having a viscosity of 3800 mPa · s / 25 ° C. and an average number of functional groups of 3) and placed in a stainless steel ball. The mixture was stirred at 5000 rpm for 60 seconds to prepare a binder.
[0046]
4000 g of cutting powder (median diameter: 75 μm) of a glass fiber reinforced urethane resin foam (Eslon Neo-Lumbar FFU, manufactured by Sekisui Chemical Co., Ltd.) is weighed and put into a mixer (capacity: 20 L, manufactured by Mitsui Mining Co., Ltd.), and a linear speed of 10 m / Stirred in seconds. Into this, the binder prepared in advance was gradually added over about 30 seconds, and after the addition was completed, stirring was continued for another 60 seconds and then discharged.
[0047]
5000 g of the mixed raw material was laminated in a mold having a depth of 300 mm and a width of 500 mm, and the surface thereof was uniformly leveled, and then pressed with a press at a pressure of 8.8 MPa and a temperature of 110 ° C. for 30 minutes to obtain a thickness of 25 mm and a depth of 300 mm. A resin molded product having a width of 500 mm and a density of 1.3 g / cm 3 was obtained. The obtained resin molded product was cut into a predetermined size according to JIS Z 2101, and the compressive strength was measured.
[0048]
(Example 2)
A resin molded product was obtained in the same manner as in Example 1 except that the median diameter of the cutting powder was 2000 mm, and the density, bending strength, and compression strength were measured in the same manner.
[0049]
Table 1 shows the results of Examples 1 and 2.
[0050]
[Table 1]
Figure 2004359821
[0051]
(Example 3)
In the same manner as in Example 1, a resin molded product (density: 1.1 g / cm 3 , thickness: 50 mm, width: 200 mm, length: 500 mm) was manufactured as a railroad sleeper, and the applicability of the same application was confirmed. At the same time, the actual material cost was calculated, and the material cost of the railway sleeper of the same size glass fiber reinforced hard urethane resin foam was set as 100 and compared. In addition, the applicability was confirmed by attaching the obtained resin molded product to Eslon Neo-Lumbar FFU, visually inspecting the presence or absence of deformation and cracking when a load was applied, and marking the case where no observation was observed. , The case where it was observed is indicated by a cross.
[0052]
(Example 4)
As a lightweight pressure receiving plate head, a resin molded product (density: 1.3 g / cm3, thickness: 120 mm, width: 120 mm, length: 500 mm) was manufactured in the same manner as in Example 1, and the applicability of the same application was evaluated. It was confirmed in the same manner as in No. 3. At the same time, the actual material cost was calculated, and the material cost of the lightweight pressure-receiving plate head of the same size glass fiber reinforced hard urethane resin foam was set as 100.
[0053]
Table 2 shows the results of Examples 3 and 4.
[0054]
[Table 2]
Figure 2004359821
[0055]
According to Tables 1 and 2, if the thermosetting resin is used as the binder and the hot press molding is performed with the cutting powder content being 80% by weight, a resin molded product having high compressive strength and sufficiently high practicality can be obtained. Moreover, it can be seen that the material cost can be significantly reduced as compared with the existing member manufactured only from the virgin material.
[0056]
(Example 5)
The mixed raw material prepared in the same manner as in Example 1 was laminated, and a glass fiber-reinforced hard urethane foam having a thickness of 10 mm (a density of 0.74 g / cm 3 , a bending strength of 120 MPa, and a flexural modulus of elasticity of 8500 MPa was respectively formed on the upper and lower sides thereof. ), A resin molded product having a thickness of 45 mm and a density of 0.94 g / cm 3 was obtained in the same manner as in Example 1, and the bending strength and the flexural modulus according to JIS Z 2101 were obtained in the same manner. It was measured.
[0057]
(Comparative Example 1)
A resin molded product having a thickness of 45 mm and a density of 1.1 g / cm 3 was obtained in the same manner as in Example 5 except that a plate made of glass fiber reinforced hard urethane foam was not used. The density, flexural strength and flexural modulus were measured.
[0058]
Table 3 shows the results of Example 5 and Comparative Example 1.
[0059]
[Table 3]
Figure 2004359821
[0060]
As shown in Table 3, on both sides of the mixed raw material layer in which the binder was mixed and laminated, a plate of a material having a high bending elastic modulus equal to or higher than the bending elastic modulus of the pressed resin molded product composed of only the mixed raw material was placed. By doing so, a plate having a high flexural modulus is bonded to the resin molded product at the same time as pressing, and a laminated resin molded product excellent in bending strength and flexural modulus can be obtained without bonding in a separate step. In addition, high bending strength can be obtained even if the cutting powder is mixed at about 80% by weight, and the material cost can be significantly reduced. Therefore, the present invention can be applied to a railroad sleeper, a light pressure receiving plate, or a corner drop.
[0061]
【The invention's effect】
As described above, the resin molded article of the present invention is obtained by using a cutting powder of a glass fiber reinforced hard urethane resin foam having a glass fiber content of more than 20% by weight and a median diameter of particles of 2000 μm or less as a raw material. Then, a resin molded product having sufficient strength is obtained by the press molding method, and the obtained resin molded product is a resin molded product that can be used in places requiring high strength such as railroad sleepers or lightweight pressure receiving plates.

Claims (5)

ガラス繊維含有率が20重量%より大であるガラス繊維強化硬質ウレタン樹脂発泡体を加工する際に発生する廃棄物をレーザー回折法によるメディアン径が2000μm以下である切削粉に、加熱により溶融又は硬化するバインダー成分を混合して混合原料とし、混合原料を加熱、加圧して得られることを特徴とする樹脂成形品。Waste generated when processing a glass fiber reinforced hard urethane resin foam having a glass fiber content of more than 20% by weight is melted or cured by heating into cutting powder having a median diameter of 2000 μm or less by a laser diffraction method. A resin molded product obtained by mixing a binder component to form a mixed raw material, and heating and pressing the mixed raw material. 切削粉を少なくとも50重量%以上含有することを特徴とする請求項1記載の樹脂成形品。2. The resin molded product according to claim 1, wherein the resin molded product contains at least 50% by weight or more of cutting powder. バインダー成分が熱硬化性樹脂であることを特徴とする請求項1又は2記載の樹脂成形品。The resin molded product according to claim 1, wherein the binder component is a thermosetting resin. 切削粉と熱硬化性樹脂とからなる混合原料層をプレス成形機を用いて50〜180℃の範囲でホットプレスにより形成されていることを特徴とする請求項1乃至3のいずれかに記載の樹脂成形品。The mixed raw material layer comprising cutting powder and a thermosetting resin is formed by hot pressing at a temperature in the range of 50 to 180 ° C. using a press molding machine, according to any one of claims 1 to 3, wherein Resin molded products. 少なくとも一方の面又は中間に、プレス後の混合原料層の曲げ弾性率以上の高い曲げ弾性率を有する板状体が配置して積層されていることを特徴とする請求項1乃至4のいずれかに記載の樹脂成形品。5. A plate-like body having a high flexural modulus greater than or equal to the flexural modulus of the mixed raw material layer after pressing is arranged and laminated on at least one surface or the middle. The resin molded product according to the above.
JP2003159899A 2003-06-04 2003-06-04 Resin molded article Withdrawn JP2004359821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003159899A JP2004359821A (en) 2003-06-04 2003-06-04 Resin molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003159899A JP2004359821A (en) 2003-06-04 2003-06-04 Resin molded article

Publications (1)

Publication Number Publication Date
JP2004359821A true JP2004359821A (en) 2004-12-24

Family

ID=34052841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003159899A Withdrawn JP2004359821A (en) 2003-06-04 2003-06-04 Resin molded article

Country Status (1)

Country Link
JP (1) JP2004359821A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211402A (en) * 2011-05-23 2011-10-12 天津大学 Fiber and surface-reinforced thermosetting foam plastic waste plate and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102211402A (en) * 2011-05-23 2011-10-12 天津大学 Fiber and surface-reinforced thermosetting foam plastic waste plate and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2494869C2 (en) Composite articles and method of their production (versions)
KR20110116359A (en) A method for manufacturing panel for natural stone decoration and decoration material for architecture using the panel
JPH02141211A (en) Molded form composed of foamed substance board and manufacture thereof
KR20060047327A (en) Plastic fiber molding, manufacturing method of plastic fiber molding and manufacturing apparatus for plastic fiber board
Hulme et al. Cost effective reprocessing of polyurethane by hot compression moulding
US10343328B1 (en) Structural composites method and system
JP2009012441A (en) Method for manufacturing fiber-reinforced resin molded article capable of recycling
JP4495407B2 (en) Recycled molded material manufacturing method, recycled molded material, recycled structure material, synthetic sleeper and lightweight synthetic wood
CN210458783U (en) Backing plate
JP2004359821A (en) Resin molded article
JP2004358809A (en) Resin molded product
JP4884079B2 (en) Insulation board
JP2002322602A (en) Pavement material of floor material and manufacturing method thereof
KR100446710B1 (en) Pannel for construction and producing method thereof
JP3110207B2 (en) Recycle molding method of fiber-reinforced thermoplastic resin porous molded product
JP2009029066A (en) Manufacturing method of combustible fiber-reinforced resin molded article
KR100509900B1 (en) Composite panel and manufacturing method thereof
JP3973185B2 (en) Molded plate
KR200268239Y1 (en) Synthetic Resin Panel for Concrete Form
US20120326349A1 (en) Method for producing a particle-based element
JP2007130860A (en) Woody composite board and its production method
JP2004338226A (en) Method for molding fiber-reinforced resin crushed material
JP5082174B2 (en) Plastic composite panels
JP4339734B2 (en) Recycled molded body and method for producing the same
JP3110162B2 (en) Molding method of fiber-reinforced thermoplastic resin porous molded article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080409

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080605