JP2004358693A - Method for kneading silica compounded rubber composition - Google Patents

Method for kneading silica compounded rubber composition Download PDF

Info

Publication number
JP2004358693A
JP2004358693A JP2003156715A JP2003156715A JP2004358693A JP 2004358693 A JP2004358693 A JP 2004358693A JP 2003156715 A JP2003156715 A JP 2003156715A JP 2003156715 A JP2003156715 A JP 2003156715A JP 2004358693 A JP2004358693 A JP 2004358693A
Authority
JP
Japan
Prior art keywords
silica
kneading
rubber
silane coupling
coupling agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003156715A
Other languages
Japanese (ja)
Other versions
JP4243979B2 (en
Inventor
Kazuo Miyasaka
和夫 宮坂
Kenji Katsushima
憲治 勝島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2003156715A priority Critical patent/JP4243979B2/en
Publication of JP2004358693A publication Critical patent/JP2004358693A/en
Application granted granted Critical
Publication of JP4243979B2 publication Critical patent/JP4243979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • B29B7/726Measuring properties of mixture, e.g. temperature or density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/74Mixing; Kneading using other mixers or combinations of mixers, e.g. of dissimilar mixers ; Plant
    • B29B7/7476Systems, i.e. flow charts or diagrams; Plants
    • B29B7/7495Systems, i.e. flow charts or diagrams; Plants for mixing rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor

Abstract

<P>PROBLEM TO BE SOLVED: To provide a kneading method capable of obtaining a silica compounded rubber composition having stable quality without causing a scorching of rubber. <P>SOLUTION: In this kneading method for obtaining the silica compounded rubber composition by mixing silica and a silane coupling agent with a diene rubber, the necessary reaction amounts of silica and the silane coupling agent having to be achieved by kneading operation are preliminarily determined experimentally and the temperature of the mixed rubber is calculated with the elapse of time on the basis of the charging quantity and discharge quantity of kneading energy from the start of kneading operation while the reaction amount of silica and the silane coupling agent are calculated with the elapse of time on the basis of the temperature of the mixed rubber. When the calculation values of the reaction amounts reach the necessary reaction amounts, kneading operation is completed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はシリカ配合ゴム組成物の混練方法に関し、さらに詳しくは、シリカを均一分散させた品質良好なゴム組成物を製造可能にするシリカ配合ゴム組成物の混練方法に関する。
【0002】
【従来の技術】
トレッドゴムにシリカを配合したゴム組成物を使用すると、タイヤの低燃費性やウェットグリップ性を向上できることが知られている。しかし、シリカは表面官能基であるシラノール基の水素結合により粒子同士が凝集しやすいため、ゴムに対する分散性がよくないという欠点がある。そのためゴムにシリカを配合するときは、シランカップリング剤を配合し、シリカとカップリング反応させることによりシリカ表面のシラノール基を減少させ、ゴムに対する親和性を向上させることが行なわれている(特許文献1など)。
【0003】
しかし、上記のようにシランカップリング剤を配合する場合、シリカとシランカップリング剤とのカップリング反応量が不十分であるとシリカの良好な分散性は得られず、また反応が過剰であるとゴム焼けを招いて品質が低下するという問題があった。そのため、従来の混練方法では、混練作業中に熱電対などで常時ゴム温度を測定し一定範囲に維持しながら、経験的に設定した時間内を混練操作していたが、シリカとシランカップリング剤の反応量がバッチ毎に必ずしも一定するとは限らず、そのためにシリカの分散性が一定しないという問題があった。また、熱電対の表示遅れによりゴム温度がオーバーシュートして、過反応による焼けを招くということもあった。
【0004】
【特許文献1】
特開平11−263878号公報
【0005】
【発明が解決しようとする課題】
本発明の目的は、上述した従来の問題を解消し、ゴム焼けなどを発生させずに品質の安定したシリカ配合ゴム組成物が得られるようにする混練方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成する本発明は、ジエン系ゴムにシリカ及びシランカップリング剤を混合するゴム組成物の混練方法において、混練操作で達成すべきシリカとシランカップリング剤との必要反応量を予め実験で決定しておき、該混練操作開始からの混練エネルギーの投入量と排出量とに基づき混合ゴム温度を経時的に計算すると共に、該混合ゴム温度に基づき前記シリカとシランカップリング剤との反応量を経時的に計算し、該反応量の計算値が前記必要反応量に達したとき混練操作を終了することを特徴とするものである。
【0007】
このようにシリカとシランカップリング剤との必要反応量を予め実験で決定しておき、混練操作においてはゴム温度を熱電対などで実測するのではなく、そのゴム温度を混練エネルギーの投入量と排出量から計算により算出するので応答遅れを招くことなく、かつこの計算値のゴム温度からシランカップリング反応量を計算し、その計算値が上記必要反応量に一致した時点で混合操作を終了するようにしたので、シリカとシランカップリング剤との反応量を正確に制御し、シリカを均一に分散させ、また過剰反応がないのでゴム焼けのない高品質のシリカ配合ゴム組成物を得ることができる。
【0008】
【発明の実施の形態】
本発明に使用するジエン系ゴムは、従来からタイヤに使用されている公知のゴムをいずれも使用することができる。例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)などを挙げることができる。これらのゴム種は、単独で使用しても、また2種以上をブレンドして使用してもよい。
【0009】
本発明に使用するシリカは、特に限定されないが、例えば、合成含水ケイ酸などの使用が好ましい。シリカ配合ゴム組成物中のシリカの配合量は、好ましくはゴム100重量部に対して10〜200重量部、さらに好ましくは20〜80重量部であるのがよい。
【0010】
シランカップリング剤は、ゴム業界で使用されているものがいずれも使用可能であり、特に限定されない。例えば、ビス(3−トリエトキシシリルプロピル)テトラサルファイド、γ−メルカプトプロピロピルトリエトキシシラン、γ−アミノプロプルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−β−(アミノエチル)−γ−アミノプルピルトリメトキシシランが好ましい。シランカップリング剤の配合量は、シリカ重量に対して2〜20重量%、好ましくは4〜15重量%にするとよい。
【0011】
また、本発明のゴム組成物には、本発明の効果を損なわない範囲で、上記以外の配合剤を配合するようにしてよい。例えば、カーボンブラック、タルク、クレイなどの充填剤、イオウ、過酸化物などの加硫剤、加硫促進剤、ステアリン酸、酸化亜鉛などの加硫助剤、老化防止剤などを配合することができる。
【0012】
本発明の混練方法は、上述したジエン系ゴムに少なくともシリカとシランカップリング剤を所定の割合で配合し、バンバリーミキサー、ニーダーなどの従来から使用されている混練機を使用して実施すればよい。混練操作中のゴム温度としては、120〜170℃にすることが好ましい。シリカとシランカップリング剤との反応は発熱反応であるので、このようなゴム温度の範囲に維持するため、混練機には冷却ジャケットを設け、混練処理中に冷却水を循環させるなどすることが好ましい。
【0013】
本発明において、上記混練操作を実施するに当たり、予め実験により1バッチ当たりの混練操作におけるシリカとシランカップリング剤とのカップリング反応の必要量(目標値)を決定しておく必要がある。この必要反応量としては、ゴムに対するシリカの分散性が最も均一になり、かつ過剰反応によるゴム焼けを生じないようにする反応量を設定する。
【0014】
シリカとシランカップリング剤との必要反応量の設定は、図1に示すように、ゴム温度を一定に維持しながら混練操作し、加硫度測定機でトルクを経時的に検知するとき、そのトルクが立上がりを開始するようになるまでに反応したシリカとシランカップリング剤との反応量を使用する。
【0015】
すなわち、シリカ配合ゴム組成物の混練操作開始から加硫度測定機でトルクを継続的に検知すると、図1に示すように、混練操作の開始直後ではトルクは次第に低下していくが、一定時間を経過すると反転して立ち上がっていく時間−トルク曲線が得られる。このようにして得られる時間−トルク曲線の極小値に接線Aを引くと共に、立ち上がり後の直線部分に接線Bを引き、この接線AとBとの交点をCとして、この交点Cに達するまでの混練操作開始からの経過時間を立上がり時間tとすると、この立上がり時間tまでの経過間にシリカとシランカップリング剤とが反応した反応量を必要反応量として、次の(1)式から求めるのである。
反応量=a∫exp {k1 /T(t) }dt ・・・・・(1)
但し、aは定数、
T(t) は、混合開始から経過した時間tにおけるゴム温度、
k1 は、カップリング反応の速度定数である。
【0016】
上記カップリング反応速度定数k1 は、次のようにして求めることができる。すなわち、図1のようにして求めたゴム温度と立上がり時間tとの関係を、複数のゴム温度(例えば、図1の例では130℃、140℃、150℃、160℃の4点)についてそれぞれ立上がり時間tを測定し(ゴム温度130℃の立上がり時間tは35分、140℃のtは19分、150℃のtは9分、160℃のtは4.5分)、これら複数のゴム温度と立上がり時間tとの関係を、図2に示すように、ゴム温度を絶対温度T(K)で表わした逆数と立上がり時間tとの関係グラフにプロットする。そして、これらプロットした点を結んで得られた直線の傾きが、上記カップリング反応速度定数k1 に相当することになる。図2に示した例では、k1 =12030である。
【0017】
他方、混練操作開始から経過した時間tにおけるゴム温度T(t)を、下記の(2)式により経時的に逐次計算し、かつそのゴム温度の計算値に基づいて、上記(1)式から反応量を経時的に逐次計算していく。この時の(1)式の計算において、定数aは各計算で共通などので求める必要はない。そして、このようにして計算した混練操作開始時からのシリカとシランカップリング剤との反応量の積算値が、上記の予め設定した必要反応量に達したとき、その混練操作を終了するのである。
【0018】
本発明の混練方法は、上記のような混練操作を行なうことにより、シリカとシランカップリング剤との反応量を正確に制御可能になり、ゴム中にシリカが均一分散した高品質のシリカ配合ゴム組成物を得ることができる。また、この反応量の制御により過剰反応が生じないのでゴム焼けも発生しない。
T(t) =To +∫{Qinput(t)−Qoutput(t) }/{W×ρ(t)}dt・・・・・(2)
但し、T(t) は、混練開始からの経過時間tにおける計算ゴム温度、
To は、混練操作開始時の初期ゴム温度、
Qinput(t)は、混練開始からの経過時間tでのエネルギー投入量、
Qoutput(t) は、混練開始からの経過時間tでのエネルギー排出量、
Wは、ゴム組成物の混合重量、
ρ(t)は、混練開始からの経過時間tでのゴム比熱である。
【0019】
なお、上記式における経過時間tでのエネルギー投入量Qinput(t)は、混練機を駆動するときの電力値(kw)から算出することができる。また、経過時間tでのエネルギー排出量Qoutput(t) は、ゴム組成物と混練機ケーシング及びローターとの接触面積や、ゴム組成物の温度と冷却水温度との差などに比例することから、次の(3)式から計算することができる。
Qoutput(t) =C2 ×W2/3 ×{T(t) −Tc } ・・・・・・(3)
但し、C2 は、熱交換速度のパラメーター
Wは、ゴム組成物の混合重量
T(t) は、混合開始からの経過時間tでのゴム温度で、初期温度To と投入電力量(kw)から算出される計算値、
Tc は、冷却水の温度である。
【0020】
図3は、本発明の混練方法を実施する装置の概略を例示したものである。
【0021】
ゴム組成物を根連掏る混練機1は、ケーシング2の中に一対の混練羽根3,4を内設している。混練羽根3,4は駆動モーター5により互いに反対方向に回転駆動され、ケーシング2内のゴム、シリカ、シランカップリング剤などの混合物を混練する。また、ケーシング2の外周に冷却ジャッケット6が囲むように設けられている。ジャケット6には冷却水の供給口6aと排出口6bとが設けられ、供給口6aから供給された冷却水はジャケット6を循環する間にケーシング内のゴム混合物と熱交換を行ない、最後に排出口6bから排出される。
【0022】
また、7は上記混練機1の運転を制御するコントローラーであり、8は起動スイッチである。
【0023】
上述した装置において、起動スイッチ8をオンにすると、混練機1が起動し、かつ混練操作開始信号がコントローラー7に発信される。この開始信号により、コントローラー7には混練開始時からの経過時間tが積算され、上記(2)式に従って混練開始から経過した時間tにおけるゴム温度T(t) が演算されると共に、その計算値に基づき、上記(1)式によりシリカとシランカップリング剤との反応量を演算する。
【0024】
この(1)式や(2)式の演算に必要な信号として、コントローラー7にはモーター5の消費電力がエネルギー投入量Qinput(t)として入力され、またエネルギー排出量Qoutput(t) の計算のため、ゴム組成物の重量W、初期ゴム温度To、冷却ジャケット6の冷却水温度Tc などが入力される。
【0025】
上記のようにしてコントローラー7で演算される反応量の計算値が、予め実験により設定されていた必要反応量に到達すると、コントローラー7から起動スイッチ8に対して停機信号が発信し、駆動モーター5を停止して混練操作を終了する。
【0026】
本発明の混練方法は、ジエン系ゴムにシリカとシランカップリング剤を配合する混練操作一般に適用することができるが、特にタイヤのトレッドゴムを混練する場合に好ましく適用することができる。
【0027】
【発明の効果】
上述したように本発明によれば、シリカとシランカップリング剤との必要反応量を予め実験で決定しておき、混練操作においてはゴム温度を熱電対などで実測するのではなく、そのゴム温度を混練エネルギーの投入量と排出量から計算により算出するので応答遅れを招くことなく、かつこの計算値のゴム温度からシランカップリング反応量を計算し、その計算値が上記必要反応量に一致した時点で混合操作を終了するようにしたので、シリカとシランカップリング剤との反応量を正確に制御し、シリカを均一に分散させ、また過剰反応がないのでゴム焼けのない高品質のシリカ配合ゴム組成物を得ることができる。
【図面の簡単な説明】
【図1】ゴム組成物を混練するときの時間−トルク曲線を示すグラフである。
【図2】ゴム組成物を混練するときのゴム温度の逆数とトルク立上がり時間との関係グラフである。
【図3】本発明を実施する装置を例示した概略図である。
【符号の説明】
1 混練機
2 ケーシング
3,4 混練羽根
5 駆動モーター
6 冷却ジャッケト
7 コントローラー
8 起動スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for kneading a silica-containing rubber composition, and more particularly, to a method for kneading a silica-containing rubber composition that enables production of a good-quality rubber composition in which silica is uniformly dispersed.
[0002]
[Prior art]
It is known that use of a rubber composition in which tread rubber is mixed with silica can improve fuel economy and wet grip of a tire. However, silica has a drawback that the particles are easily aggregated due to hydrogen bonds of silanol groups, which are surface functional groups, and therefore have poor dispersibility in rubber. Therefore, when silica is compounded in rubber, a silane coupling agent is compounded and a coupling reaction with silica is performed to reduce silanol groups on the silica surface and improve affinity for rubber (Patents). Reference 1).
[0003]
However, when the silane coupling agent is compounded as described above, if the amount of the coupling reaction between the silica and the silane coupling agent is insufficient, good dispersibility of the silica cannot be obtained, and the reaction is excessive. In addition, there is a problem that the quality is deteriorated due to rubber scorching. For this reason, in the conventional kneading method, the rubber temperature is constantly measured with a thermocouple or the like during the kneading operation, and the kneading operation is performed within an empirically set time while maintaining the rubber temperature within a certain range. Is not always constant for each batch, which causes a problem that the dispersibility of silica is not constant. Further, the rubber temperature may overshoot due to a delay in display of the thermocouple, resulting in burning due to overreaction.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. H11-263878
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION An object of the present invention is to provide a kneading method which can solve the above-mentioned conventional problems and can obtain a silica-containing rubber composition having a stable quality without causing rubber scorching or the like.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention relates to a method for kneading a rubber composition in which silica and a silane coupling agent are mixed with a diene rubber, in which a required reaction amount of silica and a silane coupling agent to be achieved by a kneading operation is previously measured. The temperature of the mixed rubber is calculated over time based on the input and output of the kneading energy from the start of the kneading operation, and the reaction between the silica and the silane coupling agent is performed based on the temperature of the mixed rubber. The amount is calculated over time, and the kneading operation is terminated when the calculated value of the reaction amount reaches the required reaction amount.
[0007]
In this way, the required reaction amount between silica and the silane coupling agent is determined in advance by an experiment, and in the kneading operation, the rubber temperature is not measured by a thermocouple or the like, but the rubber temperature is determined by the input amount of the kneading energy. Since the calculation is performed from the discharge amount, the response time is not caused, and the reaction amount of the silane coupling is calculated from the rubber temperature of the calculated value, and the mixing operation is terminated when the calculated value matches the required reaction amount. As a result, it is possible to accurately control the amount of reaction between silica and the silane coupling agent, to uniformly disperse silica, and to obtain a high-quality silica-containing rubber composition without rubber scorch because there is no excessive reaction. it can.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
As the diene rubber used in the present invention, any of known rubbers conventionally used for tires can be used. For example, natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR) and the like can be mentioned. These rubber types may be used alone or as a blend of two or more types.
[0009]
The silica used in the present invention is not particularly limited, but for example, use of synthetic hydrated silica is preferable. The amount of silica in the silica-containing rubber composition is preferably from 10 to 200 parts by weight, more preferably from 20 to 80 parts by weight, per 100 parts by weight of rubber.
[0010]
As the silane coupling agent, any of those used in the rubber industry can be used and is not particularly limited. For example, bis (3-triethoxysilylpropyl) tetrasulfide, γ-mercaptopropoxypropyltriethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-β- (amino Ethyl) -γ-aminopropyltrimethoxysilane is preferred. The amount of the silane coupling agent may be 2 to 20% by weight, preferably 4 to 15% by weight based on the weight of silica.
[0011]
Further, the rubber composition of the present invention may be compounded with a compounding agent other than the above as long as the effects of the present invention are not impaired. For example, fillers such as carbon black, talc and clay, vulcanizing agents such as sulfur and peroxide, vulcanization accelerators, vulcanization aids such as stearic acid and zinc oxide, and antioxidants can be compounded. it can.
[0012]
The kneading method of the present invention may be carried out by blending at least silica and a silane coupling agent in the above-described diene rubber at a predetermined ratio, and using a conventionally used kneader such as a Banbury mixer or a kneader. . The rubber temperature during the kneading operation is preferably from 120 to 170C. Since the reaction between the silica and the silane coupling agent is an exothermic reaction, the kneading machine may be provided with a cooling jacket to circulate cooling water during the kneading process, in order to maintain such a rubber temperature range. preferable.
[0013]
In the present invention, in carrying out the above-mentioned kneading operation, it is necessary to determine in advance by experiment the necessary amount (target value) of the coupling reaction between silica and the silane coupling agent in the kneading operation per batch. As the required reaction amount, a reaction amount is set so that the dispersibility of the silica in the rubber is the most uniform and the rubber is not burned due to an excessive reaction.
[0014]
As shown in FIG. 1, the required reaction amount between silica and the silane coupling agent is set by performing a kneading operation while maintaining a constant rubber temperature and detecting the torque over time with a vulcanization degree measuring device. The reaction amount of the silica and the silane coupling agent reacted until the torque starts to rise is used.
[0015]
That is, when the torque is continuously detected by the vulcanization degree measuring device from the start of the kneading operation of the silica-containing rubber composition, the torque gradually decreases immediately after the start of the kneading operation as shown in FIG. , A time-torque curve that reverses and rises is obtained. A tangent line A is drawn at the minimum value of the time-torque curve obtained in this way, and a tangent line B is drawn at a straight line portion after the rise. Assuming that the elapsed time from the start of the kneading operation is the rising time t, the reaction amount in which the silica and the silane coupling agent have reacted during the elapse of the rising time t is determined as the required reaction amount from the following equation (1). is there.
Reaction amount = a∫exp {k1 / T (t)} dt (1)
Where a is a constant,
T (t) is the rubber temperature at time t elapsed from the start of mixing,
k1 is the rate constant of the coupling reaction.
[0016]
The coupling reaction rate constant k1 can be determined as follows. That is, the relationship between the rubber temperature obtained as shown in FIG. 1 and the rise time t is calculated for a plurality of rubber temperatures (for example, four points of 130 ° C., 140 ° C., 150 ° C., and 160 ° C. in FIG. 1). The rise time t was measured (rise time t at a rubber temperature of 130 ° C. was 35 minutes, t at 140 ° C. was 19 minutes, t at 150 ° C. was 9 minutes, and t at 160 ° C. was 4.5 minutes). As shown in FIG. 2, the relationship between the temperature and the rise time t is plotted on a graph showing the relationship between the reciprocal of the rubber temperature represented by the absolute temperature T (K) and the rise time t. The slope of a straight line obtained by connecting these plotted points corresponds to the coupling reaction rate constant k1. In the example shown in FIG. 2, k1 = 112030.
[0017]
On the other hand, the rubber temperature T (t) at the time t elapsed from the start of the kneading operation is sequentially calculated over time by the following equation (2), and based on the calculated value of the rubber temperature, the above equation (1) is used. The reaction amount is calculated sequentially over time. In the calculation of the expression (1) at this time, the constant a does not need to be obtained because the constant a is common in each calculation. Then, when the integrated value of the reaction amount of the silica and the silane coupling agent calculated from the start of the kneading operation reaches the required reaction amount set in advance, the kneading operation ends. .
[0018]
The kneading method of the present invention is capable of accurately controlling the reaction amount between silica and a silane coupling agent by performing the above-described kneading operation, and a high-quality silica compound rubber in which silica is uniformly dispersed in rubber. A composition can be obtained. Further, since the excess reaction does not occur by controlling the reaction amount, rubber scorch does not occur.
T (t) = To + {Qinput (t) −Qoutput (t)} / {W × ρ (t)} dt (2)
Here, T (t) is a calculated rubber temperature at an elapsed time t from the start of kneading,
To is the initial rubber temperature at the start of the kneading operation,
Qinput (t) is an energy input amount at an elapsed time t from the start of kneading,
Qoutput (t) is an energy emission amount at an elapsed time t from the start of kneading,
W is the mixing weight of the rubber composition,
ρ (t) is the rubber specific heat at the time t elapsed from the start of kneading.
[0019]
The energy input amount Qinput (t) at the elapsed time t in the above equation can be calculated from the electric power value (kw) when driving the kneader. Further, the energy discharge amount Qoutput (t) at the elapsed time t is proportional to the contact area between the rubber composition and the kneader casing and the rotor, and the difference between the temperature of the rubber composition and the cooling water temperature. It can be calculated from the following equation (3).
Qoutput (t) = C2 × W2 / 3 × {T (t) -Tc} (3)
Here, C2 is the parameter W of the heat exchange rate, the mixing weight T (t) of the rubber composition is the rubber temperature at the time t elapsed from the start of mixing, and is calculated from the initial temperature To and the input power (kw). Calculated value,
Tc is the temperature of the cooling water.
[0020]
FIG. 3 schematically illustrates an apparatus for performing the kneading method of the present invention.
[0021]
A kneader 1 for picking up a rubber composition has a pair of kneading blades 3 and 4 provided inside a casing 2. The kneading blades 3, 4 are rotationally driven in opposite directions by a drive motor 5, and knead a mixture of rubber, silica, a silane coupling agent and the like in the casing 2. Further, a cooling jacket 6 is provided around the outer periphery of the casing 2. The jacket 6 is provided with a cooling water supply port 6a and a discharge port 6b. The cooling water supplied from the supply port 6a exchanges heat with the rubber mixture in the casing while circulating through the jacket 6, and finally discharges. It is discharged from the outlet 6b.
[0022]
Reference numeral 7 denotes a controller for controlling the operation of the kneader 1, and reference numeral 8 denotes a start switch.
[0023]
In the above-described apparatus, when the start switch 8 is turned on, the kneading machine 1 is started, and a kneading operation start signal is transmitted to the controller 7. With this start signal, the controller 7 accumulates the elapsed time t from the start of kneading, calculates the rubber temperature T (t) at the time t elapsed from the start of kneading according to the above equation (2), and calculates the calculated rubber temperature T (t). Based on the above, the reaction amount of silica and the silane coupling agent is calculated by the above equation (1).
[0024]
The power consumption of the motor 5 is input to the controller 7 as an energy input Qinput (t) as a signal necessary for the calculation of the equations (1) and (2), and the calculation of the energy emission Qoutput (t) is performed. Therefore, the weight W of the rubber composition, the initial rubber temperature To, the cooling water temperature Tc of the cooling jacket 6, and the like are input.
[0025]
When the calculated reaction amount calculated by the controller 7 as described above reaches the required reaction amount set in advance by an experiment, a stop signal is transmitted from the controller 7 to the start switch 8 and the drive motor 5 Is stopped to end the kneading operation.
[0026]
The kneading method of the present invention can be generally applied to a kneading operation in which silica and a silane coupling agent are blended with a diene rubber, and can be preferably applied particularly when kneading a tread rubber of a tire.
[0027]
【The invention's effect】
As described above, according to the present invention, the required reaction amount between silica and a silane coupling agent is determined in advance by an experiment, and in the kneading operation, the rubber temperature is measured rather than actually measured with a thermocouple or the like. Is calculated from the input and output of the kneading energy, so that a response delay is not caused, and the silane coupling reaction amount is calculated from the rubber temperature of the calculated value, and the calculated value matches the required reaction amount. Since the mixing operation is terminated at the time, the amount of reaction between the silica and the silane coupling agent is accurately controlled, and the silica is uniformly dispersed. A rubber composition can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing a time-torque curve when kneading a rubber composition.
FIG. 2 is a graph showing a relationship between a reciprocal of a rubber temperature and a torque rise time when a rubber composition is kneaded.
FIG. 3 is a schematic view illustrating an apparatus for practicing the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Kneading machine 2 Casing 3, 4 Kneading blade 5 Drive motor 6 Cooling jacket 7 Controller 8 Start switch

Claims (3)

ジエン系ゴムにシリカ及びシランカップリング剤を混合するゴム組成物の混練方法において、混練操作で達成すべきシリカとシランカップリング剤との必要反応量を予め実験で決定しておき、該混練操作開始からの混練エネルギーの投入量と排出量とに基づき混合ゴム温度を経時的に計算すると共に、該混合ゴム温度に基づき前記シリカとシランカップリング剤との反応量を経時的に計算し、該反応量の計算値が前記必要反応量に達したとき混練操作を終了するシリカ配合ゴム組成物の混練方法。In a kneading method of a rubber composition in which silica and a silane coupling agent are mixed with a diene rubber, a necessary reaction amount of silica and a silane coupling agent to be achieved by a kneading operation is determined in advance by an experiment, and the kneading operation is performed. Along with calculating the temperature of the mixed rubber over time based on the input and output of the kneading energy from the start, the amount of reaction between the silica and the silane coupling agent is calculated over time based on the temperature of the mixed rubber. A method for kneading a silica-containing rubber composition, wherein the kneading operation is terminated when the calculated value of the reaction amount reaches the required reaction amount. シリカ重量に対してシランカップリング剤の配合量が2〜15重量%である請求項1に記載のシリカ配合ゴム組成物の混練方法。2. The method according to claim 1, wherein the amount of the silane coupling agent is 2 to 15% by weight based on the weight of the silica. 前記シリカ配合ゴム組成物がタイヤトレッド用である請求項1又は2に記載のシリカ配合ゴム組成物の混練方法。The method for kneading a silica-containing rubber composition according to claim 1 or 2, wherein the silica-containing rubber composition is for a tire tread.
JP2003156715A 2003-06-02 2003-06-02 Method for kneading silica-containing rubber composition Expired - Fee Related JP4243979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003156715A JP4243979B2 (en) 2003-06-02 2003-06-02 Method for kneading silica-containing rubber composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003156715A JP4243979B2 (en) 2003-06-02 2003-06-02 Method for kneading silica-containing rubber composition

Publications (2)

Publication Number Publication Date
JP2004358693A true JP2004358693A (en) 2004-12-24
JP4243979B2 JP4243979B2 (en) 2009-03-25

Family

ID=34050708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003156715A Expired - Fee Related JP4243979B2 (en) 2003-06-02 2003-06-02 Method for kneading silica-containing rubber composition

Country Status (1)

Country Link
JP (1) JP4243979B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347020A (en) * 2005-06-16 2006-12-28 Yokohama Rubber Co Ltd:The Kneading controlling method for silica compounded rubber
JP2010089423A (en) * 2008-10-09 2010-04-22 Sumitomo Rubber Ind Ltd Method and device for kneading tire rubber
JP2012121942A (en) * 2010-12-06 2012-06-28 Sumitomo Rubber Ind Ltd Rubber composition and method for producing the same
KR101199617B1 (en) 2008-02-08 2012-11-08 가부시키가이샤 프라임 폴리머 Film for thermal sterilization packaging
JP2012251068A (en) * 2011-06-02 2012-12-20 Sumitomo Rubber Ind Ltd Manufacturing system of rubber composition and method for manufacturing the same
JP2014217985A (en) * 2013-05-07 2014-11-20 東洋ゴム工業株式会社 Kneading method of rubber composition and rubber composition

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522465B1 (en) * 2013-10-15 2015-05-21 금호타이어 주식회사 Temperature Control Method for Mixing Silica Filled Compound

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006347020A (en) * 2005-06-16 2006-12-28 Yokohama Rubber Co Ltd:The Kneading controlling method for silica compounded rubber
JP4639981B2 (en) * 2005-06-16 2011-02-23 横浜ゴム株式会社 Kneading control method of silica compound rubber
KR101199617B1 (en) 2008-02-08 2012-11-08 가부시키가이샤 프라임 폴리머 Film for thermal sterilization packaging
JP2010089423A (en) * 2008-10-09 2010-04-22 Sumitomo Rubber Ind Ltd Method and device for kneading tire rubber
JP2012121942A (en) * 2010-12-06 2012-06-28 Sumitomo Rubber Ind Ltd Rubber composition and method for producing the same
JP2012251068A (en) * 2011-06-02 2012-12-20 Sumitomo Rubber Ind Ltd Manufacturing system of rubber composition and method for manufacturing the same
JP2014217985A (en) * 2013-05-07 2014-11-20 東洋ゴム工業株式会社 Kneading method of rubber composition and rubber composition

Also Published As

Publication number Publication date
JP4243979B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP4909442B1 (en) Manufacturing apparatus and manufacturing method of rubber compounding composition
JP5204610B2 (en) Tire rubber kneading method and apparatus
US9259856B2 (en) Methods for controlling the mixing process of processing rubber
JP4243979B2 (en) Method for kneading silica-containing rubber composition
EP0679679A2 (en) Process for compounding filler materials and polymers and products therefrom
JP6724383B2 (en) Kneading method and apparatus for rubber material
JP4639981B2 (en) Kneading control method of silica compound rubber
JP2006123272A (en) Method for kneading unvulcanized rubber
JP6949473B2 (en) Tire filler and manufacturing method of tire filler
JP5276649B2 (en) Method for producing rubber composition
JP6992254B2 (en) Rubber composition for sidewalls and pneumatic tires
JP7377098B2 (en) Method for manufacturing rubber composition and method for manufacturing pneumatic tire
US6313212B1 (en) Continuous process for producing semi-finished rubber products with a silica reinforcing filler, for tyres, and tyres thus produced
JP2021102718A (en) Method for producing rubber composition and method for manufacturing pneumatic tire
JP2012153758A (en) Production method for rubber composition for tire
EP0911359B1 (en) Continuous process for producing rubber material containing silica filler and tyres incorporating this material
JP2000280236A (en) Production of unvulcanized rubber composition
JPH10175208A (en) Method for kneading of silane coupling agent blended rubber composition
US6864310B2 (en) Process for manufacturing a tire compound
JP5819656B2 (en) Manufacturing apparatus and manufacturing method of rubber compounding composition
JP6902389B2 (en) Manufacturing method of rubber composition and manufacturing method of tire
JP2011190327A (en) Tread rubber composition and pneumatic tire
JP2002540978A (en) Formation process of silica-reinforced rubber compounds
JP2011038034A (en) System for kneading and method for kneading silica compounded rubber
JP5401925B2 (en) Method for producing modified natural rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees