JP2004358426A - Air cleaning filter and high purifying apparatus - Google Patents

Air cleaning filter and high purifying apparatus Download PDF

Info

Publication number
JP2004358426A
JP2004358426A JP2003162707A JP2003162707A JP2004358426A JP 2004358426 A JP2004358426 A JP 2004358426A JP 2003162707 A JP2003162707 A JP 2003162707A JP 2003162707 A JP2003162707 A JP 2003162707A JP 2004358426 A JP2004358426 A JP 2004358426A
Authority
JP
Japan
Prior art keywords
alumina
activated
silica
air purification
purification filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162707A
Other languages
Japanese (ja)
Other versions
JP4883548B2 (en
Inventor
Hideto Takahashi
秀人 高橋
Hiroshi Gomi
弘 五味
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2003162707A priority Critical patent/JP4883548B2/en
Publication of JP2004358426A publication Critical patent/JP2004358426A/en
Application granted granted Critical
Publication of JP4883548B2 publication Critical patent/JP4883548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ventilation (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently remove organic matter causing problems in an atmosphere in a clean room of semiconductor and LCD manufacturing for long term, with little pressure loss. <P>SOLUTION: This air cleaning filter is provided with adsorption sheets 10, 11 having at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite, and activated carbon. A thickness of the sheets 10, 11 is 0.4 mm or less, and total volume of fine holes with diameters 20 Å or less measured by a gas adsorption method using argon gas, is 46 cc/m<SP>2</SP>or more per unit area of the sheet 10, 11. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は,例えばクリーンルーム,クリーンベンチや保管庫などといった高度清浄装置に使用される,雰囲気中の有機物を除去するための空気浄化フィルタに関し,更に,空気浄化フィルタを備えた高度清浄装置に関する。
【0002】
【従来の技術】
今日,半導体やLCDの製造などにクリーンルーム,クリーンベンチや保管庫などといった高度清浄装置が広く利用されている。例えば,半導体等の製造過程においてウエハに有機物が付着すると,絶縁酸化膜(SiO)の絶縁耐圧低下,レジスト膜の密着性低下に伴う露光,エッチング不良などといった種々の不都合を引き起こす。また,LCDの製造過程においてLCD基板であるガラス基板に有機物が付着すると,その表面上に薄膜トランジスタ(TFT)用のアモルファスシリコン(a−Si)を成膜する際に,LCD基板とa−Si膜の密着不良を生じてしまう。このように,高度清浄装置においては,半導体やLCDの製造に悪影響を及ぼす雰囲気中の有機物を除去することが必要である。例えば,2002年版International Technology Roadmap for SemiconductorsのTable 95aの記載によると,2007年には,半導体製造における雰囲気中に許容される有機物濃度が,50ppt(C)となるように,有機物濃度の制御が必要となる。
【0003】
従来,そのような雰囲気中の有機物除去を目的としたケミカルフィルタに関し,特開2001−310109号公報,特開平3−98611号公報などが開示されている。また本出願人も,先に特許第3316166号公報を開示している。
【0004】
【特許文献1】特開2001−310109号公報
【特許文献2】特開平3−98611号公報
【特許文献3】特許第3316166号公報
【0005】
【発明が解決しようとする課題】
例えば,天井面が清浄空気の吹き出し面となっている高度清浄装置の場合,空気中の有機物を除去するために,天井に取付けられている粒子除去用フィルタの上流側にケミカルフィルタを設置するのが一般的である。このようにケミカルフィルタを天井に設置する場合,所定の送風量を確保するために,ケミカルフィルタの圧力損失はできる限り低いことが望ましい。また,交換の手間やコストの面から,ケミカルフィルタの寿命は長いことが望ましい。
【0006】
従来のケミカルフィルタでは,フィルタ単位体積あたりの吸着材充填量を増加させることにより除去容量を増大させ,フィルタ寿命を長くすることが行われているが,吸着材充填量を増加させると圧力損失が増加してしまう。特に,吸着材を含有する素材をハニカム構造としたケミカルフィルタの場合,吸着材含有量を増やすことによりハニカムセル壁の厚みを増加させ,単位ハニカム構造体体積あたりの除去容量を増加させているが,この方法によると,通気通路方向に垂直な単位断面積あたりのセル開口面積の低下をもたらし,圧力損失の増加を招くことになる。
【0007】
また,半導体やLCDを製造する高度清浄装置で問題となる有機物は,沸点が約150℃以上の有機物であり,それらの分子径はおおよそ15Å以下のもので構成されている。従来のケミカルフィルタでは,そのような分子径の小さい有機物に対して吸着力が低く,多量に吸着できないという問題があった。
【0008】
本発明の目的は,半導体やLCDの製造クリーンルーム雰囲気で問題となる有機物を,長期間にわたり効率良く除去でき,圧力損失の小さい空気浄化フィルタと高度清浄装置を提供することにある。
【0009】
【課題を解決するための手段】
この目的を達成するために,本発明によれば,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを有する吸着シートを備える空気浄化フィルタであって,吸着シートの厚みが0.4mm以下であり,かつ,アルゴンガスによる気体吸着法で測定される細孔直径20Å以下の細孔の総容積が,吸着シートの単位面積あたり46cc/m以上であることを特徴とする,空気浄化フィルタが提供される。
【0010】
本発明の空気浄化フィルタにおいて,吸着シートは,例えば,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを製紙原料に混合して抄紙されたものである。また例えば,吸着シートは,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを母材の表面に付着させたものである。また例えば,吸着シートは,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つをバインダと混合し,成型したものである。
【0011】
また本発明によれば,清浄雰囲気が要求される空間内の空気を循環させる循環経路を備えた高度清浄装置において,該循環経路に,本発明の空気浄化フィルタを配置すると共に,前記空間より上流側であって空気浄化フィルタの下流側に粒子状不純物を除去するフィルタを配置したことを特徴とする,高度清浄装置が提供される。
【0012】
【発明の実施の形態】
以下,図面を参照しながら本発明の好ましい実施の形態について説明する。図1は,本発明の実施の形態にかかる空気浄化フィルタ1(以下「フィルタ1」)の概略的な分解図である。図示のように,フィルタ1は,波形の吸着シート10と,凹凸のない平板形状の吸着シート11を交互に並べて挟んだ構造のハニカム構造体12を備えている。このハニカム構造体12の周囲には,処理空気の流通方向(図中,白抜き矢印13で示す方向)に開口するようにアルミニウム製の外枠15a,15b,15c,15dを組み立てている。ハニカム構造体12において,波形の吸着シート10と平板形状の吸着シート11を交互に並べていることにより,吸着シート10,11の間には空気が流通できる隙間が形成されており,波形の吸着シート10の稜線方向を空気の流通方向13に一致させるように配置している。これにより,空気が吸着シート10,11の間を通って流通方向13に沿ってハニカム構造体12の内部を通過するようになっている。
【0013】
吸着シート10,11は,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを有している。また,吸着シート10,11の厚みは0.4mm以下である。また,図2に示すように,ハニカム構造体12(吸着シート10,11)の一部を切取り,その切取り片16について,アルゴンガスによる気体吸着法で測定される細孔直径20Å以下の細孔の総容積が,単位面積あたり46cc/m以上である。
【0014】
このようなハニカム構造体12(吸着シート10,11)は,例えば,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つ(以下「吸着材」という)を製紙原料に混合して抄紙することによって製造される。この場合,抄紙した吸着シートを適宜波形に成型するなどし,図1に示したように,波形の吸着シート10と平板形状の吸着シート11を交互に並べて組み立てることにより,ハニカム構造体12を得ることができる。
【0015】
また,ハニカム構造体12(吸着シート10,11)は,例えば,吸着材を母材の表面に付着させることによって製造することもできる。この場合,ハニカム構造体を先に組み立ててから,その表面に吸着材を付着させても良いし,シートの状態で表面に吸着材を付着させてから,ハニカム構造体を組み立てても良い。なお,シートもしくはハニカム構造体の表面に吸着材を付着させる場合,吸着材とバインダを含むスラリーにシートもしくはハニカム構造体を含浸させ,その後,乾燥させる方法を利用することができる。
【0016】
また,ハニカム構造体12(吸着シート10,11)は,例えば,吸着材をバインダと混合し,成型することによって製造することもできる。この場合,吸着材をバインダと混合した材料で波形の吸着シート10と,凹凸のない平板形状の吸着シート11を成型し,その成型された吸着シート10,11を無機系の接着剤で接着してハニカム構造体12を組み立てることもできるし,吸着材をバインダと混合した材料でハニカム構造体12を押出し成型などによって直接成型することもできる。
【0017】
なお,いずれの方法によってハニカム構造体12を製造する場合であっても,ベーキングなどの熱処理等によって,ハニカム構造体12(吸着シート10,11)の構成材料から,汚染の原因となるガス状有機不純物成分が全て脱離・除去されていることが必要である。
【0018】
以上のように構成される本発明の実施の形態にかかるフィルタ1は,半導体やLCDの製造に影響する雰囲気中の有機物を長期間に渡り効率良く除去することができ,かつ,圧力損失も小さい。半導体やLCDの製造で問題となる有機物は,沸点が約150℃以上の有機物であり,それらの分子径はおおよそ15Å以下のもので構成されている。本発明のフィルタ1は,そのような分子径が15Å以下程度のガス状有機物について強い吸着作用を発揮し,除去することができる。
【0019】
次に図3は,本発明の実施の形態にかかる高度清浄装置100の構成を概略的に示す説明図である。この高度清浄装置100は,具体的には,例えば半導体やLCDの製造などに利用されるクリーンルーム,クリーンベンチ,保管庫などである。高度清浄装置100は,例えばLSIやLCDなどの製造を行うための処理空間102と,この処理空間102の上下に位置する天井部(サプライプレナム)103及び床下部(レターンプレナム)104と,処理空間102の側方に位置するレタン通路105を備えている。
【0020】
天井部103には,ファンユニット110と,先に説明した本発明の実施の形態にかかるフィルタ1と,通気性を有する粒子除去用のフィルタ112を有するクリーンファンユニット113が配置されている。
【0021】
粒子除去用フィルタ112はフィルタ1の下流側に配されており,このフィルタ112は粒子状不純物を除去することが可能な機能を有している。また粒子除去用フィルタ112は,外枠その他の構成要素をアルミニウムやセラミックスとし,ガス状有機不純物を発生しない素材のみで構成されている。なお,フィルタ1は,ファンユニット110の上部に配置しても良い。
【0022】
処理空間102には,熱発生源となる例えば半導体の製造装置114が設置されている。床下部104は多数の孔が穿孔されたグレーティング115で仕切られている。また,床下部104には,半導体製造装置114の熱負荷を処理するための乾き冷却器(結露を生じさせないように構成された冷却器)116が設置されている。乾き冷却器116は,熱交換表面に結露を生じさせない条件で空気を冷却する空気冷却器を意味する。レタン通路105に温度センサ117が設置されており,この温度センサ117で検出される温度が所定の設定値となるように,乾き冷却器116の冷水流量調整弁118が制御される。
【0023】
そして,クリーンファンユニット113のファンユニット110が稼働することによって,適宜気流速度が調整されながら,高度清浄装置100内部の空気は,天井部103→処理空間102→床下部104→レタン通路105→天井部103の順に流れて循環するように構成されている。またこの循環中に,乾き冷却器116によって冷却され,クリーンファンユニット113内のフィルタ1と粒子除去用のフィルタ112によって空気中のガス状有機不純物と粒子状不純物が除去されて,適温で清浄な空気が処理空間102内に供給されるようになっている。
【0024】
また,高度清浄装置100の床下部104内には,取り入れ外気が空気流路120を経て適宜供給される。この空気流路120にも,取り入れ外気からガス状有機不純物を除去するために,本発明の実施の形態にかかるフィルタ1が配されており,更にフィルタ1の上流側には,取り入れ外気の除塵・調温・調湿を行うユニット型空調機122が設けられている。また,空気流路120には湿度センサ127が配置されており,この湿度センサ127で検出される湿度が所定の設定値となるように,ユニット型空調機122の調湿部の給水圧調整弁129が制御される。一方,処理空間102内には湿度センサ128が設置されており,この湿度センサ128で処理空間102内の雰囲気の湿度が検出される。
【0025】
空気流路120から高度清浄装置100の床下部104に供給された取り入れ外気は,レタン通路105及び天井部103を経由して,処理空間102に導入される。そして,この取り入れ外気に見合った空気量が,排気口125から排気ガラリ126を介して室外に排気される。
【0026】
次に,本発明の他の実施の形態にかかる高度清浄装置100’を図4に示した。この図4に示す高度清浄装置100’は,先に説明した本発明の実施の形態にかかるフィルタ1を高度清浄装置100’の天井部103全面に取り付けるのではなく,所々間引いて設置している。図4に示す例では,図3と比較して天井部103でのフィルタ1の設置台数を半分にした。その他の点は,先に図3において説明した高度清浄装置100と同様の構成である。従って,図4に示す高度清浄装置100’において,先に図3で説明した高度清浄装置100と同じ構成要素については同じ符号を付することにより,詳細な説明は省略する。
【0027】
空気が1回循環する際に除去されるガス状有機不純物は,天井部103の全面にフィルタ1を取り付けた図3の高度清浄装置100と,フィルタ1を半分に間引いて取り付けた図4の高度清浄装置100’を比較すると,2:1の関係がある。最終的に到達する平衡濃度も,高度清浄装置100’は高度清浄装置100よりも少し高くなる。しかし,イニシャルコストやフィルタ1の定期的交換に伴うランニングコストを安くしたいという経済的要望から,この図4に示す例のように,フィルタ1の設置台数を間引くことも多い。
【0028】
以上,本発明の好適な実施の形態の一例を,半導体やLCDの製造プロセス全般の高度清浄装置(いわゆるクリーンルーム)100,100’について説明したが,本発明はかかる実施の形態に限定されない。ミニエンバイロメントと称する局所的な高度清浄装置やクリーンベンチやクリーンチャンバや清浄な製品を保管するための各種ストッカなど様々な規模の高度清浄装置にも本発明は同様に適用できる。またフィルタ1の処理可能風量,循環風量と外気取り入れ空気量の割合,高度清浄装置内部からのガス状不純物の発生の有無などの処理環境に応じて多彩な形態が考えられる。また,図3,4では,クリーンファンユニット113の内部にフィルタ1を備え,ユニット型空調機122のの内部にフィルタ1を備えるように図示したが,ファンユニット110と通気性を有する粒子除去用のフィルタ112を有するクリーンファンユニット113の上流側(例えば上部)に,先に説明した本発明の実施の形態にかかるフィルタ1を配置しても良いし,また同様に,空気流路120において,取り入れ外気の除塵・調温・調湿を行うユニット型空調機122の上流に本発明の実施の形態にかかるフィルタ1を配置しても良い。
【0029】
【実施例】
アルゴンガスによる気体吸着法で細孔直径される細孔直径20Å以下の細孔の総容積が,単位面積あたり0.62cc/gの粉末状活性炭(細孔径の中央値が7〜11μm)を吸着材として用い,それを製紙原料に混合して湿式抄紙法により,厚み0.35mm(A),0.4mm(B),0.45mm(C),0.5mm(D)の吸着シートを抄造した。なお,これら4種類の吸着シートにおいて,シート重量あたりの活性炭含有重量%は一定とし,組成及び密度は一定として,厚みのみを変えた。なお,活性炭の担持量はシート面積あたり74g/m程度であった。これら活性炭を含む4種類の厚みの吸着シートをそれぞれコルゲータにより波形に成型加工し,成型加工していない平板形状の吸着シートと交互に並べて接着剤で接着することにより,各厚み0.35mm,0.4mm,0.45mm,0.5mmのハニカム構造体A,B,C,Dを製作した。各ハニカム構造体A,B,C,Dの仕様を表1に示す。
【0030】
【表1】

Figure 2004358426
【0031】
なお,各ハニカム構造体A,B,C,Dは,クリーンルームなどで使用する際の一般的な使用条件である通気通路方向の長さをいずれも50mmとした。また,通気面風速0.5m/sにおいて,各ハニカム構造体A,B,C,Dの圧力損失がいずれも20Paとなるようにセル密度を設定した。セルとは,図2で説明すると,波形の吸着シート10と平板形状の吸着シート11の間に形成された,流通方向13と直交する方向の断面形状が三角形状の空間である。セル密度とは,流通方向13と直交する方向のハニカム構造体12の断面における,単位面積(1平方インチ)あたりのセルの個数(三角形の個数)である。フィルタ表面積は,ハニカム構造体12を構成している全部の吸着シート10,11の表面積(吸着シート10,11の表裏面の全部の面積を含む)の合計である。これらのハニカム構造体A,B,C,Dについて,ガス状有機不純物としてのデカン(C1022,分子量142,沸点174℃,クリーンルームで問題になる有機物の中では比較的沸点が低く,ケミカルフィルタでは除去しにくいため,デカンの除去性能が確認できれば,クリーンルームで問題になる有機物のほとんどに関してほぼ同等かそれ以上の除去性能をもつと判断できる。)を含む空気を0.5m/sで通気し,デカンの除去率を測定した。計算上,吸着シートの厚み0.35mmのハニカム構造体Aでは,アルゴンガスによる気体吸着法で細孔直径される細孔直径20Å以下の細孔の総容積が,単位面積あたり46cc/mとなり,吸着シートの厚み0.4mmのハニカム構造体Bでは,アルゴンガスによる気体吸着法で細孔直径される細孔直径20Å以下の細孔の総容積が,単位面積あたり約52cc/mとなる。
【0032】
図5に,各ハニカム構造体A,B,C,Dのデカン除去率を示す。圧力損失が同じ条件下では,吸着シートの厚みが薄くなるほど,除去率は高くなることがわかる。クリーンルームなどで使用する際の一般的な使用条件である通気面風速0.5m/sにおいて,実用上必要とされる初期除去率85%以上を満たすためには,吸着シートの厚みは0.4mm以下とする必要がある。また,吸着シートが薄い方が,実用上の寿命(例えば,除去率80%に達するまでの時間)も長くなる。
【0033】
次に,厚み0.4mmの吸着シートで製作したハニカム構造体Bと,有機物除去用活性炭ハニカムフィルタとして市販されている従来品について,デカン除去率の経時変化を測定した。なお,従来品の仕様は表1のハニカム構造体Dとほぼ同じである。通気断面15mm×15mm,通気方向長さ50mmのハニカム構造体を,管の中に入れ,濃度約4000μg/mのデカンを含む空気を風速0.5m/sで通気した。なお,このときの両者の圧力損失は20Paであった。測定結果を図6に示す。ハニカム構造体Bは,従来品に比べて,長い期間除去効率が高いことがわかった。
【0034】
次に,アルゴンガスによる気体吸着法で細孔直径される細孔直径20Å以下の細孔の総容積が,単位面積あたり20cc/m以下〜50cc/m以下程度の範囲の活性炭,単位面積あたり20cc/m以下程度のゼオライト,単位面積あたり10cc/m以下程度のシリカゲル,単位面積あたり2cc/m以下程度の活性アルミナについて,ガス状有機不純物の除去量を調べた。セル密度(フィルタ表面積)はいずれも180セル/平方インチ,通気方向長さ50mm,通気の風速0.9m/s,吸着シート厚み0.2〜0.5mmとした。その結果,図7に示すようになり,細孔直径20Å以下の細孔の総容積とガス吸着量に相関があることが判明した。
【0035】
以上の実施例より,空気浄化フィルタについて,吸着シートの厚みが0.4mm以下であり,かつ,アルゴンガスによる気体吸着法で測定される細孔直径20Å以下の細孔の総容積が,吸着シートの単位面積あたり46cc/m以上となるように吸着材を選択することにより,圧力損失の小さい,除去効率の高い仕様とすることができることが分った。
【0036】
【発明の効果】
本発明によれば,半導体やLCDの製造に最適な,雰囲気中の有機物を長期間にわたり効率よく除去でき,低圧力損失な空気浄化フィルタ及び高度清浄装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態にかかる空気浄化フィルタの概略的な分解図である。
【図2】ハニカム構造体の拡大図である。
【図3】本発明の実施の形態にかかる高度清浄装置の構成を概略的に示す説明図である。
【図4】本発明の他の実施の形態にかかる高度清浄装置の構成を概略的に示す説明図である。
【図5】吸着シートの厚みと除去率の関係を示すグラフである。
【図6】時間経過と除去率の関係を示すグラフである。
【図7】アルゴンガスによる気体吸着法で測定される細孔直径20Å以下の細孔の総容積とガス状有機不純物の除去量の関係を示すグラフである。
【符号の説明】
1 空気浄化フィルタ
10,11 吸着シート
12 ハニカム構造体
100,100’ 高度清浄装置
102 処理空間
103 天井部
104 床下部
105 レタン通路
110 ファンユニット
112 粒子除去用のフィルタ
113 クリーンファンユニット
114 半導体製造装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air purification filter for removing organic substances in an atmosphere, which is used in, for example, an advanced cleaning device such as a clean room, a clean bench, a storage, and the like, and further relates to an advanced cleaning device provided with the air purification filter.
[0002]
[Prior art]
Today, advanced cleaning devices such as clean rooms, clean benches and storages are widely used for manufacturing semiconductors and LCDs. For example, when an organic substance adheres to a wafer in a process of manufacturing a semiconductor or the like, various inconveniences such as a decrease in dielectric strength of an insulating oxide film (SiO 2 ), exposure due to a decrease in adhesion of a resist film, and poor etching are caused. In addition, when an organic substance adheres to a glass substrate which is an LCD substrate in an LCD manufacturing process, when an amorphous silicon (a-Si) for a thin film transistor (TFT) is formed on the glass substrate, the LCD substrate and the a-Si film are formed. Will cause poor adhesion. As described above, in an advanced cleaning apparatus, it is necessary to remove organic substances in an atmosphere that adversely affect the production of semiconductors and LCDs. For example, according to the description of Table 95a of the 2002 edition of International Technology Roadmap for Semiconductors, it is necessary to control the concentration of organic substances in 2007 so that the concentration of organic substances allowed in the atmosphere in semiconductor manufacturing becomes 50 ppt (C). It becomes.
[0003]
Conventionally, JP-A-2001-310109, JP-A-3-98611 and the like have disclosed chemical filters for removing organic substances in such an atmosphere. The present applicant has also previously disclosed Japanese Patent No. 3316166.
[0004]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2001-310109 [Patent Document 2] Japanese Patent Application Laid-Open No. 3-98611 [Patent Document 3] Japanese Patent No. 3316166 [0005]
[Problems to be solved by the invention]
For example, in the case of an advanced cleaning device in which the ceiling surface is a clean air blowing surface, a chemical filter should be installed upstream of the particle removal filter installed on the ceiling to remove organic substances in the air. Is common. When the chemical filter is installed on the ceiling as described above, it is desirable that the pressure loss of the chemical filter be as low as possible in order to secure a predetermined air flow. In addition, it is desirable that the life of the chemical filter be long from the viewpoint of labor and cost for replacement.
[0006]
In conventional chemical filters, the removal capacity is increased by increasing the amount of adsorbent per unit volume of the filter to increase the removal life, and the filter life is prolonged. Will increase. In particular, in the case of a chemical filter with a honeycomb structure made of a material containing an adsorbent, the thickness of the honeycomb cell wall is increased by increasing the adsorbent content, and the removal capacity per unit honeycomb structure volume is increased. According to this method, the cell opening area per unit cross-sectional area perpendicular to the direction of the ventilation passage is reduced, and the pressure loss is increased.
[0007]
Organic substances that are problematic in advanced cleaning equipment for producing semiconductors and LCDs are organic substances having a boiling point of about 150 ° C. or higher, and have a molecular diameter of about 15 ° or less. The conventional chemical filter has a problem that it cannot adsorb a large amount of such an organic substance having a small molecular diameter because of its low adsorbing power.
[0008]
SUMMARY OF THE INVENTION An object of the present invention is to provide an air purification filter and an advanced cleaning device which can efficiently remove organic matter which becomes a problem in a clean room atmosphere for manufacturing semiconductors and LCDs for a long period of time and have a small pressure loss.
[0009]
[Means for Solving the Problems]
To achieve this object, according to the present invention, at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite and activated carbon is used. An air purification filter provided with an adsorption sheet having at least one of the above, wherein the thickness of the adsorption sheet is 0.4 mm or less and the total of pores having a pore diameter of 20 mm or less measured by a gas adsorption method using argon gas. An air purification filter characterized by having a volume of 46 cc / m 2 or more per unit area of an adsorption sheet is provided.
[0010]
In the air purification filter of the present invention, the adsorption sheet may be, for example, at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite, and activated carbon. One of them is mixed with a papermaking raw material to make paper. Also, for example, the adsorption sheet may be made of at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite, and activated carbon. It is attached to the surface. Further, for example, the adsorption sheet may be made by mixing at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite, and activated carbon with a binder. And molded.
[0011]
Further, according to the present invention, in an advanced cleaning device provided with a circulation path for circulating air in a space where a clean atmosphere is required, the air purification filter of the present invention is disposed in the circulation path, and the upstream side of the space is provided. An advanced cleaning device is provided, wherein a filter for removing particulate impurities is disposed on the downstream side of the air purification filter.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic exploded view of an air purification filter 1 (hereinafter, “filter 1”) according to an embodiment of the present invention. As shown in the drawing, the filter 1 includes a honeycomb structure 12 having a structure in which a corrugated suction sheet 10 and a flat suction sheet 11 having no unevenness are alternately arranged and sandwiched. Outer frames 15a, 15b, 15c, and 15d made of aluminum are assembled around the honeycomb structure 12 so as to open in the flow direction of the processing air (the direction indicated by the white arrow 13 in the drawing). In the honeycomb structure 12, a gap through which air can flow is formed between the suction sheets 10 and 11 by alternately arranging the suction sheet 10 having a corrugated shape and the suction sheet 11 having a flat plate shape. The ridges 10 are arranged so as to match the direction of the air flow 13. Thereby, air passes between the adsorbing sheets 10 and 11 and passes through the inside of the honeycomb structure 12 along the flow direction 13.
[0013]
The adsorption sheets 10 and 11 include at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite, and activated carbon. I have. The thickness of the suction sheets 10 and 11 is 0.4 mm or less. Further, as shown in FIG. 2, a part of the honeycomb structure 12 (adsorption sheets 10 and 11) is cut out, and the cut piece 16 has pores having a pore diameter of 20 ° or less measured by a gas adsorption method using argon gas. Is 46 cc / m 2 or more per unit area.
[0014]
Such a honeycomb structure 12 (adsorption sheets 10 and 11) includes, for example, diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite and It is manufactured by mixing at least one of activated carbon (hereinafter, referred to as “adsorbent”) with a papermaking raw material and papermaking. In this case, as shown in FIG. 1, the honeycomb structure 12 is obtained by alternately arranging the corrugated suction sheets 10 and the flat plate-shaped suction sheets 11 by, for example, shaping the formed suction sheet into a corrugated shape. be able to.
[0015]
Further, the honeycomb structure 12 (adsorption sheets 10 and 11) can also be manufactured by, for example, attaching an adsorbent to the surface of the base material. In this case, the adsorbent may be attached to the surface after assembling the honeycomb structure first, or the adsorbent may be attached to the surface in a sheet state, and then the honeycomb structure may be assembled. When the adsorbent is attached to the surface of the sheet or the honeycomb structure, a method of impregnating the sheet or the honeycomb structure with the slurry containing the adsorbent and the binder, and then drying the slurry can be used.
[0016]
Further, the honeycomb structure 12 (adsorption sheets 10 and 11) can also be manufactured by, for example, mixing an adsorbent with a binder and molding. In this case, a corrugated adsorbing sheet 10 and a flat adsorbing sheet 11 having no irregularities are molded from a material in which an adsorbent is mixed with a binder, and the molded adsorbing sheets 10 and 11 are adhered with an inorganic adhesive. The honeycomb structure 12 can be assembled by pressing, or the honeycomb structure 12 can be directly formed by extrusion molding or the like using a material in which an adsorbent is mixed with a binder.
[0017]
In any case, the honeycomb structure 12 is manufactured by a heat treatment such as baking, from the constituent materials of the honeycomb structure 12 (adsorption sheets 10 and 11), to form a gaseous organic material that causes contamination. It is necessary that all impurity components have been desorbed and removed.
[0018]
The filter 1 according to the embodiment of the present invention configured as described above can efficiently remove organic substances in the atmosphere affecting the production of semiconductors and LCDs over a long period of time, and has a small pressure loss. . Organic substances that pose a problem in the manufacture of semiconductors and LCDs are organic substances having a boiling point of about 150 ° C. or higher and have a molecular diameter of about 15 ° or less. The filter 1 of the present invention exerts a strong adsorptive action on such gaseous organic substances having a molecular diameter of about 15 ° or less and can remove them.
[0019]
Next, FIG. 3 is an explanatory diagram schematically showing a configuration of the advanced cleaning apparatus 100 according to the embodiment of the present invention. Specifically, the advanced cleaning device 100 is, for example, a clean room, a clean bench, a storage, and the like used for manufacturing semiconductors and LCDs. The advanced cleaning apparatus 100 includes a processing space 102 for manufacturing, for example, an LSI or an LCD, a ceiling (supply plenum) 103 and a lower floor (return plenum) 104 located above and below the processing space 102, and a processing space. There is a urethane passage 105 located on the side of 102.
[0020]
On the ceiling 103, a fan unit 110, the filter 1 according to the embodiment of the present invention described above, and a clean fan unit 113 having a filter 112 for removing particles having air permeability are arranged.
[0021]
The filter 112 for removing particles is disposed downstream of the filter 1 and has a function of removing particulate impurities. The particle removal filter 112 is made of aluminum or ceramics for the outer frame and other components, and is made of only a material that does not generate gaseous organic impurities. Note that the filter 1 may be arranged above the fan unit 110.
[0022]
In the processing space 102, for example, a semiconductor manufacturing apparatus 114 serving as a heat generation source is installed. The lower floor 104 is partitioned by a grating 115 having a large number of holes. Further, a dry cooler (a cooler configured to prevent dew condensation) 116 for processing a heat load of the semiconductor manufacturing apparatus 114 is installed in the lower floor 104. The dry cooler 116 is an air cooler that cools air under conditions that do not cause condensation on the heat exchange surface. A temperature sensor 117 is provided in the urethane passage 105, and the cold water flow regulating valve 118 of the dry cooler 116 is controlled so that the temperature detected by the temperature sensor 117 becomes a predetermined set value.
[0023]
By operating the fan unit 110 of the clean fan unit 113, the air inside the advanced cleaning device 100 flows from the ceiling 103, the processing space 102, the lower floor 104, the retan passage 105, and the ceiling while appropriately adjusting the airflow velocity. It is configured to flow and circulate in the order of the unit 103. During this circulation, gaseous organic impurities and particulate impurities in the air are removed by the cooler 116 and cooled by the filter 1 in the clean fan unit 113 and the filter 112 for removing particles. Air is supplied into the processing space 102.
[0024]
Also, the intake outside air is appropriately supplied into the lower floor 104 of the advanced cleaning device 100 through the air flow path 120. The air flow path 120 is also provided with the filter 1 according to the embodiment of the present invention in order to remove gaseous organic impurities from the taken-in outside air. A unit type air conditioner 122 for controlling temperature and humidity is provided. Further, a humidity sensor 127 is disposed in the air flow path 120, and a water supply pressure adjusting valve of a humidity control unit of the unit type air conditioner 122 so that the humidity detected by the humidity sensor 127 becomes a predetermined set value. 129 is controlled. On the other hand, a humidity sensor 128 is provided in the processing space 102, and the humidity sensor 128 detects the humidity of the atmosphere in the processing space 102.
[0025]
The intake outside air supplied from the air passage 120 to the lower floor 104 of the advanced cleaning device 100 is introduced into the processing space 102 via the retan passage 105 and the ceiling 103. Then, an amount of air corresponding to the intake outside air is exhausted from the exhaust port 125 to the outside of the room through the exhaust gallery 126.
[0026]
Next, an advanced cleaning apparatus 100 'according to another embodiment of the present invention is shown in FIG. In the advanced cleaning apparatus 100 ′ shown in FIG. 4, the filter 1 according to the embodiment of the present invention described above is not installed on the entire surface of the ceiling 103 of the advanced cleaning apparatus 100 ′ but is thinned out in places. . In the example shown in FIG. 4, the number of filters 1 installed on the ceiling 103 is reduced by half as compared with FIG. 3. The other points are the same as those of the advanced cleaning apparatus 100 described with reference to FIG. Therefore, in the advanced cleaning apparatus 100 ′ shown in FIG. 4, the same components as those in the advanced cleaning apparatus 100 described above with reference to FIG.
[0027]
The gaseous organic impurities removed when the air circulates once are obtained by the advanced cleaning apparatus 100 of FIG. 3 in which the filter 1 is mounted on the entire surface of the ceiling 103 and the advanced cleaning apparatus of FIG. Comparing the cleaning devices 100 ', there is a 2: 1 relationship. The finally reached equilibrium concentration is slightly higher in the advanced cleaning apparatus 100 ′ than in the advanced cleaning apparatus 100. However, due to economic demands to reduce the initial cost and the running cost associated with the periodic replacement of the filter 1, the number of filters 1 to be installed is often thinned out as in the example shown in FIG.
[0028]
As described above, an example of the preferred embodiment of the present invention has been described for the advanced cleaning apparatuses (so-called clean rooms) 100 and 100 'in the whole semiconductor or LCD manufacturing process, but the present invention is not limited to this embodiment. The present invention is similarly applicable to various scale advanced cleaning devices such as a local advanced cleaning device called a mini environment, a clean bench, a clean chamber, and various stockers for storing clean products. In addition, various forms are conceivable according to the processing environment such as the amount of air that can be processed by the filter 1, the ratio of the amount of circulating air to the amount of outside air taken in, and the presence or absence of gaseous impurities from inside the advanced cleaning device. 3 and 4, the filter 1 is provided inside the clean fan unit 113 and the filter 1 is provided inside the unit-type air conditioner 122. However, the fan unit 110 and the filter for removing air-permeable particles are provided. The filter 1 according to the embodiment of the present invention described above may be arranged on the upstream side (for example, the upper part) of the clean fan unit 113 having the filter 112 described above. The filter 1 according to the embodiment of the present invention may be disposed upstream of the unit-type air conditioner 122 that performs dust removal, temperature control, and humidity control of intake outside air.
[0029]
【Example】
Adsorbed powdered activated carbon (median pore diameter is 7 to 11 μm) with a total volume of pores having a pore diameter of 20 mm or less and a pore diameter of 20 mm or less per unit area by the gas adsorption method using argon gas. It is used as a material, and it is mixed with the papermaking raw material, and a wet papermaking method is used to form an adsorption sheet having a thickness of 0.35 mm (A), 0.4 mm (B), 0.45 mm (C), and 0.5 mm (D). did. In these four types of adsorption sheets, the weight% of activated carbon per sheet weight was constant, the composition and density were constant, and only the thickness was changed. The amount of activated carbon carried was about 74 g / m 2 per sheet area. Each of the four types of suction sheets containing activated carbon is formed into a corrugated shape by a corrugator, and is alternately arranged with an unformed flat plate-shaped suction sheet and adhered with an adhesive so that each of the sheets has a thickness of 0.35 mm. Honeycomb structures A, B, C and D of 0.4 mm, 0.45 mm and 0.5 mm were manufactured. Table 1 shows the specifications of each of the honeycomb structures A, B, C, and D.
[0030]
[Table 1]
Figure 2004358426
[0031]
Each of the honeycomb structures A, B, C, and D had a length of 50 mm in the direction of the ventilation passage, which is a general use condition when used in a clean room or the like. The cell density was set such that the pressure loss of each of the honeycomb structures A, B, C, and D was 20 Pa at a ventilation surface wind speed of 0.5 m / s. Referring to FIG. 2, the cell is a space formed between the corrugated suction sheet 10 and the flat suction sheet 11 and having a triangular cross section in a direction orthogonal to the flow direction 13. The cell density is the number of cells (the number of triangles) per unit area (1 square inch) in the cross section of the honeycomb structure 12 in a direction orthogonal to the flow direction 13. The filter surface area is the sum of the surface areas of all the suction sheets 10 and 11 constituting the honeycomb structure 12 (including the entire area of the front and back surfaces of the suction sheets 10 and 11). Regarding these honeycomb structures A, B, C, and D, decane (C 10 H 22 , molecular weight 142, boiling point 174 ° C.) as a gaseous organic impurity has a relatively low boiling point among organic substances which are problematic in a clean room, and Since it is difficult to remove with a filter, if the removal performance of decane can be confirmed, it can be determined that almost all of the organic matter that becomes a problem in a clean room has a removal performance of almost the same or higher.) The decane removal rate was measured. According to calculations, in the honeycomb structure A having a thickness of 0.35 mm of the adsorption sheet, the total volume of pores having a pore diameter of 20 mm or less, which is formed by the gas adsorption method using argon gas, is 46 cc / m 2 per unit area. In the case of the honeycomb structure B having a thickness of 0.4 mm of the adsorption sheet, the total volume of pores having a diameter of 20 mm or less, which is formed by the gas adsorption method using argon gas, is about 52 cc / m 2 per unit area. .
[0032]
FIG. 5 shows the decane removal rates of the honeycomb structures A, B, C, and D. It can be seen that under the same pressure loss conditions, the removal rate increases as the thickness of the suction sheet decreases. At an air flow rate of 0.5 m / s, which is a general use condition when used in a clean room, etc., in order to satisfy the initial removal rate of 85% or more required for practical use, the thickness of the adsorption sheet is 0.4 mm. It is necessary to: Further, the thinner the suction sheet, the longer the practical life (for example, the time until the removal rate reaches 80%).
[0033]
Next, the change over time in the decane removal rate was measured for the honeycomb structure B manufactured using a 0.4 mm-thick adsorption sheet and a conventional product commercially available as an activated carbon honeycomb filter for removing organic substances. The specifications of the conventional product are almost the same as those of the honeycomb structure D in Table 1. A honeycomb structure having a ventilation cross section of 15 mm × 15 mm and a length of 50 mm in the ventilation direction was placed in a tube, and air containing decane having a concentration of about 4000 μg / m 3 was ventilated at an air velocity of 0.5 m / s. At this time, the pressure loss of both was 20 Pa. FIG. 6 shows the measurement results. It has been found that the honeycomb structure B has a higher removal efficiency for a longer period than the conventional product.
[0034]
Then, the total volume of pores having a pore diameter of 20Å or less of the pores is the pore diameter gas adsorption method using argon gas, per unit area 20 cc / m 2 or less ~50cc / m 2 or less degree in the range of the activated carbon, unit area per 20 cc / m 2 or less degree of zeolites, silica gel degree per 10 cc / m 2 or less per unit area, the activated alumina degree 2 cc / m 2 or less per unit area were examined removal of gaseous organic impurities. The cell density (filter surface area) was 180 cells / square inch, the length in the ventilation direction was 50 mm, the air flow velocity was 0.9 m / s, and the thickness of the adsorption sheet was 0.2 to 0.5 mm. As a result, as shown in FIG. 7, it was found that there was a correlation between the total volume of pores having a pore diameter of 20 ° or less and the gas adsorption amount.
[0035]
According to the above-described embodiment, in the air purification filter, the total volume of pores having a thickness of 0.4 mm or less and a pore diameter of 20 mm or less measured by a gas adsorption method using an argon gas is determined by the adsorption sheet. It has been found that by selecting the adsorbent so as to be 46 cc / m 2 or more per unit area, it is possible to obtain a specification with a small pressure loss and high removal efficiency.
[0036]
【The invention's effect】
According to the present invention, it is possible to provide an air purifying filter and an advanced purifying apparatus which are optimal for the production of semiconductors and LCDs and which can efficiently remove organic substances in the atmosphere over a long period of time and have low pressure loss.
[Brief description of the drawings]
FIG. 1 is a schematic exploded view of an air purification filter according to an embodiment of the present invention.
FIG. 2 is an enlarged view of a honeycomb structure.
FIG. 3 is an explanatory diagram schematically showing a configuration of an advanced cleaning device according to an embodiment of the present invention.
FIG. 4 is an explanatory view schematically showing a configuration of an advanced cleaning apparatus according to another embodiment of the present invention.
FIG. 5 is a graph showing the relationship between the thickness of the suction sheet and the removal rate.
FIG. 6 is a graph showing a relationship between a lapse of time and a removal rate.
FIG. 7 is a graph showing the relationship between the total volume of pores having a pore diameter of 20 ° or less measured by a gas adsorption method using an argon gas and the removal amount of gaseous organic impurities.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Air purification filter 10, 11 Adsorption sheet 12 Honeycomb structure 100, 100 'Advanced cleaning device 102 Processing space 103 Ceiling 104 Lower floor 105 Retaneous passage 110 Fan unit 112 Filter for removing particles 113 Clean fan unit 114 Semiconductor manufacturing device

Claims (5)

珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを有する吸着シートを備える空気浄化フィルタであって,吸着シートの厚みが0.4mm以下であり,かつ,アルゴンガスによる気体吸着法で測定される細孔直径20Å以下の細孔の総容積が,吸着シートの単位面積あたり46cc/m以上であることを特徴とする,空気浄化フィルタ。An air purification filter comprising an adsorption sheet having at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite and activated carbon. And the total volume of pores having a pore diameter of 20 mm or less as measured by a gas adsorption method using an argon gas is 46 cc / m 2 or more per unit area of the adsorption sheet. An air purification filter characterized by the following. 吸着シートが,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを製紙原料に混合して抄紙されたものであることを特徴とする,請求項1に記載の空気浄化フィルタ。Adsorption sheet is made by mixing at least one of diatomaceous earth, silica, alumina, mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite and activated carbon into papermaking raw material The air purification filter according to claim 1, wherein the air purification filter is made of paper. 前記吸着シートが,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つを母材の表面に付着させたものであることを特徴とする,請求項1に記載の空気浄化フィルタ。The adsorbing sheet comprises at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite and activated carbon on the surface of the base material. The air purification filter according to claim 1, wherein the air purification filter is attached. 前記吸着シートが,珪藻土,シリカ,アルミナ,シリカとアルミナの混合物,ケイ酸アルミニウム,活性アルミナ,多孔質ガラス,活性白土,活性ベントナイト,合成ゼオライト及び活性炭の少なくともいずれか一つをバインダと混合し,成型したものであることを特徴とする,請求項1に記載の空気浄化フィルタ。The adsorbing sheet is a mixture of at least one of diatomaceous earth, silica, alumina, a mixture of silica and alumina, aluminum silicate, activated alumina, porous glass, activated clay, activated bentonite, synthetic zeolite and activated carbon, and a binder; The air purification filter according to claim 1, wherein the air purification filter is formed. 清浄雰囲気が要求される空間内の空気を循環させる循環経路を備えた高度清浄装置において,
該循環経路に,請求項1,2,3又は4のいずれかの空気浄化フィルタを配置すると共に,前記空間より上流側であって空気浄化フィルタの下流側に粒子状不純物を除去するフィルタを配置したことを特徴とする,高度清浄装置。
In an advanced cleaning device with a circulation path that circulates air in a space where a clean atmosphere is required,
The air purification filter according to any one of claims 1, 2, 3, and 4, and a filter that removes particulate impurities upstream of the space and downstream of the air purification filter. Advanced cleaning equipment characterized by the following.
JP2003162707A 2003-06-06 2003-06-06 Air purification filter and advanced cleaning device Expired - Lifetime JP4883548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162707A JP4883548B2 (en) 2003-06-06 2003-06-06 Air purification filter and advanced cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162707A JP4883548B2 (en) 2003-06-06 2003-06-06 Air purification filter and advanced cleaning device

Publications (2)

Publication Number Publication Date
JP2004358426A true JP2004358426A (en) 2004-12-24
JP4883548B2 JP4883548B2 (en) 2012-02-22

Family

ID=34054775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162707A Expired - Lifetime JP4883548B2 (en) 2003-06-06 2003-06-06 Air purification filter and advanced cleaning device

Country Status (1)

Country Link
JP (1) JP4883548B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649393B1 (en) 2006-08-18 2006-11-29 김춘배 A apparatus and method of cooking stove made of diatomaceous earth
JP2012125717A (en) * 2010-12-16 2012-07-05 Toyobo Co Ltd Sheet for gas adsorption, and air cleaning filter
CN114345077A (en) * 2021-12-21 2022-04-15 无锡德润电子有限公司 Sterilizing and deodorizing device for refrigerator and automobile
CN116272881A (en) * 2023-03-17 2023-06-23 天津得瑞丰凯新材料科技有限公司 Composite aerogel dry-wet balance preparation and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100649393B1 (en) 2006-08-18 2006-11-29 김춘배 A apparatus and method of cooking stove made of diatomaceous earth
JP2012125717A (en) * 2010-12-16 2012-07-05 Toyobo Co Ltd Sheet for gas adsorption, and air cleaning filter
CN114345077A (en) * 2021-12-21 2022-04-15 无锡德润电子有限公司 Sterilizing and deodorizing device for refrigerator and automobile
CN114345077B (en) * 2021-12-21 2024-04-05 无锡德润电子有限公司 Sterilizing and deodorizing device for refrigerator and automobile
CN116272881A (en) * 2023-03-17 2023-06-23 天津得瑞丰凯新材料科技有限公司 Composite aerogel dry-wet balance preparation and preparation method thereof

Also Published As

Publication number Publication date
JP4883548B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
JP3977514B2 (en) Air purification filter, method of manufacturing the same, and advanced cleaning device
TWI786215B (en) Ventilation and air conditioning device, and ventilation and air conditioning method
KR100461613B1 (en) Cleaner, Filter and Manufacturing Method
KR100442983B1 (en) Air cleaning filter and a method for manufacturing the same, and a high performance cleaning apparatus
TW482881B (en) Air conditioning system for semiconductor clean room
JP4393018B2 (en) Air cleaning method and air filter device for carrying out the same
JP2006308246A (en) Air conditioner
JP4334688B2 (en) Clean air manufacturing method and supply system
JPH02126912A (en) Air cleaner and clean room using it
JP4883548B2 (en) Air purification filter and advanced cleaning device
JP4166909B2 (en) Advanced cleaning device, local cleaning system, ozonolysis filter and manufacturing method thereof
JP4312878B2 (en) Advanced cleaning equipment
TW201709965A (en) Air purification system
JP3316166B2 (en) Filter, manufacturing method thereof, and cleaning device
JPH10216466A (en) Highly clean space
JP3323787B2 (en) Air purification filter, method of manufacturing the same, and advanced cleaning device
JP2002336632A (en) Filter and cleaning apparatus
JP3936803B2 (en) Air purification filter, method of manufacturing the same, and advanced cleaning device
JP3415446B2 (en) Air purification filter, method of manufacturing the same, and advanced cleaning device
JP2002166124A (en) Adsorption type dehumidifier
JP3896539B2 (en) Filter and clean room using it
JPH01274824A (en) Dehumidifying system
JP2004116854A (en) Replaceably ventilable low dew point chamber and air conditioning method of low dew point chamber by displaceable ventilation
JP4249329B2 (en) Purification system
JPH1176719A (en) Air cleaning filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071016

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090316

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090413

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4883548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term