JP2004358416A - Granular adsorbent - Google Patents

Granular adsorbent Download PDF

Info

Publication number
JP2004358416A
JP2004358416A JP2003162367A JP2003162367A JP2004358416A JP 2004358416 A JP2004358416 A JP 2004358416A JP 2003162367 A JP2003162367 A JP 2003162367A JP 2003162367 A JP2003162367 A JP 2003162367A JP 2004358416 A JP2004358416 A JP 2004358416A
Authority
JP
Japan
Prior art keywords
silica
activated clay
weight
pore volume
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003162367A
Other languages
Japanese (ja)
Other versions
JP4146291B2 (en
Inventor
Seiji Okabayashi
誠治 岡林
Hirobumi Watanabe
博文 渡辺
Kazuhiko Suzuki
一彦 鈴木
Yasuo Mizoguchi
保夫 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizusawa Industrial Chemicals Ltd
Original Assignee
Mizusawa Industrial Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizusawa Industrial Chemicals Ltd filed Critical Mizusawa Industrial Chemicals Ltd
Priority to JP2003162367A priority Critical patent/JP4146291B2/en
Publication of JP2004358416A publication Critical patent/JP2004358416A/en
Application granted granted Critical
Publication of JP4146291B2 publication Critical patent/JP4146291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

<P>PROBLEM TO BE SOLVED: To provide an adsorbent having improved adsorptivity for ammonia or amine. <P>SOLUTION: The granular adsorbent is composed of a granular formed body of a mixture containing silica and activated clay in the ratio by weight of (25:70) to(75:25). The granular formed body has 0.8 to 2.0 ml<SP>3</SP>/g total pore volume and supports 30 to 120 wt.% inorganic acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、アンモニア、有機アミン等の塩基性ガスの吸着性に優れた粒状吸着剤に関する。
【0002】
【従来の技術】
アンモニアや有機アミン等の塩基性ガスは悪臭の原因であり、このような塩基性ガスは下水処理場、し尿処理場、ゴミ焼却炉などから多く発生している。それらの悪臭成分を除去するための吸着剤として、活性炭やシリカゲルなどが知られているが、これらは、その吸着性が未だ十分でなく、その向上が求められている。
【0003】
塩基性ガスに対する吸着性を高めるためには、例えば無機酸をシリカゲルに担持させることが考えられる。即ち、シリカゲルによる物理的吸着能に、無機酸による化学的吸着能を加えることにより、塩基性ガスに対する吸着性を向上させるというものである。しかしながら、シリカゲル成型体は酸に対する耐性が低く、高い吸着能を確保する程度の量の無機酸を担持させることが困難であるという問題があった。即ち、多量の無機酸を担持させるとシリカゲル成型体の粒子崩壊を生じてしまい、吸着能が低下し、消臭時において廃ガスの通気抵抗が増大してしまうのである。また、水分の吸着あるいは水の浸漬によってもシリカゲル成型体の粒子崩壊を生じやすく、やはり吸着能の低下を生じてしまう。
【0004】
一方、シリカゲルや活性白土等の多孔質鉱物にリン酸とヒドラジンの複塩を担持させた脱臭剤が提案されている(特許文献1参照)。
【0005】
【特許文献1】
特許第3135790号(特許請求の範囲、表1)
【0006】
【発明が解決しようとする課題】
上記特許文献1に開示されている脱臭剤は、アミンやアルデヒドに対する吸着性に優れているというものであるが、リン酸とヒドラジンの複塩の形で担持させているため、アンモニアやアミン等の塩基性ガスに対する吸着性の点で、未だ満足し得るものではない。
【0007】
従って、本発明の目的は、アンモニアやアミンに対する吸着性が向上した吸着剤を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、シリカと活性白土とを25:75乃至75:25の重量比で含有する混合物の粒状成形品からなり、該粒状成形品は、0.8乃至2.0ml/gの全細孔容積を有しており、且つ30乃至120重量%の量で無機酸が担持されていることを特徴とする粒状吸着剤が提供される。
【0009】
本発明においては、無機酸を担持させる粒状成形品として、シリカと活性白土とを一定の重量比(25:75乃至75:25)で含有する混合物を使用することが重要である。即ち、シリカは、細孔容積が大きく、アンモニア等に対する吸着能が高いのに対し、活性白土は、細孔容積が小さく、アンモニア等に対する吸着能が低いにもかかわらず、両者を併用することにより、シリカの崩壊を防ぎつつ、シリカゲル単独よりもアンモニア等に対する吸着能が著しく高めることが可能となるのである。この理由は、明確に解明されたわけではないが、本発明者等は次のように推定している。
【0010】
即ち、粒状成形品中のシリカは、吸着性を示す成分として機能するが、活性白土は、シリカ粒子を結合するバインダーとして存在しており、このような活性白土の使用により、粒子強度(圧壊強度)が高められ、例えば水分の吸着等による粒子の崩壊を有効に回避することができる。また、活性白土は、スメクタイト族粘土鉱物の酸処理物であるため、耐酸性に優れている。従って、このような活性白土がバインダーとして存在していることにより、粒状成型体に対して多量の無機酸を担持させることが可能となり、この結果、アンモニア等に対する吸着能が著しく高められるものと信ずる。特に粒状成型体(150℃前後)の乾燥品に対して無機酸を担持しても水中では崩壊しない。これは活性白土の優れたバインダー特性にもとづくものである。
【0011】
本発明においては、
1.前記無機酸が硫酸またはリン酸であること、
2.前記シリカは、1.0ml/g以上の細孔容積を有していること、
3.レーザ回折法で測定して、前記シリカは、10乃至100μmの体積平均粒径(D50)を有し、前記活性白土は、2乃至10μmの体積平均粒径(D50)を有していること、
が好ましい。
【0012】
【発明の実施形態】
本発明の粒状吸着剤において、無機酸を担持させる粒状成形品は、シリカと活性白土とを、25:75乃至75:25、特に35:65乃至65:35の重量比で含有する混合物である。例えば、活性白土の使用量が上記範囲よりも多いと、シリカの吸着能が損なわれてしまい、アンモニアや有機アミンに対する吸着性が低下してしまう。また、活性白土の使用量が上記範囲よりも少ないと、粒子強度が低下し、例えば水分の吸着等により粒子の崩壊が容易に生じ、さらに、十分な量の無機酸を担持させることが困難となり、この場合においても、アンモニアや有機アミンに対する吸着性が低下してしまうこととなる。なお、シリカ及び活性白土の重量は、それぞれ110℃で3時間乾燥した時の重量のことである。
【0013】
粒状成形品に使用するシリカは、BET法(窒素吸着)で測定して1.0ml/g以上、特に1.2乃至2.0ml/gの細孔容積を有しているものを使用するのがよい。このような細孔容積の大きなシリカを使用することにより、後述する大きな細孔容積を有する粒状成形品を得ることができ、優れた吸着性を確保することができる。このようなシリカとしては、例えばゲルタイプシリカ、沈降タイプシリカ或いはそれらの混合物が挙げられる。また、上記のような大きな細孔容積を有していることに関連して、このシリカのBET比表面積は、150乃至500m/gの範囲にあるのがよく、さらに、その嵩比重が0.2乃至0.6g/mlの範囲にあるのがよい。
【0014】
このような細孔容積を有するシリカは、一例として、以下のようにして製造することができる。希硫酸にケイ酸ソーダ溶液を加え、pH1.5〜3.0程度で保持、ゲル化させ、そのゲルを十分洗浄後水熱処理、又はアンモニア処理を行うことにより製造することが出来る。水熱処理をより強く(温度を高く、時間を長く)行うかアンモニア処理をより強く(pHをより高く、長時間処理)行えば、細孔容積はより大きくなる。この処理後、乾燥、粉砕して本発明品の原料とすることが出来る。
【0015】
また、上記のシリカと併用する活性白土は、スメクタイト族粘土鉱物の酸処理物である。酸処理するスメクタイト族粘土鉱物は、SiOの四面体層状構造を有するケイ酸塩鉱物であり、例えばモンモリロナイト(酸性白土やベントナイトなど)、バイデライト、ノントロナイトなどのジオクタヘドラル型スメクタイト;サポナイト、ヘクトライト、ソーコナイト、フライポンタイトなどのトリオクタヘドラル型スメクタイト;スチブンサイト等を例示することができ、本発明においては、特に酸性白土が好適である。即ち、酸性白土は、主な交換性陽イオンとして、HやMg2+を含み、その組成は産地等によって異なっているが、一般に非晶質シリカの含有量が多い(例えばモル基準で一般に、SiO/Al=7〜8)。このような酸性白土(110℃乾燥品)の代表的な組成は、次の通りである。
【0016】
SiO 61.0 〜 74.0 重量%
Al 12.0 〜 23.0 重量%
Fe 2.0 〜 3.5 重量%
MgO 3.0 〜 7.0 重量%
CaO 1.0 〜 4.0 重量%
O 0.3 〜 2.0 重量%
NaO 0.3 〜 2.0 重量%
灼熱減量 5.0 〜 10.0 重量%
【0017】
本発明においては、このような酸性白土を希硫酸等の酸で処理して比表面積や細孔容積を高めた活性白土を好適に使用することができる。
【0018】
一般に、本発明で用いる活性白土は、前述したシリカの吸着性を損なうことなく、シリカ粒子同士の結合性を高めるという点で、200乃至400m/gのBET比表面積を有し、0.3乃至0.6ml/gの細孔容積を有していることが好適である。
【0019】
本発明において、無機酸を担持する粒状成形品は、上述したシリカと活性白土とを前述した重量比で混合し、所定の粒子形状に成形することにより得られるが、粒状成形品中に各成分が均一に分散し、特にシリカ粒子の間に活性白土の粒子が存在するような分散構造を形成するために、レーザ回折法で測定して、前記シリカは、10乃至100μmの体積平均粒径(D50)を有していることが好ましく、前記活性白土は、2乃至10μmの体積平均粒径(D50)を有していることが好ましい。このような粒度調整は、水簸、風簸等の分級操作や、乾式或いは湿式粉砕により行うことができる。粉砕には、ボールミル、チューブミル等の微粉砕機を用いるのがよい。また、一般には、原料シリカ或いは原料活性白土を、固形分濃度が5乃至25重量%程度の水性スラリーとして湿式粉砕により粒度調整を行うことが好適である。
【0020】
また、成形に際しては、ポリビニルアルコールやPEG、CMCなどの有機バインダーを、シリカと活性白土との合計量100重量部当り、0.2乃至5.0重量部程度の量で混合することが、細孔破壊等を生じることなく成形し得る点で好ましい。
【0021】
上述したシリカ、活性白土及び有機バインダーの混合及び成形は、一次軸または二軸の押出機を用いて行うことが、細孔破壊等を抑制する上で最も好適であり、成形された粒子形状は、球状、立方体状、円柱状、角柱状、顆粒状、タブレット状、ハニカム状、不定形状等の任意の形状であってよく、その用途に応じて適宜決定される。
【0022】
上記のようにして得られた粒状成形品は、前述した細孔容積のシリカを使用していることに関連して、0.8乃至2.0ml/g、特に1.0乃至2.0ml/gの全細孔容積を有しており、これにより、以下に述べる無機酸を担持させたときに、アンモニアや有機アミンに対して極めて高い吸着性を確保することが可能となる。
【0023】
尚、この粒状成形品の全細孔容積は、後述する実施例に示されているように、例えば粒状成形品を一旦乾燥させて、その重量(W)を測定し、次いで、乾燥された粒状成形品に一定条件で水分を吸着させ、その重量(W)を測定し、下記式により算出される。
全細孔容積(ml/g)=(W−W)/W
【0024】
本発明の粒状吸着剤は、上記の粒状成形品に無機酸を担持させることにより得られる。
無機酸としては、種々のものを使用することができるが、アンモニアや有機アミンに対して高い吸着性を得ることができるという点で、硫酸やリン酸が好ましく、特にリン酸が好適である。
【0025】
また、無機酸の担持量は、前記粒状成形品当り、30乃至120重量%、好ましくは、45乃至120重量%、最も好ましくは60乃至120重量%の範囲である。上記範囲よりも多量の無機酸を担持させると、細孔破壊や粒子強度の低下を招き、安定した吸着性能を保持することが困難となる。また、担持量が上記範囲よりも少ないと、化学的な吸着能が低下し、やはり目的とする吸着性を得ることができない。
【0026】
尚、上記のような無機酸の担持は、例えば無機酸の高濃度水溶液をスプレー等により、粒状成形品に噴霧することにより、容易に行うことができる。
【0027】
【実施例】
本発明を次の例で説明するが、本発明は以下の例に限定されるものではない。尚、各試験方法は下記の方法に従って行った。
【0028】
(1)平均粒径
MALVERN社製MASTERSIZER S で測定した。
【0029】
(2)全細孔容積
成型試料約5グラムを110℃3時間乾燥後デシケーター中で放冷し試料重量(W)を精秤する。この乾燥品をイオン交換水100ml中に投入し、200mmHgの真空下で1時間脱気する。ついで試料を取出し表面を濾紙でふき取り、重量(W)を精秤し以下の式で全細孔容積を求めた。
全細孔容積(ml/g)=(W−W)/W
【0030】
(3)BET比表面積、細孔容積
カルロエルバ社製Sorptomatic Series 1900を使用し、BET法により測定した。
【0031】
(4)水中崩壊性
300mlの共栓付フラスコにイオン交換水200ml秤取り、そこへ成型試料5gを投入する。次にふたをしてシェーカーで(100rpm)1時間振盪し崩壊の状態を観察し以下のように評価した。
◎ 全く壊れない
○ 2、3粒崩壊が認められる
△ 10粒前後の崩壊が認められる
× 半分以上崩壊する
×× 水中に投入時すぐに崩壊する
【0032】
(5)嵩密度
JIS K−6220−1:2001 7.7に準拠して測定した。
【0033】
(6)圧懐強度
AIKOH ENGINEERING製MODEL−1310Dにより測定した。
【0034】
(7)アンモニア吸着量
アンモニア濃度が2%になるように調整(検知管で測定)して100Lのテドラーバックに充填する。このテドラーバックから定量ポンプでガラスカラムに充填した試料中を通過させ出口の濃度が1ppmになった時点を破過とし、単位時間当りのアンモニアガス流量×時間から吸着量を求めた。尚出口アンモニア濃度は臭気センサーXP−329N(新コスモス電気(株)社製)で測定した。
その他の条件として、空間速度600(hr−1)、サンプル量10ml、測定温度25℃、サンプル粒度20〜32メッシュで行った。
【0035】
(シリカ粉末の調製―1)
濃度15%硫酸と市販ケイ酸ソーダ(SiO 23.9% 、NaO 7.5%)を使用してpH2.0になるように連続的に混合してシリカ酸性ゾルを製造し、この液をトレー付きのコンベアに供給し、ゲル化させ、さらに3時間熟成する。熟成終了後1〜2cm程度に解砕し5mの貯槽に入れ、8時間水洗する。
水洗終了後、28%アンモニアを加えpH9.6、温度60℃で10時間処理後更に8時間水洗した。次にこのゲルを2mの箱形乾燥機に入れ24時間乾燥後アトマイザー(不二パウダル社製U15)で粉砕しシリカ粉末を調製した(S−1)。粉末の性状について表1に示した。
【0036】
(シリカ粉末の調製―2)
市販のBタイプシリカを上記と同様にアトマイザーで粉砕してシリカ粉末を調製した(S−2)。粉末の性状について表1に示した。
【0037】
(シリカ粉末の調製―3)
水澤化学工業(株)社製ミズカシルP−803乾燥品をアトマイザー粉砕してシリカ粉末を調製した(S−3)。粉末の性状について表1に示した。
【0038】
(微粉活性白土の調製)
水澤化学工業(株)社製活性白土V2を原料として風力分級機(安川商事YACA132MP)を使用して分級し、微粉白土を調製した(FH−1)。この粉末性状について表1に示した。
【0039】
(実施例1)
シリカ粉末(S−1)粉末5kg(乾物基準)、微粉活性白土(FH−1)5kg(乾物基準)を秤取りニーダー(不二パウダル社製KDHJ―60)で15分間混合後、水11kgを約2分かけて加え30分間混練りした。
次にこの混練り物をニーダーから取り出し、ダイス径5mmの成型板を装着したペレッター(不二パウダル社製EXD−60)で押出し成型した。
この成型物を2時間風乾後キルン乾燥機で乾燥し、シリカ成型品を得た。
この操作を10回繰り返し、乾燥成型物として約100kg得た。
次にこの成型物80kgを内容積約500Lの糖衣機に入れ回転しながら62%リン酸溶液70Lを5分間かけてスプレーしそのまま5分回転してリン酸担持粒状吸着剤を調製した。
この試作品の物性、性能評価を表2に示した。
【0040】
(実施例2)
実施例1でシリカ粉末(S−1)粉末6.5kg、微粉活性白土(FH−1)3.5kg、リン酸量を80Lにした以外は実施例1と同様にリン酸担持粒状吸着剤を調製した。
この試作品の物性、性能評価を表2に示した。
【0041】
(実施例3)
シリカ粉末(S−2)粉末4.5kg(乾物基準)、微粉活性白土(FH−1)5.5kg(乾物基準)を使用して実施例1と同様に成型し乾燥成型物約100kgを得た。
以下62%リン酸液を80Lに変えた以外は実施例1と同様にリン酸担持粒状吸着剤を試作した。この試作品の物性、性能評価を表2に示した。
【0042】
(実施例4)
シリカ粉末(S−3)粉末4kg(乾物基準)、微粉活性白土(FH−1)6kg(乾物基準)を使用して実施例1と同様に成型し乾燥成型物約100kgを得た。
以下62%リン酸液を85Lに変えた以外は同様にリン酸担持粒状吸着剤を調製した。この試作品の物性、性能評価を表2に示した。
【0043】
(実施例5)
実施例1で調整水中に0.5%になるようにPVAを添加した以外は実施例1と同様に成型し乾燥成型物を得た。このものの圧懐強度は4.6kgであった。以後同様にリン酸担時粒状吸着剤を調製した。この試作品の物性、性能評価を表2に示した。
【0044】
(比較例1)
実施例1でシリカ粉末(S−1)粉末8kg、微粉活性白土(FH−1)2kg、水の量を12.3kgで実施例1と同様に成型・乾燥して仕上げた。
このものは水中崩壊し成型品としては使用不可能であった。
【0045】
(比較例2)
実施例1でシリカ粉末(S−1)粉末2kg、微粉活性白土(FH−1)8kg、水の量を10.3kgで実施例1と同様に成型・乾燥して仕上げた。
このものの性状を表2に示したが、全細孔容積が小さく、本目的には適さないことが分かった。62%リン酸液も80kg乾燥成型物基準で36Lと少なく、それ以上担持させると、べとつき状態となった。この試作品の物性、性能評価を表2に示した。
【0046】
(比較例3〜4)
市販塩基性ガス吸着用酸添着活性炭、焼成A型ゼオライト20〜32メッシュ品をそれぞれ使用してアンモニア吸着量を比較したが、いずれも本発明品に劣るものであった。
【0047】
【表1】

Figure 2004358416
【0048】
【表2】
Figure 2004358416
【0049】
【発明の効果】
本発明によれば、酸に対する耐性が高く、酸による粒子崩壊が有効に抑制され、また水分吸着による粒子崩壊も有効に抑制され、極めて粒子強度が高く、しかも、アンモニアやアミンに対して、安定して高い吸着性を示す粒状吸着剤を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a granular adsorbent having excellent adsorption of basic gases such as ammonia and organic amines.
[0002]
[Prior art]
Basic gases such as ammonia and organic amines cause odors, and such basic gases are often generated from sewage treatment plants, human waste treatment plants, garbage incinerators, and the like. Activated carbon, silica gel and the like are known as adsorbents for removing such malodorous components, but these have not yet sufficiently adsorbed, and their improvement is required.
[0003]
In order to enhance the adsorptivity to basic gas, for example, it is conceivable to support an inorganic acid on silica gel. That is, by adding the chemical adsorption ability by the inorganic acid to the physical adsorption ability by the silica gel, the adsorption ability to the basic gas is improved. However, the silica gel molded article has a problem that it has a low resistance to acid and it is difficult to support an inorganic acid in an amount sufficient to secure a high adsorptivity. That is, when a large amount of inorganic acid is supported, the particles of the silica gel molded product are disintegrated, the adsorbing ability is reduced, and the ventilation resistance of the waste gas is increased at the time of deodorization. In addition, the adsorption of moisture or the immersion in water also tends to cause the collapse of the particles of the silica gel molded article, which also lowers the adsorption ability.
[0004]
On the other hand, a deodorant has been proposed in which a double salt of phosphoric acid and hydrazine is supported on a porous mineral such as silica gel or activated clay (see Patent Document 1).
[0005]
[Patent Document 1]
Patent No. 3135790 (Claims, Table 1)
[0006]
[Problems to be solved by the invention]
Although the deodorant disclosed in Patent Document 1 is excellent in adsorptivity to amines and aldehydes, it is supported in the form of a double salt of phosphoric acid and hydrazine. It is not yet satisfactory in terms of adsorption to basic gases.
[0007]
Accordingly, an object of the present invention is to provide an adsorbent having improved adsorption properties for ammonia and amine.
[0008]
[Means for Solving the Problems]
According to the invention, it comprises a granulated product of a mixture containing silica and activated clay in a weight ratio of 25:75 to 75:25, said granulated product having a total mass of 0.8 to 2.0 ml / g. There is provided a particulate adsorbent having a pore volume and carrying an inorganic acid in an amount of 30 to 120% by weight.
[0009]
In the present invention, it is important to use a mixture containing silica and activated clay at a fixed weight ratio (25:75 to 75:25) as a granular molded article for supporting an inorganic acid. That is, silica has a large pore volume and a high adsorption capacity for ammonia and the like, whereas activated clay has a small pore volume and a low adsorption capacity for ammonia and the like. In addition, it is possible to remarkably enhance the ability to adsorb ammonia and the like as compared to silica gel alone while preventing the collapse of silica. The reason for this has not been clearly elucidated, but the present inventors presume as follows.
[0010]
That is, the silica in the granular molded article functions as a component exhibiting adsorptivity, but the activated clay exists as a binder for binding the silica particles. By using such activated clay, the particle strength (crushing strength) is increased. ) Can be increased, and the disintegration of particles due to, for example, adsorption of moisture can be effectively avoided. Activated clay is excellent in acid resistance because it is an acid-treated product of the smectite group clay mineral. Therefore, the presence of such activated clay as a binder enables a large amount of inorganic acid to be supported on the granular molded body, and as a result, it is believed that the ability to adsorb ammonia and the like is significantly improved. . In particular, even if an inorganic acid is supported on a dried product of a granular molded product (around 150 ° C.), it does not collapse in water. This is based on the excellent binder properties of activated clay.
[0011]
In the present invention,
1. The inorganic acid is sulfuric acid or phosphoric acid,
2. The silica has a pore volume of 1.0 ml / g or more;
3. The silica has a volume average particle size (D 50 ) of 10 to 100 μm, and the activated clay has a volume average particle size (D 50 ) of 2 to 10 μm, as measured by a laser diffraction method. thing,
Is preferred.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
In the granular adsorbent of the present invention, the granular molded article supporting the inorganic acid is a mixture containing silica and activated clay in a weight ratio of 25:75 to 75:25, particularly 35:65 to 65:35. . For example, if the amount of activated clay used is larger than the above range, the ability to adsorb silica is impaired, and the ability to adsorb ammonia and organic amines is reduced. Further, when the amount of the activated clay is less than the above range, the particle strength is reduced, for example, the particles easily disintegrate due to, for example, adsorption of moisture, and it becomes difficult to support a sufficient amount of the inorganic acid. However, also in this case, the adsorptivity to ammonia and organic amine is reduced. The weight of silica and activated clay is the weight when dried at 110 ° C. for 3 hours, respectively.
[0013]
The silica used for the granular molded product should have a pore volume of 1.0 ml / g or more, particularly 1.2 to 2.0 ml / g, as measured by the BET method (nitrogen adsorption). Is good. By using such a silica having a large pore volume, it is possible to obtain a granular molded product having a large pore volume, which will be described later, and to ensure excellent adsorption. Examples of such silica include gel-type silica, precipitated-type silica, and mixtures thereof. Further, in relation to having such a large pore volume, the BET specific surface area of this silica is preferably in the range of 150 to 500 m 2 / g, and further, its bulk specific gravity is 0. It is preferably in the range of 0.2 to 0.6 g / ml.
[0014]
Silica having such a pore volume can be produced, for example, as follows. It can be produced by adding a sodium silicate solution to dilute sulfuric acid, keeping the gel at a pH of about 1.5 to 3.0, gelling the gel, washing the gel sufficiently, and performing a hydrothermal treatment or an ammonia treatment. The stronger the hydrothermal treatment (higher temperature and longer time) or the stronger the ammonia treatment (higher pH and longer time treatment), the larger the pore volume. After this treatment, it can be dried and pulverized to obtain a raw material of the product of the present invention.
[0015]
The activated clay used in combination with the silica is an acid-treated product of a smectite group clay mineral. The smectite group clay mineral to be acid-treated is a silicate mineral having a tetrahedral layer structure of SiO, for example, dioctahedral smectite such as montmorillonite (acid clay or bentonite), beidellite, nontronite; Examples thereof include trioctahedral smectites such as sauconite and frypontite; and stevensite. In the present invention, acid clay is particularly preferable. That is, acidic clay includes H + and Mg 2+ as main exchangeable cations, and its composition varies depending on the place of production and the like, but generally contains a large amount of amorphous silica (for example, generally on a molar basis, SiO 2 / Al 2 O 3 = 7~8). A typical composition of such an acid clay (dried at 110 ° C.) is as follows.
[0016]
SiO 2 61.0 to 74.0% by weight
Al 2 O 3 12.0 to 23.0% by weight
Fe 2 O 3 2.0 to 3.5% by weight
MgO 3.0 to 7.0% by weight
CaO 1.0 to 4.0% by weight
K 2 O 0.3 to 2.0% by weight
Na 2 O 0.3 to 2.0% by weight
Burning weight loss 5.0 to 10.0% by weight
[0017]
In the present invention, activated clay obtained by treating such acidic clay with an acid such as dilute sulfuric acid to increase the specific surface area and the pore volume can be suitably used.
[0018]
In general, the activated clay used in the present invention has a BET specific surface area of 200 to 400 m 2 / g in terms of enhancing the bonding between silica particles without impairing the adsorptivity of silica described above, It preferably has a pore volume of from 0.6 ml / g to 0.6 ml / g.
[0019]
In the present invention, the granular molded article supporting the inorganic acid is obtained by mixing the above-mentioned silica and activated clay at the above-mentioned weight ratio and molding the mixture into a predetermined particle shape. Are dispersed uniformly, and in particular, the silica has a volume average particle diameter of 10 to 100 μm (measured by a laser diffraction method) so as to form a dispersed structure in which activated clay particles are present between the silica particles. it is preferable to have a D 50), wherein the activated clay preferably has 2 to 10μm volume average particle diameter of (D 50). Such particle size adjustment can be performed by a classification operation such as elutriation or elutriation, or by dry or wet pulverization. For the pulverization, a fine pulverizer such as a ball mill and a tube mill is preferably used. In general, it is preferable to adjust the particle size of the raw material silica or raw material activated clay as an aqueous slurry having a solid content concentration of about 5 to 25% by weight by wet grinding.
[0020]
Further, at the time of molding, it is preferable to mix an organic binder such as polyvinyl alcohol, PEG, or CMC in an amount of about 0.2 to 5.0 parts by weight per 100 parts by weight of the total amount of silica and activated clay. This is preferable because it can be molded without causing hole breakage and the like.
[0021]
Mixing and molding of the silica, activated clay and organic binder described above is most preferably performed using a primary or twin screw extruder in order to suppress pore breakage and the like. , A sphere, a cube, a column, a prism, a granule, a tablet, a honeycomb, an irregular shape, and the like, which are appropriately determined according to the use.
[0022]
The granular molded product obtained as described above has a density of 0.8 to 2.0 ml / g, particularly 1.0 to 2.0 ml / g, in association with the use of the silica having the above-mentioned pore volume. g of the total pore volume, which makes it possible to secure extremely high adsorptivity to ammonia and organic amines when the inorganic acid described below is supported.
[0023]
The total pore volume of the granular molded product was determined by, for example, drying the granular molded product once, measuring its weight (W 1 ), and then drying the granular molded product, as shown in Examples described later. Moisture is adsorbed to the granular molded article under a certain condition, and the weight (W 2 ) is measured, and is calculated by the following equation.
Total pore volume (ml / g) = (W 2 −W 1 ) / W 1
[0024]
The granular adsorbent of the present invention is obtained by supporting an inorganic acid on the above-mentioned granular molded article.
Various inorganic acids can be used, but sulfuric acid and phosphoric acid are preferable, and phosphoric acid is particularly preferable, since high adsorptivity to ammonia and organic amine can be obtained.
[0025]
The amount of the inorganic acid to be carried is in the range of 30 to 120% by weight, preferably 45 to 120% by weight, and most preferably 60 to 120% by weight, based on the granular molded product. When an inorganic acid is supported in a larger amount than the above range, pore breakage and reduction in particle strength are caused, and it becomes difficult to maintain stable adsorption performance. On the other hand, when the supported amount is less than the above range, the chemical adsorption ability is lowered, and the intended adsorption property cannot be obtained.
[0026]
The loading of the inorganic acid as described above can be easily carried out, for example, by spraying a high-concentration aqueous solution of the inorganic acid onto the granular molded product by spraying or the like.
[0027]
【Example】
The present invention will be described with reference to the following examples, but the present invention is not limited to the following examples. In addition, each test method was performed according to the following method.
[0028]
(1) Average particle size It was measured by MASTERSIZER S manufactured by MALVERN.
[0029]
(2) Approximately 5 grams of the total pore volume molded sample was dried at 110 ° C. for 3 hours, then allowed to cool in a desiccator, and the sample weight (W 1 ) was precisely weighed. This dried product is put into 100 ml of ion-exchanged water, and degassed under a vacuum of 200 mmHg for 1 hour. Then, the sample was taken out, the surface was wiped off with a filter paper, the weight (W 2 ) was precisely weighed, and the total pore volume was determined by the following formula.
Total pore volume (ml / g) = (W 2 −W 1 ) / W 1
[0030]
(3) BET Specific Surface Area and Pore Volume The BET specific surface area and pore volume were measured by BET method using Sorptomical Series 1900 manufactured by Carlo Elba.
[0031]
(4) 200 ml of ion-exchanged water is weighed into a 300 ml water-disintegrating flask with a stopper, and 5 g of a molded sample is put therein. Next, the lid was capped and shaken with a shaker (100 rpm) for 1 hour to observe the state of disintegration and evaluated as follows.
◎ Not broken at all ○ Disintegration of 2 or 3 grains is observed △ Collapse of about 10 grains is observed × Disintegrates in more than half XX × Disintegrates immediately when put in water
(5) Bulk density Measured according to JIS K-6220-1: 2001 7.7.
[0033]
(6) Indentation strength Measured by MODEL-1310D manufactured by AIKOH ENGINEERING.
[0034]
(7) Ammonia Adsorption Amount is adjusted (measured with a detector tube) so that the ammonia concentration becomes 2%, and filled into a 100 L Tedlar bag. A sample filled in a glass column was passed from the Tedlar bag with a metering pump, and the time when the concentration at the outlet became 1 ppm was determined as a breakthrough, and the adsorption amount was determined from the ammonia gas flow rate per unit time × time. The outlet ammonia concentration was measured with an odor sensor XP-329N (manufactured by Shin-Cosmos Electric Co., Ltd.).
Other conditions were a space velocity of 600 (hr -1 ), a sample amount of 10 ml, a measurement temperature of 25C, and a sample particle size of 20 to 32 mesh.
[0035]
(Preparation of silica powder-1)
A 15% sulfuric acid and a commercially available sodium silicate (23.9% of SiO 2 , 7.5% of Na 2 O) were continuously mixed to a pH of 2.0 to prepare a silica acidic sol. The liquid is supplied to a conveyor with a tray, gelled, and aged for an additional 3 hours. It was crushed to the completion of aging after about 1~2cm put in a storage tank of 5m 3, washed with water 8 hours.
After the completion of the water washing, 28% ammonia was added, the mixture was treated at a pH of 9.6, at a temperature of 60 ° C. for 10 hours, and further washed with water for 8 hours. Next, the gel was placed in a 2 m 3 box dryer, dried for 24 hours, and then pulverized with an atomizer (U15 manufactured by Fuji Paudal) to prepare a silica powder (S-1). Table 1 shows the properties of the powder.
[0036]
(Preparation of silica powder-2)
Commercially available B type silica was pulverized with an atomizer in the same manner as described above to prepare silica powder (S-2). Table 1 shows the properties of the powder.
[0037]
(Preparation of silica powder-3)
A dried product of Mizukasil P-803 manufactured by Mizusawa Chemical Industry Co., Ltd. was atomized and pulverized to prepare a silica powder (S-3). Table 1 shows the properties of the powder.
[0038]
(Preparation of fine powder activated clay)
Using activated clay V2 manufactured by Mizusawa Chemical Industry Co., Ltd. as a raw material, the powder was classified using an air classifier (Yaskawa Corporation YACA132MP) to prepare fine powder clay (FH-1). Table 1 shows the powder properties.
[0039]
(Example 1)
5 kg of silica powder (S-1) powder (dry matter basis) and 5 kg of fine powdered activated clay (FH-1) (dry matter basis) were weighed, mixed with a kneader (KDHJ-60 manufactured by Fuji Paudal Co.) for 15 minutes, and 11 kg of water was added. It was added over about 2 minutes and kneaded for 30 minutes.
Next, the kneaded product was taken out of the kneader, and extruded and formed with a pelletizer (EXD-60 manufactured by Fuji Paudal) equipped with a molding plate having a die diameter of 5 mm.
The molded product was air-dried for 2 hours and then dried with a kiln dryer to obtain a silica molded product.
This operation was repeated 10 times to obtain about 100 kg as a dry molded product.
Next, 80 kg of the molded product was placed in a sugar coating machine having an internal volume of about 500 L, and while being rotated, 70 L of a 62% phosphoric acid solution was sprayed over 5 minutes, and then rotated for 5 minutes to prepare a phosphoric acid-supported particulate adsorbent.
Table 2 shows the physical properties and performance evaluation of this prototype.
[0040]
(Example 2)
A phosphoric acid-supported particulate adsorbent was prepared in the same manner as in Example 1 except that 6.5 kg of the silica powder (S-1) powder, 3.5 kg of fine powder activated clay (FH-1), and the amount of phosphoric acid were 80 L in Example 1. Prepared.
Table 2 shows the physical properties and performance evaluation of this prototype.
[0041]
(Example 3)
Using a silica powder (S-2) powder of 4.5 kg (dry matter basis) and a fine powder activated clay (FH-1) of 5.5 kg (dry matter basis), molding in the same manner as in Example 1 to obtain about 100 kg of a dry molded article. Was.
A phosphoric acid-supporting granular adsorbent was produced in the same manner as in Example 1 except that the 62% phosphoric acid solution was changed to 80 L. Table 2 shows the physical properties and performance evaluation of this prototype.
[0042]
(Example 4)
Using 4 kg of silica powder (S-3) powder (based on dry matter) and 6 kg of fine powdered activated clay (FH-1) (based on dry matter), molding was performed in the same manner as in Example 1 to obtain about 100 kg of a dry molded product.
Hereinafter, a phosphoric acid-supported granular adsorbent was prepared in the same manner except that the 62% phosphoric acid solution was changed to 85 L. Table 2 shows the physical properties and performance evaluation of this prototype.
[0043]
(Example 5)
Molding was performed in the same manner as in Example 1 except that PVA was added so as to be 0.5% in the conditioned water to obtain a dry molded product. The pressed strength of this product was 4.6 kg. Thereafter, a phosphoric acid-supported granular adsorbent was similarly prepared. Table 2 shows the physical properties and performance evaluation of this prototype.
[0044]
(Comparative Example 1)
In Example 1, 8 kg of silica powder (S-1) powder, 2 kg of fine powdered activated clay (FH-1), and 12.3 kg of water were molded and dried in the same manner as in Example 1 to finish.
The product collapsed in water and could not be used as a molded product.
[0045]
(Comparative Example 2)
In Example 1, 2 kg of silica powder (S-1) powder, 8 kg of finely powdered activated clay (FH-1), and 10.3 kg of water were molded and dried in the same manner as in Example 1 to finish.
The properties of this product are shown in Table 2, and it was found that the total pore volume was small and was not suitable for this purpose. The 62% phosphoric acid solution was as small as 36 L based on a dry molded product of 80 kg, and when it was carried more than that, it became sticky. Table 2 shows the physical properties and performance evaluation of this prototype.
[0046]
(Comparative Examples 3 and 4)
Ammonia adsorption amounts were compared using commercially available acid-impregnated activated carbon for adsorption of basic gas and calcined A-type zeolite 20 to 32 mesh, respectively, and all were inferior to the product of the present invention.
[0047]
[Table 1]
Figure 2004358416
[0048]
[Table 2]
Figure 2004358416
[0049]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the resistance to an acid is high, the particle disintegration due to an acid is effectively suppressed, and the particle disintegration due to moisture adsorption is also effectively suppressed, and the particle strength is extremely high. Thus, a granular adsorbent exhibiting high adsorptivity can be obtained.

Claims (4)

シリカと活性白土とを25:75乃至75:25の重量比で含有する混合物の粒状成形品からなり、該粒状成形品は、0.8乃至2.0ml/gの全細孔容積を有しており、且つ30乃至120重量%の量で無機酸が担持されていることを特徴とする粒状吸着剤。It comprises a granulated article of a mixture containing silica and activated clay in a weight ratio of 25:75 to 75:25, said granulated article having a total pore volume of 0.8 to 2.0 ml / g. A particulate adsorbent, wherein the inorganic acid is supported in an amount of 30 to 120% by weight. 前記無機酸が硫酸またはリン酸である請求項1に記載の粒状吸着剤。The granular adsorbent according to claim 1, wherein the inorganic acid is sulfuric acid or phosphoric acid. 前記シリカは、1.0ml/g以上の細孔容積を有している請求項1または2に記載の粒状吸着剤。The granular adsorbent according to claim 1, wherein the silica has a pore volume of 1.0 ml / g or more. レーザ回折法で測定して、前記シリカは、10乃至100μmの体積平均粒径(D50)を有し、前記活性白土は、2乃至10μmの体積平均粒径(D50)を有している請求項1乃至3に記載の粒状吸着剤。The silica has a volume average particle size (D 50 ) of 10 to 100 μm, and the activated clay has a volume average particle size (D 50 ) of 2 to 10 μm, as measured by a laser diffraction method. The granular adsorbent according to claim 1.
JP2003162367A 2003-06-06 2003-06-06 Granular adsorbent Expired - Fee Related JP4146291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003162367A JP4146291B2 (en) 2003-06-06 2003-06-06 Granular adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003162367A JP4146291B2 (en) 2003-06-06 2003-06-06 Granular adsorbent

Publications (2)

Publication Number Publication Date
JP2004358416A true JP2004358416A (en) 2004-12-24
JP4146291B2 JP4146291B2 (en) 2008-09-10

Family

ID=34054538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003162367A Expired - Fee Related JP4146291B2 (en) 2003-06-06 2003-06-06 Granular adsorbent

Country Status (1)

Country Link
JP (1) JP4146291B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011218318A (en) * 2010-04-13 2011-11-04 Mizusawa Ind Chem Ltd Inhibitor of occurrence of aromatic chlorine compound and method of treating combustion exhaust gas
KR101164214B1 (en) * 2009-11-26 2012-07-10 한국지질자원연구원 Nitrate nitrogen treatment method using clay mineral and zero valent iron
JP2012250904A (en) * 2011-05-06 2012-12-20 National Institute Of Advanced Industrial Science & Technology Composite containing metal complex, and radiocesium adsorbent using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101164214B1 (en) * 2009-11-26 2012-07-10 한국지질자원연구원 Nitrate nitrogen treatment method using clay mineral and zero valent iron
JP2011218318A (en) * 2010-04-13 2011-11-04 Mizusawa Ind Chem Ltd Inhibitor of occurrence of aromatic chlorine compound and method of treating combustion exhaust gas
JP2012250904A (en) * 2011-05-06 2012-12-20 National Institute Of Advanced Industrial Science & Technology Composite containing metal complex, and radiocesium adsorbent using the same

Also Published As

Publication number Publication date
JP4146291B2 (en) 2008-09-10

Similar Documents

Publication Publication Date Title
JP2008544835A (en) Use of stevensite for mycotoxin adsorption
JPH01293134A (en) Mixed adsorbent
US20110174228A1 (en) Hybrid animal litter composition
JP2007167495A (en) Aldehyde-containing air purifying agent and its manufacturing method
JP2009106942A (en) Adsorbing material comprised of porous functional solid incorporated in a polymer matrix
JPH03146412A (en) Preparation of active carbon
JPH11513969A (en) Method for producing molecular sieve complex compound
US10440934B2 (en) Low density compositions with synergistic absorbance properties
JP6153204B2 (en) Granulated product and production method thereof
US6107354A (en) Composite material, preparation and use thereof
JP3799678B2 (en) High-strength, low-abrasion zeolite granular material, method for producing the same, and adsorption separation method using the same
WO2001034295A1 (en) Sorbent, method of making the sorbent, and method of using the sorbent in fixed bed applications
JP4175726B2 (en) Pet toilet sand
JP4146291B2 (en) Granular adsorbent
TW201840486A (en) Heavy metal adsorbent
EP1427513A1 (en) Desiccant based on clay-bound zeolite, process for its preparation and its use
KR101185161B1 (en) Method for manufacturing deodorant/desiccant
JP3802975B2 (en) Pet toilet sand
JPH01151939A (en) White spherical adsorbent and its production
JP2004073053A (en) Toilet sand for pet
JP2005305336A (en) Silica adsorbent and preparation method therefor
JP4707366B2 (en) Granular adsorbent with indicator function
JP2006182623A (en) Core-cell type zeolite formed article
JP7145020B2 (en) purification material
PL81026B1 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080619

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110627

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120627

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140627

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees