JP2004357466A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2004357466A
JP2004357466A JP2003154903A JP2003154903A JP2004357466A JP 2004357466 A JP2004357466 A JP 2004357466A JP 2003154903 A JP2003154903 A JP 2003154903A JP 2003154903 A JP2003154903 A JP 2003154903A JP 2004357466 A JP2004357466 A JP 2004357466A
Authority
JP
Japan
Prior art keywords
linear motor
iron core
outer yoke
coil
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003154903A
Other languages
Japanese (ja)
Inventor
Yusuke Akami
裕介 赤見
Satoshi Osawa
聡 大澤
Takeshi Nakamura
健 中村
Hiroshi Egawa
博 江川
Kazuaki Shibahara
和晶 柴原
Yasuhiro Igarashi
靖弘 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokico Ltd
Original Assignee
Tokico Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokico Ltd filed Critical Tokico Ltd
Priority to JP2003154903A priority Critical patent/JP2004357466A/en
Publication of JP2004357466A publication Critical patent/JP2004357466A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plurality of types of linear motor having different thrust while reducing the facility cost and enhancing productivity. <P>SOLUTION: An annular groove 23 being fitted with a core member is formed in the inner circumferential surface part 22 of an outer yoke member 12. A core member 17A having a large thickness dimension in the radial direction can be fitted in the annular groove 23 without machining the annular groove 23. Since a linear motor 10 having a different thrust can be constituted using the outer yoke member 12 commonly without adding any extra machining facility or machining process for the outer yoke member 12, versatility and thereby productivity can be enhanced. Since no extra machining facility is required for the outer yoke member 12 in order to obtain a plurality of types of linear motor 10 having different thrust, facility cost can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リニアモータに関する。
【0002】
【従来の技術】
従来のリニアモータの一例として特許文献1に示されるリニアモータがある。このリニアモータ1は、図9及び図10に示すように、筒状ステータ2を縦割りに分割された2個の分割体2aから構成し、当該2個の分割体2aの内側ひいては筒状ステータ2の内側に形成した複数条の溝部3にそれぞれコイル4を設けるようにしている。
【0003】
【特許文献1】
特開2002−227927号公報
【0004】
【発明が解決しようとする課題】
ところで、リニアモータでは、設備費の低減や生産性の向上を図るなどのために、リニアモータの汎用化が望まれている。一方、上述したリニアモータ1では、筒状ステータ2の内側部分における隣接するコイル4に挟まれた部分(溝部3に対して相対的に内方に突出した部分)〔以下、鉄心部5という。〕は、電磁力発生に大きく関与し、この鉄心部5の径方向の厚さ寸法eを変えると共に、この間に配置されるコイル4の巻数や線径を変えて、コイル4の径方向の厚さ寸法を変えることにより、推力を調整することが可能である。このことを利用して、前記要望(設備費の低減や生産性の向上)に応えるべく、推力の異なる複数種類のリニアモータに対して筒状ステータ2を共通に用いて汎用化を図ることが考えられる。
【0005】
しかしながら、上述したリニアモータ1では、例えば大きな推力を得るために前記鉄心部5の径方向の厚さ寸法eを大きくする場合には、図11に示すように溝部の深さ寸法fを大きくする必要がある。このため、筒状ステータ2の加工が要求され、加工設備及び加工工程が多く必要とされ、上記要望(設備費の低減や生産性の向上)に適切には応えることができないというのが実情である。
【0006】
また、鉄心部5に、図12に示すように、コイル4の内周面4aに対向するような幅広部6を設けることにより、発生力の変動(いわゆる、回転形モータにおけるコギングトルクに相当する変動)を低減させたり、コイル4(電機子)の磁束を鉄心部5に無駄なく作用させて推力を増大させたりすることが可能である。しかし、実際には、溝部3の開口部7はコイル4に対して狭くなり、コイル4を溝部3に挿入して組み付けることは困難であり、幅広部6を用いた性能向上を容易には実現できなくなり、不便であった。
【0007】
本発明は、上記事情に鑑みてなされたもので、推力の異なる複数の機種の作製を設備費の低減や生産性の向上を図って果たすことができるリニアモータを提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1記載の発明は、軸方向に延びる中空部を有する第1の長手状部材と、該第1の長手状部材に出入り可能な第2の長手状部材と、第1の長手状部材の内周面部及び前記第2の長手状部材の外周面部のうち一方に軸方向に並べて設けられる複数のコイルと、第1の長手状部材の内周面部及び前記第2の長手状部材の外周面部のうち他方に軸方向に並べて設けられる複数の磁石と、前記複数のコイルの隣接するコイル間に設けられた鉄心と、を備えたリニアモータにおいて、前記第1、第2の長手状部材のうち前記コイル及び鉄心が設けられる方の長手状部材の周面部には、軸方向に所定間隔で、前記鉄心を固定するための溝部を形成したことを特徴とする。
【0009】
請求項2記載の発明は、請求項1記載のリニアモータにおいて、前記コイル及び鉄心は前記第1の長手状部材に設けられることを特徴とする。
請求項3記載の発明は、請求項1記載のリニアモータにおいて、前記コイル及び鉄心は前記第2の長手状部材に設けられることを特徴とする。
【0010】
請求項4記載の発明は、請求項2記載のリニアモータにおいて、前記第1の長手状部材を縦方向に少なくとも2つに分割したことを特徴とする。
請求項5記載の発明は、請求項4記載のリニアモータにおいて、前記第1の長手状部材の分割体の外周に、各々の分割体を一体とする外郭部材を嵌合したことを特徴とする。
請求項6記載の発明は、請求項1から5までのいずれかに記載のリニアモータにおいて、前記鉄心は、基端部が前記溝部に嵌合され、該基端部に連接する突出部が隣接するコイル間に配置される鉄心本体と、該鉄心本体の先端側に前記隣接するコイルの周面部に対面するように延設される幅広部と、からなることを特徴とする。
【0011】
【発明の実施の形態】
本発明の第1実施の形態に係るリニアモータを図1〜図6に基づいて説明する。図1及び図2において、リニアモータ10は、自動車、鉄道車両、構造物及び建造物の振動抑制装置を含め種々の装置に用いられるものであり、軸方向に延びる中空部11を有する略筒状の磁性材料製の外ヨーク部材12(第1の長手状部材)と、外ヨーク部材12に出入り可能な筒状の磁性材料製のセンタヨーク13(第2の長手状部材)と、を有している。
【0012】
外ヨーク部材12は、図1〜図3に示すように、縦方向に2つに分割(それぞれを、第1、第2外ヨーク部材14,15という。)されており、この第1、第2外ヨーク部材14,15が組み付けられて、上述した略筒状の外ヨーク部材12が構成されている。第1、第2外ヨーク部材14,15が組み付けられた状態で、第1、第2外ヨーク部材14,15を一体に結合させる薄肉円筒形の外郭部材16が嵌合されている。外郭部材16は、外ヨーク部材12と同等材質(磁性材料)で構成され、外ヨーク部材12及び後述する鉄心部材17と共に磁気回路の一部を構成する。外ヨーク部材12の両端部は、図5に示すように、リング18及びボルト19によって固定され、外ヨーク部材12及び外郭部材16が軸方向に確実に結合されている。
【0013】
第1、第2外ヨーク部材14,15の凹面部20には、複数条の半円状溝21が軸方向に所定間隔を空けて形成されており、ひいては第1、第2外ヨーク部材14,15の組合せにより構成される外ヨーク部材12の内周面部22には、複数条の環状溝23(溝部)が軸方向に所定間隔を空けて形成されている。外ヨーク部材12の内周面部22に、前記環状溝23の形成により残され、環状溝23に対して相対的に内方に突出された環状の部分を、以下、便宜上、内周基準面部24という。外ヨーク部材12の複数条の環状溝23には、環状で径方向の厚さが所定の大きさの前記鉄心部材17(鉄心)が嵌合されている。外ヨーク部材12の複数条の内周基準面部24には、それぞれコイル25が配置されており、鉄心部材17が隣接するコイル25間に設けられている。
【0014】
一方、センタヨーク13の外周面部26には、図1、図2及び図4に示すように、複数の磁石30が軸方向に並べて設けられている。複数の磁石30の内周側は、軸方向にN極、S極が交互に配置されるように、磁化されている。複数の磁石30及び複数のコイル25は、ギャップを空けて相対向して配置され、コイル25への通電により、電磁力を発生し、複数の磁石30及び複数のコイル25相互、ひいてはセンタヨーク13及び外ヨーク部材12の軸方向の相対移動を行えるようにしている。この場合、センタヨーク13及び外ヨーク部材12の相対移動は、図示しない案内部材を介して行われる。
【0015】
上述したリニアモータ10は、次のように組付けられる。すなわち、第1外ヨーク部材12の凹面部20(内周基準面部24)に、コイル25を配置し(ステップS1)、次に、第1外ヨーク部材12の半円状溝21に複数の鉄心部材17が嵌合される(ステップS2)。前記ステップS1、S2の工程は、反対の手順(鉄心部材17を嵌合した後、コイル25を配置する。)で行うようにしてもよい。また、鉄心部材17及びコイル25を1個ずつ交互に装着するようにしてもよい。
【0016】
続いて、複数の鉄心部材17及び複数のコイル25を装着した第1外ヨーク部材12に、第2外ヨーク部材12を組付け(ステップS3)、複数の鉄心部材17及び複数のコイル25を収納した略筒状の外ヨーク部材12を得る(ステップS4)。この外ヨーク部材12に外郭部材16を嵌合し(ステップS5)、リング18及びボルト19を用いて、外ヨーク部材12及び外郭部材16を結合する(ステップS6)。次に、磁石30を装着したセンタヨーク13を外ヨーク部材12(コイル25及び鉄心部材17)内に収納し、リニアモータ10を構成させる(ステップS7)。
【0017】
上述したように構成されたリニアモータ10では、図6に示すように、仮に推力を大きくするために径方向の厚さ寸法eが大きい鉄心部材17Aを用いる場合にも、環状溝23を加工することなく、当該鉄心部材17Aを環状溝23に装着し、これに対応した大きさ(この場合、径方向の厚さ寸法gが前記厚さ寸法eより環状溝の23の深さ寸法hだけ小さくされている。)のコイル25を用いて対処することができる。すなわち、外ヨーク部材12に対する新たな加工設備及び加工工程を追加することなく、外ヨーク部材12を共通に用いて、推力の異なるリニアモータ10を構成することが可能となり、この分、汎用性ひいては生産性の向上を図ることができる。さらに、上述したように推力の異なる複数種類のリニアモータ10を得るために、外ヨーク部材12に対する新たな加工設備が不要とされる分、設備費の低減を図ることができる。
【0018】
また、この第1実施の形態のリニアモータ10では、リニアモータ10の軸方向の発生力を複数条の環状溝23で受けることができる。このため、リニアモータ10の軸方向の発生力を外ヨーク部材12の軸方向全体に分散させることができ、発生力の伝達部位の応力、負荷を軽減することができる。
【0019】
また、上述したように外郭部材16によって、第1、第2外ヨーク部材14,15からなる外ヨーク部材12を円筒形に結合して固定しているため、外ヨーク部材12の強度が向上し、リニアモータ10に対し曲げ、捻りなどの外力が作用した場合でも、リニアモータ10は所定の性能を確実かつ容易に発揮することができる。また、外ヨーク部材12を円筒形の外郭部材16が覆うので、リニアモータ10は、その外周部に、隙間、溝が無くなり、その分、耐環境性を向上することができる。
【0020】
また、外ヨーク部材12を第1、第2外ヨーク部材14,15に分割しているので、コイル25及び鉄心部材17の組付け及びその固定を容易に行えると共に、信頼性の向上を図ることができる。また、外郭部材16が磁性材料製とされ、外ヨーク部材12などと共に、磁気回路の一部を構成するので、その分、外ヨーク部材12の肉厚を薄くすることが可能となる。
【0021】
上記第1実施の形態では、外ヨーク部材12を円筒の軸方向に2分割(分割角度180°)した場合を例にしたが、外ヨーク部材12について、2分割に限らず、3分割(分割角度120°)、4分割(分割角度90°)など任意の角度で任意の分割数にしてもよい。
【0022】
次に、本発明の第2実施の形態のリニアモータを図7に基づいて説明する。なお、図1〜図6に示す部材と同等の部材については、同一の符号を用いその説明は、適宜省略する。
【0023】
この実施の形態のリニアモータ10Aは、第1実施の形態のリニアモータ10(図1〜図6)に比して、鉄心部材17(図1、図4、図6)に代えて、図7に示す鉄心部材17Aを設けたことが主に異なっている。図7の鉄心部材17Aは、隣接するコイル25間に配置される鉄心本体31と、該鉄心本体31の先端側に前記隣接するコイル25の内周面部25a(周面部)に対面するように形成される幅広部32と、から大略構成されている。鉄心本体31は、前記環状溝23に嵌合される基端部34と、該基端部34に連接し隣接するコイル25間に配置される突出部35と、から構成されている。
【0024】
上述したリニアモータ10Aは、次のように組付けられる。すなわち、第1外ヨーク部材12の凹面部20に複数のコイル25を配置し(ステップS1A)、その後、第1外ヨーク部材12の半円状溝21に複数の鉄心部材17Aを嵌合する(ステップS2A)。以下、前記第1実施の形態と同様に、ステップS4〜S7の組付け工程を実施し、当該リニアモータ10Aを得る。
【0025】
ステップS1A及びステップS2Aに代えて、複数のコイル25及び複数の鉄心部材17Aを軸方向に予め組付け(ステップS1B)、この後、ステップS1Bで組み付けられた複数のコイル25及び複数の鉄心部材17Aを第1外ヨーク部材12に、固定、位置決めする(ステップS2B)ようにしてもよい。また、第1外ヨーク部材12の凹面部20に、2個のコイル25を配置し、その2個のコイル25の間になるように第1外ヨーク部材12の半円状溝21に1個の鉄心部材17Aを嵌合し(ステップS1C)、以下、1個のコイル25が先行する状態で、コイル25及び鉄心部材17Aを交互に、第1外ヨーク部材12に装着する(ステップS2C)ようにしてもよい。
【0026】
上述したように構成されたリニアモータ10Aでは、鉄心部材17Aが隣接するコイル25の内周面部25aに対面するように形成される幅広部32を有しているので、発生力の変動(いわゆる、回転形モータにおけるコギングトルクに相当する変動)を低減させたり、コイル25(電機子)の磁束を鉄心部材17Aに無駄なく作用させて推力を増大させたりすることを容易に行えるようになる。このリニアモータ10Aでは、鉄心部材17Aが外ヨーク部材12に組み付けられるので、幅広部32を有しているものの、コイル25の装着を容易にかつ確実に実現することができ、幅広部32を用いた性能向上を確実に果たすことができる。
【0027】
上記第1実施の形態では、第1、第2外ヨーク部材14,15からなる外ヨーク部材12の固定を外郭部材16で行うリニアモータ10を例にしたが、これに代えて、図8に示すように、固定バンド40、ボルト41及びナット42で行うリニアモータ10Bを構成(第3実施の形態)してもよい。固定バンド40は、図8に示すように、外ヨーク部材12に巻回されるバンド本体43と、バンド本体43の両端に連接されたフランジ部44とからなっている。フランジ部44がボルト41及びナット42により締結されることにより、固定バンド40は、縮径されて、第1、第2外ヨーク部材14,15からなる外ヨーク部材12の締め付け、ひいてはその固定を行うようにしている。この第3実施の形態では、3本の固定バンド40を用いている。なお、固定バンド40を4本以上としてもよいし、2本または1本としてもよい。
【0028】
上記各実施の形態では、コイル25及び鉄心部材17(17A)を外ヨーク部材12の内周面部22に設け、磁石30をセンタヨーク13の外周面部26に装着する場合を例にしたが、これに代えて、コイル及び鉄心部材をセンタヨーク13の外周面部26に設け、磁石を外ヨーク部材12の内周面部22に設けるように構成してもよい。この場合、外ヨーク部材12の内周面部22に代えて、センタヨーク13の外周面部26に鉄心部材を嵌合する環状の溝部(図示省略)を形成する一方、鉄心部材については分割タイプとする。この分割タイプの鉄心部材としては、例えば複数個の円弧状鉄心を、組付けにより結合して環状をなすように構成される。この場合、隣接する円弧状鉄心が離れないように確実に接合するように構成する。
なお、上記各実施の形態では、第1の長手状部材としての外側ヨークが円筒形状であるものを示したが、本発明は別段これに限らず、中空の四角形状等、多角形状の第1の長手状部材であっても構わない。
【0029】
【発明の効果】
請求項1から3までのいずれかに記載の発明によれば、第1、第2の長手状部材のうちコイル及び鉄心が設けられる方の長手状部材の周面部には、軸方向に所定間隔で、前記鉄心を固定するための溝部を形成したので、溝部の深さ寸法を変更することなく、径方向の厚さ寸法が異なる鉄心部材を溝部に嵌合することが可能である。このため、コイル及び鉄心が設けられる長手状部材を、共通に用いて、推力の異なる複数種類のリニアモータを構成することが可能となり、汎用性ひいては生産性の向上を図ることができる。
【0030】
請求項4に記載の発明によれば、第1の長手状部材を縦方向に少なくとも2つに分割したので、コイル及び鉄心の組付けを容易に行える。
請求項5に記載の発明によれば、第1の長手状部材の分割体の外周に、各々の分割体を一体とする外郭部材を嵌合したので、第1の長手状部材の結合強度を向上させ、曲げ、捻りなどの外力を受けた際にも第1の長手状部材を円筒形に維持し、良好な性能を確保できる。
【0031】
請求項6に記載の発明によれば、鉄心は、基端部が溝部に嵌合され、該基端部に連接する突出部が隣接するコイル間に配置される鉄心本体と、該鉄心本体の先端側に前記隣接するコイルの周面部に対面するように形成される幅広部と、からなるので、発生力の変動(いわゆる、回転形モータにおけるコギングトルクに相当する変動)を低減させたり、コイルの磁束を鉄心部に無駄なく作用させて推力を増大させたりすることを容易に行えるようになる。さらに、鉄心部材が外ヨーク部材に装着して組立てられるので、幅広部を有しているものの、コイルの装着を容易にかつ確実に行え、幅広部を用いた性能向上を確実に果たすことができる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態に係るリニアモータを示す断面図である。
【図2】図1のA−A線に沿う断面図である。
【図3】図1の第1外ヨーク部材を示す斜視図である。
【図4】図3の第1外ヨーク部材へのコイル及び鉄心部材の装着状態を示す断面図である。
【図5】図1の第1外ヨーク部材の端部側を示す断面図である。
【図6】図1の第1外ヨーク部材に、図1の鉄心部材と径方向の厚さが異なる鉄心部材を装着する状態を示す断面図である。
【図7】幅広部を有する鉄心部材を用いたリニアモータ(第2実施の形態)を示す断面図である。
【図8】固定バンドを用いるリニアモータ(第3実施の形態)を示す正面図である。
【図9】従来のリニアモータの一例に用いられる分割タイプの筒状ステータの一方の分割体を示す斜視図である。
【図10】図9の筒状ステータの一方の分割体を用いた従来のリニアモータの一例を示す断面図である。
【図11】図9の筒状ステータに、径方向の厚さ寸法が大きい鉄心を用いる際の問題点を説明するための断面図である。
【図12】図9の筒状ステータの鉄心部に幅広部を設ける場合に生じる問題点を説明するための断面図である。
【符号の説明】
10 リニアモータ
12 外ヨーク部材(第1の長手状部材)
13 センタヨーク(第2の長手状部材)
16 外郭部材
17、17A 鉄心部材(鉄心)
23 環状溝(溝部)
25 コイル
32 幅広部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a linear motor.
[0002]
[Prior art]
As an example of a conventional linear motor, there is a linear motor disclosed in Patent Document 1. As shown in FIGS. 9 and 10, the linear motor 1 comprises a cylindrical stator 2 composed of two divided bodies 2a divided vertically, and the inner side of the two divided bodies 2a, The coil 4 is provided in each of the plurality of groove portions 3 formed inside the inner surface 2.
[0003]
[Patent Document 1]
JP-A-2002-227927
[Problems to be solved by the invention]
By the way, in the linear motor, general-purpose use of the linear motor is desired in order to reduce equipment costs and improve productivity. On the other hand, in the above-described linear motor 1, a portion (a portion protruding inward relative to the groove 3) between the adjacent coils 4 in the inner portion of the cylindrical stator 2 [hereinafter referred to as an iron core 5. ] Greatly affects the generation of electromagnetic force, changes the radial thickness e of the iron core portion 5 and changes the number of turns and the wire diameter of the coil 4 disposed therebetween to change the radial thickness of the coil 4. By changing the size, it is possible to adjust the thrust. By utilizing this fact, in order to meet the above-mentioned demands (reduction of equipment costs and improvement of productivity), it is possible to use the cylindrical stator 2 in common for a plurality of types of linear motors having different thrusts and to generalize the use. Conceivable.
[0005]
However, in the above-described linear motor 1, for example, when the thickness e in the radial direction of the iron core 5 is increased to obtain a large thrust, the depth f of the groove is increased as shown in FIG. There is a need. For this reason, processing of the cylindrical stator 2 is required, many processing equipment and processing steps are required, and the above-mentioned demand (reduction of equipment cost and improvement of productivity) cannot be appropriately met. is there.
[0006]
Further, by providing the iron core portion 5 with the wide portion 6 facing the inner peripheral surface 4a of the coil 4 as shown in FIG. 12, the generated force varies (corresponding to the so-called cogging torque in a rotary motor). (Fluctuation) can be reduced, and the magnetic flux of the coil 4 (armature) can be applied to the iron core portion 5 without waste to increase the thrust. However, in practice, the opening 7 of the groove 3 becomes narrower with respect to the coil 4 and it is difficult to insert the coil 4 into the groove 3 and assemble it. I couldn't do that, which was inconvenient.
[0007]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a linear motor that can manufacture a plurality of models having different thrusts while reducing equipment costs and improving productivity.
[0008]
[Means for Solving the Problems]
According to the first aspect of the present invention, there is provided a first elongated member having a hollow portion extending in the axial direction, a second elongated member capable of entering and exiting the first elongated member, and a first elongated member. A plurality of coils provided in one of an inner peripheral surface portion and an outer peripheral surface portion of the second elongate member in the axial direction; an inner peripheral surface portion of the first elongate member and an outer peripheral surface of the second elongate member A linear motor comprising: a plurality of magnets arranged in the other side in the axial direction; and an iron core provided between adjacent coils of the plurality of coils. Grooves for fixing the iron core are formed at predetermined intervals in the axial direction on the peripheral surface of the longitudinal member on which the coil and the iron core are provided.
[0009]
According to a second aspect of the present invention, in the linear motor according to the first aspect, the coil and the iron core are provided on the first elongated member.
According to a third aspect of the present invention, in the linear motor according to the first aspect, the coil and the iron core are provided on the second elongated member.
[0010]
According to a fourth aspect of the present invention, in the linear motor according to the second aspect, the first longitudinal member is divided into at least two in a longitudinal direction.
According to a fifth aspect of the present invention, in the linear motor according to the fourth aspect, an outer member that integrates each divided body is fitted to an outer periphery of the divided body of the first elongated member. .
According to a sixth aspect of the present invention, in the linear motor according to any one of the first to fifth aspects, the iron core has a base end fitted into the groove, and a protruding part connected to the base end adjacent to the groove. And a wide portion extending from the leading end of the core body so as to face the peripheral surface of the adjacent coil.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
A linear motor according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2, a linear motor 10 is used for various devices including a vibration suppressing device for automobiles, railway vehicles, structures and buildings, and has a substantially cylindrical shape having a hollow portion 11 extending in the axial direction. And an outer yoke member 12 (first longitudinal member) made of a magnetic material, and a cylindrical center yoke 13 (second longitudinal member) made of a magnetic material that can enter and exit the outer yoke member 12. ing.
[0012]
As shown in FIGS. 1 to 3, the outer yoke member 12 is vertically divided into two parts (they are respectively referred to as first and second outer yoke members 14 and 15). The two outer yoke members 14 and 15 are assembled to form the substantially cylindrical outer yoke member 12 described above. In a state where the first and second outer yoke members 14 and 15 are assembled, a thin-walled cylindrical outer member 16 that integrally connects the first and second outer yoke members 14 and 15 is fitted. The outer shell member 16 is made of a material (magnetic material) equivalent to the outer yoke member 12, and forms a part of a magnetic circuit together with the outer yoke member 12 and an iron core member 17 described later. As shown in FIG. 5, both ends of the outer yoke member 12 are fixed by a ring 18 and a bolt 19, and the outer yoke member 12 and the outer member 16 are securely connected in the axial direction.
[0013]
A plurality of semicircular grooves 21 are formed in the concave portions 20 of the first and second outer yoke members 14 and 15 at predetermined intervals in the axial direction, and thus the first and second outer yoke members 14 are formed. , 15 are formed in the inner peripheral surface portion 22 of the outer yoke member 12 with a plurality of annular grooves 23 (groove portions) formed at predetermined intervals in the axial direction. The annular portion left on the inner peripheral surface portion 22 of the outer yoke member 12 by the formation of the annular groove 23 and protruding inward relative to the annular groove 23 is hereinafter referred to as an inner peripheral reference surface portion 24 for convenience. That. The plurality of annular grooves 23 of the outer yoke member 12 are fitted with the iron core members 17 (iron cores) having an annular thickness and a predetermined thickness in a radial direction. The coils 25 are respectively disposed on the plurality of inner peripheral reference surface portions 24 of the outer yoke member 12, and the iron core members 17 are provided between the adjacent coils 25.
[0014]
On the other hand, a plurality of magnets 30 are provided on the outer peripheral surface portion 26 of the center yoke 13 in the axial direction, as shown in FIGS. The inner circumference of the plurality of magnets 30 is magnetized such that N poles and S poles are alternately arranged in the axial direction. The plurality of magnets 30 and the plurality of coils 25 are arranged opposite to each other with a gap therebetween, and generate an electromagnetic force by energizing the coil 25, thereby causing the plurality of magnets 30 and the plurality of coils 25 to be mutually and, furthermore, the center yoke 13 In addition, the relative movement of the outer yoke member 12 in the axial direction can be performed. In this case, the relative movement between the center yoke 13 and the outer yoke member 12 is performed via a guide member (not shown).
[0015]
The above-described linear motor 10 is assembled as follows. That is, the coil 25 is disposed on the concave surface portion 20 (the inner peripheral reference surface portion 24) of the first outer yoke member 12 (step S1), and then the plurality of iron cores are inserted into the semicircular groove 21 of the first outer yoke member 12. The member 17 is fitted (Step S2). The steps S1 and S2 may be performed in the reverse procedure (the coil 25 is arranged after the core member 17 is fitted). Further, the iron core member 17 and the coil 25 may be alternately mounted one by one.
[0016]
Subsequently, the second outer yoke member 12 is assembled to the first outer yoke member 12 on which the plurality of core members 17 and the plurality of coils 25 are mounted (Step S3), and the plurality of core members 17 and the plurality of coils 25 are stored. A substantially cylindrical outer yoke member 12 is obtained (step S4). The outer yoke member 12 is fitted with the outer yoke member 12 (step S5), and the outer yoke member 12 and the outer yoke member 16 are connected using the ring 18 and the bolt 19 (step S6). Next, the center yoke 13 to which the magnet 30 is mounted is housed in the outer yoke member 12 (the coil 25 and the iron core member 17), and the linear motor 10 is configured (Step S7).
[0017]
In the linear motor 10 configured as described above, as shown in FIG. 6, even when the iron core member 17A having a large radial thickness e is used to increase the thrust, the annular groove 23 is processed. Without mounting the core member 17A in the annular groove 23, the size corresponding to this (in this case, the radial thickness g is smaller than the thickness e by the depth h of the annular groove 23). Can be dealt with by using the coil 25). In other words, it is possible to configure the linear motors 10 having different thrusts by using the outer yoke member 12 in common without adding new processing equipment and processing steps to the outer yoke member 12, and accordingly, the versatility and, consequently, the versatility Productivity can be improved. Further, as described above, in order to obtain a plurality of types of linear motors 10 having different thrusts, new processing equipment for the outer yoke member 12 is not required, so that equipment costs can be reduced.
[0018]
Further, in the linear motor 10 according to the first embodiment, the axially generated force of the linear motor 10 can be received by the plurality of annular grooves 23. For this reason, the generated force in the axial direction of the linear motor 10 can be dispersed throughout the outer yoke member 12 in the axial direction, and the stress and load on the transmission portion of the generated force can be reduced.
[0019]
Further, as described above, since the outer yoke member 12 including the first and second outer yoke members 14 and 15 is cylindrically connected and fixed by the outer shell member 16, the strength of the outer yoke member 12 is improved. Even when an external force such as bending or twisting acts on the linear motor 10, the linear motor 10 can reliably and easily exhibit predetermined performance. Further, since the outer yoke member 12 is covered by the cylindrical outer member 16, the linear motor 10 has no gaps and grooves in its outer peripheral portion, and accordingly, the environmental resistance can be improved accordingly.
[0020]
Further, since the outer yoke member 12 is divided into the first and second outer yoke members 14 and 15, the coil 25 and the iron core member 17 can be easily assembled and fixed, and the reliability is improved. Can be. Further, since the outer shell member 16 is made of a magnetic material and forms a part of the magnetic circuit together with the outer yoke member 12 and the like, the thickness of the outer yoke member 12 can be reduced accordingly.
[0021]
In the first embodiment, the case where the outer yoke member 12 is divided into two in the axial direction of the cylinder (division angle 180 °) is described as an example. The angle may be an arbitrary angle such as 120 °), 4 divisions (90 ° division angle), and the number of divisions.
[0022]
Next, a linear motor according to a second embodiment of the present invention will be described with reference to FIG. In addition, about the member equivalent to the member shown in FIGS. 1-6, the same code | symbol is used and the description is abbreviate | omitted suitably.
[0023]
The linear motor 10A of this embodiment is different from the linear motor 10 of the first embodiment (FIGS. 1 to 6) in that, instead of the iron core member 17 (FIGS. 1, 4, and 6), FIG. The main difference is that the iron core member 17A shown in FIG. The iron core member 17A of FIG. 7 is formed so that the iron core main body 31 disposed between the adjacent coils 25 and the inner peripheral surface portion 25a (peripheral surface portion) of the adjacent coil 25 on the distal end side of the iron core main body 31 are formed. And a wide portion 32 to be formed. The core body 31 includes a base end 34 fitted into the annular groove 23, and a projection 35 connected to the base end 34 and disposed between the adjacent coils 25.
[0024]
The above-described linear motor 10A is assembled as follows. That is, the plurality of coils 25 are arranged on the concave surface portion 20 of the first outer yoke member 12 (Step S1A), and thereafter, the plurality of iron core members 17A are fitted into the semicircular grooves 21 of the first outer yoke member 12 (Step S1A). Step S2A). Hereinafter, similarly to the first embodiment, the assembling steps of steps S4 to S7 are performed to obtain the linear motor 10A.
[0025]
Instead of step S1A and step S2A, a plurality of coils 25 and a plurality of iron core members 17A are previously assembled in the axial direction (step S1B), and thereafter, a plurality of coils 25 and a plurality of iron core members 17A assembled in step S1B are provided. May be fixed and positioned on the first outer yoke member 12 (step S2B). Further, two coils 25 are arranged on the concave surface portion 20 of the first outer yoke member 12, and one coil 25 is provided between the two coils 25 in the semicircular groove 21 of the first outer yoke member 12. The core member 17A is fitted (step S1C), and the coil 25 and the core member 17A are alternately mounted on the first outer yoke member 12 with one coil 25 preceding (step S2C). It may be.
[0026]
In the linear motor 10A configured as described above, since the iron core member 17A has the wide portion 32 formed so as to face the inner peripheral surface portion 25a of the adjacent coil 25, the generated force varies (so-called, It is possible to easily reduce the fluctuation corresponding to the cogging torque in the rotary motor, or increase the thrust by applying the magnetic flux of the coil 25 (armature) to the iron core member 17A without waste. In this linear motor 10A, since the iron core member 17A is assembled to the outer yoke member 12, although the wide portion 32 is provided, the mounting of the coil 25 can be realized easily and reliably. Performance can be reliably achieved.
[0027]
In the above-described first embodiment, the linear motor 10 in which the outer yoke member 12 including the first and second outer yoke members 14 and 15 is fixed by the outer shell member 16 has been described as an example. As shown in the figure, a linear motor 10 </ b> B performed by the fixed band 40, the bolt 41, and the nut 42 may be configured (third embodiment). As shown in FIG. 8, the fixed band 40 includes a band main body 43 wound around the outer yoke member 12 and flange portions 44 connected to both ends of the band main body 43. When the flange portion 44 is fastened by the bolt 41 and the nut 42, the fixing band 40 is reduced in diameter, so that the outer yoke member 12 including the first and second outer yoke members 14 and 15 is tightened, and furthermore, the fixing thereof is performed. I'm trying to do it. In the third embodiment, three fixed bands 40 are used. The number of the fixed bands 40 may be four or more, or two or one.
[0028]
In each of the above embodiments, the case where the coil 25 and the iron core member 17 (17A) are provided on the inner peripheral surface portion 22 of the outer yoke member 12 and the magnet 30 is mounted on the outer peripheral surface portion 26 of the center yoke 13 has been described. Alternatively, the coil and the iron core member may be provided on the outer peripheral surface 26 of the center yoke 13, and the magnet may be provided on the inner peripheral surface 22 of the outer yoke member 12. In this case, an annular groove (not shown) for fitting an iron core member is formed in the outer peripheral surface portion 26 of the center yoke 13 instead of the inner peripheral surface portion 22 of the outer yoke member 12, while the iron core member is of a split type. . The split-type iron core member is configured such that, for example, a plurality of arc-shaped iron cores are combined by assembly to form an annular shape. In this case, it is configured such that adjacent arc-shaped iron cores are securely joined so as not to be separated.
In each of the above embodiments, the outer yoke as the first elongate member has a cylindrical shape. However, the present invention is not limited to this, and the first yoke may have a polygonal first shape such as a hollow square shape. May be used.
[0029]
【The invention's effect】
According to the invention described in any one of the first to third aspects, a predetermined interval in the axial direction is provided on a peripheral surface portion of the first and second elongated members on which the coil and the iron core are provided. Thus, since the groove for fixing the iron core is formed, it is possible to fit iron core members having different radial thicknesses into the groove without changing the depth of the groove. For this reason, it is possible to configure a plurality of types of linear motors having different thrusts by commonly using the longitudinal members provided with the coil and the iron core, thereby improving versatility and productivity.
[0030]
According to the fourth aspect of the present invention, since the first elongated member is divided into at least two in the longitudinal direction, the coil and the iron core can be easily assembled.
According to the invention as set forth in claim 5, since the outer member that integrates each divided body is fitted to the outer periphery of the divided body of the first elongated member, the joining strength of the first elongated member is reduced. The first elongated member can be maintained in a cylindrical shape even when subjected to an external force such as bending or twisting, and good performance can be secured.
[0031]
According to the invention as set forth in claim 6, the iron core has a base end fitted into the groove, and a protrusion connected to the base end is arranged between adjacent coils; A wide portion formed on the front end side so as to face the peripheral surface portion of the adjacent coil, so that a variation in generated force (a variation corresponding to a cogging torque in a rotary motor) can be reduced, It is possible to easily increase the thrust by making the magnetic flux of the iron core work without waste. Furthermore, since the core member is mounted on the outer yoke member and assembled, although the wide portion is provided, the coil can be easily and reliably mounted, and the performance improvement using the wide portion can be reliably achieved. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing a linear motor according to a first embodiment of the present invention.
FIG. 2 is a sectional view taken along line AA of FIG.
FIG. 3 is a perspective view showing a first outer yoke member of FIG. 1;
FIG. 4 is a cross-sectional view showing a state in which a coil and an iron core member are mounted on a first outer yoke member of FIG. 3;
FIG. 5 is a sectional view showing an end side of the first outer yoke member of FIG. 1;
6 is a cross-sectional view showing a state where an iron core member having a radial thickness different from that of the iron core member of FIG. 1 is mounted on the first outer yoke member of FIG. 1;
FIG. 7 is a sectional view showing a linear motor (second embodiment) using an iron core member having a wide portion.
FIG. 8 is a front view showing a linear motor (third embodiment) using a fixed band.
FIG. 9 is a perspective view showing one divided body of a divided type cylindrical stator used for an example of a conventional linear motor.
FIG. 10 is a cross-sectional view showing an example of a conventional linear motor using one divided body of the cylindrical stator of FIG.
11 is a cross-sectional view for explaining a problem when an iron core having a large radial thickness is used for the cylindrical stator of FIG. 9;
FIG. 12 is a cross-sectional view for describing a problem that occurs when a wide portion is provided in an iron core portion of the cylindrical stator in FIG. 9;
[Explanation of symbols]
10 Linear motor 12 Outer yoke member (first longitudinal member)
13 center yoke (second longitudinal member)
16 Outer shell 17, 17A Iron core (iron core)
23 annular groove (groove)
25 coil 32 wide section

Claims (6)

軸方向に延びる中空部を有する第1の長手状部材と、該第1の長手状部材に出入り可能な第2の長手状部材と、第1の長手状部材の内周面部及び前記第2の長手状部材の外周面部のうち一方に軸方向に並べて設けられる複数のコイルと、第1の長手状部材の内周面部及び前記第2の長手状部材の外周面部のうち他方に軸方向に並べて設けられる複数の磁石と、前記複数のコイルの隣接するコイル間に設けられた鉄心と、を備えたリニアモータにおいて、
前記第1、第2の長手状部材のうち前記コイル及び鉄心が設けられる方の長手状部材の周面部には、軸方向に所定間隔で、前記鉄心を固定するための溝部を形成したことを特徴とするリニアモータ。
A first elongate member having a hollow portion extending in the axial direction, a second elongate member capable of entering and exiting the first elongate member, an inner peripheral surface portion of the first elongate member, and the second elongate member. A plurality of coils provided in one of the outer peripheral surface portions of the longitudinal member in the axial direction, and a plurality of coils arranged in the axial direction on the other of the inner peripheral surface portion of the first longitudinal member and the outer peripheral surface portion of the second longitudinal member. In a linear motor including a plurality of magnets provided and an iron core provided between adjacent coils of the plurality of coils,
A groove for fixing the iron core is formed at predetermined intervals in the axial direction on a peripheral surface portion of the first and second elongated members on which the coil and the iron core are provided. Features a linear motor.
請求項1記載のリニアモータにおいて、前記コイル及び鉄心は前記第1の長手状部材に設けられることを特徴とするリニアモータ。The linear motor according to claim 1, wherein the coil and the iron core are provided on the first elongated member. 請求項1記載のリニアモータにおいて、前記コイル及び鉄心は前記第2の長手状部材に設けられることを特徴とするリニアモータ。The linear motor according to claim 1, wherein the coil and the iron core are provided on the second elongated member. 請求項2記載のリニアモータにおいて、前記第1の長手状部材を縦方向に少なくとも2つに分割したことを特徴とするリニアモータ。3. The linear motor according to claim 2, wherein the first elongated member is divided into at least two in a vertical direction. 請求項4記載のリニアモータにおいて、前記第1の長手状部材の分割体の外周に、各々の分割体を一体とする外郭部材を嵌合したことを特徴とするリニアモータ。5. The linear motor according to claim 4, wherein an outer member integrating each divided body is fitted to an outer periphery of the divided body of the first elongated member. 請求項1から5までのいずれかに記載のリニアモータにおいて、前記鉄心は、基端部が前記溝部に嵌合され、該基端部に連接する突出部が隣接するコイル間に配置される鉄心本体と、該鉄心本体の先端側に前記隣接するコイルの周面部に対面するように延設される幅広部と、からなることを特徴とするリニアモータ。6. The linear motor according to claim 1, wherein a base end of the core is fitted into the groove, and a protrusion connected to the base end is arranged between adjacent coils. A linear motor, comprising: a main body; and a wide portion extending from a distal end side of the iron core main body so as to face a peripheral surface of the adjacent coil.
JP2003154903A 2003-05-30 2003-05-30 Linear motor Pending JP2004357466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154903A JP2004357466A (en) 2003-05-30 2003-05-30 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154903A JP2004357466A (en) 2003-05-30 2003-05-30 Linear motor

Publications (1)

Publication Number Publication Date
JP2004357466A true JP2004357466A (en) 2004-12-16

Family

ID=34049430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154903A Pending JP2004357466A (en) 2003-05-30 2003-05-30 Linear motor

Country Status (1)

Country Link
JP (1) JP2004357466A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187079A (en) * 2004-12-27 2006-07-13 Hitachi Ltd Cylindrical linear motor, electromagnetic suspension and vehicle employing it
JP2007135350A (en) * 2005-11-11 2007-05-31 Shinko Electric Co Ltd Outer movable linear actuator
JP2009100617A (en) * 2007-10-19 2009-05-07 Nippon Thompson Co Ltd Mounting head with built-in shaft type linear motor
KR20100067625A (en) * 2008-12-11 2010-06-21 산요 덴키 가부시키가이샤 Linear synchronous motor
JP2011160534A (en) * 2010-01-29 2011-08-18 Sanyo Denki Co Ltd Linear synchronous motor
EP2662962A3 (en) * 2012-05-11 2016-05-04 Waltec Maschinen GmbH Linear motor designed according to the longitudinal flow principle
WO2021256195A1 (en) * 2020-06-15 2021-12-23 株式会社神戸製鋼所 Linear motor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006187079A (en) * 2004-12-27 2006-07-13 Hitachi Ltd Cylindrical linear motor, electromagnetic suspension and vehicle employing it
JP2007135350A (en) * 2005-11-11 2007-05-31 Shinko Electric Co Ltd Outer movable linear actuator
JP2009100617A (en) * 2007-10-19 2009-05-07 Nippon Thompson Co Ltd Mounting head with built-in shaft type linear motor
KR20100067625A (en) * 2008-12-11 2010-06-21 산요 덴키 가부시키가이샤 Linear synchronous motor
JP2011083175A (en) * 2008-12-11 2011-04-21 Sanyo Denki Co Ltd Linear synchronous motor
KR101642377B1 (en) * 2008-12-11 2016-07-25 산요 덴키 가부시키가이샤 Linear synchronous motor
JP2011160534A (en) * 2010-01-29 2011-08-18 Sanyo Denki Co Ltd Linear synchronous motor
US8487485B2 (en) 2010-01-29 2013-07-16 Sanyo Denki Co., Ltd. Linear synchronous motor
EP2662962A3 (en) * 2012-05-11 2016-05-04 Waltec Maschinen GmbH Linear motor designed according to the longitudinal flow principle
WO2021256195A1 (en) * 2020-06-15 2021-12-23 株式会社神戸製鋼所 Linear motor
JP7335854B2 (en) 2020-06-15 2023-08-30 株式会社神戸製鋼所 linear motor

Similar Documents

Publication Publication Date Title
JP3454234B2 (en) Split core motor
US7560844B2 (en) Permanent magnet rotary motor
US6476533B2 (en) Stator for starter motor
JP5657085B1 (en) Rotating electric machine and method for manufacturing stator for rotating electric machine
JP2001103690A (en) Stator for rotary electric machine
US20170149295A1 (en) Electric motor
WO2014119239A1 (en) Rotor and motor
JP2004357466A (en) Linear motor
WO2021131575A1 (en) Coil, stator comprising same, and motor
JP2009177907A (en) Stator of rotary electric machine, and rotary electric machine with the same
EP1341288A2 (en) Electric rotary machine
JP2000184643A (en) Outer rotor for wheel-in motor
JP2009100490A (en) Rotary machine and manufacturing method thereof
JPH08205434A (en) Laminated core for stator
JP2008043139A (en) Electric motor
JP2007143325A (en) Stator structure of electric motor
WO2015114794A1 (en) Axial gap type rotating electric machine
JP5109737B2 (en) Method for manufacturing split stator core
JP6733568B2 (en) Rotating electric machine
JP2002315236A (en) Stator of internal rotating motor
JP6099582B2 (en) Rotating electrical machine laminated iron core, stator, rotating electrical machine
JP4680875B2 (en) Stator core manufacturing method
JP2004080950A (en) Armature of dynamo-electric machine
JP2005295675A (en) Cylinder type linear motor
JP2011166934A (en) Electric motor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20041129

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080910