【0001】
【発明の属する技術分野】
本発明は、固体高分子から成る電解質膜を用い、電気化学反応により電気エネルギーを得る固体高分子型燃料電池に関するものである。
【0002】
【従来の技術】
燃料電池は、電極反応による生成物が原理的に水であり、地球環境への悪影響がほとんど無いクリーンな発電システムである。とくに、近年では、発電用や低公害の自動車用の電源等として種々の用途が期待されている。この中で、固体高分子型燃料電池は、一般的に80℃程度の温度で作動させることができ、他の燃料電池、例えばリン酸型燃料電池、溶融炭酸塩型燃料電池及び固体酸化物型燃料電池等と比較して、取り扱いが容易であり、出力密度が極めて大きいなどの利点を有している。
【0003】
固体高分子型燃料電池は、通常、プロトン伝導性を有する固体高分子膜である電解質膜の両面に一対の電極を設けて、これを発電単位となる単セルとし、この単セルを多数積層して構成してある。そして、燃料となる水素ガス等を燃料極に供給し、酸素ガス又は空気を空気極に供給して起電力を得る。なお、固体高分子電解質膜としては、米国デュポン社製のナフィオン(登録商標)に代表されるパーフルオロカーボンスルホン酸膜が用いられている。また、固体高分子型燃料電池を作動させる温度は、上述のように80℃程度であるが、触媒活性の向上、排熱の有効利用及び冷却効率の向上等の観点から、さらに作動温度を高くすることが望まれている。
【0004】
ところで、高温で固体高分子型燃料電池を作動させる場合には、高分子材料からなる電解質膜に問題が生じる。すなわち、先述したように、電解質膜には、ナフィオン膜に代表されるパーフルオロカーボンスルホン酸膜が用いられているが、これは非架橋であるため、耐熱性が低く、ガラス転移温度近傍でクリープするといった性質がある。
【0005】
このため、パーフルオロ系電解質膜に圧力を加え続けると、クリープを生じて膜厚が減少する。このクリープは、膜内に水を充分に含んでいるほど生じ易く、温度が高いほど進行が早く、また、高い圧力が局所的に加えられているほど進行が早くなる。これに対して、固体高分子型燃料電池では、電極と集電体との間や集電体とセパレータとの間の電気的接触を良好に保つために、積層方向に一定圧力で締め付けて構成してあり、電解質膜は加圧圧縮された状態にある。
【0006】
さらに、電解質膜は、プロトン伝導性を維持するために、飽和に含水されて使用され、加湿された運転温度で使用されるため、クリープが生じ易い条件下にある。このときに生じるクリープ変形量は、電解質膜が晒される条件に依存するので、単セルの面内で一様ではなく、例えば温度の高い部分では、変形量が大きくなって膜厚が薄くなると、ガスのクロスリーク量すなわちアノードとカソード間のガスの漏れ量が増加して電池性能が低下する。また、膜厚が薄くなった部分では引張り強度が低下するので、長時間運転を継続すると、アノードガスとカソードガスの圧力差等によって膜厚の薄くなった部分が破損し、電池の運転が不可能になる恐れがある。
【0007】
そこで、固体高分子の電解質膜に加わる応力の集中を回避する構造として、電解質膜の両面に電極を介して二つのセパレータを設ける際に、ガスの流通溝を形成するリブ(凸状隔壁)の位置を互いにずらして両セパレータを組み込む構造が提案されていた(特許文献1参照)。
【0008】
また、同じく電解質膜に加わる応力の集中を回避する構造として、電解質膜の両面に、適量に選定された厚さを有するスペーサを設けてセパレータで挟持する構造が提案されており(特許文献2参照)、さらに、アノードガス及びカソードガスの近傍領域における電解質膜の膜厚の一部を高分子電解質の膜厚よりも厚くする構造も提案されていた(特許文献3参照)。
【0009】
【特許文献1】
特開平6−333581号公報
【特許文献2】
特開平6−333582号公報
【特許文献3】
特開2002−305008号公報
【0010】
【発明が解決しようとする課題】
しかしながら、特許文献1の構造では、セパレータの加工に伴う寸法誤差や組み立て時に生じる寸法誤差により、相対するセパレータのリブ部(凸状隔壁)が局所的に対向して力を及ぼし、極めて大きな応力集中を生じる恐れがあった。
【0011】
また、特許文献2の構造では、電解質膜の電極反応部に加わる応力は相対的に低下するが、温度差によって圧縮クリープが電極反応部の一部で生じる場合、必ずしも有効ではなかった。
【0012】
さらに、特許文献3の構造では、局所的な電解質膜の凸形状が触媒層と集電体との接触抵抗を増大させる恐れがあり、さらには、積層した単セルをセパレータ及びエンドプレートで挟持して締付けた際に、均一な圧力がかからないため、これも接触抵抗の増大となる恐れがあった。
【0013】
【発明の目的】
本発明は、上記従来の状況に鑑みて成されたものであって、電解質膜のクリープによる局所的な膜厚低下を効果的に抑制し、長期間にわたって安定して且つ高い温度で運転することができる固体高分子型燃料電池とその製造方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明の固体高分子型燃料電池は、固体高分子から成る電解質膜の両面に少なくとも電極触媒粒子及びプロトン伝導性ポリマーを含む触媒層を設けた膜電極接合体と、膜電極接合体を挟持する一組のセパレータを備えた固体高分子型燃料電池において、電解質膜及び触媒層の少なくとも一方にクリープ保護層を形成したことを特徴としている。
【0015】
また、本発明の固体高分子型燃料電池の製造方法は、上記固体高分子型燃料電池を製造するに際し、電解質膜及び触媒層の少なくとも一方に、溶媒に溶解したポリマーを塗布し、このポリマーを乾燥させてクリープ保護層を形成すること特徴としている。
【0016】
【発明の効果】
本発明の固体高分子型燃料電池によれば、電解質膜にクリープによる変形が生じても、クリープ保護層により電解質膜のガスクロスリーク等を生じる恐れを回避することができ、長期間にわたって安定して且つ高い温度で運転することが可能になる。
【0017】
また、本発明の固体高分子型燃料電池の製造方法によれば、ポリマーを有機溶媒等に溶解したポリマー溶液を用いてクリープ保護層を形成することにより、クリープ保護層を容易に形成することができると共に、このクリープ保護層を備えた固体高分子型燃料電池を容易に製造することができる。
【0018】
【発明の実施の形態】
図1に示す固体高分子型燃料電池は、プロトン伝導性を有する固体高分子から成る電解質膜1の両面に、クリープ保護層2,2を介して、酸素電極(カソード)3と燃料電極(アノード)4を設けて、膜電極接合体(MEA:Membrane Electroide Assembly)を形成し、両電極3,4の外側に、反応ガスが流れる流通溝5a,6aを形成するセパレータ5,6を設けると共に、各セパレータ5,6の外側に、集電板7,8を夫々設けて、発電単位となる単セルを構成している。
【0019】
各電極3,4は、クリープ保護層2側から、触媒層3A,4Aと、カーボン層3B,4Bと、ガス拡散層3C,4Cを備えている。触媒層3A,4Aは、白金等の触媒を担持させ且つ電解質層1と同種又は異種のイオン交換樹脂で被覆したカーボン粒子、プロトン伝導性を有するポリマー及び撥水性を有するポリマー等の材料で形成してあり、カーボン粒子の二次粒子間に形成された微小な空隙部が反応ガスの拡散流路として機能する。
【0020】
カーボン層3B,4Bは、撥水性ポリマーを含浸させたカーボンペーパー、カーボンクロス及びカーボン不織布等で形成してある。ガス拡散層3C,4Cは、ポーラスカーボンから成り、カーボン層3B,4Bを通して触媒層3A,4Aに反応ガスを供給すると共に、触媒層3A,4Aで発生した電荷を集電する。
【0021】
そして、上記の固体高分子型燃料電池は、多数枚を積層して燃料電池積層体を構成し、酸素電極3の流通溝5aに酸素ガス又は空気を供給すると共に、燃料電極4側の流通溝6aに水素ガスを供給すると、電気化学反応が生じて電気エネルギーを発生する。
【0022】
ここで、上記の固体高分子型燃料電池は、電解質膜1と各電極3,4の間にクリープ保護層2を備えていることから、電解質膜1にクリープによる変形が生じても、電解質膜1のガスクロスリーク等を生じる恐れがなく、長期間にわたって安定して高い温度で運転することを可能にしている。
【0023】
クリープ保護層2は、材料としては、イオン伝導性の高分子ポリマーであればとくに限定されるものではないが、具体的には、スルホン酸型ポリエーテルスルホン系ポリマー、スルホン酸型ポリエーテルエーテルケトン系ポリマー、スルホン酸型ポリアリレンエーテルスルホン系ポリマー、スルホン酸型ポリイミダゾール系ポリマー、及びスルホン酸型ポリイミド系ポリマー等が挙げられる。
【0024】
また、クリープ保護層2は、その膜厚(X)が、0.001〜30μmであることが好ましく、より好ましくは0.1〜30μmmとする。これは、0.001μm未満では、均一な成膜が難しく、電解質膜1のクリープ保護層としての充分な効果を得ることができないからであり、また、30μmを超えると、電気抵抗が増大し、電池を構成した際に充分な電池特性が得られないからである。したがって、クリープ保護層2の膜厚(X)を上記範囲とすることにより、均一な成膜を行うことができ、電解質膜1の保護層として充分に機能すると共に、電気抵抗の増大による電池特性の低下を防止することができる。
【0025】
さらに、クリープ保護層2は、その膜厚(X)と電解質膜1の膜厚(Y)との比率(X)/(Y)が、0.001〜0.65であることが好ましく、より好ましくは0.05〜0.3とする。これは、0.001未満では、電解質膜1のクリープ保護層としての充分な効果を得ることができないからであり、また、0.65を超えると、電気抵抗が増大し、電池を構成した際に充分な電池特性が得られないからである。したがって、クリープ保護層2の膜厚(X)と電解質膜1の膜厚(Y)との比率(X)/(Y)を上記範囲とすることにより、電解質膜1の保護層として充分に機能すると共に、電気抵抗の増大による電池特性の低下を防止することができる。
【0026】
さらに、クリープ保護層2は、そのイオン伝導度が、電池運転温度域において、0.0001S/cm以上であることが好ましく、より好ましくは0.01 S/cm以上とする。これは、0.0001 S/cm未満では、電気抵抗が増大し、電池を構成した際に充分な電池特性が得られないからである。したがって、クリープ保護層2のイオン伝導度を上記値以上にすることにより、電気抵抗の増大による電池特性の低下を防止することができる。
【0027】
さらに、クリープ保護層2は、その熱分解温度が、電解質膜1の熱分解温度よりも大きいことが好ましい。これは、熱重量測定における熱分解温度は、電解質膜1が230℃近傍にあるため、クリープ保護層2の熱分解温度がこの近傍あるいはそれ以下である場合、高い温度での運転において耐熱性の面で問題となる恐れがあるからである。したがって、クリープ保護層2の熱分解温度を上記の如く設定することにより、高い温度での運転において充分な耐熱性が得られることとなる。
【0028】
さらに、クリープ保護層2は、その引張りクリープ強度が、電解質膜1の引張り強度よりも大きいことが望ましい。これは、高い温度で運転を行った場合、クリープによって電解質膜1の膜厚が薄くなることで引張り強度が低下し、アノードガスとカソードガスの圧力差等によって膜の破断が発生する恐れがあるからであり、クリープ保護層2の引張り強度が電解質膜1と同程度あるいはそれ以下である場合、機械的強度や長時間運転の耐久性等でクリープ保護層としての充分な効果が得られなくなる恐れがあるからである。したがって、クリープ保護層2の引張りクリープ強度を上記の如く設定することにより、機械的強度や長時間運転の耐久性等の面で充分な機能を得ることができる。
【0029】
上記のクリープ保護層2は、先述したポリマーを有機溶媒等に溶解したポリマー溶液を作製し、電解質膜1及び触媒層3A,4Aの少なくとも一方に、スプレー法及びカーテンコーター法等により上記ポリマー溶液を塗布し、このポリマーを乾燥させることによって容易に形成することができ、ひいては当該固体高分子型燃料電池の製造の簡略化にも貢献し得るものとなる。
【0030】
また、クリープ保護層2は、ポリテトラフルオロエチレンやポリエチレンテレフタレート等の平面シート上に上記方法を用いてクリープ保護層2を形成し、これを電解質膜1上あるいは触媒層3A,4A上に転写するデカール法を用いることでも容易に製造することができる。
【0031】
【実施例】
以下、本発明の固体高分子型燃料電池の実施例を比較例とともに説明するが、本発明の固体高分子型燃料電池は各実施例に限定されるものではない。
【0032】
(実施例1)
固体高分子型燃料電池の基本構造は、先に説明した図1に示すものであって、電解質膜1と触媒層3A,4Aの間にクリープ保護層2を備えている。
【0033】
本実施例において、クリープ保護層2を含む膜電極接合体は、次の手順により作製した。白金担持カーボン(田中貴金属製、10V30E:ValcanXc−72に白金を30wt%担持)と、純水及び陽イオン交換樹脂(アルドリッチ社製、5重量%ナフィオン溶液)とを混合分散してスラリー溶液を調整した。また、電極基材として、厚さ0.27mmのカーボンペーパー(東レ社製TGP−H−090)を60×60mmに切り出したものを用いた。
【0034】
カーボンペーパーは、撥水処理として、テトラフルオロエチレン分散液(ダイキン工業社製D−1E)を純水で希釈した溶液に2分間浸漬した後、60℃にて10分間乾燥し、さらにその後、大気雰囲気下350℃にて60分間熱処理を行った。処理後に得られたカーボンペーパーには、テトラフルオロエチレン粒子が25wt%含浸されている。
【0035】
次に、撥水処理済みのカーボンペーパーの片面に、カーボンブラック(ファーネスブラック)粒子及びポリテトラフルオロエチレン(PTFE)粒子をイソプロピルアルコール(IPA)に均一に分散させて成るスラリー溶液をダイコータ法により塗布し、これを乾燥させてカーボン層3B、4B及びガス拡散層3C,4Cを形成した。
【0036】
次に、ガス拡散層3C,4Cのカーボン塗布済みの面に、白金担持量が0.40mg/cm2となるように調整済みのスラリー溶液をダイコーター法により塗布し、これを風乾して電極素材を得た。この電極素材を50mm×50mmに切り出して電極を形成した。
【0037】
次に、ポリエーテルエーテルケトン(アルドリッチ社製)を発煙硫酸中に入れて、イオン交換容量(1gあたりのスルホン酸基のミリ等量)が2.2meq/gになるまでスルホン化し、スルホン化ポリエーテルエーテルケトンを得た。そして、スルホン化ポリエーテルエーテルケトンをN−メチルピロリジン(アルドリッチ社製)に還流溶解し、濃度15wt%のスルホン化ポリエーテルエーテルケトンを生成した。さらに、電極上に、スルホン化ポリエーテルエーテルケトン溶液を膜厚が5μmとなるようにスプレーコートし、これを風乾してクリープ保護層2を形成した。
【0038】
次に、固体高分子電解質膜1として、ナフィオン112(デュポン社製、膜厚50μm)を100×100mmに切り出したものを用い、この電解質膜1、クリープ保護層2及び各電極3,4を120℃、5MPaの条件で3分間ホットプレスすることで膜電極接合体(MEA)を得た。そして、膜電極接合体をセパレータ5,6で挟持し、これを集電板7,8で挟持して固体高分子型燃料電池(単セル)を作製した。
【0039】
上記の燃料電池において、ガス圧力0.2MPa、セル温度120℃とし、燃料に水素ガスを用いると共に、酸化剤に空気ガスを用い、両反応ガスを120℃で加湿して供給し、電流密度1A/cm2の時のセル電位を測定した。
【0040】
セル抵抗の測定は、上記セル電位の測定と同じ条件下であって、燃料電極3及び空気電極4の各集電板7,8にACミリオームメータ(HIOKI電機製、3560ACミリオームハイテスタ)を接続して、電流密度1A/cm2の時のセル抵抗(Ω/cm2)を測定した。
【0041】
クリープ保護層2のイオン伝導度の測定は、プリント基板上に5本の白金線(直径0.2mm)を0.5mmの間隔に配置した冶具に、短冊状に切断した試料を押し当て、120℃、95%R.H.の恒温・恒湿オーブン(ナガノ科学機械製作所、LH−20−01)中に試料を保持し、白金線間の10kHzにおける交流インピーダンスをソーラトロン社製1250 FREEQUENCY RESPONSE ANALYZERにより測定した。この際、極間距離を変化させて測定し、極間距離と抵抗測定値をプロットした勾配から以下の式(1)により膜と白金線間の接触抵抗をキャンセルした伝導度を算出した。
伝導度(S/cm)=
1/膜厚(cm)×膜厚(cm)×抵抗極間勾配(Ω/cm)…(1)
【0042】
TGA測定は、島津製作所TGA−50を用い、試料約3mgについてアルゴン雰囲気下で測定した。昇温は5℃/minで150℃にした後、約30分間保持して試料の水分を除去し、さらに5℃/minで450℃まで測定した。200℃に昇温した時点の試料重量を基準にして、その3%が減少した時点の温度を3%重量減少温度と定義する。
【0043】
引張りクリープ強度試験は、東洋精機製作所製クリープ試験機、K100−6−T−HSを用い、120℃、95%R.H.、荷重20kg/cm2下でのクリープ伸び率(%)を測定した。
【0044】
(実施例2)
実施例1におけるクリープ保護層2の膜厚を10μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0045】
(実施例3)
実施例1におけるクリープ保護層の膜厚を15μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0046】
(実施例4)
実施例1における固体高分子電解質膜1をナフィオン111(デュポン社製、膜厚25μm)とし、クリープ保護層2の膜厚を2.5μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0047】
(実施例5)
実施例1における固体高分子電解質膜1をナフィオン111(デュポン社製、膜厚25μm)とし、クリープ保護層2の膜厚を5μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0048】
(実施例6)
実施例1における固体高分子電解質膜1をナフィオン111(デュポン社製、膜厚25μm)とし、クリープ保護層2の膜厚を7.5μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0049】
(実施例7)
実施例1における電極に200メッシュ、線径0.05mmのパターン板を配置し、その上にスルホン化ポリエーテルエーテルケトン溶液をスプレー塗布し、これを風乾して網目構造のクリープ保護層2を得た。クリープ保護層2の凸部での厚みは10μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0050】
(比較例1)
実施例1におけるクリープ保護層2を配置せず、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0051】
(比較例2)
実施例1におけるクリープ保護層2の膜厚を0.005μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0052】
(比較例3)
実施例1におけるクリープ保護層2の膜厚を40μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
【0053】
(比較例4)
実施例1におけるクリープ保護層2を陽イオン交換樹脂(アルドリッチ社製、5重量%ナフィオン溶液)から作製し、その膜厚を10μmとし、他の条件は、実施例1と同じにして膜電極接合体を作製し、実施例1と同じ評価を行った。
上記実施例1〜7及び比較例1〜4の結果を表1に示す。
【0054】
【表1】
【0055】
表1から明らかなように、実施例1〜7では、比較例1〜4に比べて、充分なセル電位が得られるうえにセル抵抗が極めて小さく、また、クリープ伸び率も非常に小さいものとなる。すなわち、実施例1〜7の固体高分子型燃料電池は、比較例1〜4に比べて優れた電池特性を有し、電解質膜1のクリープによる局所的な膜厚低下を効果的に抑制し、長期間にわたって安定して且つ高い温度で運転し得るものとなる。
【図面の簡単な説明】
【図1】本発明の固体高分子型燃料電池の一実施形態を示す要部の断面図である。
【符号の説明】
1 電解質膜
2 クリープ保護層
3 酸素電極
4 燃料電極
3A 4A 触媒層
5 6 セパレータ
5a 6a 流通溝[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell that uses a solid polymer electrolyte membrane to obtain electric energy by an electrochemical reaction.
[0002]
[Prior art]
A fuel cell is a clean power generation system in which the product of the electrode reaction is water in principle, and has almost no adverse effect on the global environment. In particular, in recent years, various uses are expected as power sources for power generation and low-emission vehicles. Among them, a polymer electrolyte fuel cell can generally be operated at a temperature of about 80 ° C., and other fuel cells such as a phosphoric acid fuel cell, a molten carbonate fuel cell, and a solid oxide fuel cell can be used. Compared to a fuel cell or the like, it has advantages such as easy handling and extremely high output density.
[0003]
A polymer electrolyte fuel cell is usually provided with a pair of electrodes on both sides of an electrolyte membrane, which is a solid polymer membrane having proton conductivity, and used as a unit cell as a power generation unit. It is configured. Then, hydrogen gas or the like serving as fuel is supplied to the fuel electrode, and oxygen gas or air is supplied to the air electrode to obtain an electromotive force. As the solid polymer electrolyte membrane, a perfluorocarbon sulfonic acid membrane represented by Nafion (registered trademark) manufactured by DuPont, USA is used. The temperature at which the polymer electrolyte fuel cell is operated is about 80 ° C. as described above. However, from the viewpoints of improvement in catalytic activity, effective use of exhaust heat, and improvement in cooling efficiency, the operating temperature is further increased. It is desired to do.
[0004]
Meanwhile, when operating a polymer electrolyte fuel cell at a high temperature, a problem occurs in the electrolyte membrane made of a polymer material. That is, as described above, for the electrolyte membrane, a perfluorocarbon sulfonic acid membrane typified by a Nafion membrane is used, but since it is non-crosslinked, it has low heat resistance and creeps near the glass transition temperature. There is such a property.
[0005]
Therefore, if pressure is continuously applied to the perfluoro-based electrolyte membrane, creep occurs and the film thickness decreases. This creep is more likely to occur as the film contains more water, the faster the temperature is, the faster the progress is, and the higher the pressure is applied locally, the faster the creep is. In contrast, a polymer electrolyte fuel cell is configured to be tightened at a constant pressure in the stacking direction to maintain good electrical contact between the electrode and the current collector or between the current collector and the separator. The electrolyte membrane is in a compressed state.
[0006]
Furthermore, the electrolyte membrane is used under a saturating condition to maintain proton conductivity, and is used at a humidified operating temperature, so that the electrolyte membrane is in a condition where creep easily occurs. Since the amount of creep deformation generated at this time depends on the conditions to which the electrolyte membrane is exposed, the creep deformation is not uniform in the plane of the single cell. The amount of gas cross leak, that is, the amount of gas leak between the anode and the cathode increases, and the battery performance decreases. In addition, since the tensile strength is reduced in the portion where the film thickness is reduced, if the operation is continued for a long time, the portion where the film thickness is reduced due to the pressure difference between the anode gas and the cathode gas or the like is damaged, and the operation of the battery becomes improper. May be possible.
[0007]
Therefore, as a structure for avoiding the concentration of stress applied to the solid polymer electrolyte membrane, when two separators are provided on both surfaces of the electrolyte membrane via electrodes, ribs (convex partition walls) forming gas flow grooves are formed. A structure has been proposed in which the positions are shifted from each other to incorporate both separators (see Patent Document 1).
[0008]
Similarly, as a structure for avoiding the concentration of stress applied to the electrolyte membrane, a structure has been proposed in which spacers having an appropriately selected thickness are provided on both sides of the electrolyte membrane and sandwiched between separators (see Patent Document 2). Further, a structure has been proposed in which a part of the thickness of the electrolyte membrane in the region near the anode gas and the cathode gas is made thicker than the thickness of the polymer electrolyte (see Patent Document 3).
[0009]
[Patent Document 1]
JP-A-6-333581 [Patent Document 2]
Japanese Patent Application Laid-Open No. 6-333852 [Patent Document 3]
JP, 2002-305008, A
[Problems to be solved by the invention]
However, in the structure of Patent Literature 1, the ribs (convex partition walls) of the opposing separators locally oppose each other and exert a force due to a dimensional error due to processing of the separator or a dimensional error generated at the time of assembly. Could occur.
[0011]
Further, in the structure of Patent Literature 2, the stress applied to the electrode reaction part of the electrolyte membrane is relatively reduced, but it is not always effective when compressive creep occurs in a part of the electrode reaction part due to a temperature difference.
[0012]
Furthermore, in the structure of Patent Literature 3, the local convex shape of the electrolyte membrane may increase the contact resistance between the catalyst layer and the current collector, and further, the stacked single cells are sandwiched between the separator and the end plate. Since no uniform pressure is applied when tightening, there is a possibility that this also increases the contact resistance.
[0013]
[Object of the invention]
The present invention has been made in view of the above-described conventional circumstances, and effectively suppresses local thickness reduction due to creep of an electrolyte membrane, and operates stably at a high temperature for a long period of time. It is an object of the present invention to provide a polymer electrolyte fuel cell and a method of manufacturing the same.
[0014]
[Means for Solving the Problems]
The polymer electrolyte fuel cell of the present invention sandwiches a membrane electrode assembly in which a catalyst layer containing at least electrode catalyst particles and a proton conductive polymer is provided on both surfaces of an electrolyte membrane made of a solid polymer, and a membrane electrode assembly. A polymer electrolyte fuel cell including a set of separators is characterized in that a creep protection layer is formed on at least one of the electrolyte membrane and the catalyst layer.
[0015]
In the method for producing a polymer electrolyte fuel cell according to the present invention, in producing the polymer electrolyte fuel cell, a polymer dissolved in a solvent is applied to at least one of an electrolyte membrane and a catalyst layer, and the polymer is applied. The creep protection layer is formed by drying.
[0016]
【The invention's effect】
According to the polymer electrolyte fuel cell of the present invention, even if the electrolyte membrane is deformed by creep, the creep protection layer can avoid the risk of gas cross leak or the like of the electrolyte membrane, and can be stably performed for a long period of time. In addition, it is possible to operate at a high temperature.
[0017]
Further, according to the method of manufacturing a polymer electrolyte fuel cell of the present invention, the creep protection layer can be easily formed by forming the creep protection layer using a polymer solution in which a polymer is dissolved in an organic solvent or the like. In addition, a polymer electrolyte fuel cell having the creep protection layer can be easily manufactured.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
In the polymer electrolyte fuel cell shown in FIG. 1, an oxygen electrode (cathode) 3 and a fuel electrode (anode) are provided on both sides of an electrolyte membrane 1 made of a solid polymer having proton conductivity via creep protection layers 2 and 2. ) 4 to form a membrane electrode assembly (MEA: Membrane Electrode Assembly), and separators 5, 6 forming flow grooves 5 a, 6 a through which a reaction gas flows are provided outside both electrodes 3, 4. Current collecting plates 7 and 8 are provided outside each of the separators 5 and 6, respectively, to constitute a single cell as a unit of power generation.
[0019]
Each of the electrodes 3 and 4 includes, from the creep protection layer 2 side, catalyst layers 3A and 4A, carbon layers 3B and 4B, and gas diffusion layers 3C and 4C. The catalyst layers 3A and 4A are formed of a material such as carbon particles carrying a catalyst such as platinum and coated with the same or different ion exchange resin as the electrolyte layer 1, a polymer having proton conductivity, and a polymer having water repellency. The minute voids formed between the secondary particles of the carbon particles function as reaction gas diffusion channels.
[0020]
The carbon layers 3B and 4B are formed of carbon paper impregnated with a water-repellent polymer, carbon cloth, carbon nonwoven fabric, or the like. The gas diffusion layers 3C and 4C are made of porous carbon, supply a reaction gas to the catalyst layers 3A and 4A through the carbon layers 3B and 4B, and collect electric charges generated in the catalyst layers 3A and 4A.
[0021]
The above-mentioned polymer electrolyte fuel cell stacks a large number of fuel cells to form a fuel cell stack, supplies oxygen gas or air to the flow grooves 5a of the oxygen electrode 3, and supplies the flow grooves on the fuel electrode 4 side. When hydrogen gas is supplied to 6a, an electrochemical reaction occurs to generate electric energy.
[0022]
Here, since the above-mentioned polymer electrolyte fuel cell includes the creep protection layer 2 between the electrolyte membrane 1 and each of the electrodes 3 and 4, even if the electrolyte membrane 1 is deformed by creep, the electrolyte membrane 1 There is no danger of causing gas cross leak or the like, and it is possible to operate stably at a high temperature for a long period of time.
[0023]
The material for the creep protective layer 2 is not particularly limited as long as it is an ion conductive high molecular polymer, and specifically, a sulfonic acid type polyether sulfone polymer, a sulfonic acid type polyether ether ketone, and the like. Polymer, sulfonic acid type polyarylene ether sulfone type polymer, sulfonic acid type polyimidazole type polymer, sulfonic acid type polyimide type polymer and the like.
[0024]
The creep protection layer 2 preferably has a thickness (X) of 0.001 to 30 μm, and more preferably 0.1 to 30 μm. This is because if the thickness is less than 0.001 μm, it is difficult to form a uniform film, and a sufficient effect as the creep protection layer of the electrolyte membrane 1 cannot be obtained. If the thickness exceeds 30 μm, the electric resistance increases, This is because sufficient battery characteristics cannot be obtained when a battery is configured. Therefore, when the film thickness (X) of the creep protection layer 2 is in the above range, uniform film formation can be performed, and the creep protection layer 2 functions sufficiently as a protection layer for the electrolyte membrane 1 and has a battery characteristic due to an increase in electric resistance. Can be prevented from decreasing.
[0025]
Further, the ratio (X) / (Y) of the thickness (X) of the creep protection layer 2 to the thickness (Y) of the electrolyte membrane 1 is preferably 0.001 to 0.65, and Preferably, it is 0.05 to 0.3. This is because if it is less than 0.001, a sufficient effect as the creep protection layer of the electrolyte membrane 1 cannot be obtained, and if it exceeds 0.65, the electric resistance increases, and when the battery is constructed. This is because sufficient battery characteristics cannot be obtained. Therefore, by setting the ratio (X) / (Y) of the film thickness (X) of the creep protective layer 2 to the film thickness (Y) of the electrolyte membrane 1 within the above range, it can function sufficiently as a protective layer of the electrolyte membrane 1. In addition, it is possible to prevent a decrease in battery characteristics due to an increase in electric resistance.
[0026]
Further, the creep protection layer 2 preferably has an ionic conductivity of 0.0001 S / cm or more, more preferably 0.01 S / cm or more in a battery operating temperature range. This is because if it is less than 0.0001 S / cm, the electric resistance increases and sufficient battery characteristics cannot be obtained when a battery is formed. Therefore, by setting the ionic conductivity of the creep protection layer 2 to the above value or more, it is possible to prevent a decrease in battery characteristics due to an increase in electric resistance.
[0027]
Further, it is preferable that the creep protection layer 2 has a thermal decomposition temperature higher than the thermal decomposition temperature of the electrolyte membrane 1. This is because the thermal decomposition temperature in the thermogravimetric measurement is about 230 ° C. for the electrolyte membrane 1. Therefore, when the thermal decomposition temperature of the creep protection layer 2 is close to or lower than this, the heat decomposition temperature in operation at a high temperature This is because there is a possibility that this may cause a problem. Therefore, by setting the thermal decomposition temperature of the creep protection layer 2 as described above, sufficient heat resistance can be obtained in operation at a high temperature.
[0028]
Further, it is desirable that the creep protection layer 2 has a tensile creep strength higher than that of the electrolyte membrane 1. This is because when the operation is performed at a high temperature, the tensile strength decreases due to the thinning of the electrolyte membrane 1 due to creep, and the membrane may be broken due to a pressure difference between the anode gas and the cathode gas. When the tensile strength of the creep protection layer 2 is equal to or less than that of the electrolyte membrane 1, there is a possibility that a sufficient effect as the creep protection layer may not be obtained due to mechanical strength, durability for long-time operation, and the like. Because there is. Therefore, by setting the tensile creep strength of the creep protection layer 2 as described above, it is possible to obtain a sufficient function in terms of mechanical strength, durability for long-time operation, and the like.
[0029]
For the creep protection layer 2, a polymer solution in which the above-described polymer is dissolved in an organic solvent or the like is prepared, and the polymer solution is applied to at least one of the electrolyte membrane 1 and the catalyst layers 3A and 4A by a spray method, a curtain coater method, or the like. The polymer can be easily formed by coating and drying the polymer, which can contribute to simplification of the production of the polymer electrolyte fuel cell.
[0030]
The creep protection layer 2 is formed on a flat sheet of polytetrafluoroethylene, polyethylene terephthalate or the like by using the above-described method, and is transferred onto the electrolyte membrane 1 or the catalyst layers 3A and 4A. It can also be easily manufactured by using a decal method.
[0031]
【Example】
Hereinafter, examples of the polymer electrolyte fuel cell of the present invention will be described together with comparative examples, but the polymer electrolyte fuel cell of the present invention is not limited to each example.
[0032]
(Example 1)
The basic structure of the polymer electrolyte fuel cell is the same as that shown in FIG. 1 described above, and includes a creep protection layer 2 between the electrolyte membrane 1 and the catalyst layers 3A and 4A.
[0033]
In the present example, a membrane electrode assembly including the creep protection layer 2 was manufactured by the following procedure. A slurry solution is prepared by mixing and dispersing platinum-supported carbon (manufactured by Tanaka Kikinzoku, 10V30E: platinum supported on Valcan Xc-72 at 30 wt%), pure water and a cation exchange resin (5% by weight Nafion solution manufactured by Aldrich). did. As the electrode substrate, a carbon paper (TGP-H-090, manufactured by Toray Industries Co., Ltd.) having a thickness of 0.27 mm cut out to a size of 60 × 60 mm was used.
[0034]
As a water-repellent treatment, the carbon paper is immersed in a solution obtained by diluting a tetrafluoroethylene dispersion (D-1E manufactured by Daikin Industries, Ltd.) with pure water for 2 minutes, dried at 60 ° C. for 10 minutes, and then air. Heat treatment was performed at 350 ° C. for 60 minutes in an atmosphere. The carbon paper obtained after the treatment is impregnated with 25% by weight of tetrafluoroethylene particles.
[0035]
Next, a slurry solution obtained by uniformly dispersing carbon black (furnace black) particles and polytetrafluoroethylene (PTFE) particles in isopropyl alcohol (IPA) is applied to one surface of the water-repellent treated carbon paper by a die coater method. Then, this was dried to form carbon layers 3B and 4B and gas diffusion layers 3C and 4C.
[0036]
Next, a slurry solution adjusted to have a platinum carrying amount of 0.40 mg / cm 2 was applied to the carbon-coated surfaces of the gas diffusion layers 3C and 4C by a die coater method, and this was air-dried to form an electrode. I got the material. This electrode material was cut out to 50 mm × 50 mm to form an electrode.
[0037]
Next, polyetheretherketone (manufactured by Aldrich) is put into fuming sulfuric acid, and sulfonated until the ion exchange capacity (milli-equivalent of sulfonic acid group per 1 g) becomes 2.2 meq / g. Ether ether ketone was obtained. Then, the sulfonated polyetheretherketone was dissolved under reflux in N-methylpyrrolidine (manufactured by Aldrich) to produce a sulfonated polyetheretherketone having a concentration of 15 wt%. Further, a sulfonated polyetheretherketone solution was spray-coated on the electrode so as to have a thickness of 5 μm, and this was air-dried to form a creep protection layer 2.
[0038]
Next, a solid polymer electrolyte membrane 1 cut out from Nafion 112 (manufactured by DuPont, film thickness: 50 μm) into 100 × 100 mm was used, and this electrolyte membrane 1, creep protection layer 2, and electrodes 3, 4 were connected to 120. The membrane and the electrode assembly (MEA) were obtained by hot pressing at 3 ° C. and 5 MPa for 3 minutes. Then, the membrane electrode assembly was sandwiched between separators 5 and 6, and this was sandwiched between current collectors 7 and 8, to produce a polymer electrolyte fuel cell (single cell).
[0039]
In the above fuel cell, the gas pressure was 0.2 MPa, the cell temperature was 120 ° C., hydrogen gas was used as the fuel, air gas was used as the oxidizing agent, and both reaction gases were humidified and supplied at 120 ° C., and the current density was 1 A. / Cm 2 was measured.
[0040]
The cell resistance was measured under the same conditions as the cell potential measurement described above, and an AC milliohm meter (3560 AC milliohm high tester manufactured by HIOKI Electric) was connected to each of the current collector plates 7 and 8 of the fuel electrode 3 and the air electrode 4. Then, the cell resistance (Ω / cm 2 ) at a current density of 1 A / cm 2 was measured.
[0041]
The ion conductivity of the creep protection layer 2 was measured by pressing a sample cut into a strip shape on a jig in which five platinum wires (diameter 0.2 mm) were arranged at 0.5 mm intervals on a printed circuit board, and pressed against a jig. ° C, 95% R.C. H. The sample was held in a constant temperature / humidity oven (Nagano Kagaku Kikai Seisakusho, LH-20-01), and the AC impedance between the platinum wires at 10 kHz was measured by Solartron 1250 FREEQUENESS RESPONSE ANALYZER. At this time, the measurement was performed while changing the distance between the electrodes, and the conductivity in which the contact resistance between the film and the platinum wire was canceled was calculated by the following equation (1) from the gradient plotting the distance between the electrodes and the measured resistance value.
Conductivity (S / cm) =
1 / film thickness (cm) × film thickness (cm) × resistance gradient (Ω / cm) (1)
[0042]
The TGA measurement was carried out using an Shimadzu TGA-50 and about 3 mg of the sample under an argon atmosphere. The temperature was raised to 150 ° C. at 5 ° C./min, kept for about 30 minutes to remove water from the sample, and further measured at 450 ° C. at 5 ° C./min. Based on the sample weight at the time when the temperature was raised to 200 ° C., the temperature at which 3% of the sample weight decreased was defined as the 3% weight loss temperature.
[0043]
The tensile creep strength test was performed at 120 ° C. and 95% R.C. using a creep tester K100-6-T-HS manufactured by Toyo Seiki Seisaku-sho. H. The creep elongation (%) under a load of 20 kg / cm 2 was measured.
[0044]
(Example 2)
A membrane electrode assembly was manufactured in the same manner as in Example 1 except that the thickness of the creep protection layer 2 in Example 1 was set to 10 μm, and the same evaluation as in Example 1 was performed.
[0045]
(Example 3)
A membrane electrode assembly was manufactured in the same manner as in Example 1 except that the thickness of the creep protection layer in Example 1 was set to 15 μm, and the same evaluation as in Example 1 was performed.
[0046]
(Example 4)
The solid polymer electrolyte membrane 1 in Example 1 was Nafion 111 (manufactured by DuPont, thickness 25 μm), the thickness of the creep protection layer 2 was 2.5 μm, and the other conditions were the same as in Example 1. An electrode assembly was prepared, and the same evaluation as in Example 1 was performed.
[0047]
(Example 5)
The solid polymer electrolyte membrane 1 in Example 1 was Nafion 111 (manufactured by DuPont, film thickness 25 μm), the film thickness of the creep protection layer 2 was 5 μm, and the other conditions were the same as in Example 1 and the membrane electrode bonding was performed. A body was prepared and the same evaluation as in Example 1 was performed.
[0048]
(Example 6)
The solid polymer electrolyte membrane 1 in Example 1 was Nafion 111 (manufactured by DuPont, thickness 25 μm), the thickness of the creep protection layer 2 was 7.5 μm, and the other conditions were the same as in Example 1. An electrode assembly was prepared, and the same evaluation as in Example 1 was performed.
[0049]
(Example 7)
A 200-mesh, 0.05-mm-diameter pattern plate was arranged on the electrode in Example 1, and a sulfonated polyetheretherketone solution was spray-coated thereon, and this was air-dried to obtain a creep protection layer 2 having a network structure. Was. The thickness of the creep protection layer 2 at the projections was 10 μm, and the other conditions were the same as in Example 1 to produce a membrane electrode assembly. The same evaluation as in Example 1 was performed.
[0050]
(Comparative Example 1)
A membrane electrode assembly was manufactured in the same manner as in Example 1 except that the creep protection layer 2 in Example 1 was not provided, and the same evaluation as in Example 1 was performed.
[0051]
(Comparative Example 2)
A membrane electrode assembly was prepared in the same manner as in Example 1 except that the thickness of the creep protection layer 2 in Example 1 was 0.005 μm, and the same evaluation as in Example 1 was performed.
[0052]
(Comparative Example 3)
A membrane electrode assembly was manufactured in the same manner as in Example 1 except that the thickness of the creep protection layer 2 in Example 1 was set to 40 μm, and the same evaluation as in Example 1 was performed.
[0053]
(Comparative Example 4)
The creep protection layer 2 in Example 1 was prepared from a cation exchange resin (5% by weight Nafion solution manufactured by Aldrich), its film thickness was 10 μm, and the other conditions were the same as in Example 1 and the membrane electrode bonding was performed. A body was prepared and the same evaluation as in Example 1 was performed.
Table 1 shows the results of Examples 1 to 7 and Comparative Examples 1 to 4.
[0054]
[Table 1]
[0055]
As is clear from Table 1, in Examples 1 to 7, as compared with Comparative Examples 1 to 4, a sufficient cell potential was obtained, the cell resistance was extremely low, and the creep elongation was also extremely low. Become. That is, the polymer electrolyte fuel cells of Examples 1 to 7 have excellent cell characteristics as compared with Comparative Examples 1 to 4, and effectively suppress local decrease in film thickness due to creep of the electrolyte membrane 1. , And can be operated stably at a high temperature for a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing one embodiment of a polymer electrolyte fuel cell of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2 Creep protection layer 3 Oxygen electrode 4 Fuel electrode 3A 4A Catalyst layer 5 6 Separator 5a 6a Flow groove