JP2004354356A - Laser plasma x-ray microscope - Google Patents

Laser plasma x-ray microscope Download PDF

Info

Publication number
JP2004354356A
JP2004354356A JP2003155810A JP2003155810A JP2004354356A JP 2004354356 A JP2004354356 A JP 2004354356A JP 2003155810 A JP2003155810 A JP 2003155810A JP 2003155810 A JP2003155810 A JP 2003155810A JP 2004354356 A JP2004354356 A JP 2004354356A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
ray
laser plasma
ray microscope
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003155810A
Other languages
Japanese (ja)
Other versions
JP4059808B2 (en
Inventor
Akihiro Nakayama
章弘 中山
Fumihiko Oda
史彦 小田
Eiji Sato
栄治 佐藤
Sadao Fujii
貞夫 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003155810A priority Critical patent/JP4059808B2/en
Publication of JP2004354356A publication Critical patent/JP2004354356A/en
Application granted granted Critical
Publication of JP4059808B2 publication Critical patent/JP4059808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To supply a sufficient current onto a photoelectric transfer face and to restrain a voltage drop to observe a living organism under a living condition, when irradiated with a nano-second order of very strong short pulse X-ray. <P>SOLUTION: A charge for replenishing a photoelectron emitted from a photoelectric transfer membrane 4 is supplied by connecting an electric circuit such as a capacitor 7 to a photoelectric transfer plate 1, and by moderating the voltage drop in the photoelectric transfer plate 1, so as to provide an electron image reflected accurately with an X-ray transmission image. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、短パルス高出力のレーザプラズマX線を照射して形成するX線像を光電変換面により電子像に変換し電子光学的に拡大し結像して撮像素子を介して観察するレーザプラズマX線顕微鏡に関する。
【0002】
【従来の技術】
X線自体を光学的に拡大するX線顕微鏡は、X線光学素子の拡大倍率が限られるので、大きな分解能を持たせると装置として極めて大型になる。また、X線光学系では倍率変更が困難なためズーミング機能を持たせることが難しく、試料中の特定の位置を探し出すための操作が煩雑で時間を必要としていた。さらに、強度強いX線を照射する必要があるので、生体を生きたまま観察することは難しかった。
【0003】
そこで、X線自体の拡大によらずX線透過像を電子像に変換して電子レンズ系で拡大して観察できるようにしたX線顕微鏡が開発されている。
本願出願人によって開示された特許文献1や特願2002−152136には、図6や図7に示すように、光電変換を利用してX線像を電子像に変換し、電子像を拡大して撮像素子上に結像し可視化して観察するようにしたX線顕微鏡が記載されている。この開示発明は、X線を試料に照射して生成されたX線透過像を光電変換面上に投影し、光電変換面でX線透過像を電子像に変換して電磁レンズ系で拡大し、マイクロチャンネルプレートMCPなどで構成される電子線可視化面に結像させて、CCDカメラなどを介して試料のX線像を観察する。
【0004】
開示されたX線顕微鏡は拡大倍率が大幅に増大したので、物体のX線透過像を細部にわたって正確に観察することができるようになった。
このX線顕微鏡は、ズーミング機能を備えるため生体試料の各部を観察する場合にも便利である。また、レーザプラズマX線源で発生するパルス状の軟X線を用いると、軟X線は電子線に比べて生体試料に与えるダメージが小さく、また無染色で観察できるので、生体試料の観察に好都合である。
【0005】
しかし、放射光X線やX線管発生X線を利用して通常の対象を観察する場合には問題がなかったのであるが、レーザプラズマX線を使用するときには、注意しなければならない点がある。
レーザプラズマX線は、通常、パルス幅が数ナノ秒、波長1064nm、繰り返し数10Hz程度のNd:YAGレーザを光学レンズで金属ターゲットに集光して発生するプラズマから得られる。ターゲット材に金AuやモリブデンMoを用いると2〜5nmの軟X線が多く発生し、数ナノ秒のパルスX線となる。
【0006】
光電変換膜における変換時間はピコ秒以下と非常に早く、また、光電変換膜から2次電子が放出される時間も同程度であるので、発生するパルスX線と同型の光電子像を得ることができる。
しかし、開示された光電変換式X線顕微鏡は、光電変換膜の背面に投影されるX線像を表面の電子像に変換するときに形状を忠実に再現させるため光電変換膜を薄膜で製作しているので、一旦光電子を放出しきったときには、適当な時間が経過するか外部から電子を補充しない限り電子欠乏状態になるため直ちに次の光電子像を形成することができない。
【0007】
レーザプラズマX線は強度が強くごく短いパルスX線であるので、たとえば、1個の像を形成するのに必要とされる約1×1011個/mmのX線をパルス幅5ナノ秒のパルスX線の1パルスで供給するものとし、1mmのヨウ化セシウムで形成した光電変換膜の変換効率をX線1個に対して電子0.3個とすると、瞬間の光電子電流は約1Aと非常に大きくなる。
また、光電変換膜とアノード間の放電時に流れる過大電流が電源装置、光電変換膜、アノードなどの損傷やノイズ発生の問題を生じないように、電源装置と光電変換膜の間に2MΩ程度の保護抵抗を介装して最大電流値を抑制するようにしてある。
【0008】
しかし、この保護抵抗は電源装置からの電流供給を遅延させる効果を持ち、ナノ秒という短時間では光電変換膜に電子を供給できないので強度な短パルスX線を照射するときに対応できなくするという問題を生起させる。
また、保護抵抗に流れる光電子流に伴う電圧降下が生じるため、光電子エネルギーに分布が生じ不鮮明な像が形成されるという問題があった。
図8は、従来回路においてX線を照射したときのシミュレーション結果で、光電変換膜とアノードの間に20kV引加したときに1Aの電流が発生すれば、光電変換膜の電圧降下が13kV程度にもなることが示されている。なお、シミュレーションは、高電圧電源と光電変換膜の間を表せる高圧ケーブルで接続したものとして行った。
【0009】
X線顕微鏡の分解能δは、各種の収差によって左右され、光電変換膜とアノードの間の電圧降下ΔVも、
δ=C(ΔV/V)α
の式に従って、色収差の要因となる。ここで、Cはレンズ構造に従って決まる色収差係数、Vは引加電圧、αは電子流の放射角である。
したがって、C=5.43mm、α=0.02radとすると、20kVの電圧引加中に13kVの電圧降下が起これば、色収差は約65μmとなり、目標とする50nm以下の分解能には1000倍も不足する。
【0010】
【特許文献1】
特開2003−43200号公報
【0011】
【発明が解決しようとする課題】
そこで、本発明が解決しようとする課題は、ナノ秒オーダーのごく強い短パルスX線を照射する場合にも光電変換面に十分な電流を供給しかつ電圧降下を抑制することにより、生きた状態で生体観察が可能なレーザプラズマX線顕微鏡を提供することである。
【0012】
【課題を解決するための手段】
上記課題を解決するため、本発明のレーザプラズマX線顕微鏡は、光電変換膜で放出する光電子を補充する電荷を供給する電気回路を光電変換膜の直近に設けたことを特徴とする。
電荷供給回路を光電変換膜に直近に設けたので、強いX線を受けて2次電子を発生し電子欠乏状態になった光電変換膜に直ちに電荷が供給されるので、電源装置から抵抗器を経由して電子を供給するのと比較して、次のX線照射に直ちに対応して電子線を発生することができ、対象物の運動を正確に観察することができる。
【0013】
なお、電荷供給回路は容量素子で構成しても良い。また、容量素子は光電変換膜と電子光学系のアノード、もしくは光電変換膜と接地端子との間に介装されるコンデンサ素子であってもよい。
さらに、コンデンサ素子は、光電変換膜を備える光電変換板を一方の電極板とし、光電変換板に誘電材料を密着して設け、さらにこの誘電材料を挟んで光電変換板の反対側に他方の電極板を備えることにより構成されるものであってもよい。
他方の電極板はアノードの極板を兼ねることができる。
【0014】
このような容量素子を光電変換膜に設けることによって、放出した電子を直ちに補充して電子欠乏状態にならないようにすることができ、短パルスが短期間に繰り返し入力される場合にも、直ちにX線像に対応する光電子を放出し続けることができる。
なお、容量素子として同軸ケーブルを光電変換面に接続して利用することもできる。
【0015】
【発明の実施の形態】
本発明のレーザプラズマX線顕微鏡を実施の形態に基づいて説明する。
図1は、本発明の1実施例を示す部分構成図である。本実施例は、図7に示したような、光電変換板を用いてX線透過像を電子像に変換して電子レンズ系で拡大して観察できるようにした光電変換式X線顕微鏡において、光電変換板に容量素子を付設したところに特徴がある。
【0016】
図1に示すように、光電変換板1とアノード2が対向して配設されている。光電変換板1は、X線が入射する面に試料3を密着セットする試料ホルダーが設けられ、X線入射面の裏側にはX線が入射すると2次電子を放出する光電変換膜4形成されている。
試料3がセットされた光電変換板1にX線を照射すると光電変換板1の表面に試料3のX線透過像が形成され、これに対応して光電変換膜4に2次電子が生起しX線透過像と同形の電子像が形成される。
【0017】
ここで、加速電源4によって光電変換板1とアノード2の間に0〜−20kVの加速電圧を引加すると、電子像をなぞって放出された2次電子が電圧に応じて加速され、対物レンズと投射レンズを形成する電磁コイル系に入射し像拡大して、電子線可視化面に結像する。
加速電源5と光電変換板1の間には保護抵抗器6が介装されて、電源装置や光電変換膜などの保護とノイズの抑制を行う。
【0018】
本実施例では、さらに光電変換板1と接地端子の間にコンデンサ7を接続することにより、光電変換膜4の近くに電荷を蓄積し、レーザプラズマX線などの高強度の短パルスX線が入射したときにも、素早く電子を補充できるようにして、光電変換膜4に電子欠乏状態が起きないようにする。
【0019】
図2は、コンデンサの効果を示す線図である。
図2のグラフ▲1▼はX線発生器に入射するYAGレーザの波形、グラフ▲2▼はX線発生器で発生したX線の波形、グラフ▲3▼はコンデンサを付ける前の光電変換膜においてグラフ▲2▼のX線が入射したときに発生する光電子流の波形である。光電変換膜の電子が欠乏するため強いX線に対して飽和現象が起こり正確に追従できないことが分かる。
【0020】
図中グラフ▲4▼はコンデンサを装着した光電変換板1にグラフ▲2▼のX線が入射したときの光電子流の波形である。光電変換に伴い消費される電子が直ちに補填されるので、X線のピークまで正確に波形を再現した電子流が得られることが分かる。
【0021】
また、図3は、光電変換膜4における電圧降下がコンデンサ7の容量に従って変化することを説明する線図である。図3は、図4の等価回路でビームパルス電流を1Aとしてシミュレーションした結果に基づいて作成した。図4の回路は、20kVの電源5から同軸ケーブル8と2MΩの保護抵抗6を介して加速電圧を供給する回路であって、光電変換板1に0.3pFの並列キャパシタンス9があるとして、さらに光電変換板1に並列にコンデンサを接続したものである。
【0022】
コンデンサが100pFのときに電圧降下が40V、400pFのときに10V、800pFのときに5Vになる。
X線顕微鏡の分解能δの式に当て嵌めると、分解能を50nm以下にするためにはΔV/Vが0.05%であればよく、コンデンサの容量を400pF以上にすればよいことが分かる。
【0023】
また、光電変換板にコンデンサを接続する代わりに、光電変換板をコンデンサの1極板として一体に形成してもよい。
図5は光電変換板1とアノード2の間に誘電体11を挿入することによってコンデンサを形成したものを示す図面である。誘電体11には、光電変換板1の電子像が形成される部分とアノード2の開口をつなぐ孔12が設けられていて、光電変換膜で発生する2次電子流が妨げられないようにしている。
【0024】
また、ある種の同軸ケーブルは十分大きなキャパシタンスを有し、高電圧に対する耐性が強いので、特別な工夫をしなくても本実施例に用いる容量素子として利用することができる。
なお、上記実施例では、試料が光電変換板に密着してセットされるが、試料を離して配置し、X線透過像を光電変換板上に投影するようにしたX線顕微鏡についても、本発明を適用することができる。
【0025】
【発明の効果】
以上説明したように、本発明のレーザプラズマX線顕微鏡によって、高強度のパルスX線を照射しても正確な電子像を得て、生体試料を生きた状態でX線透過像として観察することができる。
【図面の簡単な説明】
【図1】本発明のレーザプラズマX線顕微鏡の1実施例を示す部分構成図である。
【図2】本実施例におけるコンデンサの効果を示す線図である。
【図3】本実施例における光電変換面の電圧降下とコンデンサ容量の関係を説明する線図である。
【図4】図3の線図を求めるために用いた光電変換面の等価回路図である。
【図5】本実施例のレーザプラズマX線顕微鏡の別の態様を示す部分構成図である。
【図6】従来のレーザプラズマX線顕微鏡の例を示す構成図である。
【図7】従来のレーザプラズマX線顕微鏡における光電変換部分を表す構成図である。
【図8】従来のレーザプラズマX線顕微鏡における光電変換面の電圧降下を説明する線図である。
【符号の説明】
1 光電変換板
2 アノード
3 試料
4 光電変換膜
5 加速電源
6 保護抵抗
7 コンデンサ
8 同軸ケーブル
9 並列キャパシタンス
11 誘電体
12 孔
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a laser that converts an X-ray image formed by irradiating a short-pulse high-power laser plasma X-ray into an electronic image by a photoelectric conversion surface, enlarges the image electronically, forms an image, and observes the image via an image sensor. The present invention relates to a plasma X-ray microscope.
[0002]
[Prior art]
An X-ray microscope that optically magnifies the X-ray itself is limited in magnification of the X-ray optical element. In addition, since it is difficult to change the magnification in the X-ray optical system, it is difficult to provide a zooming function, and the operation for searching for a specific position in the sample is complicated and time-consuming. Furthermore, since it is necessary to irradiate strong X-rays, it is difficult to observe the living body alive.
[0003]
Therefore, an X-ray microscope has been developed in which an X-ray transmission image is converted into an electronic image regardless of the magnification of the X-ray itself, and can be enlarged and observed by an electron lens system.
Patent Document 1 and Japanese Patent Application No. 2002-152136 disclosed by the present applicant convert an X-ray image into an electronic image using photoelectric conversion and enlarge the electronic image as shown in FIGS. An X-ray microscope is described in which an image is formed on an image sensor and visualized for observation. The disclosed invention projects an X-ray transmission image generated by irradiating a sample with X-rays on a photoelectric conversion surface, converts the X-ray transmission image into an electronic image on the photoelectric conversion surface, and enlarges the image with an electromagnetic lens system. An image is formed on an electron beam visualization surface composed of a microchannel plate MCP or the like, and an X-ray image of the sample is observed via a CCD camera or the like.
[0004]
Since the disclosed X-ray microscope has a greatly increased magnification, the X-ray transmission image of the object can be accurately observed in detail.
Since the X-ray microscope has a zooming function, it is convenient for observing each part of the biological sample. When pulsed soft X-rays generated by a laser plasma X-ray source are used, the soft X-rays cause less damage to a biological sample than an electron beam and can be observed without staining, so that the biological sample can be observed. It is convenient.
[0005]
However, when observing a normal object using synchrotron radiation X-rays or X-ray tube-generated X-rays, there was no problem. However, when laser plasma X-rays are used, care must be taken. is there.
Laser plasma X-rays are usually obtained from plasma generated by converging a Nd: YAG laser having a pulse width of several nanoseconds, a wavelength of 1064 nm, and a repetition rate of about 10 Hz on a metal target with an optical lens. When gold Au or molybdenum Mo is used as the target material, a large amount of soft X-rays of 2 to 5 nm are generated, and pulse X-rays of several nanoseconds are obtained.
[0006]
The conversion time in the photoelectric conversion film is very short, ie, less than picoseconds, and the time for secondary electrons to be emitted from the photoelectric conversion film is almost the same. Therefore, it is possible to obtain a photoelectron image of the same type as the generated pulse X-ray. it can.
However, the disclosed photoelectric conversion type X-ray microscope manufactures the photoelectric conversion film in a thin film in order to faithfully reproduce the shape when converting the X-ray image projected on the back surface of the photoelectric conversion film into an electron image on the surface. Therefore, once the photoelectrons have been completely emitted, the next photoelectron image cannot be formed immediately because an electron deficiency state occurs unless a suitable time elapses or the electrons are replenished from the outside.
[0007]
Since laser plasma X-rays are high intensity and very short pulse X-rays, for example, about 1 × 10 11 X-rays / mm 2 required to form one image are irradiated with a pulse width of 5 nanoseconds. Assuming that the conversion efficiency of a photoelectric conversion film formed of 1 mm 2 of cesium iodide is 0.3 electrons per X-ray, the instantaneous photoelectron current is about It becomes very large at 1A.
Also, a protection of about 2 MΩ between the power supply device and the photoelectric conversion film so that an excessive current flowing at the time of discharging between the photoelectric conversion film and the anode does not cause damage to the power supply device, the photoelectric conversion film, the anode, and the like, and a problem of noise generation. The maximum current value is suppressed by interposing a resistor.
[0008]
However, this protection resistor has the effect of delaying the current supply from the power supply device, and cannot supply electrons to the photoelectric conversion film in a short time of nanoseconds, so that it cannot respond to irradiation with strong short pulse X-rays. Cause problems.
In addition, since a voltage drop occurs due to the photoelectron flow flowing through the protection resistor, there is a problem that the distribution of photoelectron energy is generated and an unclear image is formed.
FIG. 8 is a simulation result when the conventional circuit is irradiated with X-rays. If a current of 1 A is generated when 20 kV is applied between the photoelectric conversion film and the anode, the voltage drop of the photoelectric conversion film is reduced to about 13 kV. It has been shown that Note that the simulation was performed assuming that the high-voltage power supply and the photoelectric conversion film were connected by a high-voltage cable that could be expressed.
[0009]
The resolution δ of the X-ray microscope is affected by various aberrations, and the voltage drop ΔV between the photoelectric conversion film and the anode is
δ = C (ΔV / V) α
Is a factor of chromatic aberration according to the formula: Here, C is a chromatic aberration coefficient determined according to the lens structure, V is an applied voltage, and α is a radiation angle of the electron current.
Therefore, assuming that C = 5.43 mm and α = 0.02 rad, if a voltage drop of 13 kV occurs while applying a voltage of 20 kV, the chromatic aberration becomes about 65 μm, and the target resolution of 50 nm or less is 1000 times. Run short.
[0010]
[Patent Document 1]
JP 2003-43200 A
[Problems to be solved by the invention]
Therefore, the problem to be solved by the present invention is to supply a sufficient current to the photoelectric conversion surface and suppress a voltage drop even when irradiating a very strong short-pulse X-ray on the order of nanoseconds, thereby achieving a living state. The object of the present invention is to provide a laser plasma X-ray microscope capable of observing a living body with a microscope.
[0012]
[Means for Solving the Problems]
In order to solve the above problems, a laser plasma X-ray microscope according to the present invention is characterized in that an electric circuit for supplying a charge for supplementing photoelectrons emitted from the photoelectric conversion film is provided immediately near the photoelectric conversion film.
Since the charge supply circuit is provided immediately adjacent to the photoelectric conversion film, secondary electrons are generated by receiving strong X-rays, and charges are immediately supplied to the photoelectric conversion film in an electron-deficient state. An electron beam can be generated immediately in response to the next X-ray irradiation, as compared with the case where electrons are supplied via the device, and the movement of the object can be accurately observed.
[0013]
Note that the charge supply circuit may be formed using a capacitor. Further, the capacitance element may be a photoelectric conversion film and an anode of the electron optical system, or a capacitor element interposed between the photoelectric conversion film and the ground terminal.
Further, the capacitor element has a photoelectric conversion plate provided with a photoelectric conversion film as one electrode plate, a dielectric material is provided in close contact with the photoelectric conversion plate, and the other electrode is provided on the opposite side of the photoelectric conversion plate with the dielectric material interposed therebetween. It may be constituted by providing a plate.
The other electrode plate can also serve as the anode plate.
[0014]
By providing such a capacitive element in the photoelectric conversion film, the emitted electrons can be immediately replenished so as not to be in an electron deficiency state. Photoelectrons corresponding to the line image can be continuously emitted.
It should be noted that a coaxial cable can be connected to the photoelectric conversion surface and used as a capacitive element.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A laser plasma X-ray microscope of the present invention will be described based on an embodiment.
FIG. 1 is a partial configuration diagram showing one embodiment of the present invention. The present embodiment uses a photoelectric conversion type X-ray microscope as shown in FIG. 7 in which an X-ray transmission image is converted into an electronic image by using a photoelectric conversion plate and can be enlarged and observed by an electron lens system. A feature is that a capacitive element is attached to the photoelectric conversion plate.
[0016]
As shown in FIG. 1, a photoelectric conversion plate 1 and an anode 2 are disposed to face each other. The photoelectric conversion plate 1 is provided with a sample holder for closely setting the sample 3 on a surface on which X-rays are incident, and a photoelectric conversion film 4 for emitting secondary electrons when X-rays enter on the back side of the X-ray incidence surface. ing.
When the photoelectric conversion plate 1 on which the sample 3 is set is irradiated with X-rays, an X-ray transmission image of the sample 3 is formed on the surface of the photoelectric conversion plate 1, and secondary electrons are generated in the photoelectric conversion film 4 correspondingly. An electron image having the same shape as the X-ray transmission image is formed.
[0017]
Here, when an accelerating voltage of 0 to -20 kV is applied between the photoelectric conversion plate 1 and the anode 2 by the accelerating power supply 4, the secondary electrons emitted following the electron image are accelerated according to the voltage, and the objective lens Then, the light is incident on an electromagnetic coil system forming a projection lens, the image is enlarged, and an image is formed on an electron beam visualization surface.
A protection resistor 6 is interposed between the acceleration power supply 5 and the photoelectric conversion plate 1 to protect the power supply device and the photoelectric conversion film and suppress noise.
[0018]
In the present embodiment, a capacitor 7 is further connected between the photoelectric conversion plate 1 and the ground terminal to accumulate charges near the photoelectric conversion film 4 so that high-intensity short pulse X-rays such as laser plasma X-rays can be generated. Even at the time of incidence, electrons can be quickly replenished so that the photoelectric conversion film 4 does not suffer from an electron deficiency state.
[0019]
FIG. 2 is a diagram showing the effect of the capacitor.
Graph (1) in FIG. 2 is the waveform of the YAG laser incident on the X-ray generator, graph (2) is the waveform of the X-ray generated by the X-ray generator, and graph (3) is the photoelectric conversion film before attaching the capacitor. 5 is a waveform of a photoelectron flow generated when the X-rays of graph (2) are incident. It can be seen that the saturation phenomenon occurs with respect to strong X-rays due to the lack of electrons in the photoelectric conversion film, which makes it impossible to accurately follow.
[0020]
In the figure, a graph (4) shows a waveform of a photoelectron flow when the X-rays of the graph (2) are incident on the photoelectric conversion plate 1 on which a capacitor is mounted. Since the electrons consumed by the photoelectric conversion are immediately compensated for, it can be seen that an electron flow that accurately reproduces the waveform up to the X-ray peak can be obtained.
[0021]
FIG. 3 is a diagram illustrating that the voltage drop in the photoelectric conversion film 4 changes according to the capacitance of the capacitor 7. FIG. 3 was created based on the result of a simulation in which the beam pulse current was 1 A in the equivalent circuit of FIG. 4 is a circuit for supplying an acceleration voltage from a power supply 5 of 20 kV via a coaxial cable 8 and a protective resistor 6 of 2 MΩ. It is further assumed that the photoelectric conversion plate 1 has a parallel capacitance 9 of 0.3 pF. A capacitor is connected in parallel with the photoelectric conversion plate 1.
[0022]
The voltage drop is 40 V when the capacitor is 100 pF, 10 V when the capacitor is 400 pF, and 5 V when the capacitor is 800 pF.
When applied to the expression of the resolution δ of the X-ray microscope, it can be seen that ΔV / V should be 0.05% and the capacitance of the capacitor should be 400 pF or more in order to make the resolution 50 nm or less.
[0023]
Further, instead of connecting the capacitor to the photoelectric conversion plate, the photoelectric conversion plate may be integrally formed as one pole plate of the capacitor.
FIG. 5 is a drawing showing a capacitor formed by inserting a dielectric 11 between the photoelectric conversion plate 1 and the anode 2. The dielectric 11 is provided with a hole 12 connecting the portion of the photoelectric conversion plate 1 where the electronic image is formed and the opening of the anode 2 so that the secondary electron flow generated in the photoelectric conversion film is not obstructed. I have.
[0024]
In addition, a certain type of coaxial cable has a sufficiently large capacitance and a high resistance to a high voltage, so that it can be used as a capacitance element used in this embodiment without special measures.
In the above embodiment, the sample is set in close contact with the photoelectric conversion plate. However, the present invention is also applied to an X-ray microscope in which the sample is arranged apart and an X-ray transmission image is projected on the photoelectric conversion plate. The invention can be applied.
[0025]
【The invention's effect】
As described above, by using the laser plasma X-ray microscope of the present invention, an accurate electronic image can be obtained even when high-intensity pulsed X-rays are irradiated, and a living sample can be observed as an X-ray transmission image in a living state. Can be.
[Brief description of the drawings]
FIG. 1 is a partial configuration diagram showing one embodiment of a laser plasma X-ray microscope of the present invention.
FIG. 2 is a diagram showing the effect of the capacitor in the present embodiment.
FIG. 3 is a diagram illustrating a relationship between a voltage drop on a photoelectric conversion surface and a capacitance of a capacitor in the present embodiment.
FIG. 4 is an equivalent circuit diagram of a photoelectric conversion surface used for obtaining the diagram of FIG.
FIG. 5 is a partial configuration diagram showing another embodiment of the laser plasma X-ray microscope of the present embodiment.
FIG. 6 is a configuration diagram showing an example of a conventional laser plasma X-ray microscope.
FIG. 7 is a configuration diagram showing a photoelectric conversion part in a conventional laser plasma X-ray microscope.
FIG. 8 is a diagram illustrating a voltage drop on a photoelectric conversion surface in a conventional laser plasma X-ray microscope.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 photoelectric conversion plate 2 anode 3 sample 4 photoelectric conversion film 5 acceleration power supply 6 protection resistor 7 capacitor 8 coaxial cable 9 parallel capacitance 11 dielectric 12 hole

Claims (6)

光電変換膜によりX線像を電子像に変換して電子光学系で拡大して観察するレーザプラズマX線顕微鏡であって、前記光電変換膜で放出する光電子を補充する電荷を供給する電気回路を該光電変換膜の直近に設けたことを特徴とするレーザプラズマX線顕微鏡。What is claimed is: 1. A laser plasma X-ray microscope for converting an X-ray image into an electronic image by a photoelectric conversion film, and enlarging and observing the image with an electron optical system, comprising: A laser plasma X-ray microscope provided immediately adjacent to the photoelectric conversion film. 前記電荷を供給する電気回路は容量素子を主部として構成されたものあることを特徴とする請求項1記載のレーザプラズマX線顕微鏡。2. The laser plasma X-ray microscope according to claim 1, wherein the electric circuit for supplying the electric charge is configured with a capacitor as a main part. 前記容量素子は前記光電変換膜と電子光学系のアノードもしくは接地端子との間に介装されるコンデンサ素子であることを特徴とする請求項2記載のレーザプラズマX線顕微鏡。3. The laser plasma X-ray microscope according to claim 2, wherein the capacitance element is a capacitor element interposed between the photoelectric conversion film and an anode or a ground terminal of the electron optical system. 前記コンデンサ素子は、前記光電変換膜を備える光電変換板を一方の電極板とし、該光電変換板に誘電材料を密着して設け、さらに該誘電材料を挟んで前記光電変換板の反対側に他方の電極板を備えることにより構成されることを特徴とする請求項3記載のレーザプラズマX線顕微鏡。The capacitor element has a photoelectric conversion plate provided with the photoelectric conversion film as one electrode plate, a dielectric material is provided in close contact with the photoelectric conversion plate, and the other is provided on the other side of the photoelectric conversion plate with the dielectric material interposed therebetween. The laser plasma X-ray microscope according to claim 3, characterized by comprising: 前記他方の電極板は前記電子光学系のアノードであることを特徴とする請求項4記載のレーザプラズマX線顕微鏡。5. The laser plasma X-ray microscope according to claim 4, wherein the other electrode plate is an anode of the electron optical system. 前記容量素子は光電変換面に接続した同軸ケーブルであることを特徴とする請求項2記載のレーザプラズマX線顕微鏡。3. The laser plasma X-ray microscope according to claim 2, wherein the capacitance element is a coaxial cable connected to a photoelectric conversion surface.
JP2003155810A 2003-05-30 2003-05-30 Laser plasma X-ray microscope Expired - Fee Related JP4059808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155810A JP4059808B2 (en) 2003-05-30 2003-05-30 Laser plasma X-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155810A JP4059808B2 (en) 2003-05-30 2003-05-30 Laser plasma X-ray microscope

Publications (2)

Publication Number Publication Date
JP2004354356A true JP2004354356A (en) 2004-12-16
JP4059808B2 JP4059808B2 (en) 2008-03-12

Family

ID=34050104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155810A Expired - Fee Related JP4059808B2 (en) 2003-05-30 2003-05-30 Laser plasma X-ray microscope

Country Status (1)

Country Link
JP (1) JP4059808B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308475A (en) * 2005-04-28 2006-11-09 Kawasaki Heavy Ind Ltd Near-field photoelectron microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308475A (en) * 2005-04-28 2006-11-09 Kawasaki Heavy Ind Ltd Near-field photoelectron microscope
JP4558574B2 (en) * 2005-04-28 2010-10-06 川崎重工業株式会社 Near-field photoelectron microscope

Also Published As

Publication number Publication date
JP4059808B2 (en) 2008-03-12

Similar Documents

Publication Publication Date Title
JP4037533B2 (en) Particle beam equipment
US20070051907A1 (en) Device for generating X-ray or XUV radiation
Commisso et al. Experimental evaluation of a megavolt rod-pinch diode as a radiography source
JP2014082130A (en) X-ray generator
US9431206B2 (en) X-ray generation tube, X-ray generation device including the X-ray generation tube, and X-ray imaging system
JPH08212952A (en) Laser irradiation type electron gun
JP2013509684A (en) Switching of anode potential of X-ray generator
CN108013891B (en) X-ray diagnostic device
Shepherd et al. Ultrafast x‐ray streak camera for use in ultrashort laser‐produced plasma research
CN201936839U (en) Camera device and X-ray generator thereof
JPH0586020B2 (en)
US10741352B2 (en) Optically addressed, thermionic electron beam device
JP2017529661A (en) High voltage feedthrough assembly, time-resolved transmission electron microscope, and method of electrode manipulation in a vacuum environment
JP4059808B2 (en) Laser plasma X-ray microscope
JP2000056099A (en) X-ray radiating device and x-ray generation position detector
Batrakov et al. Time-and spectrum-resolved study of a single cathode spot in vacuum
Chang et al. Demonstration of a 0.54 picosecond x-ray streak camera
Fu et al. Proximity-gated X-ray framing camera with gain uniformity
TW578189B (en) Particle-optical apparatus, illumination apparatus and projection system as well as a method employing the same
TW536737B (en) Device for generating electron beams and exposure device using electron beams
Hertz et al. Compact water-window x-ray microscopy with a droplet laser-plasma source
JP6401600B2 (en) Streak tube and streak device including the same
JP3765781B2 (en) Image adjustment apparatus and image adjustment method for X-ray microscope
JP2004347463A (en) Imaging type x-ray microscope
WO2022137332A1 (en) Electron gun and electron beam application device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141228

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees