JP2004354331A - Electrical field sensor - Google Patents

Electrical field sensor Download PDF

Info

Publication number
JP2004354331A
JP2004354331A JP2003155217A JP2003155217A JP2004354331A JP 2004354331 A JP2004354331 A JP 2004354331A JP 2003155217 A JP2003155217 A JP 2003155217A JP 2003155217 A JP2003155217 A JP 2003155217A JP 2004354331 A JP2004354331 A JP 2004354331A
Authority
JP
Japan
Prior art keywords
electric field
electro
optic crystal
amplifier
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003155217A
Other languages
Japanese (ja)
Other versions
JP3759124B2 (en
Inventor
Aiichiro Sasaki
愛一郎 佐々木
Mitsuru Shinagawa
満 品川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2003155217A priority Critical patent/JP3759124B2/en
Publication of JP2004354331A publication Critical patent/JP2004354331A/en
Application granted granted Critical
Publication of JP3759124B2 publication Critical patent/JP3759124B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrical field sensor which increases sensitivity by amplifying a voltage to be applied between electrodes of an electro-optical crystal and applying a sufficient voltage between the electrodes of the electro-optical crystal. <P>SOLUTION: The electrical field received with a receiving electrode 43 is amplified by an amplifier 25, and applied between the first and second electrodes 12 and 14 of the electro-optical crystal 11 to thereby change the polarization of a laser beam incident from a laser source 13 to the electro-optical crystal 11 via a first optical system 15. This polarization change is converted into the intensity change of the light by a second optical system 17, converted into an electrical signal by a photodetector 19, and output as an electrical field detection signal. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電気光学(Electro−Optic: EO)結晶を利用して、電界伝達媒体を伝送されてくる電界を検知する電界センサに関する。
【0002】
【従来の技術】
電気光学結晶を利用した電界センサの感度は、電気光学結晶を挟むように電気光学結晶の側面に設けられた一対の電極間に印加される電圧に比例する。
【0003】
図3は、このような電界センサを、送信器から人体に電界として送出されたデータ信号を検知すべく適用された受信端末器100の構成を示す図である。同図において、送信器3を構成するデータ信号発生器31の信号電極33から出力されるデータ信号は、送信電極41を介して電界伝達媒体である人体5に電界として誘起され人体5内を伝播して受信電極43で受信される。
【0004】
受信電極43で受信された電界は、電気光学結晶11の一方の側面に設けられている第1電極12を介して電気光学結晶11に結合され、電気光学結晶11の他方の側面に設けられている第2電極14に引き込まれる。電気光学結晶11は、第1電極12を介して電界を結合されると、その電界強度によって光学特性である複屈折率が変化する。
【0005】
一方、電気光学結晶11は、レーザ光源13から出力され、第1光学系15によって平行光にされるとともにその偏光状態を調整されたレーザ光を第1、第2電極12、14間から入射されるが、この入射されたレーザ光の偏光を上述したように第1電極12を介して結合される電界の強度に応じて変化させる。このように電界強度に応じて偏光変化を受けたレーザ光は、電気光学結晶11から出射して第2光学系17に入射される。第2光学系17は、電気光学結晶11から入射されるレーザ光の偏光変化を光の強度変化に変換して光検出器19に供給する。光検出器19は、第2光学系17からの光出力を電気信号に変換し、電界検知信号として出力する。なお、レーザ光源13および光検出器19は、第1電源回路21から電圧を供給されて作動し、第1電源回路21のグランドは受信端末器100の回路グランド23に接続されている。
【0006】
【特許文献1】
特願2001−295139号公報
【0007】
【特許文献2】
特願2001−295121号公報
【0008】
【発明が解決しようとする課題】
電界センサの感度は電極間に印加される電圧に比例するため、電極間の電圧が充分高いことが望ましいものであるが、上述したように、電気光学結晶11の第1電極12は受信電極43、人体5、送信電極41を介して送信器3の信号電極33に接続されているのに対して、電気光学結晶11の第2電極14は送信器3のグランド電極35に接続されず、また受信端末器100の回路グランド23の絶対的な電位は現実には大きく変動していて、雑音となるため、電気光学結晶11の第2電極14は受信端末器100の回路グランド23からも絶縁されていて、電気光学結晶11の電極間に印加される電圧は一般に微小となり、電界センサの感度は不十分であるという問題がある。
【0009】
本発明は、上記に鑑みてなされたもので、その目的とするところは、電気光学結晶の電極間に印加される電圧を増幅して、充分な電圧を電気光学結晶の電極間に印加し、感度を増大した電界センサを提供することにある。
【0010】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の本発明は、電気光学結晶を用いて、電界伝達媒体を伝送されてくる電界を検知する電界センサであって、電界伝達媒体を伝送されてくる電界を受信する受信電極と、前記電気光学結晶を挟むように前記電気光学結晶の側面に設けられた一対の電極と、単一波長の光を発生する光源と、この光源からの光を平行光にして、前記電気光学結晶の前記電極間に入射する第1光学系と、この第1の光学系から入射され電気光学結晶を通過した平行光を光の強度変化に変換する第2光学系と、この第2光学系からの光出力を電気信号に変換する光電気変換手段と、前記受信電極で受信した電界を増幅し、前記電気光学結晶の前記電極間に印加する増幅器とを有することを要旨とする。
【0011】
請求項1記載の本発明にあっては、受信電極で受信した電界を増幅器で増幅して、電気光学結晶の電極間に印加するため、電気光学結晶の電極間には増幅された充分に大きな電圧が印加され、電界センサとしての感度を著しく向上することができる。
【0012】
また、請求項2記載の本発明は、請求項1記載の発明において、前記光源および光電気変換手段に作動電力を供給する第1電源回路と、前記第1電源回路の回路グランドに対して絶縁されていて、前記増幅器に作動電力を供給する第2電源回路とを有することを要旨とする。
【0013】
請求項2記載の本発明にあっては、増幅器に作動電力を供給する第2電源回路は、第1電源回路の回路グランドに対して絶縁されているため、増幅器は回路グランドの変動により影響されることなく、受信電極からの電界を増幅することができる。
【0014】
更に、請求項3記載の本発明は、請求項1または2記載の発明において、前記電気光学結晶の側面が、対向する一対の側面であり、前記電極が、前記一対の側面のそれぞれに設けられた一対の電極であることを要旨とする。
【0015】
請求項4記載の本発明は、請求項1乃至3のいずれか1項に記載の発明において、前記受信電極と増幅器の入力との間に接続され、受信電極で受信した電界において所定の低い周波数成分を除去し、所定の高い周波数のみを通過させて前記増幅器に供給するハイパスフィルタを有することを要旨とする。
【0016】
請求項4記載の本発明にあっては、ハイパスフィルタにより所定の低い周波数成分を除去し、所定の高い周波数のみを増幅器に入力するため、人体の電位変動による雑音が増幅器の入力に混入することを防止し、増幅器からは正常な有効信号のみが出力される。
【0017】
また、請求項5記載の本発明は、請求項4記載の発明において、前記ハイパスフィルタが、コンデンサで構成されることを要旨とする。
【0018】
【発明の実施の形態】
以下、図面を用いて本発明の実施の形態を説明する。図1は、本発明の一実施形態に係わる電界センサを適用した受信端末器の構成を送信器とともに示す図である。同図に示す実施形態は、図3で示した従来の回路構成において電気光学結晶11の側面に設けられた第1、第2電極12、14に増幅器25を接続するとともに、この増幅器25に作動電力を供給する第2電源回路27を追加した点が異なるのみであり、その他の構成および作用は図3と同じであって、同じ構成要素には同じ符号を付している。なお、電気光学結晶11、増幅器25および第2電源回路27からなる構成を電界処理部20と称し、この電界処理部20を含む受信端末器の全体を符号1で示す。
【0019】
増幅器25は、演算増幅器で構成され、「+」記号で示す非反転入力端子が受信電極43に接続され、この受信電極43で人体5から受信した電界に相当する電圧を供給されるようになっている。また、増幅器25の出力端子は第1電極12に接続され、「−」記号で示す反転入力端子は第2電極14に接続されている。
【0020】
また、増幅器25に作動電力を供給する第2電源回路27は、第1電源回路21および受信端末器1の回路グランド23から絶縁されている。
【0021】
以上のように構成される本実施形態においては、送信器3から信号電極33を介して送出されるデータ信号は、送信電極41、人体5を介して受信電極43で受信され、受信電極43から増幅器25に供給されて増幅され、充分に大きな電圧として第1、第2電極12、14を介して電気光学結晶11に印加され、電界センサとしての感度を著しく向上することができる。更に詳しくは、レーザ光源13から第1光学系15を介して電気光学結晶11に入射されるレーザ光は、第1、第2電極12、14を介して電気光学結晶11に印加される充分大きな電圧によって大きな偏光変化を受け、第2光学系17で光の強度変化に変換され、光検出器19で大きな電気信号に変換され、充分な電界検知信号として出力される。
【0022】
なお、第1光学系15は、レーザ光を平行光にするコリメートレンズと、該コリメートレンズからのレーザ光の偏光状態を調整する波長板とから構成され、第2光学系17は、電気光学結晶11から入射されるレーザ光をP波とS波に分離し、光の強度変化に変換する偏光ビームスプリッタとから構成され、また光検出器19は、フォトダイオードから構成されている。
【0023】
図2は、本発明の他の実施形態に係わる電界センサを適用した図1と同様な受信端末器1に使用されている電界処理部20aを示す図である。
【0024】
この図2に示す実施形態の電界処理部20aは、図1の電界処理部20に相当するものであって、図1において電界処理部20の代わりに受信端末器1に設けられるものであるが、図1の電界処理部20に対して新たなハイパスフィルタを構成するコンデンサ29が増幅器25の「+」記号で示す非反転入力端子に接続されている点が異なるものであり、その他の構成および作用は図1と同じである。
【0025】
なお、図2の実施形態の電界処理部20aは、電気光学結晶11、第1、第2電極12、14、増幅器25、コンデンサ29、第2電源回路27から構成されるが、電気光学結晶11に対しては図1と同様にレーザ光源13、第1光学系15、第2光学系17、光検出器19が接続され、また増幅器25の「+」記号で示す非反転入力端子はコンデンサ29を介して受信電極43に接続され、受信電極43から更に人体5、送信電極41を介して送信器3の信号電極33に接続されているものである。
【0026】
このように増幅器25の非反転入力端子は、コンデンサ29、受信電極43を介して人体5に接続されているが、人体5は一般に電位がゆっくりと変動していると言われており、この変動による雑音が増幅器25の入力に混入されることを防止するために、コンデンサ29をハイパスフィルタとして増幅器25の入力に接続している。従って、人体5のゆっくりと変動する電位による雑音は、コンデンサ29で除去されて増幅器25には入力されず、送信器3からの高い周波数の有効なデータ信号のみがコンデンサ29を通過して増幅器25に入力され、増幅器25からは雑音の混入しない正常な信号のみが出力される。
【0027】
なお、人体5の電位変動の周波数成分は1kHz以下であると予想され、送信器3から出力されるデータ信号は一般に広い周波数成分を有するも、実際には100kHz以上の信号成分を検出すれば通信が成立することが多いと考えて、コンデンサ29による遮断周波数fcの上限を100kHz程度と考えると、コンデンサ29は1μF以上の容量のものであればよい。
【0028】
【発明の効果】
以上説明したように、本発明によれば、受信電極で受信した電界を増幅器で増幅して、電気光学結晶の電極間に印加するので、電気光学結晶の電極間には増幅された充分に大きな電圧が印加され、電界センサとしての感度を著しく向上することができる。
【0029】
また、本発明によれば、増幅器に作動電力を供給する第2電源回路は、第1電源回路の回路グランドに対して絶縁されているので、増幅器は回路グランドの変動により影響されることなく、受信電極からの電界を増幅することができる。
【0030】
更に、本発明によれば、ハイパスフィルタにより所定の低い周波数成分を除去し、所定の高い周波数のみを増幅器に入力するので、人体の電位変動による雑音が増幅器の入力に混入することが防止され、増幅器からは正常な有効信号のみが出力される。
【図面の簡単な説明】
【図1】本発明の一実施形態に係わる電界センサを適用した受信端末器の構成を送信器とともに示す図である。
【図2】本発明の他の実施形態に係わる電界センサを適用した図1と同様な受信端末器に使用されている電界処理部を示す図である。
【図3】従来の電界センサを適用した受信端末器の構成を送信器とともに示す図である。
【符号の説明】
1 受信端末器
3 送信器
5 人体
11 電気光学結晶
13 レーザ光源
15 第1光学系
17 第2光学系
19 光検出器
21 第1電源回路
23 回路グランド
25 増幅器
27 第2電源回路
29 コンデンサ
43 受信電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electric field sensor that detects an electric field transmitted through an electric field transmission medium using an electro-optic (EO) crystal.
[0002]
[Prior art]
The sensitivity of an electric field sensor using an electro-optic crystal is proportional to the voltage applied between a pair of electrodes provided on the side surface of the electro-optic crystal so as to sandwich the electro-optic crystal.
[0003]
FIG. 3 is a diagram showing a configuration of a receiving terminal 100 in which such an electric field sensor is applied to detect a data signal transmitted as an electric field from a transmitter to a human body. In the figure, a data signal output from a signal electrode 33 of a data signal generator 31 constituting a transmitter 3 is induced as an electric field in a human body 5 as an electric field transmission medium via a transmission electrode 41 and propagates in the human body 5. Then, it is received by the receiving electrode 43.
[0004]
The electric field received by the receiving electrode 43 is coupled to the electro-optic crystal 11 via the first electrode 12 provided on one side of the electro-optic crystal 11, and provided on the other side of the electro-optic crystal 11. Is pulled into the second electrode 14. When an electric field is coupled to the electro-optic crystal 11 through the first electrode 12, the birefringence, which is an optical characteristic, changes depending on the intensity of the electric field.
[0005]
On the other hand, the electro-optic crystal 11 is output from the laser light source 13, converted into parallel light by the first optical system 15, and the laser light whose polarization state is adjusted is incident from between the first and second electrodes 12 and 14. However, the polarization of the incident laser light is changed according to the intensity of the electric field coupled via the first electrode 12 as described above. The laser light having undergone the polarization change in accordance with the electric field strength in this manner exits from the electro-optic crystal 11 and enters the second optical system 17. The second optical system 17 converts a change in the polarization of the laser light incident from the electro-optic crystal 11 into a change in the intensity of the light and supplies the change to the photodetector 19. The photodetector 19 converts an optical output from the second optical system 17 into an electric signal and outputs the electric signal as an electric field detection signal. The laser light source 13 and the photodetector 19 operate by being supplied with a voltage from the first power supply circuit 21, and the ground of the first power supply circuit 21 is connected to the circuit ground 23 of the receiving terminal 100.
[0006]
[Patent Document 1]
Japanese Patent Application No. 2001-295139
[Patent Document 2]
Japanese Patent Application No. 2001-295121
[Problems to be solved by the invention]
Since the sensitivity of the electric field sensor is proportional to the voltage applied between the electrodes, it is desirable that the voltage between the electrodes is sufficiently high. However, as described above, the first electrode 12 of the electro-optic crystal 11 is , The human body 5, and the signal electrode 33 of the transmitter 3 via the transmission electrode 41, whereas the second electrode 14 of the electro-optic crystal 11 is not connected to the ground electrode 35 of the transmitter 3, and Since the absolute potential of the circuit ground 23 of the receiving terminal 100 actually fluctuates greatly and becomes noise, the second electrode 14 of the electro-optic crystal 11 is also insulated from the circuit ground 23 of the receiving terminal 100. However, the voltage applied between the electrodes of the electro-optic crystal 11 is generally very small, and there is a problem that the sensitivity of the electric field sensor is insufficient.
[0009]
The present invention has been made in view of the above, and its purpose is to amplify a voltage applied between electrodes of an electro-optic crystal and apply a sufficient voltage between the electrodes of the electro-optic crystal, An object of the present invention is to provide an electric field sensor with increased sensitivity.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention according to claim 1 is an electric field sensor for detecting an electric field transmitted through an electric field transmission medium using an electro-optic crystal, wherein the electric field transmitted through the electric field transmission medium is used. And a pair of electrodes provided on the side surface of the electro-optic crystal so as to sandwich the electro-optic crystal, a light source that generates light of a single wavelength, and convert the light from the light source into parallel light. A first optical system that enters between the electrodes of the electro-optic crystal, and a second optical system that converts parallel light that enters from the first optical system and passes through the electro-optic crystal into a change in light intensity; A gist comprising: a photoelectric conversion means for converting a light output from the second optical system into an electric signal; and an amplifier for amplifying an electric field received by the reception electrode and applying the electric field between the electrodes of the electro-optic crystal. And
[0011]
According to the present invention, since the electric field received by the receiving electrode is amplified by the amplifier and applied between the electrodes of the electro-optic crystal, the amplified electric field is sufficiently large between the electrodes of the electro-optic crystal. When a voltage is applied, the sensitivity as an electric field sensor can be significantly improved.
[0012]
According to a second aspect of the present invention, in the first aspect of the invention, a first power supply circuit for supplying operating power to the light source and the photoelectric conversion means and a circuit ground of the first power supply circuit are insulated. And a second power supply circuit for supplying operating power to the amplifier.
[0013]
According to the second aspect of the present invention, since the second power supply circuit for supplying the operating power to the amplifier is insulated from the circuit ground of the first power supply circuit, the amplifier is affected by the fluctuation of the circuit ground. Without this, the electric field from the receiving electrode can be amplified.
[0014]
Further, according to a third aspect of the present invention, in the first or second aspect of the invention, a side surface of the electro-optic crystal is a pair of opposed side surfaces, and the electrodes are provided on each of the pair of side surfaces. The gist of the present invention is a pair of electrodes.
[0015]
According to a fourth aspect of the present invention, in the first aspect of the present invention, a signal having a predetermined low frequency in an electric field received at the receiving electrode is connected between the receiving electrode and an input of an amplifier. The gist of the present invention is to have a high-pass filter that removes a component and passes only a predetermined high frequency to supply the high-pass filter to the amplifier.
[0016]
According to the fourth aspect of the present invention, since a predetermined low frequency component is removed by a high-pass filter and only a predetermined high frequency is input to the amplifier, noise caused by potential fluctuation of the human body is mixed into the input of the amplifier. And only a normal valid signal is output from the amplifier.
[0017]
According to a fifth aspect of the present invention, in the fourth aspect, the high-pass filter includes a capacitor.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing a configuration of a receiving terminal to which an electric field sensor according to an embodiment of the present invention is applied, together with a transmitter. In the embodiment shown in the figure, an amplifier 25 is connected to the first and second electrodes 12 and 14 provided on the side surfaces of the electro-optic crystal 11 in the conventional circuit configuration shown in FIG. The only difference is that a second power supply circuit 27 for supplying power is added. Other configurations and operations are the same as those in FIG. 3, and the same components are denoted by the same reference numerals. Note that a configuration including the electro-optic crystal 11, the amplifier 25, and the second power supply circuit 27 is referred to as an electric field processing unit 20, and the entire receiving terminal including the electric field processing unit 20 is denoted by reference numeral 1.
[0019]
The amplifier 25 is composed of an operational amplifier, has a non-inverting input terminal indicated by a “+” sign connected to the receiving electrode 43, and is supplied with a voltage corresponding to an electric field received from the human body 5 at the receiving electrode 43. ing. The output terminal of the amplifier 25 is connected to the first electrode 12, and the inverting input terminal indicated by the “−” symbol is connected to the second electrode 14.
[0020]
The second power supply circuit 27 that supplies the operating power to the amplifier 25 is insulated from the first power supply circuit 21 and the circuit ground 23 of the receiving terminal 1.
[0021]
In the present embodiment configured as described above, the data signal transmitted from the transmitter 3 via the signal electrode 33 is received by the reception electrode 43 via the transmission electrode 41 and the human body 5, The voltage is supplied to the amplifier 25, amplified, and applied as a sufficiently large voltage to the electro-optic crystal 11 via the first and second electrodes 12, 14, so that the sensitivity as an electric field sensor can be remarkably improved. More specifically, the laser light incident on the electro-optic crystal 11 from the laser light source 13 via the first optical system 15 is sufficiently large to be applied to the electro-optic crystal 11 via the first and second electrodes 12 and 14. The light undergoes a large change in polarization due to the voltage, is converted into a change in light intensity by the second optical system 17, is converted into a large electric signal by the photodetector 19, and is output as a sufficient electric field detection signal.
[0022]
The first optical system 15 is composed of a collimating lens that converts the laser light into parallel light, and a wave plate that adjusts the polarization state of the laser light from the collimating lens. A polarization beam splitter that separates the laser light incident from 11 into a P-wave and an S-wave and converts it into a change in light intensity is configured. The photodetector 19 is configured by a photodiode.
[0023]
FIG. 2 is a diagram showing an electric field processing unit 20a used in a receiving terminal 1 similar to FIG. 1 to which an electric field sensor according to another embodiment of the present invention is applied.
[0024]
The electric field processing unit 20a of the embodiment shown in FIG. 2 corresponds to the electric field processing unit 20 of FIG. 1, and is provided in the receiving terminal 1 instead of the electric field processing unit 20 in FIG. 1 is different from the electric field processing unit 20 of FIG. 1 in that a capacitor 29 constituting a new high-pass filter is connected to a non-inverting input terminal of the amplifier 25 indicated by a “+” sign. The operation is the same as in FIG.
[0025]
The electric field processing unit 20a in the embodiment of FIG. 2 includes the electro-optic crystal 11, the first and second electrodes 12, 14, the amplifier 25, the capacitor 29, and the second power supply circuit 27. 1, a laser light source 13, a first optical system 15, a second optical system 17, and a photodetector 19 are connected, and a non-inverting input terminal of the amplifier 25 indicated by a “+” symbol is a capacitor 29. Is connected to the receiving electrode 43 via the receiving electrode 43, and further connected to the signal electrode 33 of the transmitter 3 via the human body 5 and the transmitting electrode 41 from the receiving electrode 43.
[0026]
As described above, the non-inverting input terminal of the amplifier 25 is connected to the human body 5 via the capacitor 29 and the receiving electrode 43. It is generally said that the human body 5 has a slowly changing potential. The capacitor 29 is connected to the input of the amplifier 25 as a high-pass filter in order to prevent noise due to the noise from being mixed into the input of the amplifier 25. Therefore, noise due to the slowly varying potential of the human body 5 is removed by the capacitor 29 and is not input to the amplifier 25, and only a valid data signal of a high frequency from the transmitter 3 passes through the capacitor 29 and passes through the amplifier 25. , And the amplifier 25 outputs only a normal signal without noise.
[0027]
The frequency component of the potential fluctuation of the human body 5 is expected to be 1 kHz or less, and the data signal output from the transmitter 3 generally has a wide frequency component. In many cases, the upper limit of the cutoff frequency fc of the capacitor 29 is about 100 kHz, and the capacitor 29 may have a capacitance of 1 μF or more.
[0028]
【The invention's effect】
As described above, according to the present invention, the electric field received by the receiving electrode is amplified by the amplifier and applied between the electrodes of the electro-optic crystal. When a voltage is applied, the sensitivity as an electric field sensor can be significantly improved.
[0029]
Further, according to the present invention, since the second power supply circuit that supplies the operating power to the amplifier is insulated from the circuit ground of the first power supply circuit, the amplifier is not affected by the fluctuation of the circuit ground, The electric field from the receiving electrode can be amplified.
[0030]
Furthermore, according to the present invention, a predetermined low frequency component is removed by a high-pass filter, and only a predetermined high frequency is input to the amplifier, so that noise due to fluctuations in human body potential is prevented from being mixed into the input of the amplifier. Only a normal valid signal is output from the amplifier.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a receiving terminal to which an electric field sensor according to an embodiment of the present invention is applied, together with a transmitter.
FIG. 2 is a diagram showing an electric field processing unit used in a receiving terminal similar to FIG. 1 to which an electric field sensor according to another embodiment of the present invention is applied.
FIG. 3 is a diagram showing a configuration of a receiving terminal to which a conventional electric field sensor is applied, together with a transmitter.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 receiving terminal 3 transmitter 5 human body 11 electro-optic crystal 13 laser light source 15 first optical system 17 second optical system 19 photodetector 21 first power supply circuit 23 circuit ground 25 amplifier 27 second power supply circuit 29 capacitor 43 receiving electrode

Claims (5)

電気光学結晶を用いて、電界伝達媒体を伝送されてくる電界を検知する電界センサであって、
電界伝達媒体を伝送されてくる電界を受信する受信電極と、
前記電気光学結晶を挟むように前記電気光学結晶の側面に設けられた一対の電極と、
単一波長の光を発生する光源と、
この光源からの光を平行光にして、前記電気光学結晶の前記電極間に入射する第1光学系と、
この第1の光学系から入射され電気光学結晶を通過した平行光を光の強度変化に変換する第2光学系と、
この第2光学系からの光出力を電気信号に変換する光電気変換手段と、
前記受信電極で受信した電界を増幅し、前記電気光学結晶の前記電極間に印加する増幅器と
を有することを特徴とする電界センサ。
An electric field sensor for detecting an electric field transmitted through an electric field transmission medium using an electro-optic crystal,
A receiving electrode for receiving an electric field transmitted through the electric field transmission medium,
A pair of electrodes provided on side surfaces of the electro-optic crystal so as to sandwich the electro-optic crystal,
A light source that emits light of a single wavelength,
A first optical system that converts light from the light source into parallel light and enters between the electrodes of the electro-optic crystal;
A second optical system that converts parallel light incident from the first optical system and passing through the electro-optic crystal into a change in light intensity;
Photoelectric conversion means for converting the light output from the second optical system into an electric signal;
An electric field sensor comprising: an amplifier that amplifies an electric field received by the receiving electrode and applies the electric field between the electrodes of the electro-optic crystal.
前記光源および光電気変換手段に作動電力を供給する第1電源回路と、
前記第1電源回路の回路グランドに対して絶縁されていて、前記増幅器に作動電力を供給する第2電源回路と
を有することを特徴とする請求項1記載の電界センサ。
A first power supply circuit for supplying operating power to the light source and the photoelectric conversion means;
The electric field sensor according to claim 1, further comprising: a second power supply circuit that is insulated from a circuit ground of the first power supply circuit and supplies operating power to the amplifier.
前記電気光学結晶の側面は、対向する一対の側面であり、前記電極は、前記一対の側面のそれぞれに設けられた一対の電極であることを特徴とする請求項1または2記載の電界センサ。The electric field sensor according to claim 1, wherein a side surface of the electro-optic crystal is a pair of opposed side surfaces, and the electrodes are a pair of electrodes provided on each of the pair of side surfaces. 前記受信電極と増幅器の入力との間に接続され、受信電極で受信した電界において所定の低い周波数成分を除去し、所定の高い周波数のみを通過させて前記増幅器に供給するハイパスフィルタを有することを特徴とする請求項1乃至3のいずれか1項に記載の電界センサ。A high-pass filter connected between the reception electrode and an input of the amplifier, for removing a predetermined low frequency component in an electric field received by the reception electrode, and passing only a predetermined high frequency to supply the amplifier. The electric field sensor according to claim 1, wherein: 前記ハイパスフィルタは、コンデンサで構成されることを特徴とする請求項4記載の電界センサ。The electric field sensor according to claim 4, wherein the high-pass filter is configured by a capacitor.
JP2003155217A 2003-05-30 2003-05-30 Electric field sensor Expired - Fee Related JP3759124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155217A JP3759124B2 (en) 2003-05-30 2003-05-30 Electric field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155217A JP3759124B2 (en) 2003-05-30 2003-05-30 Electric field sensor

Publications (2)

Publication Number Publication Date
JP2004354331A true JP2004354331A (en) 2004-12-16
JP3759124B2 JP3759124B2 (en) 2006-03-22

Family

ID=34049655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155217A Expired - Fee Related JP3759124B2 (en) 2003-05-30 2003-05-30 Electric field sensor

Country Status (1)

Country Link
JP (1) JP3759124B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137813A (en) * 2003-11-10 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> Nursing management system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005137813A (en) * 2003-11-10 2005-06-02 Nippon Telegr & Teleph Corp <Ntt> Nursing management system

Also Published As

Publication number Publication date
JP3759124B2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
US7493047B2 (en) Transceiver suitable for data communications between wearable computers
JP2005515410A5 (en)
US20060022123A1 (en) Chirp measurement method, chirp measurement apparatus and their application
JP2000171766A (en) Light modulator
US7907285B2 (en) Scattered light measuring device
JP3759124B2 (en) Electric field sensor
CN114623920B (en) phi-OTDR type distributed optical fiber acoustic wave sensing system and signal demodulation method
JP2006060794A (en) Optical clock signal extracting apparatus
KR970068276A (en) A wide-angle current blocking device and a transmitted-light detecting method having a transmission photodetector
JP3878171B2 (en) Transceiver
JP2006333204A (en) Photoelectric conversion circuit
JP3686580B2 (en) Optical electric field sensor device
JP3773887B2 (en) Transceiver
JP3822554B2 (en) Transceiver
JP3597519B2 (en) Electric field detection optical device
JP3822552B2 (en) Transceiver
JP2729032B2 (en) Optical receiving device and optical spectrum analyzer device
JP4602266B2 (en) Electric field detection optical system and transceiver
JPS5846071B2 (en) semiconductor integrated device
JP3974615B2 (en) Transceiver for electric field communication
JP3806800B2 (en) Optical operational amplifier
US20040081472A1 (en) Apparatus and method for data tag signal recovery
JP2000214199A (en) Sensing apparatus
JPH10132665A (en) Light sampling waveform observation device
JP2004317337A (en) Raman gain measuring method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051227

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090113

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100113

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110113

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees