JP2004354243A - Thermal degradation diagnostic device of equipment - Google Patents

Thermal degradation diagnostic device of equipment Download PDF

Info

Publication number
JP2004354243A
JP2004354243A JP2003153110A JP2003153110A JP2004354243A JP 2004354243 A JP2004354243 A JP 2004354243A JP 2003153110 A JP2003153110 A JP 2003153110A JP 2003153110 A JP2003153110 A JP 2003153110A JP 2004354243 A JP2004354243 A JP 2004354243A
Authority
JP
Japan
Prior art keywords
metal rod
hole
metal
metal block
thermal degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003153110A
Other languages
Japanese (ja)
Inventor
Hisao Tanaka
久雄 田中
Akihiko Tawara
明彦 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003153110A priority Critical patent/JP2004354243A/en
Publication of JP2004354243A publication Critical patent/JP2004354243A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermal degradation diagnostic device of equipment having high versatility and reliability. <P>SOLUTION: This device is equipped with a metal rod-shaped body 4, a metal block 7 provided with a hole 8a having a prescribed length into which the metal rod-shaped body is inserted, a low-melting point alloy 8 having a creep fracture characteristic, stuck with a prescribed sticking area onto the metal rod-shaped body and the hole by being poured into the hole in the molten state in the state where the metal rod-shaped body is inserted into the hole, an elastic body 6 for pressing the metal block so as to generate a prescribed shearing stress on the sticking face between the metal rod-shaped body and the low-melting point alloy, and a detection display means 10a for detecting and displaying movement of the metal block by an elastic force of the elastic body, generated by creep shear fracture of the low-melting point alloy caused by a heat load at a prescribed temperature for a prescribed time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、電気機器、電子機器などの機器の熱劣化を検出し表示する熱劣化診断装置に関する。
【0002】
【従来の技術】
電気、電子部品や、それらの集合体である電気、電子機械などの機器は、自身の発生する熱または周囲からの熱により長期間の稼動の間に熱劣化し、所期の性能を発揮できなくなり、いわゆる寿命となる。熱劣化の進行度合は、温度が高いほど、また、その温度にさらされている時間が長いほど著しい。
【0003】
このような機器の熱劣化診断装置として、電力変換器のゲートドライブ装置において、ゲートドライブ装置のプリント板に、プリント板に実装されているどの部品よりもプリント板との線膨張係数の差が大きい材質のテストピースを半田接続して実装し、そのテストピースが予め定めた半田接続寿命に達すると、半田接続部がクラックにより電気的にオープンとなって警報信号を出力するものがある(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開平11−89214号公報(第2頁、図1、図2)
【0005】
【発明が解決しようとする課題】
上述の従来の技術は、部品がプリント板に実装されている電気、電子装置にしか適用することができず、また、半田クラックの進行により半田接続部がオープンとなる時間は個体差が大きく、また、クラックが入っても電気的接触が継続して必ずしもオープンになるとはかぎらず、信頼性の高いものとは言えなかった。
【0006】
この発明は、上記に鑑みてなされたもので、汎用性及び信頼性の高い、機器の熱劣化診断装置を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る機器の熱劣化診断装置は、金属棒状体と、該金属棒状体が挿通される所定の長さの孔が設けられた金属ブロックと、該孔に該金属棒状体が挿通された状態で、該孔に溶融状態で流し込まれて該金属棒状体と該孔とに所定の固着面積で固着したクリープ破壊特性を有する低融点合金と、該金属棒状体と該低融点合金の固着面に所定のせん断応力を発生させるように該金属ブロックを押圧する弾性体と、所定温度及び所定時間の熱負荷により該低融点合金がクリープせん断破壊して、該弾性体の弾性力により該金属ブロックが移動したのを検出し表示する検出表示手段と、を備えている。
【0008】
この発明によれば、低融点合金のクリープ破壊特性が電気機器、電子機器などの熱負荷による寿命特性と類似しており、かつ、クリープ破壊すると弾性体の弾性力により金属ブロックが移動するので、正確にこれらの機器の熱劣化寿命を診断することができる。
【0009】
【発明の実施の形態】
以下に、添付図面を参照してこの発明に係る機器の熱劣化診断装置の好適な実施の形態を詳細に説明する。
【0010】
実施の形態1.
図1〜6を用いて、この発明の実施の形態1を説明する。図1はこの発明の実施の形態1の機器の熱劣化診断装置を示す縦断面図、図2は熱劣化を表示する状態を示す縦断面図、図3は共晶半田のクリープ破壊特性を示す図、図4はアルミ電解コンデンサーの寿命特性を示す図、図5は共晶半田のクリープ破壊マスター曲線を示す図、図6はコンデンサー寿命特性線と共晶半田クリープ破壊特性線を重ね書きした線図である。
【0011】
図において、機器の近傍もしくは機器内部に設置され、機器と同じ熱環境に置かれる熱劣化診断装置1は、筒状のケース2内に収められ、金属棒状体4の基端部が円柱形の支持ブロック3に支持されてケース2の中心部に設置されている。
金属棒状体4の先端部には、金属棒状体4が挿通された所定の長さの孔8aが設けられた円板状の金属ブロック7が設置されている。孔8aには、クリープ破壊特性を有する低融点合金としての共晶半田が溶融状態で流し込まれ、金属棒状体4と金属ブロック7とは、共晶半田8で固着されている。共晶半田8は、穴8aの長さ分だけ流し込まれ、金属棒状体4と共晶半田8とは、金属棒状体4の太さと孔8aの長さで決まる所定の固着面積で固着している。
【0012】
金属棒状体4で接続された支持ブロック3と金属ブロック7の間には、弾性体としてのコイルバネ6が挿入され、コイルバネ6の両側には円板状の絶縁板5、5が装着され、支持ブロック3とコイルバネ6と金属ブロック7との間を絶縁している。金属棒状体4の基端部または支持ブロックに接続されたリード線9と、金属ブロック7に接続されたリード線9aとがケース2の外に引き出され、電源11及び表示器10に直列に接続されている。金属棒状体4、弾性体としてのコイルバネ6、金属ブロック7、低融点合金としての共晶半田8、リード線9、9a、電源11及び表示器10は検出表示手段10aを構成している。熱劣化診断装置1が機器のケースの中に収められるときは、ケース2はなくてもよい。
【0013】
次に、上記のように構成された熱劣化診断装置1の動作を説明する。金属ブロック7は、コイルバネ6により常に所定のバネ力で押圧されているので、金属棒状体4と共晶半田8の固着面には、常に所定のせん断応力が発生している。機器と同じ熱環境に置かれ、所定温度の熱負荷を受けていると、共晶半田8はせん断応力により徐々にクリープ変形を起こし、図2に示すように、所定期間(時間)経過後には、せん断破壊に至り、金属ブロック7はバネ力により押されて移動し、金属棒状体4から抜け落ち、金属棒状体4と金属ブロック7間の電気接続が切れ、表示器10が消灯して、機器が熱劣化寿命になったことを表示し警報する。
【0014】
次に、この熱劣化診断装置1を、熱劣化の温度−寿命時間特性がわかっている機器の一つであるアルミ電解コンデンサーの最高温度部分に取り付けて、その熱劣化寿命を検出して表示する方法を説明する。
【0015】
共晶半田は、直ちには破壊しない程度の一定のせん断応力のもとで、少しずつ伸び、やがて破断(破壊)に至る、いわゆるクリープ現象が室温近辺でも発生する。図3に、共晶半田で半田付けした部分の、せん断応力に対するクリープ強度を示す。縦軸は、半田付け部のせん断応力、横軸は破断時間である。各温度下(140℃、70℃、20℃)でのせん断応力−破壊時間特性を示す。図に示すように、両対数グラフにおいて直線性を示し、せん断応力が低くなるほど破断するまでの時間が長くなり、同じ応力では温度が高くなるほど短い時間で破断する。
【0016】
図4は、コンデンサー(85℃、3000時間保証品)の寿命特性図である。
縦軸は寿命時間、横軸は使用温度である。図に示すように片対数グラフで直線性を示し、温度が高くなるほど短い寿命時間となる。
【0017】
コンデンサーの設計使用温度を70℃とすると、図4の矢印で示すように、その寿命時間は9000時間になる。この寿命時期を熱劣化診断装置1を用いて検出する方法について以下に述べる。
【0018】
図3に実線の矢印で示すように、70℃、9000時間で半田付け部分が破断するせん断応力は0.28N/mmになる。即ち、熱劣化診断装置1の半田固着面積とバネ力の関係をせん断応力が0.28N/mmとなるように設定し、コンデンサーの近傍に設置しておけば、コンデンサーが設計寿命時間稼動した時、半田固着面がクリープせん断破壊し、金属ブロック7はバネ力により押されて移動し、金属棒状体4から抜け落ち、金属棒状体4と金属ブロック7間の電気接続が切れ、表示器10が消灯して、コンデンサーが熱劣化寿命になったことを表示する。
【0019】
また、コンデンサーが寿命時間の半分を稼動したことを警報するには、図3に破線の矢印で示すよう70℃、4500時間で半田固着面が破断するせん断応力である0.35N/mmとなるように半田固着面積とバネ力の関係を設定すればよい。
【0020】
次に、コンデンサーの使用温度が設計値70℃からはずれた場合について、以下に説明する。共晶半田で半田付けした部分のクリープ破壊時間は、図3に示すように、同じせん断応力では温度が高くなるほど短くなる。これは、図4に示すコンデンサーの寿命特性と同じ特性であり、共晶半田のクリープ破壊特性を利用した機器の熱劣化診断装置1は、使用温度が設計値からはずれても、定性的にコンデンサーの熱劣化寿命を反映する。
【0021】
この点についての定量的な検討方法を以下に説明する。図5は、図3に示す共晶半田の半田付け部のクリープ破壊特性を統計処理した線図である。縦軸はせん断応力、横軸は温度(図中T)と破壊時間(図中t)の対数関数値でありCは定数である。比較的直線的な傾向を示し、70℃、9000時間は、図中右下の丸印の点になる。横軸は先に説明したように温度と破壊時間の関数であるので、丸印の点での任意の温度に対する破壊時間を計算することができる。即ち、クリープ破壊特性における70℃、9000時間に相当する他の温度下の破壊時間を計算することができる。
【0022】
この計算結果を、図4のコンデンサーの寿命特性に重ね書きしたのが図6であり、両特性は比較的良く一致していることがわかる。このことから、熱劣化診断装置1は、コンデンサーが設計温度の70℃ではなく他の温度で使用された場合でも、その寿命到達を正確に検出し表示・警報することができる。
【0023】
上述のような検討をすることにより、熱劣化寿命時期を知りたい機器の寿命特性と低融点合金のクリープ破壊特性とを定量的に比較することができ、この検討結果から、設計使用温度の他に実際に使用されるであろう温度での機器の熱劣化寿命を熱劣化診断装置1が検出できるか否か判断できる。
【0024】
なお、実施の形態1では、低融点合金として共晶半田を用いたが、他の成分の半田あるいは合金も用いることができる。
【0025】
実施の形態2.
図7及び8を用いて、この発明の実施の形態2を説明する。図7はこの発明の実施の形態2の機器の熱劣化診断装置を示す縦断面図、図8は熱劣化を表示する状態を示す縦断面図である。これらの図において、図1及び2に示すものと同一または同等のものは同一の符号を付して説明を省略する。
【0026】
図において、金属棒状体24は実施の形態1の金属棒状体4に比べ長くされ、その先端には、絶縁スペーサ13で金属棒状体24とは絶縁された円環状の導電ストッパ12が固着されている。実施の形態1の絶縁板5、5は装着されていない。導電ストッパ12に接続されたリード線9と、金属ブロック7に接続されたリード線9aとがケース2の外に引き出され、電源11及び表示器10に直列に接続されている。金属棒状体24、コイルバネ6、金属ブロック7、共晶半田8、導電ストッパ12、リード線9、9a、電源11及び表示器10が検出表示手段20aを構成している。
【0027】
次に、上記のように構成された熱劣化診断装置21の動作を説明する。金属ブロック7は、コイルバネ6により常に所定のバネ力で押圧されているので、金属棒状体24と共晶半田8の固着面には、常に所定のせん断応力が発生している。
機器と同じ熱環境に置かれ、所定温度の熱負荷を受けていると、共晶半田8はせん断応力により徐々にクリープ変形を起こし、図8に示すように、所定期間(時間)経過後には、せん断破壊に至り、金属ブロック7はバネ力により押されて金属棒状体4上を移動して導電ストッパ12に当接し、金属ブロック7と導電ストッパ12が電気接続され、表示器10が点灯して機器が熱劣化状態になったことを表示・警報する。金属ブロック7の移動を検出する手段としては、別途独立したセンサーまたはリミットスイッチをケース2内に設置してもよい。
【0028】
【発明の効果】
この発明の機器の熱劣化診断装置は、金属棒状体が挿通される所定の長さの孔が設けられた金属ブロックと、孔に金属棒状体が挿通された状態で、孔に溶融状態で流し込まれて金属棒状体と孔とに所定の固着面積で固着したクリープ破壊特性を有する低融点合金と、金属棒状体と低融点合金の固着面に所定のせん断応力を発生させるように金属ブロックを押圧する弾性体とを備えているので、対象とする機器を選ばず、正確に機器の熱劣化を診断することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の機器の熱劣化診断装置を示す縦断面図である。
【図2】熱劣化を表示する状態を示す縦断面図である。
【図3】共晶半田のクリープ破壊特性を示す図である。
【図4】アルミ電解コンデンサーの寿命特性を示す図である。
【図5】共晶半田のクリープ破壊マスター曲線を示す図である。
【図6】コンデンサー寿命特性線と共晶半田クリープ破壊特性線を重ね書きした線図である。
【図7】この発明の実施の形態2の機器の熱劣化診断装置を示す縦断面図である。
【図8】熱劣化を表示する状態を示す縦断面図である。
【符号の説明】
1,21 熱劣化診断装置、2 ケース、3 支持ブロック、4,24 金属棒状体、5 絶縁板、6 コイルバネ、7 金属ブロック、8 共晶半田、8a孔、9,9a リード線、10 表示器、10a,20a 検出表示手段、11 電源、12 導電ストッパ、13 絶縁スペーサ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a thermal degradation diagnosis device that detects and displays thermal degradation of devices such as electric devices and electronic devices.
[0002]
[Prior art]
Equipment such as electricity, electronic components, and their aggregates, electrical and electronic machines, can be thermally degraded during long-term operation due to heat generated by themselves or heat from the surroundings, and exhibit the expected performance. Disappears, resulting in a so-called life. The degree of progress of thermal degradation is remarkable as the temperature is higher and the time during which the temperature is exposed is longer.
[0003]
As a device for diagnosing thermal deterioration of such equipment, in a gate drive device of a power converter, the difference in the coefficient of linear expansion between the printed board of the gate drive device and the printed board is larger than any component mounted on the printed board. A test piece made of a material is soldered and mounted, and when the test piece reaches a predetermined solder connection life, a solder connection portion is electrically opened by a crack to output an alarm signal (for example, Patent Document 1).
[0004]
[Patent Document 1]
JP-A-11-89214 (page 2, FIG. 1, FIG. 2)
[0005]
[Problems to be solved by the invention]
The above-described conventional technology can be applied only to electric and electronic devices in which components are mounted on a printed board, and the time during which a solder connection is opened due to the progress of solder cracks has a large individual difference, Further, even if a crack is formed, the electrical contact does not always remain open and is not always reliable.
[0006]
The present invention has been made in view of the above, and an object of the present invention is to provide a highly versatile and reliable apparatus for diagnosing thermal degradation of equipment.
[0007]
[Means for Solving the Problems]
According to the thermal degradation diagnosis apparatus for an apparatus according to the present invention, a metal rod, a metal block provided with a hole of a predetermined length through which the metal rod is inserted, and the metal rod inserted into the hole are provided. A low-melting alloy having creep rupture characteristics, which is poured into the hole in a molten state in a molten state and is fixed to the metal rod and the hole with a predetermined fixing area, and a bonding surface between the metal rod and the low-melting alloy. An elastic body that presses the metal block so as to generate a predetermined shear stress, and the low melting point alloy is subjected to creep shear fracture by a heat load at a predetermined temperature and a predetermined time, and the metal block is subjected to an elastic force of the elastic body. Detection display means for detecting and displaying that the. Has moved.
[0008]
According to the present invention, the creep rupture characteristics of the low melting point alloy are similar to the life characteristics due to the thermal load of electric equipment, electronic equipment, and the like, and when the creep rupture occurs, the metal block moves due to the elastic force of the elastic body. It is possible to accurately diagnose the thermal deterioration life of these devices.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of an apparatus for diagnosing thermal degradation of equipment according to the present invention will be described in detail with reference to the accompanying drawings.
[0010]
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a longitudinal sectional view showing a device for diagnosing thermal degradation of equipment according to Embodiment 1 of the present invention, FIG. 2 is a longitudinal sectional view showing a state of displaying thermal degradation, and FIG. 3 shows creep rupture characteristics of eutectic solder. FIG. 4, FIG. 4 is a diagram showing the life characteristics of the aluminum electrolytic capacitor, FIG. 5 is a diagram showing a creep rupture master curve of the eutectic solder, and FIG. 6 is a line in which the capacitor life characteristics line and the eutectic solder creep rupture characteristics line are overwritten. FIG.
[0011]
In the figure, a thermal degradation diagnosis apparatus 1 installed near or inside an apparatus and placed in the same thermal environment as the apparatus is housed in a cylindrical case 2 and the base end of a metal rod 4 has a cylindrical shape. It is supported by the support block 3 and installed at the center of the case 2.
At the tip of the metal rod 4, a disk-shaped metal block 7 provided with a hole 8 a of a predetermined length into which the metal rod 4 is inserted is installed. Eutectic solder as a low melting point alloy having creep rupture characteristics is poured into the hole 8a in a molten state, and the metal rod 4 and the metal block 7 are fixed with the eutectic solder 8. The eutectic solder 8 is poured by the length of the hole 8a, and the metal rod 4 and the eutectic solder 8 are fixed to each other with a predetermined fixing area determined by the thickness of the metal rod 4 and the length of the hole 8a. I have.
[0012]
A coil spring 6 as an elastic body is inserted between the support block 3 and the metal block 7 connected by the metal rod 4, and disk-shaped insulating plates 5, 5 are mounted on both sides of the coil spring 6 to support the coil spring 6. The block 3, the coil spring 6, and the metal block 7 are insulated. A lead wire 9 connected to the base end of the metal rod 4 or the support block and a lead wire 9a connected to the metal block 7 are drawn out of the case 2 and connected in series to a power supply 11 and a display 10. Have been. The metal rod 4, the coil spring 6 as an elastic body, the metal block 7, the eutectic solder 8 as a low melting point alloy, the lead wires 9 and 9a, the power supply 11 and the display 10 constitute a detection display means 10a. When the thermal degradation diagnosis device 1 is housed in a case of the device, the case 2 may not be provided.
[0013]
Next, the operation of the thermal degradation diagnosis device 1 configured as described above will be described. Since the metal block 7 is constantly pressed by the coil spring 6 with a predetermined spring force, a predetermined shear stress is always generated on the fixing surface between the metal rod 4 and the eutectic solder 8. When placed in the same thermal environment as the equipment and subjected to a thermal load at a predetermined temperature, the eutectic solder 8 gradually undergoes creep deformation due to shear stress, and after a predetermined period (time), as shown in FIG. And the metal block 7 is pushed by the spring force and moves, falls off from the metal rod 4, disconnects the electrical connection between the metal rod 4 and the metal block 7, the display 10 is turned off, and the Displays and warns that the battery has reached the thermal degradation life.
[0014]
Next, the thermal degradation diagnosis apparatus 1 is attached to the highest temperature portion of an aluminum electrolytic capacitor, which is one of the devices whose thermal degradation temperature-lifetime characteristics are known, and the thermal degradation life is detected and displayed. The method will be described.
[0015]
The eutectic solder gradually expands under a constant shear stress that does not cause immediate breakage, and eventually breaks (breaks), that is, a so-called creep phenomenon occurs even near room temperature. FIG. 3 shows the creep strength of a portion soldered with eutectic solder against shear stress. The vertical axis indicates the shear stress of the soldered portion, and the horizontal axis indicates the rupture time. The shear stress-rupture time characteristics at each temperature (140 ° C., 70 ° C., 20 ° C.) are shown. As shown in the figure, the logarithmic graph shows linearity, and the lower the shear stress, the longer the time required for fracture, and the higher the temperature, the shorter the fracture at the same stress.
[0016]
FIG. 4 is a life characteristic diagram of a capacitor (a product guaranteed for 3,000 hours at 85 ° C.).
The vertical axis is the life time, and the horizontal axis is the operating temperature. As shown in the figure, the logarithmic graph shows linearity, and the higher the temperature, the shorter the lifetime.
[0017]
Assuming that the design use temperature of the condenser is 70 ° C., the life time of the condenser is 9000 hours, as indicated by the arrow in FIG. A method for detecting the life time using the thermal deterioration diagnosis device 1 will be described below.
[0018]
As indicated by solid arrows in FIG. 3, the shear stress at which the soldered portion breaks at 9000 hours at 70 ° C. becomes 0.28 N / mm 2 . That is, if the relationship between the solder fixing area and the spring force of the thermal degradation diagnosis device 1 is set so that the shear stress becomes 0.28 N / mm 2 and is installed near the capacitor, the capacitor operates for the design life time. At this time, the solder fixing surface undergoes creep shear failure, and the metal block 7 moves by being pushed by the spring force, falls off the metal rod 4, disconnects the electrical connection between the metal rod 4 and the metal block 7, and the display 10 is turned off. Turns off and indicates that the capacitor has reached the end of its thermal degradation life.
[0019]
Also, to warn that the capacitor has operated for half of the life time, as shown by a broken arrow in FIG. 3, the shear stress at which the solder fixing surface is broken at 70 ° C. and 4500 hours is 0.35 N / mm 2 . What is necessary is just to set the relationship between the solder fixing area and the spring force in such a manner.
[0020]
Next, the case where the use temperature of the capacitor deviates from the designed value of 70 ° C. will be described below. As shown in FIG. 3, the creep rupture time of the portion soldered with the eutectic solder decreases as the temperature increases with the same shear stress. This is the same characteristic as the life characteristic of the capacitor shown in FIG. 4, and the thermal degradation diagnosis device 1 for equipment utilizing the creep rupture characteristic of eutectic solder qualitatively determines the capacitor even when the operating temperature deviates from the design value. Reflects the thermal aging life of
[0021]
A method for quantitatively examining this point will be described below. FIG. 5 is a diagram obtained by statistically processing the creep rupture characteristics of the soldered portion of the eutectic solder shown in FIG. The vertical axis is the shear stress, the horizontal axis is the logarithmic function value of the temperature (T in the figure) and the fracture time (t in the figure), and C is a constant. The curve shows a relatively linear tendency, and 9000 hours at 70 ° C. is indicated by a circle at the lower right in the figure. Since the horizontal axis is a function of the temperature and the rupture time as described above, it is possible to calculate the rupture time at an arbitrary temperature at a point indicated by a circle. That is, it is possible to calculate the breaking time at another temperature corresponding to 9000 hours at 70 ° C. in the creep rupture characteristics.
[0022]
FIG. 6 is a graph in which the calculation result is overwritten on the life characteristics of the capacitor shown in FIG. 4, and it can be seen that both characteristics are relatively well matched. From this, even if the capacitor is used at a temperature other than the design temperature of 70 ° C., the thermal degradation diagnosis device 1 can accurately detect the end of the life of the capacitor and display and warn the user.
[0023]
By conducting the above-mentioned studies, it is possible to quantitatively compare the life characteristics of the equipment for which the thermal aging life period is to be determined and the creep rupture characteristics of the low melting point alloy. It can be determined whether the thermal degradation diagnostic device 1 can detect the thermal degradation life of the device at the temperature that will actually be used.
[0024]
In the first embodiment, eutectic solder is used as the low melting point alloy, but other components such as solder or alloy may be used.
[0025]
Embodiment 2 FIG.
Second Embodiment A second embodiment of the present invention will be described with reference to FIGS. FIG. 7 is a longitudinal sectional view showing a device for diagnosing thermal degradation of equipment according to Embodiment 2 of the present invention, and FIG. 8 is a longitudinal sectional view showing a state in which thermal degradation is displayed. In these drawings, the same or equivalent components as those shown in FIGS. 1 and 2 are denoted by the same reference numerals, and description thereof is omitted.
[0026]
In the figure, a metal rod 24 is made longer than the metal rod 4 of the first embodiment, and an annular conductive stopper 12 insulated from the metal rod 24 by an insulating spacer 13 is fixed to the end thereof. I have. The insulating plates 5, 5 of the first embodiment are not mounted. A lead wire 9 connected to the conductive stopper 12 and a lead wire 9a connected to the metal block 7 are drawn out of the case 2 and connected in series to the power supply 11 and the display 10. The metal rod 24, the coil spring 6, the metal block 7, the eutectic solder 8, the conductive stopper 12, the lead wires 9 and 9 a, the power supply 11 and the display 10 constitute a detection display unit 20 a.
[0027]
Next, the operation of the thermal degradation diagnosis device 21 configured as described above will be described. Since the metal block 7 is always pressed by the coil spring 6 with a predetermined spring force, a predetermined shear stress is always generated on the fixing surface between the metal rod 24 and the eutectic solder 8.
When placed in the same thermal environment as the equipment and subjected to a thermal load at a predetermined temperature, the eutectic solder 8 gradually undergoes creep deformation due to shear stress, and as shown in FIG. When the metal block 7 is pushed by the spring force and moves on the metal rod 4 and abuts on the conductive stopper 12, the metal block 7 and the conductive stopper 12 are electrically connected, and the display 10 is turned on. To display and warn that the equipment has degraded due to heat. As means for detecting the movement of the metal block 7, a separate sensor or limit switch may be separately provided in the case 2.
[0028]
【The invention's effect】
The apparatus for diagnosing thermal deterioration of equipment according to the present invention comprises a metal block provided with a hole of a predetermined length through which a metal rod is inserted, and a molten state poured into the hole with the metal rod inserted through the hole. A low melting point alloy having creep rupture properties fixed to a metal rod and a hole with a predetermined fixing area and a metal block pressed to generate a predetermined shear stress on the bonding surface between the metal rod and the low melting point alloy Since the elastic body is provided, the thermal deterioration of the device can be accurately diagnosed regardless of the target device.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing a device for diagnosing thermal deterioration of equipment according to Embodiment 1 of the present invention.
FIG. 2 is a longitudinal sectional view showing a state in which thermal deterioration is displayed.
FIG. 3 is a diagram showing creep rupture characteristics of eutectic solder.
FIG. 4 is a view showing life characteristics of an aluminum electrolytic capacitor.
FIG. 5 is a diagram showing a creep rupture master curve of eutectic solder.
FIG. 6 is a diagram in which a capacitor life characteristic line and a eutectic solder creep rupture characteristic line are overwritten.
FIG. 7 is a vertical sectional view showing a device for diagnosing thermal deterioration of equipment according to Embodiment 2 of the present invention.
FIG. 8 is a longitudinal sectional view showing a state in which thermal deterioration is displayed.
[Explanation of symbols]
1, 21 thermal degradation diagnostic device, 2 case, 3 support block, 4, 24 metal rod, 5 insulating plate, 6 coil spring, 7 metal block, 8 eutectic solder, 8a hole, 9, 9a lead wire, 10 display , 10a, 20a detection display means, 11 power supply, 12 conductive stopper, 13 insulating spacer.

Claims (3)

金属棒状体と、
該金属棒状体が挿通される所定の長さの孔が設けられた金属ブロックと、
該孔に該金属棒状体が挿通された状態で、該孔に溶融状態で流し込まれて該金属棒状体と該孔とに所定の固着面積で固着したクリープ破壊特性を有する低融点合金と、
該金属棒状体と該低融点合金の固着面に所定のせん断応力を発生させるように該金属ブロックを押圧する弾性体と、
所定温度及び所定時間の熱負荷により該低融点合金がクリープせん断破壊して、該弾性体の弾性力により該金属ブロックが移動したのを検出し表示する検出表示手段と、を備えた機器の熱劣化診断装置。
A metal rod,
A metal block provided with a hole of a predetermined length through which the metal rod is inserted,
In the state where the metal rod is inserted through the hole, a low-melting alloy having creep rupture properties, which is poured in a molten state into the hole and is fixed to the metal rod and the hole with a predetermined fixing area,
An elastic body that presses the metal block so as to generate a predetermined shear stress on the fixed surface of the metal rod and the low melting point alloy,
Detection display means for detecting and displaying that the low melting point alloy has undergone creep shear fracture due to a heat load at a predetermined temperature and for a predetermined time and the metal block has moved by the elastic force of the elastic body. Deterioration diagnosis device.
前記検出表示手段は、前記金属棒状体、前記弾性体、前記金属ブロック、前記低融点合金、リード線、電源及び表示器から成ることを特徴とする請求項1に記載の機器の熱劣化診断装置。2. The apparatus for diagnosing thermal degradation of equipment according to claim 1, wherein the detection display means comprises the metal rod, the elastic body, the metal block, the low melting point alloy, a lead wire, a power supply and a display. . 前記検出表示手段は、前記金属棒状体、前記弾性体、前記金属ブロック、前記低融点合金、導電ストッパ、前記リード線、前記電源及び前記表示器から成ることを特徴とする請求項1に記載の機器の熱劣化診断装置。The said detection display means comprises the said metal rod-shaped body, the said elastic body, the said metal block, the said low-melting-point alloy, a conductive stopper, the said lead wire, the said power supply, and the said indicator. Thermal degradation diagnosis device for equipment.
JP2003153110A 2003-05-29 2003-05-29 Thermal degradation diagnostic device of equipment Pending JP2004354243A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003153110A JP2004354243A (en) 2003-05-29 2003-05-29 Thermal degradation diagnostic device of equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003153110A JP2004354243A (en) 2003-05-29 2003-05-29 Thermal degradation diagnostic device of equipment

Publications (1)

Publication Number Publication Date
JP2004354243A true JP2004354243A (en) 2004-12-16

Family

ID=34048157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003153110A Pending JP2004354243A (en) 2003-05-29 2003-05-29 Thermal degradation diagnostic device of equipment

Country Status (1)

Country Link
JP (1) JP2004354243A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2534850A1 (en) * 2014-12-22 2015-04-29 Universidad Complutense De Madrid Equipment and procedure for testing high temperature materials and fluids such as salts, metals, alloys and glass in the molten state (Machine-translation by Google Translate, not legally binding)
ES2534869A1 (en) * 2014-12-22 2015-04-29 Universidad Complutense De Madrid Equipment and procedure for testing high temperature materials and fluids such as salts, metals, alloys or glasses in a molten state in a stirred tank (Machine-translation by Google Translate, not legally binding)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2534850A1 (en) * 2014-12-22 2015-04-29 Universidad Complutense De Madrid Equipment and procedure for testing high temperature materials and fluids such as salts, metals, alloys and glass in the molten state (Machine-translation by Google Translate, not legally binding)
ES2534869A1 (en) * 2014-12-22 2015-04-29 Universidad Complutense De Madrid Equipment and procedure for testing high temperature materials and fluids such as salts, metals, alloys or glasses in a molten state in a stirred tank (Machine-translation by Google Translate, not legally binding)
WO2016102719A1 (en) * 2014-12-22 2016-06-30 Universidad Complutense De Madrid Apparatus and method for testing materials and fluids at a high temperature, such as salts, metals, alloys or glass in a melted state

Similar Documents

Publication Publication Date Title
US8587317B2 (en) Detecting device and detecting method for monitoring battery module
US9347902B2 (en) Tester for measuring insulating properties of cross-linked polyethylene
JP2008003001A (en) Rupture test method of electrical conductor
US20120179391A1 (en) Electronic device and damage detecting method
US11332170B2 (en) Triggering monitoring device for a deformation tube for a coupling; and train coupling
JP2008203036A (en) Electrical connection device
US3786679A (en) Fatigue indication
JP2009243929A (en) Testing device of film load bearing insulation and testing method of film load bearing insulation
TWI422821B (en) Determination of breaking strength and determination of breaking strength
US9524841B2 (en) Heat detector with shape metal alloy element
JP2004354243A (en) Thermal degradation diagnostic device of equipment
US10782314B2 (en) Probe assembly and testing device
JPH10227700A (en) Vibration and temperature detecting integral sensor
TWI617822B (en) Reliability test fixture and reliability on-line test equipment for flexible display device
JP6573039B2 (en) Failure prediction element and circuit board using the same
JP2017191031A (en) Abnormality estimation device
JP2008281563A (en) System, method, and device for measuring capacitance of stator component
JP4488797B2 (en) Insulation deterioration monitoring system for electrical equipment
JPH04204063A (en) Electronic apparatus equipped with means for detecing dielectric breakdown of printed circuit board
CN107091733A (en) Elastic component detection method and detector, switch detection method and detector
CN109490762B (en) Method and device for detecting mirror contact of contactor
CN116097085A (en) Refrigeration cycle device and refrigeration cycle system
JP2007285939A (en) Inspection device and method of semiconductor integrated circuit device
CN101097163A (en) Method for judging contacting conduction between detecting conductor in linetype temperature-sensitive detector and conductive layer
CN107504894B (en) Binding post for strain gauge