JP2008003001A - Rupture test method of electrical conductor - Google Patents

Rupture test method of electrical conductor Download PDF

Info

Publication number
JP2008003001A
JP2008003001A JP2006174261A JP2006174261A JP2008003001A JP 2008003001 A JP2008003001 A JP 2008003001A JP 2006174261 A JP2006174261 A JP 2006174261A JP 2006174261 A JP2006174261 A JP 2006174261A JP 2008003001 A JP2008003001 A JP 2008003001A
Authority
JP
Japan
Prior art keywords
fusing
sample
time
current
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006174261A
Other languages
Japanese (ja)
Other versions
JP4167276B2 (en
Inventor
Yoshiya Kusaka
義哉 日下
Kazumitsu Yamamoto
和光 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Chemical Analysis Service Ltd
Original Assignee
Sumika Chemical Analysis Service Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Chemical Analysis Service Ltd filed Critical Sumika Chemical Analysis Service Ltd
Priority to JP2006174261A priority Critical patent/JP4167276B2/en
Publication of JP2008003001A publication Critical patent/JP2008003001A/en
Application granted granted Critical
Publication of JP4167276B2 publication Critical patent/JP4167276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy to executable rupture test method for electrical conductors. <P>SOLUTION: This method includes a first step S1 for increasing the current value of a current X sent into a sample by a prescribed value each time, when a prescribed time interval elapses until the sample is fused; a second step S2 for acquiring the current value of the current X to be sent into the sample at a time interval containing fusion time, when the sample is fused; a third step S3 for sending a fusing current value acquired in the second step S2 into another or a plurality of other samples, respectively having a material and a shape similar to the sample; a fourth step S4 for measuring the fusing time, until another or the plurality of other samples are fused; and a fifth step S5 for determining whether the measured fusing time is within a time interval of 60 seconds. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、金ワイヤやヒューズ等の導電体の溶断試験方法に関する。   The present invention relates to a fusing test method for conductors such as gold wires and fuses.

従来より、電子素子に使用されるボンディングワイヤや配線用ヒューズ等に対し溶断試験が実施されている。例えば配線用ヒューズの溶断試験については、JIS(C 8352−1983)に規定されている。   Conventionally, fusing tests have been performed on bonding wires and wiring fuses used in electronic devices. For example, a blow test for a wiring fuse is defined in JIS (C 8352-1983).

しかし、上記のJISに規定されている溶断試験は、オシロスコープ等のように複雑な操作を要する高価な測定機器が用いられるので実施が容易ではない。そこで本発明は、実施容易な導電体の溶断試験方法を提供することを目的とする。   However, the fusing test stipulated in the above JIS is not easy to implement because an expensive measuring instrument that requires a complicated operation such as an oscilloscope is used. Accordingly, an object of the present invention is to provide a conductor fusing test method that is easy to implement.

本発明は、導電体に電流を流すことにより行う導電体の溶断試験方法であって、導電体が溶断されるまで、所定時間間隔の経過毎に導電体に流す電流値を所定値ずつ上げていく第1ステップと、導電体が溶断されると、この溶断時を含む時間間隔において導電体に流すべき電流値を取得する第2ステップとを有する、ことを特徴とする。従って、導電体に流す電流の電流値と、この電流を導電体に流す時間とが測定できれば、オシロスコープ等のように複雑な操作を要する高価な測定機器を用いることなく、導電体の溶断特性を定量化するための溶断試験の実行が可能となる。   The present invention is a conductor fusing test method that is performed by passing a current through a conductor, and increases the current value that flows through the conductor by a predetermined value every time a predetermined time interval elapses until the conductor is blown. And a second step of acquiring a current value to be passed through the conductor in a time interval including the time of the fusing when the conductor is blown out. Therefore, if the current value of the current flowing through the conductor and the time during which this current is passed through the conductor can be measured, the fusing characteristics of the conductor can be achieved without using an expensive measuring instrument that requires complicated operations such as an oscilloscope. It is possible to perform a fusing test for quantification.

更に、本発明では、前記第2ステップにおいて取得した電流値を、第2ステップにおいて用いた導電体と同様の材料及び形状を有する他の一又は複数の導電体に流す第3ステップと、第3ステップの後、これら一又は複数の導電体が溶断するまでの時間を測定する第4ステップとを更に有するのが好ましい。従って、第4ステップにおいて測定した時間が上記の時間間隔内にあるか否かを判定することにより、第2ステップにおいて取得した電流値の再現性が容易に確認できる。   Further, in the present invention, a third step in which the current value acquired in the second step is passed through one or more other conductors having the same material and shape as the conductor used in the second step, It is preferable to further include a fourth step of measuring the time until the one or more conductors are blown after the step. Therefore, by determining whether or not the time measured in the fourth step is within the above time interval, the reproducibility of the current value acquired in the second step can be easily confirmed.

本発明によれば、実施容易な導電体の溶断試験方法が提供できる。   According to the present invention, it is possible to provide an electric conductor fusing test method that is easy to implement.

以下、図面を参照して、本発明に係る好適な実施形態について詳細に説明する。なお、図面の説明において、可能な場合には、同一要素には同一符号を付し、重複する説明を省略する。まず、図1(a)を参照して、実施形態に係る溶断試験装置10の構成を説明する。溶断試験装置10は、金ワイヤやヒューズ等の導電体(以下、サンプル8という)に対する溶断試験(導電体の溶断特性を定量化する試験)に用いられる装置であり、電子負荷装置2、制御装置4及び電源6を備える。サンプル8の導電体としては、金属体、超伝導体、透明導電体、有機導電体を挙げることができる。金属体としては、導電性を有する金属又は合金からなる材料を挙げることができ、代表的には、金、銀、銅、鉄、亜鉛、鉛、錫、珪素、アルミニウム、チタン、ニッケル、クロム、ジルコニウム、マンガン、バナジウム、ベリリウム、ビスマス、カドミウム、白金、タングステンか、又はこれらの合金から成る材料や、電線、ヒューズ、はんだ、熱電対等に通常用いられる材料を挙げることができる。超伝導体としては、代表的には、Pb系材料、Nb系材料、Mo系のアモルファス材料、Cu系(例えば、Ba−Y−Cu−O系)の酸化物材料又はBi系(例えば、Ba−Pb−Bi−O系)の酸化物材料を挙げることができる。透明導電体としては、SnO:Sbから成る材料、In:Snから成る材料又はZnO:Alから成る材料を挙げることができる。有機導電体としては、ポリアセチレンから成る材料、ポリチオフェンから成る材料、延伸ポリパラフェニレンビニレンから成る材料、ポリチアジルから成る材料、ポリピロールから成る材料、ポリパラフェニレンから成る材料か、又はこれらの材料にヨウ素、硫酸、臭素等のドーパントを添加した材料を挙げることができる。また、サンプル8の形状としては、ワイヤ状、フィルム状、薄膜状を挙げることができるが、本発明に好ましく適応する形状という点から、サンプル8の形状はワイヤ状が好ましい。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the description of the drawings, if possible, the same elements are denoted by the same reference numerals, and redundant descriptions are omitted. First, with reference to Fig.1 (a), the structure of the fusing test apparatus 10 which concerns on embodiment is demonstrated. The fusing test apparatus 10 is an apparatus used for a fusing test (a test for quantifying the fusing characteristics of a conductor) with respect to a conductor (hereinafter referred to as a sample 8) such as a gold wire or a fuse. 4 and a power source 6. Examples of the conductor of the sample 8 include a metal body, a superconductor, a transparent conductor, and an organic conductor. Examples of the metal body include materials made of conductive metals or alloys. Typically, gold, silver, copper, iron, zinc, lead, tin, silicon, aluminum, titanium, nickel, chromium, Examples thereof include materials composed of zirconium, manganese, vanadium, beryllium, bismuth, cadmium , platinum, tungsten , or alloys thereof, and materials usually used for electric wires, fuses, solders, thermocouples, and the like. As the superconductor, typically, Pb-based material, Nb-based material, Mo-based amorphous material, Cu-based (for example, Ba—Y—Cu—O-based) oxide material, or Bi-based (for example, Ba-based). -Pb-Bi-O-based) oxide materials can be given. Examples of the transparent conductor include a material composed of SnO 2 : Sb, a material composed of In 2 O 3 : Sn, and a material composed of ZnO: Al. As the organic conductor, a material made of polyacetylene, a material made of polythiophene, a material made of expanded polyparaphenylene vinylene, a material made of polythiazyl, a material made of polypyrrole, a material made of polyparaphenylene, or iodine, The material which added dopants, such as a sulfuric acid and a bromine, can be mentioned. Further, examples of the shape of the sample 8 include a wire shape, a film shape, and a thin film shape, but the shape of the sample 8 is preferably a wire shape from the viewpoint of a shape that is preferably adapted to the present invention.

電子負荷装置2は、制御装置4による制御のもとでサンプル8に電流Xを流す。制御装置4は、PC(Personal Computer)等であり、図示しないCPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を有している。CPUは、ROM等に格納されている各種プログラムを実行する。制御装置4は、CPUにプログラムを実行させることにより電子負荷装置2を制御する。これによりサンプル8に流れる電流Xが制御装置4により制御される。具体的には、制御装置4は、図2に示すように、電流Xの電流値を、60秒の時間間隔の経過毎に0.1Aずつ上げるように電子負荷装置2を制御する。ここで、図2に示すグラフの横軸は、電流Xをサンプル8に流す時間(秒)を示しており、縦軸は、電流Xの電流値(A)を示している。なお、60秒という時間間隔は一例であり、90秒や30秒等の他の時間間隔であってもよい。更に、電流Xの電流値の増加分0.1Aも一例であり、0.05Aや0.2A等の他の増加分であってもよい。   The electronic load device 2 causes the current X to flow through the sample 8 under the control of the control device 4. The control device 4 is a PC (Personal Computer) or the like, and includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory) and the like (not shown). The CPU executes various programs stored in the ROM or the like. The control device 4 controls the electronic load device 2 by causing the CPU to execute a program. Thereby, the current X flowing through the sample 8 is controlled by the control device 4. Specifically, as shown in FIG. 2, the control device 4 controls the electronic load device 2 so as to increase the current value of the current X by 0.1 A every time interval of 60 seconds. Here, the horizontal axis of the graph shown in FIG. 2 indicates the time (seconds) during which the current X flows through the sample 8, and the vertical axis indicates the current value (A) of the current X. The time interval of 60 seconds is an example, and other time intervals such as 90 seconds and 30 seconds may be used. Furthermore, the increase amount 0.1A of the current value of the current X is also an example, and may be another increase amount such as 0.05A or 0.2A.

図1(a)に戻って説明する。電源6は、電流Xをサンプル8に流すための直流電源である。電源6のプラス端子6aは、電子負荷装置2の端子2aに接続されており、電源6のマイナス端子6bは、サンプル8を介して電子負荷装置2の端子2bに接続されている。サンプル8は、例えば金ワイヤであり、図3に示すように溶断試験装置10に取り付けられる。図3には、サンプル8の一端が二枚の金属板ペア10aによって挟まれており、他端が他の二枚の金属板ペア10bによって挟まれている様子が示されている。金属板ペア10aはクリップ12aによって挟まれており、金属板ペア10bは、クリップ12bによって挟まれている。クリップ12a及びクリップ12bの何れか一方は、電子負荷装置2の端子2bに接続されており、もう一方は電源6のマイナス端子6bに接続される。なお、サンプル8のワイヤの径は、例えば、20μm、25μm又は30μm等である。また、金属板ペア10a及び金属板ペア10bは、アルミニウム、銅、金又は銀等の低電気抵抗を有する二枚の金属板から成る。   Returning to FIG. The power source 6 is a DC power source for causing the current X to flow through the sample 8. The positive terminal 6 a of the power source 6 is connected to the terminal 2 a of the electronic load device 2, and the negative terminal 6 b of the power source 6 is connected to the terminal 2 b of the electronic load device 2 via the sample 8. The sample 8 is a gold wire, for example, and is attached to the fusing test apparatus 10 as shown in FIG. FIG. 3 shows a state in which one end of the sample 8 is sandwiched between two metal plate pairs 10a and the other end is sandwiched between the other two metal plate pairs 10b. The metal plate pair 10a is sandwiched between the clips 12a, and the metal plate pair 10b is sandwiched between the clips 12b. One of the clip 12 a and the clip 12 b is connected to the terminal 2 b of the electronic load device 2, and the other is connected to the minus terminal 6 b of the power source 6. Note that the diameter of the wire of the sample 8 is, for example, 20 μm, 25 μm, or 30 μm. The metal plate pair 10a and the metal plate pair 10b are made of two metal plates having low electrical resistance such as aluminum, copper, gold or silver.

次に、図4に示すフローチャートを参照して、溶断試験装置10を用いたサンプル8の溶断試験について説明する。この溶断試験に用いられるサンプル8は、20μm径の金ワイヤとする。まず、サンプル8が溶断するまで(すなわち、電流Xの電流値がゼロ値となるまで)、図2に示すように、60秒の時間間隔の経過毎に、サンプル8に流す電流Xの電流値を0.1Aの増加分ずつ上げる(第1ステップS1)。次に、サンプル8が溶断すると、この溶断時(電流Xの電流値がゼロ値になる時)を含む時間間隔にサンプル8に流すべき(流す予定の)電流Xの電流値(溶断電流値)を取得する(第2ステップS2)。これにより、サンプル8を溶断する溶断電流値が取得される。   Next, with reference to the flowchart shown in FIG. 4, the fusing test of the sample 8 using the fusing test apparatus 10 is demonstrated. Sample 8 used for this fusing test is a gold wire with a diameter of 20 μm. First, until the sample 8 is blown (that is, until the current value of the current X becomes zero), as shown in FIG. 2, the current value of the current X that flows through the sample 8 every time the time interval of 60 seconds elapses. Is increased by an increment of 0.1 A (first step S1). Next, when the sample 8 is blown, the current value (fusing current value) of the current X to be passed (scheduled to flow) to the sample 8 in a time interval including the time of blowing (when the current value of the current X becomes zero). Is acquired (second step S2). Thereby, the fusing current value for fusing the sample 8 is acquired.

図5に、上述の第1ステップS1及び第2ステップS2に対応する溶断試験の試験結果の一例を示す。図5に示すグラフの横軸は、電流Xをサンプル8に流す時間(秒)を示しており、縦軸は、電流Xの電流値(A)を示している。図5に示す試験結果は、測定開始後1.0秒経過した後から61.1秒経過するまでの略60秒間に0.1Aの電流Xがサンプル8に流され、測定開始後61.1秒経過した後から121.2秒経過するまでの略60秒間に0.2Aの電流Xがサンプル8に流され、測定開始後121.2秒経過した後から181.3秒経過するまでの略60秒間に0.3Aの電流Xがサンプル8に流され、更に、0.4Aの電流Xをサンプル8に流す予定となっている測定開始後181.3秒経過した後から略60秒経過するまでの間にサンプル8に溶断が生じたことを示している(図中符号Yに示す箇所を参照。)。この場合、電子負荷装置2から制御装置4に電流・電圧のデータを0.5秒毎に出力し、電流値が完全に0Aとなった時点で溶断したものと判断する。測定開始より181.3秒経過した後から略60秒の時間間隔が経過するまでにサンプル8に溶断が生じなければ0.4Aの電流がサンプル8に流される予定となっているので、第2ステップS2において取得される溶断電流値は、0.4Aとなる。ここで、上述の図5に示す試験結果の詳細を、図6(a)の表に示す。図6(a)の表によれば、測定開始後182.4秒経過した時点においてサンプル8に溶断が生じていることがわかる(図中符号Zに示す箇所を参照。)。なお、サンプル8の溶断電流値(電圧値)及び溶断時間によっては、溶断試験装置10に替えて、図1(b)に示す溶断試験装置11を用いてもよい。溶断試験装置11は、溶断試験装置10から電子負荷装置2を除いた構成を有しており、比較的大きな溶断電流値や溶断時間の場合(すなわち、電子負荷装置2を用いた精密な電流制御を要しない場合)に利用できる。   FIG. 5 shows an example of a test result of a fusing test corresponding to the first step S1 and the second step S2 described above. The horizontal axis of the graph shown in FIG. 5 indicates the time (seconds) during which the current X flows through the sample 8, and the vertical axis indicates the current value (A) of the current X. The test results shown in FIG. 5 show that a current X of 0.1 A was passed through the sample 8 for approximately 60 seconds after 6 seconds had elapsed after 1.0 seconds had elapsed from the start of measurement, and 61.1 after the start of measurement. A current X of 0.2 A is applied to the sample 8 for approximately 60 seconds after 12 seconds have elapsed and 121.3 seconds have elapsed, and after approximately 121.2 seconds have elapsed since the start of measurement, approximately 181.3 seconds have elapsed. A current X of 0.3 A is caused to flow through the sample 8 in 60 seconds, and then about 60 seconds elapse after 181.3 seconds have elapsed since the start of measurement, where a current X of 0.4 A is scheduled to flow through the sample 8. It shows that fusing occurred in the sample 8 during the time period (see the portion indicated by the symbol Y in the figure). In this case, current / voltage data is output from the electronic load device 2 to the control device 4 every 0.5 seconds, and it is determined that the fusing is performed when the current value is completely 0A. Since no current fusing occurs in the sample 8 after the time interval of approximately 60 seconds elapses after 181.3 seconds have elapsed from the start of measurement, a current of 0.4 A is scheduled to flow through the sample 8. The fusing current value acquired in step S2 is 0.4A. Here, the details of the test results shown in FIG. 5 are shown in the table of FIG. According to the table of FIG. 6 (a), it can be seen that fusing has occurred in the sample 8 when 182.4 seconds have elapsed after the start of measurement (see the portion indicated by the symbol Z in the figure). Depending on the fusing current value (voltage value) and fusing time of sample 8, a fusing test device 11 shown in FIG. 1B may be used instead of fusing test device 10. The fusing test device 11 has a configuration in which the electronic load device 2 is removed from the fusing test device 10, and in the case of a relatively large fusing current value or fusing time (that is, precise current control using the electronic load device 2). Available).

図4に戻って説明する。第2ステップS2において取得した溶断電流値の電流Xを、サンプル8と同様の材料及び形状を有する他の一又は複数のサンプルに流し(第3ステップS3)、これら一又は複数のサンプルが溶断するまでの時間(溶断時間)を測定し(第4ステップS4)、そして、この溶断時間が60秒の時間間隔内にあるか否かを判定する(第5ステップS5)。図6(b)には、第3ステップS3〜第5ステップS5に対応する溶断時間の測定結果の一例が示されている。図6(b)に示す溶断時間の測定結果は、溶断電流値が0.4Aの場合の測定結果である。図6(b)に示すように、第2ステップS2において取得した溶断電流値の電流Xをサンプル8と同様の材料及び形状を有する他の8個のサンプルに流し(第3ステップS3)、これら8個のサンプルが溶断するまでの各溶断時間を測定した(第4ステップS4)。そして、この測定した溶断時間が60秒の時間間隔内にあるか否かの判定を行う(第5ステップS5)。なお、図6(b)に示す複数の溶断時間に対し、例えば平均値を算出する等の統計処理を施してもよい。   Returning to FIG. The current X having the fusing current value acquired in the second step S2 is passed through one or more other samples having the same material and shape as the sample 8 (third step S3), and the one or more samples are fused. Until the time (fusing time) is measured (fourth step S4), and it is determined whether or not the fusing time is within a time interval of 60 seconds (fifth step S5). FIG. 6B shows an example of the measurement result of the fusing time corresponding to the third step S3 to the fifth step S5. The measurement result of the fusing time shown in FIG. 6B is the measurement result when the fusing current value is 0.4A. As shown in FIG. 6B, the current X having the fusing current value acquired in the second step S2 is passed through the other eight samples having the same material and shape as the sample 8 (third step S3). Each fusing time until eight samples fusing was measured (fourth step S4). Then, it is determined whether or not the measured fusing time is within a time interval of 60 seconds (fifth step S5). In addition, you may perform statistical processing, such as calculating an average value, with respect to several fusing time shown in FIG.6 (b).

図7(a)〜図7(c)は、それぞれ20μm径の金ワイヤ、25μm径の金ワイヤ、30μm径の金ワイヤをサンプルに用いた場合の溶断時間の測定結果である。図7(a)は、20μmの金ワイヤに対して溶断電流値(0.4A)の取得後(すなわち第1ステップS1及び第2ステップS2と同様の試験の後)に行った溶断時間の測定結果(すなわち第3ステップS3と同様の測定により得られた測定結果)を示す。また、図7(b)は、25μmの金ワイヤに対し溶断電流値(0.5A)の取得後(すなわち第1ステップS1及び第2ステップS2と同様の試験の後)に行った溶断時間の測定結果(すなわち第3ステップS3と同様の測定により得られた測定結果)を示す。また、図7(c)は、30μmの金ワイヤに対し溶断電流値(0.7A)の取得後(すなわち第1ステップS1及び第2ステップS2と同様の試験の後)に行った溶断時間の測定結果(すなわち第3ステップS3と同様の測定により得られた測定結果)を示す。図7(a)〜図7(c)に示す何れの溶断時間も、60秒の時間間隔内であることがわかる。このようにして、20μm径の導電体、25μm径の導電体及び30μm径の導電体等の種々のサンプルに対しても、溶断時間が60秒の時間間隔内にあるか否かを判定することにより、これら各導電体に対し測定した各溶断電流値の再現性が容易に確認できる。 FIG. 7A to FIG. 7C show the measurement results of the fusing time when a gold wire with a diameter of 20 μm, a gold wire with a diameter of 25 μm, and a gold wire with a diameter of 30 μm are used as samples. FIG. 7A shows the measurement of the fusing time performed after obtaining a fusing current value (0.4 A) for a 20 μm gold wire (that is, after the same test as the first step S1 and the second step S2). A result (namely, the measurement result obtained by the same measurement as 3rd step S3) is shown. FIG. 7B shows the fusing time performed after obtaining a fusing current value (0.5 A) for a 25 μm gold wire (that is, after the same test as the first step S1 and the second step S2). The measurement result (that is, the measurement result obtained by the same measurement as in the third step S3) is shown. Moreover, FIG.7 (c) shows the fusing time performed after acquisition of fusing current value (0.7A) with respect to a 30-micrometer gold wire (namely, after the test similar to 1st step S1 and 2nd step S2). The measurement result (that is, the measurement result obtained by the same measurement as in the third step S3) is shown. It can be seen that any fusing time shown in FIGS. 7A to 7C is within a time interval of 60 seconds. In this way, it is determined whether or not the fusing time is within the 60 second time interval for various samples such as a conductor having a diameter of 20 μm, a conductor having a diameter of 25 μm, and a conductor having a diameter of 30 μm. Thus, the reproducibility of each fusing current value measured for each of these conductors can be easily confirmed.

以上説明したように、実施形態に係る溶断試験は、溶断試験装置10を用いて行われる。この溶断試験装置10は、PC等の制御装置4と、この制御装置4により制御される電子負荷装置2とを備える。そして、実施形態に係る溶断試験は、サンプル8が溶断されるまで、サンプル8に流す電流Xの電流値を所定時間間隔(例えば、60秒の時間間隔)が経過する毎に所定値(例えば、0.1A)ずつ上げていく第1ステップS1と、サンプル8が溶断されると、この溶断時を含む時間間隔(例えば、60秒の時間間隔)においてサンプル8に流すべき電流Xの電流値(例えば、0.4A)を取得する第2ステップS2とを有する。よって、実施形態に係る溶断試験は、サンプル8に流す電流Xの電流値と、この電流Xをサンプル8に流す時間とが測定できれば実行可能であり、オシロスコープ等のように複雑な操作を要する高価な測定機器を用いる必要がない。このため、実施容易な溶断試験方法が提供できる。   As described above, the fusing test according to the embodiment is performed using the fusing test apparatus 10. The fusing test device 10 includes a control device 4 such as a PC and an electronic load device 2 controlled by the control device 4. The fusing test according to the embodiment is such that the current value of the current X that flows through the sample 8 is a predetermined value (for example, a time interval of 60 seconds) until the sample 8 is blown. When the sample 8 is blown out, the current value of the current X to be passed through the sample 8 in the time interval including the time of the fusing (for example, the time interval of 60 seconds) For example, it has 2nd step S2 which acquires 0.4A). Therefore, the fusing test according to the embodiment can be performed if the current value of the current X flowing through the sample 8 and the time during which the current X flows through the sample 8 can be measured, and an expensive operation requiring a complicated operation such as an oscilloscope or the like. It is not necessary to use a simple measuring instrument. For this reason, an easy-to-implement fusing test method can be provided.

更に、実施形態に係る溶断試験は、第2ステップS2において取得した溶断電流値を、サンプル8と同様の材料及び形状を有する他の一又は複数のサンプルに流す第3ステップS3と、この一又は複数のサンプルが溶断されるまでの溶断時間を測定する第4ステップS4と、この測定した溶断時間が60秒の時間間隔内にあるか否かを判定する第5ステップS5とを含む。第4ステップS4において測定した溶断時間が60秒の時間間隔内にあるか否かを第5ステップにおいて判定することにより、第2ステップS2において取得した溶断電流値の再現性が容易に確認できる。   Further, the fusing test according to the embodiment includes the third step S3 in which the fusing current value acquired in the second step S2 is passed through one or a plurality of other samples having the same material and shape as the sample 8, and this one or A fourth step S4 for measuring the fusing time until a plurality of samples are fused, and a fifth step S5 for judging whether or not the measured fusing time is within a time interval of 60 seconds. By determining in the fifth step whether or not the fusing time measured in the fourth step S4 is within the time interval of 60 seconds, the reproducibility of the fusing current value acquired in the second step S2 can be easily confirmed.

実施形態に係る溶断試験装置の構成を示す図である。It is a figure which shows the structure of the fusing test apparatus which concerns on embodiment. 実施形態に係る溶断試験方法を説明するための図である。It is a figure for demonstrating the fusing test method which concerns on embodiment. 実施形態に係る溶断試験方法を説明するための図である。It is a figure for demonstrating the fusing test method which concerns on embodiment. 実施形態に係る溶断試験方法を説明するためのフローチャートである。It is a flowchart for demonstrating the fusing test method which concerns on embodiment. 実施形態に係る溶断試験の結果を示す図である。It is a figure which shows the result of the fusing test which concerns on embodiment. 実施形態に係る溶断試験の結果を示す図である。It is a figure which shows the result of the fusing test which concerns on embodiment. 実施形態に係る溶断試験の結果を示す図である。It is a figure which shows the result of the fusing test which concerns on embodiment.

符号の説明Explanation of symbols

2…電子負荷装置、4…制御装置、6…電源、8…サンプル、10,11…溶断試験装置、10a,10b…金属板ペア、12a,12b…クリップ。
2 ... Electronic load device, 4 ... Control device, 6 ... Power source, 8 ... Sample, 10, 11 ... Fusing test device, 10a, 10b ... Metal plate pair, 12a, 12b ... Clip.

Claims (2)

導電体に電流を流すことにより行う導電体の溶断試験方法であって、
前記導電体が溶断されるまで、所定時間間隔の経過毎に前記導電体に流す電流値を所定値ずつ上げていく第1ステップと、
前記導電体が溶断されると、この溶断時を含む前記時間間隔において前記導電体に流すべき前記電流値を取得する第2ステップと
を有する、ことを特徴とする導電体の溶断試験方法。
A conductor fusing test method performed by passing a current through the conductor,
A first step of increasing a current value flowing through the conductor by a predetermined value every elapse of a predetermined time interval until the conductor is melted;
And a second step of acquiring the current value to be passed through the conductor in the time interval including the time of the fusing when the conductor is blown out.
前記第2ステップにおいて取得した前記電流値を、前記導電体と同様の材料及び形状を有する他の一又は複数の導電体に流す第3ステップと、
前記第3ステップの後、前記一又は複数の導電体が溶断するまでの時間を測定する第4ステップと
を更に有する、ことを特徴とする請求項1に記載の導電体の溶断試験方法。
A third step in which the current value acquired in the second step flows through one or more other conductors having the same material and shape as the conductor;
The electric conductor fusing test method according to claim 1, further comprising a fourth step of measuring a time until the one or more electric conductors are fused after the third step.
JP2006174261A 2006-06-23 2006-06-23 Conductor fusing test method Expired - Fee Related JP4167276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006174261A JP4167276B2 (en) 2006-06-23 2006-06-23 Conductor fusing test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006174261A JP4167276B2 (en) 2006-06-23 2006-06-23 Conductor fusing test method

Publications (2)

Publication Number Publication Date
JP2008003001A true JP2008003001A (en) 2008-01-10
JP4167276B2 JP4167276B2 (en) 2008-10-15

Family

ID=39007503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006174261A Expired - Fee Related JP4167276B2 (en) 2006-06-23 2006-06-23 Conductor fusing test method

Country Status (1)

Country Link
JP (1) JP4167276B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788986B1 (en) * 2006-08-11 2008-01-02 주식회사 래도 Block type led module and control method thereof
KR100788985B1 (en) * 2006-08-11 2008-01-02 주식회사 래도 Electric sign board using led module and control method thereof
KR100790470B1 (en) * 2005-12-05 2008-01-02 한국전자통신연구원 Method and apparatus for automatically generating test case for device driver test
KR100792061B1 (en) * 2006-04-06 2008-01-04 엘지전자 주식회사 Method of releasing the roughened surface of washed cloth
KR100793122B1 (en) * 2003-08-11 2008-01-10 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Probe for probe microscope using transparent substrate, method of producing the same, and probe microscope device
KR100796657B1 (en) * 2006-08-10 2008-01-22 삼성에스디아이 주식회사 Full color organic light emitting display and method for driving thereof
KR100804453B1 (en) * 2000-03-30 2008-02-20 퀄컴 인코포레이티드 Method and apparatus for detecting specified events in a mobile station
KR100809259B1 (en) * 2006-10-04 2008-03-03 삼성전기주식회사 Device for interface of communication module
KR100809619B1 (en) * 2003-08-26 2008-03-05 삼성전자주식회사 Apparatus and method for coding/decoding block low density parity check code in a mobile communication system
KR100813854B1 (en) * 2007-04-23 2008-03-17 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof
KR100817562B1 (en) * 2007-03-22 2008-03-27 주식회사 이너버스 Method for indexing a large scaled logfile, computer readable medium for storing program therein, and system for the preforming the same
KR100816989B1 (en) * 2006-10-24 2008-03-27 주식회사 포스코 Soothing agent projecting apparatus with slag penetrating structure
KR100820714B1 (en) * 2006-12-14 2008-04-11 현대자동차주식회사 Mounting structure of a rear suspension cross member of a vehicle
KR100831290B1 (en) * 2008-03-17 2008-05-22 주식회사 베스텍 Motor control center
KR100832687B1 (en) * 2007-04-02 2008-05-27 수자원기술 주식회사 Sequential pipeline cleaning method in water distribution system
KR100832933B1 (en) * 2007-03-23 2008-05-27 엄창훈 Rust preventive oil coated pipe remover and removing method
KR100836543B1 (en) * 2006-06-21 2008-06-10 샤프 가부시키가이샤 Display device
KR100839248B1 (en) * 2004-02-17 2008-06-17 세이코 엡슨 가부시키가이샤 Piezo-oscillator and manufacturing method thereof
KR100843345B1 (en) * 2007-09-06 2008-07-03 고삼석 A construction method of expansion joint for bridge
KR100845107B1 (en) * 2006-12-29 2008-07-09 엘에스산전 주식회사 Electric power switch system
KR100848043B1 (en) * 2006-07-06 2008-07-28 이시철 Integrated wiring system of computer circumference machinery and tools
KR100850578B1 (en) * 2007-10-11 2008-10-27 주식회사 케빅 Public address system capable of monitoring speker

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804453B1 (en) * 2000-03-30 2008-02-20 퀄컴 인코포레이티드 Method and apparatus for detecting specified events in a mobile station
KR100793122B1 (en) * 2003-08-11 2008-01-10 도쿠리쓰교세이호징 가가쿠 기주쓰 신코 기코 Probe for probe microscope using transparent substrate, method of producing the same, and probe microscope device
KR100809619B1 (en) * 2003-08-26 2008-03-05 삼성전자주식회사 Apparatus and method for coding/decoding block low density parity check code in a mobile communication system
KR100839248B1 (en) * 2004-02-17 2008-06-17 세이코 엡슨 가부시키가이샤 Piezo-oscillator and manufacturing method thereof
KR100790470B1 (en) * 2005-12-05 2008-01-02 한국전자통신연구원 Method and apparatus for automatically generating test case for device driver test
KR100792061B1 (en) * 2006-04-06 2008-01-04 엘지전자 주식회사 Method of releasing the roughened surface of washed cloth
KR100836543B1 (en) * 2006-06-21 2008-06-10 샤프 가부시키가이샤 Display device
KR100848043B1 (en) * 2006-07-06 2008-07-28 이시철 Integrated wiring system of computer circumference machinery and tools
KR100796657B1 (en) * 2006-08-10 2008-01-22 삼성에스디아이 주식회사 Full color organic light emitting display and method for driving thereof
KR100788986B1 (en) * 2006-08-11 2008-01-02 주식회사 래도 Block type led module and control method thereof
KR100788985B1 (en) * 2006-08-11 2008-01-02 주식회사 래도 Electric sign board using led module and control method thereof
KR100809259B1 (en) * 2006-10-04 2008-03-03 삼성전기주식회사 Device for interface of communication module
KR100816989B1 (en) * 2006-10-24 2008-03-27 주식회사 포스코 Soothing agent projecting apparatus with slag penetrating structure
KR100820714B1 (en) * 2006-12-14 2008-04-11 현대자동차주식회사 Mounting structure of a rear suspension cross member of a vehicle
KR100845107B1 (en) * 2006-12-29 2008-07-09 엘에스산전 주식회사 Electric power switch system
KR100817562B1 (en) * 2007-03-22 2008-03-27 주식회사 이너버스 Method for indexing a large scaled logfile, computer readable medium for storing program therein, and system for the preforming the same
KR100832933B1 (en) * 2007-03-23 2008-05-27 엄창훈 Rust preventive oil coated pipe remover and removing method
KR100832687B1 (en) * 2007-04-02 2008-05-27 수자원기술 주식회사 Sequential pipeline cleaning method in water distribution system
KR100813854B1 (en) * 2007-04-23 2008-03-17 삼성에스디아이 주식회사 Organic light emitting device and manufacturing method thereof
KR100843345B1 (en) * 2007-09-06 2008-07-03 고삼석 A construction method of expansion joint for bridge
KR100850578B1 (en) * 2007-10-11 2008-10-27 주식회사 케빅 Public address system capable of monitoring speker
KR100831290B1 (en) * 2008-03-17 2008-05-22 주식회사 베스텍 Motor control center

Also Published As

Publication number Publication date
JP4167276B2 (en) 2008-10-15

Similar Documents

Publication Publication Date Title
JP4167276B2 (en) Conductor fusing test method
US5227259A (en) Apparatus and method for locating and isolating failed cells in a battery
JP6593049B2 (en) Monitoring tag
JP2005233967A (en) Material for probe pin
CN103575939A (en) Inspection jig and contactor
JP6009544B2 (en) Kelvin contact probe and kelvin inspection jig provided with the same
US10884054B2 (en) Detecting deterioration of an electrical circuit in an aggressive environment
Lall et al. 3-D numerical multiphysics model for Cu-Al wire bond corrosion
US20150293149A1 (en) Test probe and method of manufacturing a test probe
Pawar et al. Investigation of Cu-Sn-Cu transient liquid phase bonding for microsystems packaging
JP4829358B2 (en) Modules and electronics
JP2011210884A (en) Quality control method of solder junction and quality control device
JP2011089859A (en) Temperature sensor
CN115206607B (en) Resistor structure and manufacturing method thereof
CN102667459B (en) Liquid immersion sensor
CN109477763A (en) Thermocouple
CN207730339U (en) A kind of outer wrap spring type nickel current sensing element
WO2022249262A1 (en) Wire bonding system, inspection device, wire bonding method, and program
US3756067A (en) Temperature measurement
JP2007120950A (en) Temperature measuring method
CN108072794B (en) Method for on-line nondestructive monitoring of low-temperature phase change of tin and tin alloy
JPS62141750A (en) Conductor for connecting semiconductor device
JP2013229112A (en) Double core parallel lead wire and thermistor with lead wire
JP2018128421A (en) Measurement module for corrosion monitoring, measurement method for corrosion monitoring, corrosion monitoring system, and corrosion monitoring method
JP2005241426A (en) Electronic component inspection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080708

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080731

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110808

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120808

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130808

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees