JP2011210884A - Quality control method of solder junction and quality control device - Google Patents

Quality control method of solder junction and quality control device Download PDF

Info

Publication number
JP2011210884A
JP2011210884A JP2010076100A JP2010076100A JP2011210884A JP 2011210884 A JP2011210884 A JP 2011210884A JP 2010076100 A JP2010076100 A JP 2010076100A JP 2010076100 A JP2010076100 A JP 2010076100A JP 2011210884 A JP2011210884 A JP 2011210884A
Authority
JP
Japan
Prior art keywords
temperature
time
substrate
joint
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010076100A
Other languages
Japanese (ja)
Other versions
JP5328707B2 (en
Inventor
Akizo Tsuruta
明三 鶴田
Takashi Shirase
隆史 白瀬
Sei Sugiura
勢 杉浦
Masaki Iwata
政樹 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010076100A priority Critical patent/JP5328707B2/en
Priority to CN2010102457460A priority patent/CN102209441B/en
Publication of JP2011210884A publication Critical patent/JP2011210884A/en
Application granted granted Critical
Publication of JP5328707B2 publication Critical patent/JP5328707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the quality control method of a solder junction which can a perform non-destructive and highly accurate quality inspection on real time without additional inspections.SOLUTION: The quality control method of a junction formed by supplying (S0) solder and local thermal energy on a resin substrate includes a process (S1) to measure the time variation of temperature of the junction during junctioning, a process (S2) to find a plurality of feature quantities from measured data, a process (S3) to find a single numerical value index from the plurality of feature quantities, and a process (S4) to determine whether the junction is suitable (S5) or not suitable (S6) comparing the numerical value index and a predetermined threshold value (S4). The plurality of feature quantities includes a time tin which the temperature of the junction is a predetermined temperature Tor more to satisfy a condition (the glass transition temperature of the substrate-50°C)≤T≤(the glass transition temperature of the substrate+250°C) and a time tin which the temperature of the junction reaches a predetermined temperature Tto satisfy a condition (the glass transition temperature of the substrate-50°C)≤T≤(the glass transition temperature of the substrate+250°C) from the start time of heating by the thermal energy.

Description

本発明は、樹脂基板端子と電子部品端子のはんだ接合部の品質管理を行う技術に関する。   The present invention relates to a technique for quality control of a solder joint portion between a resin substrate terminal and an electronic component terminal.

エポキシ樹脂などの樹脂母材と、銅などの金属配線で構成されるプリント基板やビルドアップ基板(以下、総称して樹脂基板という)の端子に、電子部品端子を接合させる技術として、はんだ付けが広く用いられている。一般的には、樹脂基板の端子上にはんだペーストをスクリーン印刷して、電子部品の電極を位置決め、搭載したのち、炉内で基板全体を加熱してはんだ付けするリフロー方式が広く用いられている。   Soldering is a technique for joining electronic component terminals to terminals of printed circuit boards and build-up boards (hereinafter collectively referred to as resin boards) composed of a resin base material such as epoxy resin and metal wiring such as copper. Widely used. In general, a reflow method is widely used in which a solder paste is screen-printed on the terminals of a resin substrate, the electrodes of electronic components are positioned and mounted, and then the entire substrate is heated and soldered in a furnace. .

しかし、リフロー方式は基板全体を加熱するため、搭載されている電子部品も同程度の熱的な負荷にさらされる。そのため、耐熱性の低い要素(例えば、発光ダイオード、樹脂成形部品など)を含むパッケージ部品は、その耐熱温度上限以上の高温となる炉で処理ことができない。そのような低耐熱性の部品は、パッケージ温度が耐熱温度上限まで上がらないように、基板端子と部品端子の接合部に局所的に熱とはんだを供給して電気的接合を実現する方法(以下、局所加熱実装方式という)がとられている。   However, since the reflow method heats the entire substrate, the mounted electronic components are also exposed to the same thermal load. For this reason, package parts including elements having low heat resistance (for example, light emitting diodes, resin molded parts, etc.) cannot be processed in a furnace having a high temperature equal to or higher than the upper limit of the heat resistance temperature. Such low heat-resistant components are a method for realizing electrical bonding by locally supplying heat and solder to the joint between the board terminal and the component terminal so that the package temperature does not rise to the upper limit of the heat resistance temperature , Referred to as a local heating mounting method).

このような局所加熱実装方式の代表例として、糸はんだと高温のこてを前記接合部に供給して接合する、はんだごて方式が広く用いられているが、生産性が低いことや人による作業のばらつきが存在することに課題があり、多ピン、狭ピッチ、大量生産の部品はんだ付けには向いていない。   As a representative example of such a local heating mounting method, a soldering iron method is widely used in which a thread solder and a high-temperature iron are supplied to and joined to the joint portion. There is a problem in the existence of variations in work, and it is not suitable for soldering parts with multiple pins, narrow pitch, and mass production.

このような生産形態に適合する局所加熱実装方式として、高温のこてで熱エネルギーを供給するかわりに、制御装置により精密に位置決めされたビームによって接合部に熱エネルギーを供給する方法が知られている。ビームとしては半導体レーザが用いられることが多いが、それに限定されるわけではない(以下代表してレーザはんだ方式という)(例えば、非特許文献1参照)。   As a local heating mounting method suitable for such a production form, instead of supplying heat energy with a high-temperature iron, a method of supplying heat energy to a joint by a beam precisely positioned by a control device is known. Yes. A semiconductor laser is often used as the beam, but it is not limited to this (hereinafter, representatively referred to as a laser solder method) (for example, see Non-Patent Document 1).

レーザはんだ方式では、極めて微小な接合部(おおむねスポット径 1mm以下)に短時間(おおむね1秒以内)で位置精度よく熱エネルギーを供給することができるので、自動化・高速化が容易で、多ピン、狭ピッチ、大量生産の部品はんだ付けに向いている。   With the laser solder method, heat energy can be supplied to extremely small joints (generally with a spot diameter of 1mm or less) in a short time (generally within 1 second) with high positional accuracy, making automation and high speed easy and multi-pin. Suitable for soldering of small pitch, mass production parts.

なお、糸はんだと熱エネルギーを同時供給する方法のほか、あらかじめ部品電極または基板電極またはその両方に予備はんだを形成しておく方法においても、レーザはんだ方式が同様に有利である。   In addition to the method of supplying thread solder and thermal energy at the same time, the laser solder method is also advantageous in the method of forming preliminary solder on the component electrode and / or the substrate electrode in advance.

村上喜作:半導体レーザはんだ付け装置 ,光アライアンス , 2003年 3月号 , p.32-36Kisaku Murakami: Semiconductor laser soldering equipment, Optical Alliance, March 2003, p.32-36

しかし、本願発明者らは、レーザはんだ方式では、接合部における短時間の過渡的な温度−時間変化の特性(以下、単に温度特性という)は接合ごとにばらつきやすく、これが接合品質に大きく影響することを見出した。これは、物質(はんだ)と熱エネルギー(レーザビーム)の供給が行われ、また短時間の過程ではんだの溶融・濡れ広がり・凝固などの複数の現象が同時・連続的に生じることとあわせて、はんだの供給速度、予備はんだ量やレーザパワーのばらつき、電極表面状態の違いによる濡れ性のばらつき、接合部の熱容量(電極厚さ、予備はんだの量、基板の厚さなど)のばらつきなどに対して、温度特性が敏感に変化するからである。   However, in the laser solder method, the inventors of the present application tend to vary the characteristics of a short-term transient temperature-time change (hereinafter simply referred to as temperature characteristics) at the joint, which greatly affects the joint quality. I found out. This is in addition to the fact that a substance (solder) and thermal energy (laser beam) are supplied, and that multiple phenomena such as melting, wetting and solidification of the solder occur simultaneously and continuously in a short time. , Solder supply speed, pre-solder amount and laser power variation, wettability variation due to differences in electrode surface condition, joint heat capacity (electrode thickness, pre-solder amount, substrate thickness, etc.) On the other hand, the temperature characteristics change sensitively.

このような現象は、熱エネルギーのみを与える抵抗溶接や、接合時間が長い溶接やロウづけでは発生せず、局部加熱実装方式に特有のものである。またここでいう接合品質とは、一般には、(1)はんだが適切な量だけ接合部に転写され、濡れ広がってフィレットを形成し、良好な金属接合界面を形成することによって、接合の信頼性が確保できることを指すことが多い。   Such a phenomenon does not occur in resistance welding that gives only heat energy, welding or brazing with a long joining time, and is unique to the local heating mounting method. The bonding quality here is generally (1) the solder is transferred to the bonding portion by an appropriate amount, spreads and spreads to form a fillet, and a good metal bonding interface is formed. In many cases, it can be secured.

しかし、(2)接合部の過度な入熱によって樹脂基板の端子下部の金属と樹脂母材の界面に熱的な劣化が生じていないことも求められる。このような界面の樹脂の劣化は製品出荷当初では不良が顕在化しないものの、市場におけるヒートショックや吸湿によって界面のはがれや、それにともなう金属配線の断線を引き起こす可能性がある。   However, (2) it is also required that thermal degradation does not occur at the interface between the metal under the terminal of the resin substrate and the resin base material due to excessive heat input at the joint. Although the deterioration of the resin at the interface does not reveal a defect at the beginning of product shipment, it may cause the interface to peel off due to heat shock or moisture absorption in the market, and may cause disconnection of the metal wiring.

上記(2)のような基板の金属と樹脂母材の界面の熱的な劣化状態では、製品出荷時点での電気的導通が得られているため電気試験や外観試験で判別することは難しく、また前記界面は完全に離れているわけではないので、特開2000−261137号公報に開示されているような界面の熱伝導の違いで判別する方法を適用することも難しいという問題点があった。   In the thermal degradation state of the interface between the metal of the substrate and the resin base material as in (2) above, it is difficult to discriminate by an electrical test or an appearance test because electrical continuity is obtained at the time of product shipment. Further, since the interface is not completely separated, there is a problem that it is difficult to apply a method for discriminating based on a difference in thermal conductivity of the interface as disclosed in Japanese Patent Application Laid-Open No. 2000-261137. .

なお、上記(2)で述べた接合品質における課題は、低耐熱性の樹脂基板への実装に関するものであり、主に金属同士の接合である抵抗溶接、溶接、ろう付けでは同課題は発生せず、樹脂基板に適用する局部加熱実装方式に特有のものである。   Note that the problem in bonding quality described in (2) above is related to mounting on a low heat-resistant resin substrate, and this problem does not occur in resistance welding, welding, or brazing, which are mainly bonding between metals. It is unique to the local heating mounting method applied to the resin substrate.

またさらに、特開2000−261137号公報に開示された技術は、はんだ付け工程とは別に追加の工程が必要になりリードタイムが長くなるという問題点があった。また、後段である検査工程で連続して不適合が発覚した場合に、前段のはんだ付け工程や、さらに前段の工程に対する原因究明や工程修正のタイミングが遅れて、多数の不良品を作りこんでしまうという問題点があった。またさらに、検査工程で追加の熱エネルギーを与えるため、基板の金属と樹脂母材の界面の熱的な劣化を促進させてしまうという問題点があった。   Furthermore, the technique disclosed in Japanese Patent Application Laid-Open No. 2000-261137 has a problem that an additional process is required in addition to the soldering process, leading to a long lead time. In addition, when non-conformities are detected in the subsequent inspection process, the previous soldering process, the cause investigation for the previous process, and the timing of process correction are delayed, creating many defective products. There was a problem. Furthermore, since additional thermal energy is given in the inspection process, there is a problem that thermal deterioration of the interface between the metal of the substrate and the resin base material is promoted.

本発明は、上記に鑑みてなされたものであって、はんだと熱エネルギーの両方を接合部に供給するようなはんだ接合技術において、基板の金属と樹脂母材の界面の熱的な劣化を含めた接合品質を、追加の検査工程無しにリアルタイムで非破壊的且つ精度よく検査できるはんだ接合部の品質管理方法および品質管理装置を得ることを目的とする。   This invention is made in view of the above, Comprising: In solder joining technology which supplies both a solder and a thermal energy to a junction part, the thermal deterioration of the interface of the metal of a board | substrate and a resin base material is included. It is an object of the present invention to obtain a solder joint quality control method and a quality control device that can inspect non-destructively and accurately in real time without additional inspection steps.

上述した課題を解決し、目的を達成するために、本発明は、樹脂基板上にはんだ及び局所的な熱エネルギーを供給して形成するはんだ接合部の品質管理方法であって、接合中に前記接合部の温度の時間変化のデータを計測するステップと、計測された前記データから複数の特徴量を求めるステップと、複数の前記特性量から単一の数値指標を求めるステップと、前記数値指標と予め定めたしきい値とを比較して前記接合部が適合か不適合かを判定するステップとを備え、複数の前記特徴量は、前記接合部の温度が、(前記基板のガラス転移温度−50℃)≦T≦(前記基板のガラス転移温度+250℃)の条件を満たす予め定めた温度T以上になっている時間tと、前記接合部の温度が、前記熱エネルギーによる加熱開始時点から、(前記基板のガラス転移温度−50℃)≦T≦(前記基板のガラス転移温度+250℃)の条件を満たす予め定めたTに到達するまでの時間tとを含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention is a quality control method of a solder joint formed by supplying solder and local thermal energy on a resin substrate, Measuring data of temporal changes in temperature of the joint, obtaining a plurality of feature amounts from the measured data, obtaining a single numerical index from the plurality of characteristic amounts, and the numerical index Comparing with a predetermined threshold value to determine whether the joint is conforming or non-conforming, and a plurality of the feature amounts are determined by a temperature of the joint (glass transition temperature of the substrate −50 ° C.) ≦ T 1 ≦ (Glass transition temperature of the substrate + 250 ° C.) The time t 1 when the temperature T 1 is equal to or higher than the predetermined temperature T 1 and the temperature at the joint is the heating start point by the thermal energy From And a time t 2 until reaching a predetermined T 2 that satisfies a condition of (glass transition temperature of the substrate −50 ° C.) ≦ T 2 ≦ (glass transition temperature of the substrate + 250 ° C.). .

本発明によれば、はんだ接合における界面劣化を含めた接合品質を、追加の検査工程無しにリアルタイムで非破壊的且つ精度よく検査できるはんだ接合部の品質管理方法および品質管理装置を提供できるという効果を奏する。   Advantageous Effects of Invention According to the present invention, it is possible to provide a solder joint quality control method and a quality control device capable of inspecting joint quality including interface deterioration in solder joints in a non-destructive and accurate manner in real time without an additional inspection process. Play.

図1は、本発明にかかる実施の形態1のレーザはんだ付けにおける接合中の状態を示す図である。FIG. 1 is a diagram showing a state during joining in laser soldering according to the first embodiment of the present invention. 図2は、実施の形態1における接合条件であるレーザパワーおよびはんだ供給速度のプロファイルの一例を説明する図である。FIG. 2 is a diagram for explaining an example of a profile of laser power and solder supply speed, which are joining conditions in the first embodiment. 図3は、実施の形態1における適合品となった接合部の温度の時間変化の様子を温度特性計測手段で計測した結果を示す図である。FIG. 3 is a diagram showing a result of measuring a time change state of the temperature of the joint portion which is a conforming product in the first embodiment by the temperature characteristic measuring unit. 図4は、実施の形態1における不適合品となった接合部の温度の時間変化の様子を温度特性計測手段で計測した結果を示す図である。FIG. 4 is a diagram showing a result of measuring a time change state of a temperature of a joint portion which is a nonconforming product in the first embodiment by a temperature characteristic measuring unit. 図5は、実施の形態1における特徴量tの値ごとの適合品、不適合品の発生度数を示した図である。FIG. 5 is a diagram showing the frequency of occurrence of conforming products and nonconforming products for each value of the feature amount t 1 in the first embodiment. 図6は、実施の形態1における特徴量tの値ごとの適合品、不適合品の発生度数を示した図である。FIG. 6 is a diagram showing the frequency of occurrence of conforming products and nonconforming products for each value of the feature amount t 2 in the first embodiment. 図7は、実施の形態1における特徴量t、tの値ごとの適合品、不適合品の発生分布と、しきい値境界線を示した図である。FIG. 7 is a diagram showing the occurrence distribution of conforming products and nonconforming products for each value of the feature amounts t 1 and t 2 and threshold boundary lines in the first embodiment. 図8は、実施の形態1における単一指標Dの値ごとの適合品、不適合品の発生度数を示した図である。FIG. 8 is a diagram showing the frequency of occurrence of conforming products and nonconforming products for each value of the single index D in the first embodiment. 図9は、実施の形態1におけるはんだ接合部の品質管理方法を示すフローチャートである。FIG. 9 is a flowchart showing a quality control method for solder joints according to the first embodiment.

以下に、本発明にかかる品質管理方法および品質管理装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a quality management method and a quality management apparatus according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本発明にかかる実施の形態1のレーザはんだ付けにおける接合中の状態を示す図である。電子部品100の部品端子101は樹脂基板200の基板端子201とはんだ401を介して接合される。所定のタイミングで接合部に固体の糸はんだ400が速度v(時間の関数)で供給されつつ(糸はんだ400の供給機構は図示せず)、熱エネルギー供給源であるレーザビーム300がパワーp(時間の関数)で供給される(レーザビーム照射源、位置あわせ機構などは図示せず)。図1に示すように、熱エネルギーが局部的に供給されることで電子部品100の温度上昇は抑えられる。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a state during joining in laser soldering according to the first embodiment of the present invention. The component terminal 101 of the electronic component 100 is bonded to the substrate terminal 201 of the resin substrate 200 via the solder 401. The solid thread solder 400 is supplied to the joint at a predetermined timing at a speed v (a function of time) (the supply mechanism of the thread solder 400 is not shown), and the laser beam 300 as a thermal energy supply source has a power p ( (Laser beam irradiation source, alignment mechanism, etc. not shown). As shown in FIG. 1, the temperature rise of the electronic component 100 can be suppressed by locally supplying thermal energy.

図2は糸はんだ供給速度vと、レーザのパワーpの接合条件プロファイルの一例を示すものである。この接合条件は、接合部を構成する部品端子101、基板端子201、および基板端子201の下部の基板内配線の熱容量や、接合に必要なはんだ量などよって、以下に示す2つの接合品質が満たされるように適宜決定される設計要件であり、図2のプロファイルに限定されるものではない。
(接合品質1)はんだが適切な量だけ接合部に転写され、濡れ広がってフィレットを形成し、良好な金属接合界面を形成することによって、接合の信頼性が確保できること。
(接合品質2)接合部の過度な入熱によって樹脂基板の端子下部の金属と樹脂母材の界面に熱的な劣化(以下、界面劣化とよぶ)が生じていないこと。
FIG. 2 shows an example of a joining condition profile of the yarn solder supply speed v and the laser power p. This joining condition satisfies the following two joining qualities depending on the heat capacity of the component terminal 101, the board terminal 201, and the wiring in the board below the board terminal 201, the amount of solder necessary for joining, and the like. The design requirements are determined as appropriate, and are not limited to the profile shown in FIG.
(Joint Quality 1) Solder is transferred to the joint by an appropriate amount, spreads and spreads to form a fillet, and a good metal joint interface is formed, thereby ensuring the joint reliability.
(Joint quality 2) Thermal degradation (hereinafter referred to as interface degradation) does not occur at the interface between the metal under the terminal of the resin substrate and the resin base material due to excessive heat input at the joint.

また、糸はんだ400を供給する代わりに、部品端子101または基板端子201またはその両方にあらかじめ予備はんだを供給しておいてもよい。予備はんだはペースト状のはんだをディスペンサやスクリーン印刷、めっきなどの公知の方法で形成することができる。また、予備はんだと糸はんだを併用してもよい。いずれの場合でも以下に示すような同様の問題が発生する。   Further, instead of supplying the thread solder 400, preliminary solder may be supplied in advance to the component terminal 101, the board terminal 201, or both. The preliminary solder can be formed from a paste-like solder by a known method such as dispenser, screen printing, or plating. Further, preliminary solder and thread solder may be used in combination. In either case, the same problem as shown below occurs.

糸はんだを供給する場合は、図2におけるレーザパワーpや糸はんだ供給速度vがばらつくことに加えて、レーザパワーpがpまで立ち上がり、はんだ供給速度vがvからvに変化する時刻tのような変化点においては、接合ごとの接合部における短時間の過渡的な温度特性のばらつきが発生し得る。 When supplying thread solder, in addition to the variation in laser power p and thread solder supply speed v in FIG. 2, the time when the laser power p rises to p 1 and the solder supply speed v changes from v 1 to v 2. in changing point, such as t 0, the variation of the transient temperature characteristics of the short at the junction of each joint may occur.

また、予備はんだをあらかじめ供給した場合も、予備はんだ量が電極ごとにばらつき、熱容量が電極ごとに変化するため同様の問題が生じる。   In addition, when the preliminary solder is supplied in advance, the amount of the preliminary solder varies from electrode to electrode, and the heat capacity changes from electrode to electrode.

このような接合条件のばらつきに加えて、電極表面状態の違いによる濡れ性のばらつき、接合部の熱容量(電極厚さ、予備はんだ量、基板の厚さなど)のばらつきが必ず存在し、特に本実施の形態のような局部過熱方式の場合、短時間で現象が進むため、その影響が顕著である。   In addition to such variations in bonding conditions, there are always variations in wettability due to differences in electrode surface conditions and variations in the heat capacity of the joints (electrode thickness, amount of pre-solder, substrate thickness, etc.). In the case of the local overheating method as in the embodiment, since the phenomenon proceeds in a short time, the influence is remarkable.

このような製造上のばらつきがあるため、上記(接合品質1)を満足する接合条件を適宜決定したとしても、上記(接合品質2)が確率的に満たされない不適合(以下、単に不適合とよぶ)が生じる可能性がある。特に、図1に示したような界面劣化202が生じた場合、外観検査や電気的検査でこれを検出することができず、信頼性低下を内在したまま出荷されるおそれがある。   Due to such manufacturing variations, even if a joining condition that satisfies the above (joining quality 1) is appropriately determined, the above (joining quality 2) is not probabilistically satisfied (hereinafter simply referred to as “non-conforming”). May occur. In particular, when the interface deterioration 202 as shown in FIG. 1 occurs, this cannot be detected by an appearance inspection or an electrical inspection, and there is a risk of shipping with a decrease in reliability inherent.

不適合の存在は、たとえば接合後のはんだ部401を再加熱して、基板端子201に剪断力(基板面に対して水平な方向)を与え、基板端子201と樹脂基板200の基板界面203の破断強度の低下をもって知ることができるが、破壊試験であるため、このような方法で全数検査することは難しい。   Existence of non-conformity, for example, reheats the solder part 401 after joining, gives a shearing force (a direction parallel to the substrate surface) to the substrate terminal 201, and breaks the substrate interface 203 between the substrate terminal 201 and the resin substrate 200. Although it can be known with a decrease in strength, since it is a destructive test, it is difficult to inspect 100% by this method.

また剪断力に上限値をもうけて、破断したかどうかで検査する方法も考えられるが、再加熱することで本来適合品であったものが不適合になってしまったり、剪断力をかけすぎて適合品を破壊してしまうおそれがある。したがって、再加熱などの負荷をあたえずに、非破壊で検査する方法が望まれる。   In addition, it is possible to set an upper limit to the shearing force and inspect whether it has broken or not, but if it is reheated, what was originally a conforming product will become incompatible, or it will fit by applying too much shearing force. There is a risk of destroying the product. Therefore, a non-destructive inspection method without applying a load such as reheating is desired.

図3及び図4は、図2の接合条件ではんだ付けした場合の接合部(転写されたはんだ401の表面)の温度の時間変化の様子を図1に示す温度特性計測手段500で計測した結果である。上述した破壊試験の結果、図3の温度-時間特性を示したものは適合品、図4の温度-時間特性を示したものは不適合品であった。   FIGS. 3 and 4 show the results of measuring the time change of the temperature of the joint (the surface of the transferred solder 401) when soldered under the joining conditions of FIG. 2 by the temperature characteristic measuring means 500 shown in FIG. It is. As a result of the destructive test described above, the one showing the temperature-time characteristics in FIG. 3 was a conforming product, and the one showing the temperature-time characteristics in FIG. 4 was a nonconforming product.

図3、図4の温度-時間特性を概観すると、不適合となった図4に対応する接合部では、全体に温度が高く、また高温になっている時間が長いなどの傾向がみてとれる。そこで、適合品と不適合品の温度特性データを多数集め、統計的方法でその差異を検証した結果、以下の少なくとも2つの特徴量が、適合品と不適合品を判別するのに必要であることがわかった。   When the temperature-time characteristics of FIGS. 3 and 4 are overviewed, it can be seen that the joint portion corresponding to FIG. 4 that has become incompatible tends to have a high temperature and a long time during which the temperature is high. Therefore, as a result of collecting a lot of temperature characteristic data of conforming products and nonconforming products and verifying the difference by a statistical method, the following at least two feature quantities may be necessary to distinguish conforming products and nonconforming products. all right.

(特徴量1)t:接合部の温度が温度T以上になっている時間。ただし、(基板のガラス転移温度−50℃)≦T≦(基板のガラス転移温度+250℃) (Characteristic 1) t 1 : Time during which the temperature of the joint is equal to or higher than temperature T 1 . However, (glass transition temperature of substrate −50 ° C.) ≦ T 1 ≦ (glass transition temperature of substrate + 250 ° C.)

(特徴量2)t:接合部の温度が加熱開始時点(時刻t)から温度Tに到達するまでの時間。ただし、(基板のガラス転移温度−50℃)≦T≦(基板のガラス転移温度+250℃) (Characteristic amount 2) t 2 : Time until the temperature of the joint reaches the temperature T 2 from the heating start time (time t 0 ). However, (glass transition temperature of substrate −50 ° C.) ≦ T 2 ≦ (glass transition temperature of substrate + 250 ° C.)

なお、本実施の形態ではガラスエポキシ製の樹脂基板200(ガラス転移温度150℃)を用いたため、具体的には、t(特徴量1)は接合部の温度が100℃≦T≦400℃の範囲のある温度(例えばT=300℃)以上になっている時間である。同様に、t(特徴量2)は接合部の加熱開始時点(時刻t)から温度が100℃≦T≦400℃の範囲のある温度(例えばT=200℃)に到達するまでの時間を示している。 In this embodiment, since a glass epoxy resin substrate 200 (glass transition temperature 150 ° C.) is used, specifically, t 1 (feature 1) has a junction temperature of 100 ° C. ≦ T 1 ≦ 400. This is the time during which the temperature is higher than a certain temperature in the range of ° C. (for example, T 1 = 300 ° C.). Similarly, t 2 (feature value 2) is from the time when heating of the joint is started (time t 0 ) until the temperature reaches a temperature in the range of 100 ° C. ≦ T 2 ≦ 400 ° C. (eg, T 2 = 200 ° C.). Shows the time.

特徴量t及びtは、図1の温度特性計測手段500による計測結果に基づき品質管理手段600によって算出される。以下、上記特徴量1(t)、特徴量2(t)を決定付ける温度TおよびTの好適な範囲について説明する。 The feature amounts t 1 and t 2 are calculated by the quality management unit 600 based on the measurement result by the temperature characteristic measurement unit 500 of FIG. Hereinafter, preferred ranges of the temperatures T 1 and T 2 that determine the feature value 1 (t 1 ) and the feature value 2 (t 2 ) will be described.

特徴量1は接合部があらかじめ設定した温度T以上にさらされている時間tで、基板界面203に存在する樹脂母材200が熱によって劣化する程度を示している。樹脂はガラス転移温度で軟化し、この温度付近かそれ以上で長時間さらされると熱劣化が生じ、基板界面203での金属と樹脂の密着強度が低下する。 The feature amount 1 indicates the degree to which the resin base material 200 existing at the substrate interface 203 is deteriorated by heat at the time t 1 when the joint is exposed to a temperature T 1 or higher set in advance. The resin softens at the glass transition temperature, and when it is exposed to a temperature near or above this temperature for a long time, thermal degradation occurs, and the adhesion strength between the metal and the resin at the substrate interface 203 decreases.

このとき、Tを(基板のガラス転移温度−50℃)より小さく設定した場合、ほとんどの接合部においてtに差異が生じにくく、適合品と不適合品の判別精度が低下する。また、Tを(基板のガラス転移温度+250℃)より大きく設定した場合、tが0になる接合部が大半をしめてしまい、同様に適合品と不適合品の判別精度が低下する。 At this time, if T 1 is set to be smaller than (glass transition temperature of the substrate −50 ° C.), a difference in t 1 hardly occurs at most joint portions, and the discrimination accuracy between the conforming product and the non-conforming product decreases. Also, if you set larger T 1 from (glass transition temperature + 250 ° C. of the substrate), joint t 1 becomes zero will account for the majority, as well as determine the accuracy of the products conforming and non-conforming products is lowered.

特徴量2は接合部の温度が加熱開始時点(図2の時刻t)から、あらかじめ設定した温度Tに到達するまでの時間tであり、基板界面203が受ける熱衝撃の強さの程度を示している。すなわちtが小さいほど、短時間に多くの熱量を吸収することになる。熱衝撃が大きくなると、界面劣化の前段階で基板界面203に機械的な応力がより大きく加わるため、不適合になりやすいものと考えられる。 A feature amount 2 is a time t 2 until the temperature of the joint reaches the preset temperature T 2 from the heating start time (time t 0 in FIG. 2), and indicates the strength of thermal shock that the substrate interface 203 receives. Shows the degree. That is, as t 2 is small, will absorb more heat in a short time. When the thermal shock increases, mechanical stress is applied to the substrate interface 203 before the interface deterioration, which is likely to cause incompatibility.

このとき、Tを(基板のガラス転移温度−50℃)より小さく設定した場合、基板樹脂が軟化していない状態の衝撃であり、接合品質にはほとんど影響をあたえないため、適合品と不適合品の判別精度が低下する。また、Tが(基板のガラス転移温度+250℃)より大きく設定した場合、ほとんどの接合部においてtに差異が生じにくく、同様に適合品と不適合品の判別精度が低下する。 At this time, if you set smaller than the T 2 (glass transition temperature -50 ° C. of the substrate), for an impact state where the substrate resin is not softened, little affect the welding quality, Compliant incompatible Product discrimination accuracy decreases. Further, when T 2 is set to be larger than (glass transition temperature of substrate + 250 ° C.), a difference in t 2 hardly occurs at most joint portions, and the discrimination accuracy between conforming products and non-conforming products similarly decreases.

またTおよびTのより好適な値は、たとえば公知の重回帰分析などの統計的な方法で、実際の実験データをもとに設定することができる。本実施の形態においては、T=300℃、T=200℃がより好適な値であったが、これに限定されるものではない。 Further, more suitable values of T 1 and T 2 can be set based on actual experimental data by a statistical method such as a known multiple regression analysis. In the present embodiment, T 1 = 300 ° C. and T 2 = 200 ° C. are more preferable values, but the present invention is not limited to this.

図5および図6はそれぞれ、特徴量1(t)の値と特徴量2(t)の値と、適合品・不適合品の発生頻度を示す図である。いずれの特徴量も、好適なTおよびTを設定することで、判定しきい値tth1およびtth2それぞれの前後においておおむね適合品と不適合品を判別することができる。 FIG. 5 and FIG. 6 are diagrams showing the value of the feature quantity 1 (t 1 ), the value of the feature quantity 2 (t 2 ), and the occurrence frequency of conforming products and non-conforming products, respectively. By setting suitable T 1 and T 2 for any of the feature amounts, it is possible to discriminate between a conforming product and a non-conforming product before and after each of the determination threshold values t th1 and t th2 .

しかし、いずれか1つの特徴量では完全に適合品と不適合品を判別することができない場合がある。図5および図6において、不適合品を流出させないようにしきい値tth1およびtth2を決めると、適合品のうちいくつかは不適合品とみなされ、本来出荷できるはずの適合品が廃却されることになってしまい、不適合品率、製造コストが共に増大する。この問題は、上記した2つの特徴量以外の特徴量(たとえば最高温度など)を追加しても変わらない。 However, there are cases where it is not possible to completely distinguish between a conforming product and a nonconforming product with any one feature amount. In FIGS. 5 and 6, when the threshold values t th1 and t th2 are determined so as not to cause non-conforming products to flow out, some of the conforming products are regarded as non-conforming products, and conforming products that should originally be shipped are discarded. As a result, both the nonconforming product rate and the manufacturing cost increase. This problem does not change even if a feature amount (for example, maximum temperature) other than the above-described two feature amounts is added.

そこで、上記2つの特徴量を1つの単一指標Dに総合し、これを用いることによって適合品と不適合品とを判別する精度がより向上することを以下に説明する。多数の適合品と不適合品について特徴量t及びtとの関係を調べたところ、図7に示すような分布になった。 Therefore, it will be described below that the accuracy of discriminating between a conforming product and a nonconforming product is further improved by combining the two feature quantities into one single index D and using this. When the relationship between the feature quantities t 1 and t 2 was examined for a large number of conforming products and non-conforming products, a distribution as shown in FIG. 7 was obtained.

適合品と不適合品は、t或いはtのいずれか一方のみを用いた単独の特徴量での判別や、tのしきい値判定とtのしきい値判定の論理積(t>tth1かつt2<tth2)では完全に判別することはできない。しかし、図7に示すしきい値境界線900の前後で判別することができる。すなわち、しきい値tth1及びtth2がお互いの関数になるようにすれば適合品と不適合品の判別が可能となる。 Compliant incompatible products, t 1 or discrimination and the characteristic quantity of alone with only one of t 2, a logical product of the threshold decision threshold determination and t 2 of t 1 (t 1 > T th1 and t2 <t th2 ) cannot be completely discriminated. However, it can be determined before and after the threshold boundary line 900 shown in FIG. That is, if the threshold values t th1 and t th2 are functions of each other, it is possible to discriminate between conforming products and non-conforming products.

このような多次元(ここでは2次元)の特徴量に対する境界線(3次元以上の場合は境界超平面)に直交する方向の位置を示す数値に多次元の特徴量を変換できれば、1つのスカラー量で判別ができることになる。このような単一の数値指標Dに総合する方法として、たとえば、MT法(マハラノビス-タグチ法)におけるマハラノビスの距離や、T法(タグチ法)における総合評価尺度(タグチの距離と称す)が知られている。このうち後者の方がより簡便であるため、計算速度や計算ソフトウエアのメモリ容量の面で、はんだ付け工程内のリアルタイム判定処理にはより適している(田口玄一 ,品質工学便覧 ,日刊工業新聞社 ,(2007), p.143-147、参照)。   If the multidimensional feature value can be converted into a numerical value indicating the position in the direction orthogonal to the boundary line (boundary hyperplane in the case of three or more dimensions) with respect to such a multidimensional (here, two-dimensional) feature value, one scalar It can be determined by the amount. As a method for integrating such a single numerical index D, for example, the Mahalanobis distance in the MT method (Mahalanobis-Taguchi method) and the comprehensive evaluation scale (referred to as Taguchi distance) in the T method (Taguchi method) are known. It has been. Since the latter is simpler, it is more suitable for real-time judgment processing in the soldering process in terms of calculation speed and calculation software memory capacity (Genichi Taguchi, Quality Engineering Handbook, Nikkan Kogyo). (See Shinbunsha, (2007), p.143-147).

ここで単一の数値指標Dをタグチの距離で計算する過程で、適合品、不適合品の状態を数値化した尺度が必要となる。そこで、たとえば適合品の場合0、不適合品の場合1のように、任意の異なる値を与えればよい(この値を、適合品の場合の真値、不適合品の場合の真値という)。したがって上記のように真値を設定した場合、数値指標Dは、適合品の場合は0に近い値に、不適合品の場合は1に近い値かそれより大きい値になる。   Here, in the process of calculating the single numerical index D by the Taguchi distance, a scale that quantifies the state of the conforming product and the nonconforming product is required. Therefore, any different value may be given, for example, 0 for a conforming product and 1 for a nonconforming product (this value is referred to as a true value for a conforming product and a true value for a nonconforming product). Therefore, when the true value is set as described above, the numerical index D is a value close to 0 for the conforming product, and a value close to 1 or larger than that for the nonconforming product.

このようにして計算した数値指標Dを用いて、適合品、不適合品の分布を調べると、図8のようになった。図8より明らかなように、数値指標Dに対してしきい値Dthを設ければ、適合品と不適合品を判別することができる。 Using the numerical index D calculated in this way, the distribution of conforming products and nonconforming products is examined as shown in FIG. As is apparent from FIG. 8, if a threshold value Dth is provided for the numerical index D, it is possible to discriminate between conforming products and nonconforming products.

具体的な数値指標Dの求め方としては、例えば特徴量t及びtの重み付け加算値として定めることなども考えられる。即ち、t及びtの重み付け加算値として、図7のしきい値境界線900に平行な線上では常に同じ値をとるような係数を選択すれば、それを単一の数値指標Dとすることで、上記した閾値判定による適合品と不適合品の判別が可能となる。 As a specific method of obtaining the numerical index D, for example, it may be determined as a weighted addition value of the feature amounts t 1 and t 2 . That is, if a coefficient that always takes the same value on the line parallel to the threshold boundary line 900 in FIG. 7 is selected as the weighted addition value of t 1 and t 2 , it is set as a single numerical index D. As a result, it is possible to discriminate between a conforming product and a nonconforming product by the above threshold determination.

上記実施の形態においては、2つの特徴量について説明したが、これに他の特徴量を加えて総合する場合も同様の計算方法で単一指標Dを計算することができる。この単一指標Dは品質管理手段600で算出され、算出されたDのしきい値Dthとの比較による適合品か不適合品かの合否判定も品質管理手段600によって行われる。 In the above-described embodiment, two feature amounts have been described, but a single index D can be calculated by the same calculation method even when other feature amounts are added and combined. This single index D is calculated by the quality management means 600, and the quality management means 600 also makes a pass / fail judgment as to whether it is a conforming product or a nonconforming product by comparing the calculated D with the threshold value Dth .

即ち、本実施の形態においては、品質管理手段600が特徴量算出手段、単一指標算出手段、合否判定手段を全て兼ねているとして説明したが、特徴量t及びtの算出、単一指標Dの算出、上記品合否判定はそれぞれ別の装置で実行しても構わない。 That is, in the present embodiment, it has been described that the quality management unit 600 serves as all of the feature amount calculation unit, the single index calculation unit, and the pass / fail determination unit. However, the calculation of the feature amounts t 1 and t 2 , The calculation of the index D and the above pass / fail judgment may be executed by different devices.

以上説明した工程をフローチャートにまとめると図9のようになる。即ち、図1に示すように、接合部にはんだ400および熱エネルギー300を供給する(ステップS0)。次に、熱エネルギー300供給開始から接合完了までの接合部(はんだ401の表面)の「温度-時間特性」を温度特性計測手段500により計測する(ステップS1)。次に、温度特性計測手段500が計測した「温度-時間特性」から、t、tを含む特徴量を品質管理手段600が算出する(ステップS2)。 The process described above is summarized in a flowchart as shown in FIG. That is, as shown in FIG. 1, solder 400 and thermal energy 300 are supplied to the joint (step S0). Next, the “temperature-time characteristic” of the joined portion (surface of the solder 401) from the start of supply of thermal energy 300 to the completion of joining is measured by the temperature property measuring means 500 (step S1). Next, from the “temperature-time characteristic” measured by the temperature characteristic measuring means 500, the quality management means 600 calculates a feature quantity including t 1 and t 2 (step S2).

そして、ステップS2で求めた複数の特徴量(t、t、x、x、…、x)から、上述した公知の方法により総合評価尺度(タグチの距離)を品質管理手段600が計算して単一指標D=f(t、t、x、x、…、x)を求める(ステップS3)。単一指標Dの求め方としては、上述したt及びtの重み付け加算値のように複数の特徴量の重み付け加算値を計算して求めてもよい。 Then, from the plurality of feature amounts (t 1 , t 2 , x 1 , x 2 ,..., X k ) obtained in step S2, the comprehensive evaluation measure (Taguchi distance) is obtained from the quality management means 600 by the known method described above. Is calculated to obtain a single index D = f (t 1 , t 2 , x 1 , x 2 ,..., X k ) (step S3). As a method of obtaining the single index D, the weighted addition values of a plurality of feature amounts may be calculated and obtained as the above-described weighted addition values of t 1 and t 2 .

最後に、品質管理手段600は、ステップS3で求めた単一指標Dをしきい値Dthと比較し(ステップS4)、D<Dthの場合は適合品と判定し(ステップS5)、D≧Dthの場合は不適合品と判定する(ステップS6)。 Finally, the quality management means 600 compares the single index D obtained in step S3 with the threshold value Dth (step S4), and if D < Dth , determines that it is a conforming product (step S5). If ≧ Dth , it is determined as a nonconforming product (step S6).

上記ステップS0〜S6の手順に基づいたはんだ接合部の品質管理方法および品質管理装置により、追加の検査工程無しにリアルタイム且つ非破壊的に精度よくはんだ接合部の品質を検査できる品質管理が可能となる。   The quality control method and quality control device for solder joints based on the procedures of the above steps S0 to S6 enables quality control that can accurately inspect the quality of solder joints in real time and non-destructively without an additional inspection process. Become.

しかし、基板電極の大きさ、電極下層へのビアホールの有無などの違いによって、1つの基板内の電極ごとに熱容量が異なるような場合、図2に示したはんだ付けの接合条件のプロファイルはその熱容量に適した値をおのおの設定することになる。その場合は電極ごとに採取した温度特性データを用いて、単一数値指標の計算式と、そのしきい値Dthを電極ごとに個別に決定することになる。 However, when the heat capacity differs for each electrode in one substrate due to the size of the substrate electrode, the presence or absence of a via hole in the lower layer of the electrode, etc., the profile of the soldering joint condition shown in FIG. A value suitable for each is set. In that case, the calculation formula of the single numerical index and the threshold value Dth are individually determined for each electrode using the temperature characteristic data collected for each electrode.

また、温度特性計測手段500が温度-時間特性を採取する際のサンプリング周期としては0.1ms以上10ms以下であることがより望ましい。サンプリング周期が0.1msより短くなると、処理を行うべきデータ数が膨大になり、計算速度が遅くなり、多量のメモリ容量を必要とするため望ましくない。   Further, the sampling period when the temperature characteristic measuring unit 500 collects the temperature-time characteristic is more preferably 0.1 ms or more and 10 ms or less. If the sampling period is shorter than 0.1 ms, the number of data to be processed becomes enormous, the calculation speed becomes slow, and a large amount of memory capacity is required, which is not desirable.

他方、サンプリング周期が10msより長くなると、特徴量1、特徴量2の計測精度が低くなるため、適合、不適合の判別精度が低下するため望ましくない。なお、本実施の形態ではサンプリング周期として1ms(接合に要する総時間1秒の場合、1000データ)を選択したが、これに限定されるものではない。   On the other hand, if the sampling period is longer than 10 ms, the measurement accuracy of the feature amount 1 and the feature amount 2 is lowered, and therefore the accuracy of discrimination of conformity and nonconformity is lowered, which is not desirable. In this embodiment, 1 ms is selected as the sampling period (1000 data in the case of the total time of 1 second required for joining), but the present invention is not limited to this.

またさらに、温度-時間特性を計測するための手段としては放射温度計が望ましい。たとえば熱電対の場合と比べて計測応答性がよく、非接触ではんだ表面の温度を計測することができる。また小さい電極の箇所に位置決めして計測できるので、局所加熱実装方式に好適である。   Furthermore, a radiation thermometer is desirable as a means for measuring temperature-time characteristics. For example, the measurement response is better than that of a thermocouple, and the temperature of the solder surface can be measured without contact. Moreover, since it can measure by positioning at the position of a small electrode, it is suitable for a local heating mounting system.

さらに、本願発明は上記実施の形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、上記実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出されうる。例えば、実施の形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出されうる。更に、異なる実施の形態にわたる構成要素を適宜組み合わせてもよい。   Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and is described in the column of the effect of the invention. When an effect is obtained, a configuration from which this configuration requirement is deleted can be extracted as an invention. Furthermore, the constituent elements over different embodiments may be appropriately combined.

以上のように、本発明にかかるはんだ接合部の品質管理方法および品質管理装置は、樹脂基板端子と電子部品端子のはんだ接合時の接合部の品質管理に有用であり、特に、はんだ接合部の品質に基づいた製品の適合品か不適合品かの合否判定に適している。   As described above, the solder joint quality control method and quality control device according to the present invention are useful for the quality control of the joint at the time of the solder joint between the resin substrate terminal and the electronic component terminal. Suitable for pass / fail judgment of product conformity or non-conformity based on quality.

100 電子部品
101 部品端子
200 樹脂基板
201 基板端子
202 界面劣化
203 基板界面
300 レーザビーム
400 糸はんだ
401 はんだ部
500 温度特性計測手段
600 品質管理手段
900 しきい値境界線
th1、tth2、Dth しきい値
S0〜S6 ステップ
DESCRIPTION OF SYMBOLS 100 Electronic component 101 Component terminal 200 Resin substrate 201 Board terminal 202 Interface degradation 203 Substrate interface 300 Laser beam 400 Yarn solder 401 Solder part 500 Temperature characteristic measuring means 600 Quality control means 900 Threshold boundary line t th1 , t th2 , D th Threshold S0 to S6 steps

Claims (9)

樹脂基板上にはんだ及び局所的な熱エネルギーを供給して形成するはんだ接合部の品質管理方法であって、
接合中に前記接合部の温度の時間変化のデータを計測するステップと、
計測された前記データから複数の特徴量を求めるステップと、
複数の前記特性量から単一の数値指標を求めるステップと、
前記数値指標と予め定めたしきい値とを比較して前記接合部が適合か不適合かを判定するステップとを備え、
複数の前記特徴量は、
前記接合部の温度が、(前記基板のガラス転移温度−50℃)≦T≦(前記基板のガラス転移温度+250℃)の条件を満たす予め定めた温度T以上になっている時間tと、
前記接合部の温度が、前記熱エネルギーによる加熱開始時点から、(前記基板のガラス転移温度−50℃)≦T≦(前記基板のガラス転移温度+250℃)の条件を満たす予め定めたTに到達するまでの時間tとを
含むことを特徴とするはんだ接合部の品質管理方法。
A quality control method for solder joints formed by supplying solder and local thermal energy on a resin substrate,
Measuring the time-change data of the temperature of the joint during joining;
Obtaining a plurality of feature quantities from the measured data;
Obtaining a single numerical index from a plurality of the characteristic quantities;
Comparing the numerical index with a predetermined threshold to determine whether the joint is compatible or non-compliant,
The plurality of feature quantities are:
The time t 1 when the temperature of the junction is equal to or higher than a predetermined temperature T 1 that satisfies the condition (glass transition temperature of the substrate −50 ° C.) ≦ T 1 ≦ (glass transition temperature of the substrate + 250 ° C.). When,
The temperature of the joint is determined in advance from the time when heating by the thermal energy is started, and the predetermined T 2 satisfies the condition of (glass transition temperature of the substrate −50 ° C.) ≦ T 2 ≦ (glass transition temperature of the substrate + 250 ° C.). quality control method of the solder joint portion, characterized in that it comprises a time t 2 to reach.
前記数値指標は、時間tおよび時間tに基づいたT法(タグチ法)における総合評価尺度であることを特徴とする請求項1に記載のはんだ接合部の品質管理方法。 2. The solder joint quality control method according to claim 1, wherein the numerical index is a comprehensive evaluation scale in a T method (Taguchi method) based on time t 1 and time t 2 . 前記数値指標は、時間tおよび時間tの重み付け加算値であることを特徴とする請求項1に記載のはんだ接合部の品質管理方法。 The numerical indicators, the quality control method of the solder joint of claim 1, which is a weighted sum of the time t 1 and time t 2. 前記接合部の温度の時間変化のデータを計測するサンプリング周期は0.1ms以上10ms以下であることを特徴とする請求項1、2または3に記載のはんだ接合部の品質管理方法。   4. The solder joint quality control method according to claim 1, wherein a sampling cycle for measuring time-dependent data of temperature of the joint is 0.1 ms or more and 10 ms or less. 樹脂基板上にはんだ及び局所的な熱エネルギーを供給して形成するはんだ接合部の品質管理装置であって、
接合中に前記接合部の温度の時間変化のデータを計測する温度特性計測手段と、
計測された前記データから複数の特徴量を求める特徴量計算手段と、
複数の前記特性量から単一の数値指標を求める数値指標計算手段と、
前記数値指標と予め定めたしきい値とを比較して前記接合部が適合か不適合かを判定する判定手段とを備え、
複数の前記特徴量は、
前記接合部の温度が、(前記基板のガラス転移温度−50℃)≦T≦(前記基板のガラス転移温度+250℃)の条件を満たす予め定めた温度T以上になっている時間tと、
前記接合部の温度が、前記熱エネルギーによる加熱開始時点から、(前記基板のガラス転移温度−50℃)≦T≦(前記基板のガラス転移温度+250℃)の条件を満たす予め定めたTに到達するまでの時間tとを
含むことを特徴とするはんだ接合部の品質管理装置。
A quality control device for solder joints formed by supplying solder and local thermal energy on a resin substrate,
A temperature characteristic measuring means for measuring time change data of the temperature of the joint during joining;
Feature quantity calculation means for obtaining a plurality of feature quantities from the measured data;
A numerical index calculation means for obtaining a single numerical index from a plurality of the characteristic quantities;
A determination means for comparing the numerical index with a predetermined threshold value to determine whether the joint is conforming or non-conforming,
The plurality of feature quantities are:
The time t 1 when the temperature of the junction is equal to or higher than a predetermined temperature T 1 that satisfies the condition (glass transition temperature of the substrate −50 ° C.) ≦ T 1 ≦ (glass transition temperature of the substrate + 250 ° C.). When,
The temperature of the joint is determined in advance from the time when heating by the thermal energy is started, and the predetermined T 2 satisfies the condition of (glass transition temperature of the substrate −50 ° C.) ≦ T 2 ≦ (glass transition temperature of the substrate + 250 ° C.). A quality control device for a solder joint, characterized in that it includes a time t 2 until it reaches
前記数値指標は、時間tおよび時間tに基づいたT法(タグチ法)における総合評価尺度であることを特徴とする請求項5に記載のはんだ接合部の品質管理装置。 The numerical index, the quality management system of the solder joint of claim 5, characterized in that the overall evaluation measure at time t 1 and time t 2 in basis was T method (Taguchi method). 前記数値指標は、時間tおよび時間tの重み付け加算値であることを特徴とする請求項5に記載のはんだ接合部の品質管理装置。 The numerical index, the quality management system of the solder joint of claim 5, characterized in that the weighted sum of the time t 1 and time t 2. 前記接合部の温度の時間変化のデータを計測するサンプリング周期は0.1ms以上10ms以下であることを特徴とする請求項5、6または7に記載のはんだ接合部の品質管理装置。   The quality control device for a solder joint according to claim 5, 6 or 7, wherein a sampling period for measuring data of a temporal change in temperature of the joint is 0.1 ms or more and 10 ms or less. 前記温度特性計測手段は放射温度計であることを特徴とする請求項5〜8のいずれか1つに記載のはんだ接合部の品質管理装置。   The quality control apparatus for solder joints according to any one of claims 5 to 8, wherein the temperature characteristic measuring means is a radiation thermometer.
JP2010076100A 2010-03-29 2010-03-29 Quality control method and quality control apparatus for solder joints Active JP5328707B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010076100A JP5328707B2 (en) 2010-03-29 2010-03-29 Quality control method and quality control apparatus for solder joints
CN2010102457460A CN102209441B (en) 2010-03-29 2010-08-03 Quality control method for solder joint portion and quality control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076100A JP5328707B2 (en) 2010-03-29 2010-03-29 Quality control method and quality control apparatus for solder joints

Publications (2)

Publication Number Publication Date
JP2011210884A true JP2011210884A (en) 2011-10-20
JP5328707B2 JP5328707B2 (en) 2013-10-30

Family

ID=44698050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076100A Active JP5328707B2 (en) 2010-03-29 2010-03-29 Quality control method and quality control apparatus for solder joints

Country Status (2)

Country Link
JP (1) JP5328707B2 (en)
CN (1) CN102209441B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849929A (en) * 2019-11-29 2020-02-28 无锡物联网创新中心有限公司 Method for monitoring release state of sensor with suspension structure
JPWO2021153269A1 (en) * 2020-01-27 2021-08-05

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9516762B2 (en) 2014-08-04 2016-12-06 Ok International Inc. Soldering iron with automatic soldering connection validation
US10688578B2 (en) 2014-08-04 2020-06-23 OK International, Inc Variable temperature controlled soldering iron
US10716220B2 (en) 2014-08-04 2020-07-14 Ok International, Inc. Variable temperature controlled soldering iron
CN112101458B (en) * 2020-09-16 2024-04-19 河海大学常州校区 Characteristic measurement method and device based on field function-signal-to-noise ratio

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195356A (en) * 1988-01-29 1989-08-07 Toshiba Corp Inspecting device for soldering by laser
JPH0758448A (en) * 1993-08-09 1995-03-03 Mitsubishi Electric Corp Device and method for laser bonding
JPH0856074A (en) * 1994-08-09 1996-02-27 Matsushita Electric Ind Co Ltd Operation condition control method and device of soldering device
JPH09211083A (en) * 1996-02-02 1997-08-15 Hioki Ee Corp Non-contact type device for detecting foot floating and jig for detecting foot floating in x-y method in-circuit tester
JPH11138291A (en) * 1997-11-06 1999-05-25 Honda Motor Co Ltd Welding quality judging device in welding equipment
JP2003524776A (en) * 2000-01-06 2003-08-19 サーマル・ウェーブ・イメージング、インク Automatic weld evaluation method and apparatus by nondestructive inspection
JP2010176418A (en) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp Method and apparatus for adjusting assembly of product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237346A (en) * 1986-04-08 1987-10-17 Olympus Optical Co Ltd Soldering inspection device for surface packaging component
JPS62297750A (en) * 1986-06-17 1987-12-24 Matsushita Electric Ind Co Ltd Inspecting device for soldering
JPH02201148A (en) * 1989-01-30 1990-08-09 Nec Corp Method of inspecting solder joining part
JP2000261137A (en) * 1999-03-12 2000-09-22 Nec Corp Connection inspection system of electronic component and its method
JP4223159B2 (en) * 1999-09-20 2009-02-12 パナソニック株式会社 Electronic component mounting equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01195356A (en) * 1988-01-29 1989-08-07 Toshiba Corp Inspecting device for soldering by laser
JPH0758448A (en) * 1993-08-09 1995-03-03 Mitsubishi Electric Corp Device and method for laser bonding
JPH0856074A (en) * 1994-08-09 1996-02-27 Matsushita Electric Ind Co Ltd Operation condition control method and device of soldering device
JPH09211083A (en) * 1996-02-02 1997-08-15 Hioki Ee Corp Non-contact type device for detecting foot floating and jig for detecting foot floating in x-y method in-circuit tester
JPH11138291A (en) * 1997-11-06 1999-05-25 Honda Motor Co Ltd Welding quality judging device in welding equipment
JP2003524776A (en) * 2000-01-06 2003-08-19 サーマル・ウェーブ・イメージング、インク Automatic weld evaluation method and apparatus by nondestructive inspection
JP2010176418A (en) * 2009-01-29 2010-08-12 Mitsubishi Electric Corp Method and apparatus for adjusting assembly of product

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7013002142; 田口玄一: 品質工学便覧 , 200710, 株式会社日刊工業新聞社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849929A (en) * 2019-11-29 2020-02-28 无锡物联网创新中心有限公司 Method for monitoring release state of sensor with suspension structure
CN110849929B (en) * 2019-11-29 2020-08-14 无锡物联网创新中心有限公司 Method for monitoring release state of sensor with suspension structure
JPWO2021153269A1 (en) * 2020-01-27 2021-08-05
WO2021153269A1 (en) * 2020-01-27 2021-08-05 三菱電機株式会社 Automatic screw fastening method and automatic screw fastening device
JP7186905B2 (en) 2020-01-27 2022-12-09 三菱電機株式会社 Automatic screw tightening method and automatic screw tightening device
US20220395941A1 (en) * 2020-01-27 2022-12-15 Mitsubishi Electric Corporation Automatic screw tightening method and automatic screw tightening apparatus

Also Published As

Publication number Publication date
CN102209441B (en) 2013-12-04
JP5328707B2 (en) 2013-10-30
CN102209441A (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP5328707B2 (en) Quality control method and quality control apparatus for solder joints
JP6264072B2 (en) Quality control device and control method thereof
JP5249198B2 (en) Thermal / electrical conductivity analyzer for soldering process improvement
Zhou et al. Thermal analysis of solder joint based on eddy current pulsed thermography
JP6155725B2 (en) Semiconductor device inspection method and semiconductor device manufacturing method using the same
JP2011096836A (en) Method and device for inspecting printed board
Ahmad et al. Validated test method to characterize and quantify pad cratering under BGA pads on printed circuit boards
US11219972B2 (en) Soldering process method
KR101055507B1 (en) Repair structure and repair method of pattern part
Gershman et al. Solder-joint quantitative crack analysis—Ohmic resistance approach
JP2004045343A (en) Life diagnostic method and device of solder joint part
Zhang et al. Advances in LED Solder Joint Reliability Testing and Prediction
Kong et al. The reliability challenges of qfn packaging
JP6652337B2 (en) Method of inspecting mounting state of semiconductor device and semiconductor device mounted on mounting substrate
He et al. Discussion on failure mechanism and corresponding evaluation technology for the reliability of IC’s applications in board-level assembly
TWI724288B (en) Soldering process
KR100894804B1 (en) Method of checking defective semiconductor components at printed circuit board
JP2011058952A (en) Cracked area rate calculation method and device
KR100579773B1 (en) Manufacturing method of electronic circuit mounting board using lead free solder
Koscielski et al. The influence of corner bonding and underfilling techniques on the reliability of 3D TMV PoP structures in SMT assembly
Sorokina et al. A Novel Approach for Temperature-Induced Ball Grid Array Collapse Observation
Sitek et al. The dependence of reliability and mechanical strength of the solder joints in 3D PoP structures from sizes of solder powders applied in soldering materials
MATKOWSKI et al. Stability of Solder Joint Resistance After Multiple Aging Processes. Repeatable Multiple Measurements of Solder Joint Resistance
Tulkoff et al. Manufacturability & Reliability Challenges with Leadless Near Chip Scale (LNCSP) Packages in Pb-Free Processes
Dusek et al. Test methods for evaluating the reliability of PCB finishes using lead-free alloys-a guide.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130723

R150 Certificate of patent or registration of utility model

Ref document number: 5328707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250