JP2004354186A - Insulated strut - Google Patents

Insulated strut Download PDF

Info

Publication number
JP2004354186A
JP2004354186A JP2003151712A JP2003151712A JP2004354186A JP 2004354186 A JP2004354186 A JP 2004354186A JP 2003151712 A JP2003151712 A JP 2003151712A JP 2003151712 A JP2003151712 A JP 2003151712A JP 2004354186 A JP2004354186 A JP 2004354186A
Authority
JP
Japan
Prior art keywords
screw
insulating
screwing
insulating pillar
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151712A
Other languages
Japanese (ja)
Other versions
JP3940702B2 (en
Inventor
Koichi Iwamoto
晃一 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003151712A priority Critical patent/JP3940702B2/en
Publication of JP2004354186A publication Critical patent/JP2004354186A/en
Application granted granted Critical
Publication of JP3940702B2 publication Critical patent/JP3940702B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Abstract

<P>PROBLEM TO BE SOLVED: To provide insulated struts which can raise the reliability of junctions between insulated struts and electrode members and normally functioning for a long time by resolving discharge from screws. <P>SOLUTION: The insulated strut comprises two annular electrode members 2 made of metal which are arranged face to face and have a plurality of penetration holes formed to penetrate each of upper and lower surfaces, a plurality of columnar insulated struts 1 made of ceramics of which the both ends have recesses 4 and are contacted to a main surface facing the two electrode members 2 so that the recesses 4 become coaxial with the penetration holes, cylindrical screw stop members 3 made of metal inserted in the recesses 4 and brazed, and screws stopping the electrode members 2 and the insulated strut 1 by inserting in the penetration holes and the screw stop members 3. The recess 4 has a horizontal cross section shape of circle column and curved bottom with a dimple and a metallized layer 4a is formed on its whole inner surface. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、核融合実験装置等に用いられる中性粒子加熱装置の真空容器内において荷電粒子等を加速して加速ビームを生成するために電圧を印加する部分に使用される絶縁支柱に関するものである。
【0002】
【従来の技術】
従来より、核融合実験装置等に用いられる中性粒子加熱装置では、荷電粒子を加速して加速ビームを生成するための電圧を印加する部分、即ち加速電極等の支持部材などとして絶縁支柱が用いられている。この絶縁支柱の基本構成を図3に斜視図で示す。また、この絶縁支柱における絶縁柱と電極部材との接合部の拡大断面図を図2に示す。図2,図3において、11は絶縁柱、12は加速電極等に接続される電極部材、17はネジ穴、18はボルト等のネジであり、主にこれらで絶縁支柱は構成されている。
【0003】
この図2の絶縁支柱において、絶縁柱11は、酸化アルミニウム(Al)質焼結体等のセラミックスからなり、その各端面に1つあるいは複数のネジ穴17が形成されている。また、電極部材12およびネジ18はSUS等の金属から成る。
【0004】
なお、絶縁柱11と電極部材12の接合は、電極部材12に予め絶縁柱11のネジ穴17に対応する位置に貫通孔をあけておき、その電極部材12を絶縁柱11の両端面にあて、ネジ18を電極部材12の貫通孔に挿通させて絶縁柱11のネジ穴17にネジ込んで締め付けることによって機械的に接合している。(例えば、下記の特許文献1参照)。
【0005】
また、ネジ穴17には、ステンレススチール(SUS)等の金属から成る筒状でその内側面および外側面にネジ加工が施されたヘリサートが挿入されていてもよく、この場合、ヘリサートの外側面が絶縁柱11のネジ穴17にネジ込まれるとともに内側面のネジ加工部にネジ18がネジ込まれ、絶縁柱11に対するネジ18の締め付けをより強固なものとすることができる。
【0006】
【特許文献1】
特開2002−343292号公報(第8頁、図7)
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の絶縁支柱においては、図2のようにネジ穴17がセラミックスから成る絶縁柱11に直接ネジ加工が施されているため、絶縁柱11のネジ穴17にネジをネジ込んで締め付けることにより電極部材12を機械的に接合すると、ネジ18を介してネジ穴17のネジ加工部に引っ張り応力や剪断応力等の応力が加わり、ネジ穴17のネジ加工部にカケ,クラック等の破損が発生し易くなっていた。
【0008】
このようなネジ穴17のネジ加工部に破損が生じると、絶縁柱11に対するネジ18の締め付け強度が低下して、絶縁柱11と電極部材12を強固に接合できなくなり、絶縁支柱として機能を果たさなくなるという問題点があった。
【0009】
特に近時では核融合実験装置における中性粒子加熱装置は大型化しており、それに伴ってネジ18を介してネジ穴17のネジ加工部に加わる引っ張り応力や剪断応力等の応力が大きくなって、絶縁柱11のネジ加工部の破損が顕著に現れるようになってきた。
【0010】
また、電極部材12を加速電極等に接続し高い電圧を印加すると、絶縁柱11の両端面にネジ込まれたネジ18にも高い電圧が加わり、ネジ18の角部から対向するネジ18に向けて放電が起きやすくなるという問題点もあった。
【0011】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、電極部材を絶縁柱に強固にネジ止めしても絶縁柱を破損させることがなく、絶縁柱と電極部材との接合の信頼性を高くすることができるとともに、ネジからの放電を解消して、長期にわたって正常に機能する絶縁支柱を提供することにある。
【0012】
【課題を解決するための手段】
本発明の絶縁支柱は、互いに対向配置されるとともにそれぞれ上下面を貫通する貫通孔が複数個形成された、金属からなる2つの円環状の電極部材と、両端面に凹部が形成されており、該凹部が前記貫通孔と同軸状となるようにして前記両端面が前記2つの電極部材の対向する主面にそれぞれ接合された、セラミックスからなる複数の円柱状の絶縁柱と、前記凹部に嵌入ロウ付けされた、金属からなる円筒状のネジ止め部材と、前記貫通孔に挿入されるとともに前記ネジ止め部材にネジ込まれることによって、前記電極部材と前記絶縁柱とをネジ止めしているネジとを具備しており、前記凹部は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層が形成されていることを特徴とする。
【0013】
本発明は、互いに対向配置されるとともにそれぞれ上下面を貫通する貫通孔が複数個形成された、金属からなる2つの円環状の電極部材と、両端面に凹部が形成されており、この凹部が貫通孔と同軸状となるようにして両端面が2つの電極部材の対向する主面にそれぞれ接合された、セラミックスからなる複数の円柱状の絶縁柱と、凹部に嵌入ロウ付けされた、金属からなる円筒状のネジ止め部材と、貫通孔に挿入されるとともにネジ止め部材にネジ込まれることによって、電極部材と絶縁柱とをネジ止めしているネジとを具備しており、凹部は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層が形成されていることより、セラミックス製の絶縁柱に欠けなどの破損が発生し易いネジ加工を施すことなくネジ止めすることができるため、電極部材の対向する主面に絶縁柱を接合する際のネジ止め時に、絶縁柱にカケ,クラック等の破損が発生するのを有効に抑制することができる。
【0014】
また、ネジ止め部材と絶縁柱とを接合するロウ材がネジ止めによる応力を有効に緩和することができるため、絶縁柱の破損を防止する効果をより向上させることができる。その結果、近時の核融合実験装置における中性粒子加熱装置に用いられる大型の絶縁支柱においても、絶縁柱にカケ,クラック等の破損が発生するのを有効に抑制することができる。
【0015】
さらに、絶縁柱の両端面に形成された凹部は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層が形成されているため、電極部材を加速電極等に接続して高い電圧を印加した際、ネジに生じる電荷は角部に集中することなく凹部内面の滑らかな曲面状のメタライズ層全面に分散させることができ、対向するネジ間での放電を有効に抑制することができる。
【0016】
また本発明の絶縁支柱において、好ましくは、前記ネジ止め部材の厚みが0.5乃至2.5mmであることを特徴とする。
【0017】
本発明の絶縁支柱は、ネジ止め部材の厚みが0.5乃至2.5mmであることにより、絶縁柱にネジ止め部材をロウ付けする際に発生する熱膨張差による応力で絶縁柱にカケ,クラック等の破損が発生するのを防止できるとともに、ネジ止め部材が変形してネジ止めできなくなるのを防止できる。その結果、長期にわたってより正常に機能する絶縁支柱を提供することができる。
【0018】
【発明の実施の形態】
本発明の絶縁支柱について以下に詳細に説明する。図1は本発明の絶縁支柱における絶縁柱と電極部材との接合部断面図である。図1において、1は絶縁柱、2は電極部材、3はネジ止め部材、4は凹部、5はロウ材であり、主にこれらで絶縁支柱は構成されている。
【0019】
そして、本発明の絶縁支柱は、互いに対向配置されるとともにそれぞれ上下面を貫通する貫通孔が複数個形成された、金属からなる2つの円環状の電極部材2と、両端面に凹部4が形成されており、この凹部4が貫通孔と同軸状となるようにして両端面が2つの電極部材2の対向する主面にそれぞれ接合された、セラミックスからなる複数の円柱状の絶縁柱1と、凹部4に嵌入ロウ付けされた、金属からなる円筒状のネジ止め部材3と、貫通孔に挿入されるとともにネジ止め部材3にネジ込まれることによって、電極部材2と絶縁柱1とをネジ止めしているネジ8とを具備しており、凹部4は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層4aが形成されている。
【0020】
本発明の絶縁柱1は、断面形状が円形、または四角形,六角形等の多角形のものであり、Al質焼結体等のセラミックスから成る。絶縁柱1の両端面には、底面が凹んだ曲面、例えば球面状,放物線状の曲面となった凹部4が形成され、凹部4内全面にモリブデン(Mo),マンガン(Mn),タングステン(W)等から成るメタライズ層4aが形成されている。
【0021】
メタライズ層4aは、ネジ止め部材3をロウ付けする際の下地金属層として作用するとともに、電極部材2を加速電極等に接続して高い電圧を印加した際、ネジ8に生じる電荷を角部に集中することなく分散させる作用もする。このようなメタライズ層4aは、好ましくはその表面にロウ材5との濡れ性に優れるニッケル(Ni),金(Au)等の金属をメッキ法により1〜10μm程度の厚みに被着させるとよく、メタライズ層4aにネジ止め部材3を強固にロウ付けすることができる。また、凹部4の開口部には面取りが施されていてもよく、これによりネジ止め部材3と凹部4とを接合するロウ材5のメニスカスを良好なものとし、ネジ止め部材3を凹部4に強固にロウ付けすることができる。
【0022】
絶縁柱1の両端面に形成された凹部4は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層4aが形成されているため、電極部材2を加速電極等に接続して高い電圧を印加した際、ネジに8生じる電荷は角部に集中することなく凹部4内面の滑らかな曲面状のメタライズ層4a全面に分散させることができ、対向するネジ8間での放電を有効に抑制することができる。
【0023】
電極部材2は、円環部に上下面を貫通する断面形状が円形の貫通孔が同じ間隔で複数個形成された円環状の金属部材であり、SUS等から成る。その貫通孔にSUS等から成るネジ8が挿入されるとともにネジ止め部材3にネジ込まれることによって、電極部材2は絶縁柱1に接合されている。
【0024】
好ましくは、電極部材2の表面は凹凸が小さくなっているのがよく、具体的にその表面の算術平均粗さ(Ra)はRa≦0.4μmとなっているのがよい。この場合、電極部材2に電圧を印加し電子等の荷電粒子を加速させる際、電極部材2間での微少放電の発生を有効に抑えられ、安定して高電圧を印加することができる。なお、電極部材2に形成される貫通孔は、4〜6個程度である。
【0025】
ネジ止め部材3は、内周面にネジ加工が施された筒状の金属部材から成り、絶縁柱1の凹部4に嵌め込まれて銀(Ag)ロウ,Ag−銅(Cu)ロウ等のロウ材5によってロウ付けされる。例えば、ネジ止め部材3はFe−Ni−Co合金等のように絶縁柱1のセラミックスと熱膨張率の近い材料から成るのがよく、ネジ止め部材3を絶縁柱1にロウ付けする際に熱膨張差が発生するのを抑制し、絶縁柱1にクラック等の破損が発生したり、ネジ止め部材3が変形するのを防止する。
【0026】
また、ネジ止め部材3と凹部4の内面のメタライズ層4aとを接合するロウ材5は、メタライズ層4aの全面に被着しているのがよい。これにより、ロウ材5とメタライズ層4aとの密着性をより向上させることができるとともに、ネジ止め部材3の下端面とメタライズ層4aとの間にはみ出したロウ材5に放電が生じるのをより有効に抑制することができる。
【0027】
また、ネジ止め部材3は筒状となっているため、ネジ止め部材3を凹部4のメタライズ層4aにロウ材5でロウ付けした後にネジ止め部材3下側のメタライズ層4aにおけるロウ材5の流れの状態を確認でき、ネジ止め部材3と凹部4との接合面全面にわたってロウ付けできているかどうかを目視で確認できる。
【0028】
好ましくは、ネジ止め部材3の厚みは0.5乃至2.5mmであるのがよく、この構成により、絶縁柱1にネジ止め部材3をロウ付けする際に発生する熱膨張差による応力で絶縁柱1にカケ,クラック等の破損が発生するのを防止できるとともに、ネジ止め部材3が変形してネジ8をネジ止めできなくなるのを防止できる。厚みが0.5mmより小さいと、ネジ止め部材3を絶縁柱1にロウ付けする際に熱膨張差によって変形してネジ8をネジ止めし難くなる。一方、厚みが2.5mmを超えると、ネジ止め部材3と絶縁柱1とのロウ付け時に熱膨張差による大きな応力がこれらの間に生じ、この応力によって絶縁柱1にクラック等の破損が発生し易くなる。
【0029】
なお、ネジ止め部材3の厚みとは、ネジ止め部材3の内周面に形成されたネジ山の頂点とネジ止め部材3の外側側面との距離のことである。
【0030】
また、ネジ止め部材3は、内周面に形成されたネジ加工が下端部に達していないことがより好ましい。これにより、ネジ止め部材3の下端部周辺に、電荷が集中し易い尖った部分がなくなり、ネジ止め部材3に放電が生じるのをより有効に抑制することができる。
【0031】
また、ネジ8は、ネジ底が平坦となっており、ネジ止め部材3にネジ込まれてネジ8のネジ底とネジ止め部材3の下端部とが面一になるようにネジ止めされているのがよい。これにより、ネジ8のネジ底やネジ止め部材3の下端部に電荷が集中するのをより有効に抑制することができ、ネジ8やネジ止め部材3に放電が生じるのをより有効に抑制することができる。
【0032】
【実施例】
本発明の実施例について以下に説明する。
【0033】
図1に示す構成のものを以下のようにして作製した。
【0034】
純度99重量%のAl質焼結体から成る、直径80mm、長さ290mmの円柱状の絶縁柱1を用意した。絶縁柱1の両端面にはそれぞれ直径15mmで深さ26mmの凹部4が2カ所設けられていた。凹部4の底角部は半径5mmの円弧状の曲面となっており、開口部は3mmの面取りが施されていた。
【0035】
そして、絶縁柱1の両端面の全面,凹部4の内面及び面取り部の全面にMoとMnとシリカ(SiO)をそれぞれ89重量%、6重量%、5重量%の割合で含有する金属ペーストを、10μmの厚さとなるように印刷塗布し、乾燥後、加湿したフォーミングガス中で1400℃の温度で焼成した。こうして、絶縁柱1の両端面の全面,凹部4の内面及び面取り部の全面にMo−Mn合金から成るメタライズ層4aを被着させた。その後、メタライズ層4a上にNiメッキ層を電解メッキ法により約2μmの厚さで被着させた。
【0036】
次に、絶縁柱1の凹部4に外側の直径が15mmで内側の全長にわたってM10(JIS B0123による)のネジ加工が施され(これによりネジ止め部材3の厚みは2.5mmとなった)、長さ21mmの円筒状で外側表面のRaが6.3μmのFe−Ni−Co合金から成るネジ止め部材3を嵌め込んで、メタライズ層4aにネジ止め部材3の外側面をロウ材5でロウ付け固定した。このとき、絶縁柱1の凹部4の面取り部とネジ止め部材3との間に、直径1mmのワイヤー状のAg−Cu合金から成るロウ材5を直径15mmのリング形状にして設置し、それを820℃に加熱して接合させた。これにより、製作されたものをサンプルA1とした。
【0037】
さらに、ネジ止め部材3の内側のネジ加工部をM11としたサンプルA2(ネジ止め部材3の厚みは2mm),ネジ加工部をM12としたサンプルA3(ネジ止め部材3の厚みは1.5mm),ネジ加工部をM13としたサンプルA4(ネジ止め部材3の厚みは1mm),ネジ加工部をM14としたサンプルA5(ネジ止め部材3の厚みは0.5mm)をそれぞれ作製した。
【0038】
比較例としてサンプルA1と同じ絶縁柱1の凹部4部に外側の直径が15mmで内側の全長にわたってM9(JIS B0123による)のネジ加工が施され(これによりネジ止め部材3の厚みは3mmとなった)、長さ21mmの円筒状で外側表面のRaが6.3μmのFe−Ni−Co合金から成るネジ止め部材3を嵌め込んで、メタライズ層4aにネジ止め部材3の外側面をロウ材5でロウ付け固定した。接合の方法はサンプルA1と同じとした。これにより製作されたものをサンプルBとした。
【0039】
また、比較例としてサンプルA1と同じ絶縁柱1の凹部4部に外径の直径が14.8mmで内側の全長にわたってM14(JIS B0123による)のネジ加工が施され(これによりネジ止め部材3の厚みは0.4mmとなった)、長さ21mmの円筒状で外側表面のRaが6.3μmのFe−Ni−Co合金から成るネジ止め部材3を嵌め込んで、メタライズ層4aにネジ止め部材3の外側面をロウ材5でロウ付け固定した。接合の方法はサンプルA1と同じとした。これにより製作されたものをサンプルCとした。
【0040】
サンプルA1〜A5,B,Cのぞれぞれについて、ネジ止め部材3のネジ加工部に適合するボルト8を挿入し、65N・mのトルクを加え試験を行った。
【0041】
サンプルA1〜A5は65N・mトルクでも破壊しなかった。
【0042】
サンプルBはロウ付け時に絶縁柱1の凹部4を起点とするクラックが発生した。
【0043】
サンプルCでは、ネジ止め部材3の厚さが薄すぎてメタライズ層4aとのロウ付け時にネジ止め部材3が変形してしまいボルト8が挿入できなかった。
【0044】
以上の結果、ネジ止め部材3の肉厚は0.5〜2.5mmであるのが好ましいことが判った。
【0045】
なお、本発明は上記実施の形態の例および実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で変更、改良を施すことは何ら差し支えない。
【0046】
【発明の効果】
本発明は、互いに対向配置されるとともにそれぞれ上下面を貫通する貫通孔が複数個形成された、金属からなる2つの円環状の電極部材と、両端面に凹部が形成されており、この凹部が貫通孔と同軸状となるようにして両端面が2つの電極部材の対向する主面にそれぞれ接合された、セラミックスからなる複数の円柱状の絶縁柱と、凹部に嵌入ロウ付けされた、金属からなる円筒状のネジ止め部材と、貫通孔に挿入されるとともにネジ止め部材にネジ込まれることによって、電極部材と絶縁柱とをネジ止めしているネジとを具備しており、凹部は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層が形成されていることより、セラミックス製の絶縁柱に欠けなどの破損が発生し易いネジ加工を施すことなくネジ止めすることができるため、電極部材の対向する主面に絶縁柱を接合する際のネジ止め時に、絶縁柱にカケ,クラック等の破損が発生するのを有効に抑制することができる。
【0047】
また、ネジ止め部材と絶縁柱とを接合するロウ材がネジ止めによる応力を有効に緩和することができるため、絶縁柱の破損を防止する効果をより向上させることができる。その結果、近時の核融合実験装置における中性粒子加熱装置に用いられる大型の絶縁支柱においても、絶縁柱にカケ,クラック等の破損が発生するのを有効に抑制することができる。
【0048】
さらに、絶縁柱の両端面に形成された凹部は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層が形成されているため、電極部材を加速電極等に接続して高い電圧を印加した際、ネジに生じる電荷は角部に集中することなく凹部内面の滑らかな曲面状のメタライズ層全面に分散させることができ、対向するネジ間での放電を有効に抑制することができる。
【0049】
本発明の絶縁支柱は、ネジ止め部材の厚みが0.5乃至2.5mmであることにより、絶縁柱にネジ止め部材をロウ付けする際に発生する熱膨張差による応力で絶縁柱にカケ,クラック等の破損が発生するのを防止できるとともに、ネジ止め部材が変形してネジ止めできなくなるのを防止できる。その結果、長期にわたってより正常に機能する絶縁支柱を提供することができる。
【図面の簡単な説明】
【図1】本発明の絶縁支柱における絶縁柱と電極部材との接合部について実施の形態の一例を示す部分拡大断面図である。
【図2】従来の絶縁支柱における絶縁柱と電極部材との接合部を示す部分拡大断面図である。
【図3】従来の絶縁支柱の斜視図である。
【符号の説明】
1:絶縁柱
2:電極部材
3:ネジ止め部材
4:凹部
4a:メタライズ層
5:ロウ材
8:ネジ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an insulating column used for applying a voltage to accelerate a charged particle or the like in a vacuum vessel of a neutral particle heating device used for a nuclear fusion experiment device or the like to generate an acceleration beam. is there.
[0002]
[Prior art]
Conventionally, in a neutral particle heating device used for a nuclear fusion experiment device or the like, an insulating column is used as a part for applying a voltage for accelerating charged particles and generating an acceleration beam, that is, a supporting member such as an acceleration electrode. Have been. FIG. 3 is a perspective view showing the basic configuration of this insulating support column. FIG. 2 is an enlarged cross-sectional view of a joint between the insulating pillar and the electrode member in the insulating pillar. 2 and 3, reference numeral 11 denotes an insulating column, 12 denotes an electrode member connected to an accelerating electrode or the like, 17 denotes a screw hole, and 18 denotes a screw such as a bolt, and these mainly constitute an insulating column.
[0003]
In the insulating column shown in FIG. 2, the insulating column 11 is made of a ceramic such as an aluminum oxide (Al 2 O 3 ) sintered body, and one or a plurality of screw holes 17 are formed on each end surface thereof. The electrode member 12 and the screw 18 are made of metal such as SUS.
[0004]
For joining the insulating pillar 11 and the electrode member 12, a through hole is previously formed in the electrode member 12 at a position corresponding to the screw hole 17 of the insulating pillar 11, and the electrode member 12 is applied to both end surfaces of the insulating pillar 11. The screw 18 is inserted through the through hole of the electrode member 12 and screwed into the screw hole 17 of the insulating column 11 to be mechanically joined. (For example, see Patent Document 1 below).
[0005]
In the screw hole 17, a heli-sert having a cylindrical shape made of metal such as stainless steel (SUS) and having inner and outer surfaces thereof threaded may be inserted. In this case, the outer surface of the heli-sert may be inserted. Is screwed into the screw hole 17 of the insulating pillar 11 and the screw 18 is screwed into the threaded portion on the inner surface, so that the screw 18 can be tightened more firmly on the insulating pillar 11.
[0006]
[Patent Document 1]
JP-A-2002-343292 (page 8, FIG. 7)
[0007]
[Problems to be solved by the invention]
However, in the above-mentioned conventional insulating column, since the screw hole 17 is directly screwed into the insulating pillar 11 made of ceramic as shown in FIG. 2, a screw is screwed into the screw hole 17 of the insulating pillar 11 and tightened. As a result, when the electrode member 12 is mechanically joined, a stress such as a tensile stress or a shear stress is applied to the threaded portion of the screw hole 17 via the screw 18, and the threaded portion of the screw hole 17 is damaged such as a chip or a crack. Was easy to occur.
[0008]
If such a threaded portion of the screw hole 17 is damaged, the strength of the screw 18 to the insulating column 11 is reduced, and the insulating column 11 and the electrode member 12 cannot be firmly joined to each other. There was a problem that it disappeared.
[0009]
Particularly in recent years, the neutral particle heating device in the nuclear fusion experiment device has become larger, and accordingly, the stress such as tensile stress and shear stress applied to the threaded portion of the screw hole 17 via the screw 18 has increased, Breakage of the threaded portion of the insulating pillar 11 has come to be noticeable.
[0010]
When the electrode member 12 is connected to an accelerating electrode or the like and a high voltage is applied, a high voltage is also applied to the screws 18 screwed into both end surfaces of the insulating column 11, and the high voltage is applied from the corners of the screws 18 to the opposite screws 18. There is also a problem that discharge easily occurs.
[0011]
Therefore, the present invention has been completed in view of the above problems, and an object of the present invention is to prevent the insulating pillar from being damaged even if the electrode member is firmly screwed to the insulating pillar, and to allow the insulating pillar and the electrode member to be in contact with each other. An object of the present invention is to provide an insulating support column that can improve the reliability of bonding, eliminate discharge from a screw, and function normally for a long time.
[0012]
[Means for Solving the Problems]
The insulating support pillar of the present invention has two annular electrode members made of metal, in which a plurality of through-holes are formed facing each other and penetrate the upper and lower surfaces, and concave portions are formed on both end surfaces, A plurality of cylindrical insulating pillars made of ceramics, each of which has both ends joined to the opposite main surfaces of the two electrode members such that the recess is coaxial with the through-hole; A brazed cylindrical screw member made of metal, and a screw inserted into the through hole and screwed into the screw member to screw the electrode member and the insulating pillar. Wherein the concave portion has a circular cross section and a curved surface with a concave bottom surface, and a metallized layer is formed on the entire inner surface.
[0013]
According to the present invention, two annular electrode members made of metal, each of which has a plurality of through-holes penetrating through the upper and lower surfaces and being opposed to each other, are formed with concave portions on both end surfaces. A plurality of ceramic insulating pillars made of ceramics, both end faces of which are joined to opposing main surfaces of the two electrode members so as to be coaxial with the through hole, and a metal fitted into the recess and brazed. A cylindrical screwing member, and a screw inserted into the through hole and screwed into the screwing member, thereby screwing the electrode member and the insulating pillar. Screw processing that has a circular shape and a concave surface with a concave bottom surface, and a metallized layer is formed on the entire inner surface, so that ceramic insulating pillars are susceptible to breakage such as chipping Since it can be screwed without applying it, it is possible to effectively suppress the occurrence of breakage such as cracks and cracks in the insulating pillar when screwing when joining the insulating pillar to the opposite main surface of the electrode member. it can.
[0014]
Further, since the brazing material for joining the screw member and the insulating pillar can effectively reduce the stress caused by screwing, the effect of preventing damage to the insulating pillar can be further improved. As a result, it is possible to effectively suppress the occurrence of breakage such as chips and cracks in the insulating pillar even in a large insulating pillar used in a neutral particle heating device in a recent fusion experiment apparatus.
[0015]
Furthermore, the concave portions formed on both end surfaces of the insulating pillar have a circular cross-sectional shape and a curved surface with a concave bottom surface, and a metallized layer is formed on the entire inner surface thereof, so that the electrode member is not formed. When a high voltage is applied by connecting to an accelerating electrode or the like, the charge generated in the screw can be dispersed over the entire smooth curved metallization layer on the inner surface of the concave portion without concentrating on the corners, and the electric charge between the opposing screws can be reduced. Discharge can be effectively suppressed.
[0016]
Further, in the insulating pillar according to the present invention, preferably, the thickness of the screwing member is 0.5 to 2.5 mm.
[0017]
The insulating pillar of the present invention has a thickness of 0.5 to 2.5 mm for the screwing member, so that the stress due to the difference in thermal expansion generated when the screwing member is brazed to the insulating pillar can cause the insulating pillar to have cracks, It is possible to prevent the occurrence of damage such as cracks, and to prevent the screwing member from being deformed and unable to be screwed. As a result, it is possible to provide an insulating pillar that functions more normally over a long period of time.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The insulating support of the present invention will be described in detail below. FIG. 1 is a sectional view of a joint between an insulating pillar and an electrode member in an insulating pillar according to the present invention. In FIG. 1, reference numeral 1 denotes an insulating pillar, 2 denotes an electrode member, 3 denotes a screw member, 4 denotes a concave portion, and 5 denotes a brazing material.
[0019]
The insulating support pillar of the present invention has two annular electrode members 2 made of metal, each of which has a plurality of through-holes penetrating through the upper and lower surfaces, and has concave portions 4 formed at both end surfaces. A plurality of cylindrical insulating pillars 1 made of ceramics, both ends of which are joined to opposing main surfaces of the two electrode members 2 such that the recess 4 is coaxial with the through hole; The electrode member 2 and the insulating column 1 are screwed by being inserted into the through hole and screwed into the screw member 3 by screwing the cylindrical screw member 3 made of metal fitted into the recess 4 and brazed. The concave portion 4 has a circular cross section and a curved surface with a concave bottom surface, and a metallized layer 4a is formed on the entire inner surface.
[0020]
The insulating pillar 1 of the present invention has a circular cross section or a polygonal shape such as a square or a hexagon, and is made of a ceramic such as an Al 2 O 3 sintered body. On both end surfaces of the insulating column 1, a concave surface 4 having a concave bottom surface, for example, a spherical or parabolic curved surface is formed, and molybdenum (Mo), manganese (Mn), tungsten (W) ) Etc. are formed.
[0021]
The metallized layer 4a functions as a base metal layer when the screwing member 3 is brazed, and when the electrode member 2 is connected to an accelerating electrode or the like and a high voltage is applied, the charge generated in the screw 8 is applied to the corners. It also acts to disperse without concentrating. Such a metallized layer 4a is preferably formed by applying a metal such as nickel (Ni) or gold (Au) having excellent wettability with the brazing material 5 to a thickness of about 1 to 10 μm by plating on the surface thereof. The screw member 3 can be firmly brazed to the metallized layer 4a. Further, the opening of the recess 4 may be chamfered, so that the meniscus of the brazing material 5 for joining the screwing member 3 and the recess 4 is good, and the screwing member 3 is attached to the recess 4. Can be brazed firmly.
[0022]
The concave portion 4 formed on both end surfaces of the insulating column 1 has a circular cross-sectional shape and a curved surface with a concave bottom surface. Since the metallized layer 4a is formed on the entire inner surface, the electrode member is formed. When a high voltage is applied by connecting 2 to an accelerating electrode or the like, the charge generated in the screw 8 can be dispersed over the entire smooth curved metallized layer 4a on the inner surface of the recess 4 without concentrating on the corners. The discharge between the screws 8 can be effectively suppressed.
[0023]
The electrode member 2 is an annular metal member in which a plurality of through-holes having a circular cross section penetrating the upper and lower surfaces at the annular portion are formed at equal intervals, and is made of SUS or the like. The electrode member 2 is joined to the insulating pillar 1 by inserting a screw 8 made of SUS or the like into the through hole and screwing the screw 8 into the screw fixing member 3.
[0024]
Preferably, the surface of the electrode member 2 has small irregularities. Specifically, the arithmetic average roughness (Ra) of the surface is preferably Ra ≦ 0.4 μm. In this case, when a voltage is applied to the electrode member 2 to accelerate charged particles such as electrons, generation of minute discharge between the electrode members 2 can be effectively suppressed, and a high voltage can be stably applied. The number of through holes formed in the electrode member 2 is about 4 to 6.
[0025]
The screwing member 3 is formed of a cylindrical metal member having an inner peripheral surface subjected to screw processing, and is fitted into the concave portion 4 of the insulating pillar 1 and is made of a brazing material such as silver (Ag) brazing or Ag-copper (Cu) brazing. It is brazed by the material 5. For example, the screw member 3 is preferably made of a material having a coefficient of thermal expansion close to that of the ceramics of the insulating column 1 such as an Fe—Ni—Co alloy. The occurrence of a difference in expansion is suppressed, and the occurrence of damage such as cracks in the insulating column 1 and the deformation of the screw member 3 are prevented.
[0026]
Further, the brazing material 5 for joining the screwing member 3 and the metallized layer 4a on the inner surface of the concave portion 4 is preferably applied to the entire surface of the metallized layer 4a. Thereby, the adhesion between the brazing material 5 and the metallized layer 4a can be further improved, and the occurrence of discharge in the brazing material 5 protruding between the lower end surface of the screwing member 3 and the metallized layer 4a can be further reduced. It can be suppressed effectively.
[0027]
Further, since the screwing member 3 is cylindrical, the screwing member 3 is brazed to the metallized layer 4a of the concave portion 4 with the brazing material 5 and then the brazing material 5 in the metalized layer 4a below the screwing member 3 is formed. The state of the flow can be confirmed, and it can be visually confirmed whether or not brazing has been completed over the entire joint surface between the screwing member 3 and the concave portion 4.
[0028]
Preferably, the thickness of the screw member 3 is 0.5 to 2.5 mm. With this configuration, the screw member 3 is insulated by a stress caused by a difference in thermal expansion generated when the screw member 3 is brazed to the insulating column 1. It is possible to prevent the column 1 from being damaged such as chips and cracks, and to prevent the screw member 3 from being deformed and the screw 8 from being unable to be screwed. When the thickness is smaller than 0.5 mm, the screw 8 is hardly screwed by being deformed due to a difference in thermal expansion when the screwing member 3 is brazed to the insulating pillar 1. On the other hand, if the thickness exceeds 2.5 mm, a large stress due to a difference in thermal expansion occurs between the screwing member 3 and the insulating pillar 1 during brazing, and the stress causes breakage such as cracks in the insulating pillar 1. Easier to do.
[0029]
Note that the thickness of the screw member 3 refers to the distance between the top of a screw thread formed on the inner peripheral surface of the screw member 3 and the outer side surface of the screw member 3.
[0030]
In addition, it is more preferable that the screw processing formed on the inner peripheral surface of the screwing member 3 does not reach the lower end. Accordingly, there is no sharp point around the lower end of the screwing member 3 where charges are easily concentrated, and it is possible to more effectively suppress the occurrence of discharge in the screwing member 3.
[0031]
The screw 8 has a flat bottom and is screwed into the screw member 3 and screwed so that the screw bottom of the screw 8 and the lower end of the screw member 3 are flush. Is good. As a result, it is possible to more effectively suppress the electric charge from being concentrated on the screw bottom of the screw 8 and the lower end of the screw member 3, and to more effectively suppress the occurrence of electric discharge in the screw 8 and the screw member 3. be able to.
[0032]
【Example】
An embodiment of the present invention will be described below.
[0033]
The structure shown in FIG. 1 was produced as follows.
[0034]
A cylindrical insulating pillar 1 having a diameter of 80 mm and a length of 290 mm made of an Al 2 O 3 sintered body having a purity of 99% by weight was prepared. Two concave portions 4 each having a diameter of 15 mm and a depth of 26 mm were provided on both end surfaces of the insulating column 1. The bottom corner of the concave portion 4 was an arc-shaped curved surface having a radius of 5 mm, and the opening was chamfered by 3 mm.
[0035]
Then, a metal paste containing Mo, Mn, and silica (SiO 2 ) in a proportion of 89% by weight, 6% by weight, and 5% by weight, respectively, on the entire surfaces of both end surfaces of the insulating column 1, the inner surface of the concave portion 4, and the entire surface of the chamfered portion. Was printed and coated to a thickness of 10 μm, dried, and fired at 1400 ° C. in a humidified forming gas. In this manner, the metallized layer 4a made of the Mo-Mn alloy was applied to the entire surfaces of both ends of the insulating column 1, the inner surface of the concave portion 4, and the entire chamfered portion. Thereafter, a Ni plating layer was applied to a thickness of about 2 μm on the metallized layer 4a by an electrolytic plating method.
[0036]
Next, M10 (according to JIS B0123) threading is applied to the concave portion 4 of the insulating pillar 1 over the entire length of the inner diameter of 15 mm (the thickness of the screwing member 3 becomes 2.5 mm). A screwing member 3 made of a Fe—Ni—Co alloy having a cylindrical shape with a length of 21 mm and an outer surface Ra of 6.3 μm is fitted, and the outer surface of the screwing member 3 is brazed to the metallized layer 4 a with a brazing material 5. I fixed it. At this time, a brazing material 5 made of a wire-shaped Ag-Cu alloy having a diameter of 1 mm is provided between the chamfered portion of the concave portion 4 of the insulating pillar 1 and the screwing member 3 in a ring shape having a diameter of 15 mm, and is placed. It was heated to 820 ° C. and joined. Thus, the manufactured product was designated as Sample A1.
[0037]
Further, a sample A2 with the threaded portion M11 inside the screwing member 3 (thickness of the screwing member 3 is 2 mm) and a sample A3 with a threaded portion M12 (the thickness of the screwing member 3 is 1.5 mm) A sample A4 (thickness of the screw member 3 was 1 mm) having a threaded portion of M13 and a sample A5 (thickness of 0.5 mm of the screw member 3) having a threaded portion of M14 were produced.
[0038]
As a comparative example, a thread of M9 (according to JIS B0123) having an outside diameter of 15 mm and the entire inside length is applied to the concave portion 4 of the same insulating pillar 1 as the sample A1 (the thickness of the screw member 3 is 3 mm). A screw member 3 made of a Fe-Ni-Co alloy having a cylindrical shape with a length of 21 mm and an outer surface Ra of 6.3 μm is fitted, and the outer surface of the screw member 3 is brazed to the metallized layer 4a. 5 and fixed by brazing. The joining method was the same as that of Sample A1. The sample manufactured in this manner was designated as Sample B.
[0039]
Further, as a comparative example, M4 (according to JIS B0123) screw processing is applied to the concave portion 4 of the same insulating pillar 1 as the sample A1 with an outer diameter of 14.8 mm and the entire inner length (in this way, the screw fixing member 3 is formed). The screwing member 3 made of a Fe—Ni—Co alloy having a cylindrical shape with a length of 21 mm and an outer surface Ra of 6.3 μm was fitted into the metallizing layer 4a. The outside surface of 3 was brazed and fixed with a brazing material 5. The joining method was the same as that of Sample A1. The sample manufactured in this manner was designated as Sample C.
[0040]
For each of the samples A1 to A5, B, and C, a bolt 8 adapted to the threaded portion of the screwing member 3 was inserted, and a test was performed by applying a torque of 65 Nm.
[0041]
Samples A1 to A5 did not break even at 65 N · m torque.
[0042]
Sample B had a crack starting from the concave portion 4 of the insulating pillar 1 during brazing.
[0043]
In the sample C, the screw member 3 was too thin and the screw member 3 was deformed at the time of brazing with the metallization layer 4a, so that the bolt 8 could not be inserted.
[0044]
As a result, it was found that the thickness of the screwing member 3 is preferably 0.5 to 2.5 mm.
[0045]
It should be noted that the present invention is not limited to the examples and examples of the above-described embodiment, and changes and improvements can be made without departing from the scope of the present invention.
[0046]
【The invention's effect】
According to the present invention, two annular electrode members made of metal, each of which has a plurality of through-holes penetrating through the upper and lower surfaces and being opposed to each other, are formed with concave portions on both end surfaces. A plurality of ceramic insulating pillars made of ceramics, both end faces of which are joined to opposing main surfaces of the two electrode members so as to be coaxial with the through hole, and a metal fitted into the recess and brazed. A cylindrical screwing member, and a screw inserted into the through hole and screwed into the screwing member, thereby screwing the electrode member and the insulating pillar. Screw processing that has a circular surface shape and a concave surface with a concave bottom surface, and a metallized layer is formed on the entire inner surface, which is likely to cause breakage such as chipping of ceramic insulating pillars Since it can be screwed without applying it, it is possible to effectively suppress the occurrence of breakage such as cracks and cracks in the insulating pillar when screwing when joining the insulating pillar to the opposite main surface of the electrode member. it can.
[0047]
Further, since the brazing material for joining the screw member and the insulating pillar can effectively reduce the stress caused by screwing, the effect of preventing damage to the insulating pillar can be further improved. As a result, it is possible to effectively suppress the occurrence of breakage such as chips and cracks in the insulating pillar even in a large insulating pillar used in a neutral particle heating device in a recent fusion experiment apparatus.
[0048]
Furthermore, the concave portions formed on both end surfaces of the insulating pillar have a circular cross-sectional shape and a curved surface with a concave bottom surface, and a metallized layer is formed on the entire inner surface thereof, so that the electrode member is not formed. When a high voltage is applied by connecting to an accelerating electrode or the like, the charge generated in the screw can be dispersed over the entire smooth curved metallization layer on the inner surface of the concave portion without concentrating on the corners, and the electric charge between the opposing screws can be reduced. Discharge can be effectively suppressed.
[0049]
The insulating pillar of the present invention has a thickness of 0.5 to 2.5 mm for the screwing member, so that the stress due to the difference in thermal expansion generated when the screwing member is brazed to the insulating pillar can cause the insulating pillar to have cracks, It is possible to prevent the occurrence of damage such as cracks, and to prevent the screwing member from being deformed and unable to be screwed. As a result, it is possible to provide an insulating pillar that functions more normally over a long period of time.
[Brief description of the drawings]
FIG. 1 is a partially enlarged sectional view showing an example of an embodiment of a joint between an insulating pillar and an electrode member in an insulating pillar of the present invention.
FIG. 2 is a partially enlarged cross-sectional view showing a joint between an insulating pillar and an electrode member in a conventional insulating pillar.
FIG. 3 is a perspective view of a conventional insulating pillar.
[Explanation of symbols]
1: insulating column 2: electrode member 3: screw member 4: concave portion 4a: metallized layer 5: brazing material 8: screw

Claims (2)

互いに対向配置されるとともにそれぞれ上下面を貫通する貫通孔が複数個形成された、金属からなる2つの円環状の電極部材と、両端面に凹部が形成されており、該凹部が前記貫通孔と同軸状となるようにして前記両端面が前記2つの電極部材の対向する主面にそれぞれ接合された、セラミックスからなる複数の円柱状の絶縁柱と、前記凹部に嵌入ロウ付けされた、金属からなる円筒状のネジ止め部材と、前記貫通孔に挿入されるとともに前記ネジ止め部材にネジ込まれることによって、前記電極部材と前記絶縁柱とをネジ止めしているネジとを具備しており、前記凹部は、横断面形状が円形状であるとともに底面が凹んだ曲面とされており、その内面の全面にメタライズ層が形成されていることを特徴とする絶縁支柱。Two annular electrode members made of metal, each of which has a plurality of through holes formed so as to face each other and penetrate the upper and lower surfaces, and concave portions are formed on both end surfaces, and the concave portions are formed with the through holes. A plurality of cylindrical insulating pillars made of ceramics, both end faces of which are joined to opposing main faces of the two electrode members so as to be coaxial, and a metal fitted into the recess and brazed. A cylindrical screwing member, and a screw that is inserted into the through hole and screwed into the screwing member, thereby screwing the electrode member and the insulating column. The insulating pillar according to claim 1, wherein the concave portion has a circular cross section and a curved surface with a concave bottom surface, and a metallized layer is formed on the entire inner surface. 前記ネジ止め部材の厚みが0.5乃至2.5mmであることを特徴とする請求項1記載の絶縁支柱。2. The insulating pillar according to claim 1, wherein the thickness of the screw member is 0.5 to 2.5 mm.
JP2003151712A 2003-05-28 2003-05-28 Insulating post Expired - Lifetime JP3940702B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151712A JP3940702B2 (en) 2003-05-28 2003-05-28 Insulating post

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151712A JP3940702B2 (en) 2003-05-28 2003-05-28 Insulating post

Publications (2)

Publication Number Publication Date
JP2004354186A true JP2004354186A (en) 2004-12-16
JP3940702B2 JP3940702B2 (en) 2007-07-04

Family

ID=34047121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151712A Expired - Lifetime JP3940702B2 (en) 2003-05-28 2003-05-28 Insulating post

Country Status (1)

Country Link
JP (1) JP3940702B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049003A (en) * 2020-09-15 2022-03-28 アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハー Electrode arrangement, contact assembly for electrode arrangement, charged particle beam device, and method of reducing electrical field strength in electrode arrangement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022049003A (en) * 2020-09-15 2022-03-28 アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハー Electrode arrangement, contact assembly for electrode arrangement, charged particle beam device, and method of reducing electrical field strength in electrode arrangement
JP7275219B2 (en) 2020-09-15 2023-05-17 アイシーティー インテグレーテッド サーキット テスティング ゲゼルシャフト フィーア ハルプライタープリーフテヒニック エム ベー ハー Electrode configuration, contact assembly for electrode configuration, charged particle beam device, and method for reducing electric field strength in electrode configuration

Also Published As

Publication number Publication date
JP3940702B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
US6756132B2 (en) Joined structures of metal terminals and ceramic members, joined structures of metal members and ceramic members, and adhesive materials
TWI450353B (en) A bonding structure and a semiconductor manufacturing apparatus
JP2004088005A (en) Capillary for wire bonding and wire-bonding method using same
JPS61111981A (en) Method of bonding ceramic part and metal part
JP2007258610A (en) Alumina sintered body
JP3771686B2 (en) Wafer support member
JP2004354186A (en) Insulated strut
JP2009188390A (en) Bonding structure and semiconductor device manufacturing apparatus
US5270135A (en) Articles including a ceramic member and a metal member bonded together
JP2010272730A (en) Electrostatic chuck
JPH09235166A (en) Joint structure of metal member with ceramics member and production thereof
JP2006313919A (en) Processed object retainer, susceptor for semiconductor manufacturing apparatus, and processor
JP4077824B2 (en) Insulating post
JPH06131934A (en) Insulator
JP4126462B2 (en) Ceramic composite
JPH10208771A (en) Sodium-sulfur battery
KR100435623B1 (en) Joining method for ceramics and metal and joined body of ceramics and metal joined by the method
JP2003245792A (en) Connection structure
JP3659334B2 (en) Accelerator insulation post
US7073702B2 (en) Self-locking wire bond structure and method of making the same
JP3758983B2 (en) Accelerator insulation post
JP2003158172A (en) Wafer holder
JP2006313790A (en) Through-hole structure of substrate
JP2003288855A (en) Insulating pole of accelerator
JP6711742B2 (en) Substrate structure and substrate manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7