JP2004353485A - Intake air control method for premixed compression ignition combustion internal combustion engine - Google Patents

Intake air control method for premixed compression ignition combustion internal combustion engine Download PDF

Info

Publication number
JP2004353485A
JP2004353485A JP2003149508A JP2003149508A JP2004353485A JP 2004353485 A JP2004353485 A JP 2004353485A JP 2003149508 A JP2003149508 A JP 2003149508A JP 2003149508 A JP2003149508 A JP 2003149508A JP 2004353485 A JP2004353485 A JP 2004353485A
Authority
JP
Japan
Prior art keywords
intake
internal combustion
combustion engine
valve
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003149508A
Other languages
Japanese (ja)
Inventor
Hide Itabashi
秀 板橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003149508A priority Critical patent/JP2004353485A/en
Publication of JP2004353485A publication Critical patent/JP2004353485A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0257Independent control of two or more intake or exhaust valves respectively, i.e. one of two intake valves remains closed or is opened partially while the other is fully opened
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology capable of setting the ignition timing of a premixed air-fuel mixture in a transient operation to a more suitable timing in a premixed compression ignition combustion internal combustion engine. <P>SOLUTION: In a stationary operation, the EGR rate of intake air in one intake air port (intake air port in which a first intake air valve is installed) is set higher than the EGR rate of intake air in the other intake air port (intake air port in which a second intake air valve is installed). When an operation comes into the transient operation in which an EGR gas amount in a cylinder is increased, the lift amount of the other intake valve (second intake valve) is reduced for a specified time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、気筒内において、燃焼に供される予混合気が形成される予混合圧縮着火燃焼内燃機関に関し、特に、予混合圧縮着火燃焼機関における吸気制御に関する。
【0002】
【従来の技術】
従来、内燃機関において、吸気行程中および/または圧縮行程中に気筒内へ燃料を噴射することで、該燃料と吸気(空気)との予混合気を形成し、該予混合気を燃焼に供することによって、NOxや煙の排出が抑制される予混合圧縮着火燃焼内燃機関の開発が進められている。
【0003】
このような予混合圧縮着火燃焼内燃機関においては、形成された予混合気が気筒内の圧力や温度上昇により圧縮行程上死点近傍となる前に着火燃焼する、いわゆる過早着火が発生する虞がある。そこで、気筒内に導入される再循環排気(以下、EGRガスと称する)の量を排気中のNOx濃度に基づき調節することによって、過早着火の発生を防止する技術が知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−152853号公報
【特許文献2】
特開2000−120457号公報
【特許文献3】
特開平10−274104号公報
【0005】
【発明が解決しようとする課題】
予混合圧縮着火燃焼内燃機関では、気筒内における予混合気の再循環排気率(気体中におけるEGRガス量の割合のこと、以下、EGR率と称する)を制御することで着火時期を制御している。EGR率が上昇すると酸素濃度が低下するため予混合気の着火性が低下し着火時期は遅くなる。一方、EGR率が低下すると予混合気の酸素濃度が高くなるため着火性が高くなり着火時期は早くなる。
【0006】
従来、吸気通路に設けられたスロットル弁の開度を変更することで気筒内に流入する新気(空気)量を制御したり、EGRガスを吸気系に導くEGR通路に設けられたEGR弁の開度を変更することで気筒内に流入するEGRガス量を制御したりすることによって、予混合気のEGR率を制御している。加速時や減速時のような、機関負荷の変化が大きい過渡運転時において、予混合気の着火時期を適切な時期とするためには、気筒内のEGRガス量の変化も定常運転時より大きくする必要がある。ところが、スロットル弁の開度変更による新気量制御やEGR弁の開度変更によるEGR量制御は応答遅れが大きいため、予混合気のEGR率の制御にも応答遅れが発生し、着火時期が適切な時期とならず過早着火や着火遅れ、失火が発生する虞がある。
【0007】
そこで、本発明は、予混合圧縮着火燃焼内燃機関において、過渡運転時における予混合気の着火時期をより好適な時期とすることが可能な技術を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明は、上記課題を解決するために以下の手段を採用した。
即ち、複数の吸気ポートを有する予混合圧縮着火燃焼内燃機関において、定常運転時に、予め、一方の吸気ポートにおける吸気のEGR率を他方の吸気ポートにおける吸気のEGR率よりも高くしておき、内燃機関の運転状態が過渡運転となったときには、それぞれの吸気ポートの吸気弁のリフト量および/または閉弁時期を一時的に変更することで、気筒内のEGRガス量を変化させる。
【0009】
より詳しくは、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法は、1気筒当たりに複数の吸気ポートを有し、
一方の吸気ポートと他方の吸気ポートとのそれぞれにEGRガスを導入する排気再循環装置と、
該排気再循環装置によって一方の吸気ポートと他方の吸気ポートとに導入されるEGRガス量をそれぞれ変更することで、それぞれの吸気ポートにおける吸気のEGR率を制御する吸気再循環排気率制御装置と、
一方の吸気ポートの吸気弁(以下、一方の吸気弁と称する)と他方の吸気ポートの吸気弁(以下、他方の吸気弁と称する)とのリフト量および閉弁時期をそれぞれ変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関において、
該内燃機関の運転状態が定常運転であるときに、吸気再循環排気率制御装置によって、予め、一方の吸気ポートにおける吸気のEGR率を、他方の吸気ポートにおける吸気のEGR率よりも高くしておき、内燃機関の運転状態が、気筒内のEGRガス量の変化が定常運転時より大きい過渡運転となったときには、可変動弁機構によって、所定期間、一方の吸気弁および/または他方の吸気弁のリフト量および/または閉弁時期を変更することにより気筒内のEGRガス量を変化させることを特徴とする。
【0010】
スロットル弁の開度変更による新気量制御やEGR弁の開度変更によるEGRガス量制御よりも、吸気弁のリフト量や閉弁時期の変更による気筒内への吸気導入量制御の方が応答遅れは小さい。そのため、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法によれば、内燃機関の運転状態が過渡運転となったときは、気筒内のEGRガス量はより速やかに変化する。従って、気筒内における予混合気のEGR率の応答遅れが抑制され、予混合気のEGR率を、より速やかに、該予混合気の着火時期が所望の時期となるEGR率(以下、要求EGR率と称する)とすることが出来る。即ち、過渡運転時においても、予混合気の着火時期をより好適な時期とすることが出来る。
【0011】
ここで、所定期間とは、内燃機関の運転状態が過渡運転となってから、一方の吸気弁および/または他方の吸気弁のリフト量または/および閉弁時期を変更することによって予混合気の実際のEGR率が要求EGR率となるまでの期間である。一方の吸気弁および/または他方の吸気弁のリフト量または/および閉弁時期を変更した後、この所定期間が経過したときは、これらの吸気弁の制御を定常運転時と同様の制御に戻す。
【0012】
また、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法においては、予混合圧縮着火燃焼内燃機関が、1気筒当たりに複数の吸気ポートを有し、一方の吸気ポートにのみEGRガスを導入する排気再循環装置と、一方の吸気弁と他方の吸気弁とのリフト量および閉弁時期をそれぞれ変更する可変動弁機構と、を備えた機関であった場合、該内燃機関の運転状態が、気筒内のEGRガス量の変化を定常運転時よりも大きくする過渡運転となったときには、可変動弁機構によって、所定期間、一方の吸気弁および/または他方の吸気弁のリフト量および/または閉弁時期を変更することにより前記気筒内のEGRガス量を変化させても良い。
【0013】
このような予混合圧縮着火燃焼内燃機関の吸気制御方法によっても、前記と同様、内燃機関の運転状態が過渡運転となったとき、気筒内のEGRガス量はより速やかに変化する。従って、気筒内における予混合気のEGR率の応答遅れが抑制され、予混合気の実際のEGR率を、より速やかに要求EGR率とすることが出来る。即ち、過渡運転時においても、予混合気の着火時期をより好適な時期とすることが出来る。
【0014】
本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法においては、内燃機関の運転状態が気筒内のEGRガス量を増加させる過渡運転となったときには、所定期間、他方の吸気弁のリフト量を小さくしても良い。
【0015】
他方の吸気弁のリフト量を小さくすることによって、EGR率が低い吸気の気筒内への導入量が減少し、EGR率が高い吸気の気筒内への導入量が増加する。そのため、気筒内のEGRガス量がより速やかに増加する。従って、内燃機関の運転状態が気筒内のEGRガス量を増加させる過渡運転となったときであっても、予混合気の実際のEGR率が応答遅れによって要求EGR率より低くなることを抑制することが出来、以て過早着火の発生を抑制することが可能となる。
【0016】
ここで、内燃機関の運転状態が気筒内のEGRガス量を増加させる過渡運転となったときとしては、機関負荷がより高くなる車両の加速時が例示出来る。
【0017】
一方、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法においては、内燃機関の運転状態が気筒内のEGRガス量を減少させる過渡運転となったときには、所定期間、一方の吸気弁のリフト量を小さくしても良い。
【0018】
一方の吸気弁のリフト量を小さくすることで、EGR率が高い吸気の気筒内への導入量が減少し、EGR率が低い吸気の気筒内への導入量が増加する。そのため、気筒内のEGRガス量がより速やかに減少する。従って、内燃機関の運転状態が気筒内のEGRガス量を減少させる過渡運転となったときであっても、予混合気の実際のEGR率が応答遅れによって要求EGR率より高くなることを抑制することが出来、以て着火遅れや失火の発生を抑制することが出来る。
【0019】
ここで、内燃機関の運転状態が気筒内のEGRガス量を減少させる過渡運転となったときとしては、機関負荷がより低くなる車両の減速時が例示出来る。
【0020】
本発明の方法においては、予混合圧縮着火燃焼内燃機関が、定常運転時は、他方の吸気弁の閉弁時期が吸気行程下死点よりも遅い機関である場合、該内燃機関の運転状態が、低回転領域にあり、且つ気筒内のEGRガス量を増加させる過渡運転となったときには、所定期間、他方の吸気弁のリフト量を小さくすることに加え、この他方の吸気弁の閉弁時期を吸気行程下死点の方へ進角しても良い。
【0021】
内燃機関の運転状態が低回転領域にあるときは、吸気ポートから気筒内に流入する吸気の流速が遅いため、吸気弁の閉弁時期が吸気行程下死点よりも遅いと気筒内の吸気が吸気ポートへ流出する。そのため、吸気の吸入効率が悪化する。
【0022】
上記のような制御によれば、他方の吸気弁のリフト量を小さくすることによって過早着火の発生を抑制することが出来ると同時に、他方の吸気弁の閉弁時期を吸気行程下死点の方へ進角することによって、気筒内から他方の吸気ポートへ流出する吸気の流出量が減少するため、吸気の吸入効率を向上させることが出来る。
【0023】
また、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法においては、予混合圧縮着火燃焼内燃機関が、定常運転時は、一方の吸気弁の閉弁時期が吸気行程下死点よりも遅い機関である場合、該内燃機関の運転状態が、低回転領域にあり、且つ気筒内のEGRガス量を減少させる過渡運転となったときには、所定期間、一方の吸気弁のリフト量を小さくすることに加え、この一方の吸気弁の閉弁時期を吸気行程下死点の方へ進角しても良い。
【0024】
このような制御によれば、一方の吸気弁のリフト量を小さくすることによって失火の発生を抑制することが出来ると同時に、一方の吸気弁の閉弁時期を吸気行程下死点の方へ進角することによって、気筒内から一方の吸気ポートへ流出する吸気の流出量が減少するため、前記と同様、吸気の吸入効率を向上させることが出来る。
【0025】
尚、上記のような制御において、吸気弁の閉弁時期が吸気行程下死点よりも早くなると、気筒内の吸気の量が減少するため、吸気弁の閉弁時期を進角する時期は吸気行程下死点までとしても良い。
【0026】
本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法においては、予混合圧縮着火燃焼内燃機関が、定常運転時は、他方の吸気弁の閉弁時期が吸気行程下死点以降である機関である場合、該内燃機関の運転状態が、高回転領域にあり、且つ気筒内のEGRガス量を増加させる過渡運転となったときには、所定期間、他方の吸気弁のリフト量を小さくするとことに加え、この他方の吸気弁の閉弁時期を遅角しても良い。
【0027】
内燃機関の運転状態が高回転領域にあるときは、吸気ポートから気筒内に流入する吸気の流速が速いため、吸気弁の閉弁時期が吸気行程下死点よりある程度遅くても、吸気行程下死点以降も慣性効果によって吸気は気筒内へ流入する。しかし、内燃機関の運転状態が高回転領域にあっても、吸気弁の閉弁時期が吸気行程下死点より遅くなり過ぎると気筒内の吸気が吸気ポートへ流出する。従って、内燃機関の運転状態が高回転領域にあるときは、吸気弁の閉弁時期を吸気行程下死点より遅角させる遅角度合いによって気筒内の吸気量が変化する。気筒内の吸気量が変化すると、圧縮行程における予混合気の実際の圧縮比である実圧縮比が変化する。予混合気の実圧縮比が変化すると該予混合気の着火時も変化する。
【0028】
従って、上記のような制御によれば、他方の吸気弁のリフト量を小さくすることによって気筒内のEGRガス量をより速やかに増加させると共に、他方の吸気弁の閉弁時期を遅角するときの遅角度合いを調整することによって予混合気の実圧縮比を制御することで、過渡運転時における予混合気の着火時期をより好適な時期とすることが出来る。
【0029】
また、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法においては、予混合圧縮着火燃焼内燃機関が、定常運転時は、一方の吸気弁の閉弁時期が吸気行程下死点以降である機関である場合、該内燃機関の運転状態が、高回転領域にあり、且つ気筒内のEGRガス量を減少させる過渡運転となったときには、所定期間、一方の吸気弁のリフト量を小さくするとことに加え、この一方の吸気弁の閉弁時期を遅角しても良い。
【0030】
このような制御によれば、一方の吸気弁のリフト量を小さくすることによって気筒内のEGRガス量をより速やかに減少させると共に、一方の吸気弁の閉弁時期を遅角するときの遅角度合いを調整することによって、予混合気の実圧縮比を制御することで、前記と同様、過渡運転時における予混合気の着火時期をより好適な時期とすることが出来る。
【0031】
尚、上記説明したような本発明に係る予混合圧縮着火燃焼内燃機関では、一方の吸気ポートと他方の吸気ポートとは少なくとも1つずつあれば良い。また、一方の吸気ポートの数と他方の吸気ポートの数とは同一であっても異なっていても良い。また、一方の吸気ポートまたは他方の吸気ポートがそれぞれ複数あった場合、上記説明したような制御を全ての吸気ポートに適用しても良く、また一部の吸気ポートに適用しても良い。
【0032】
また、本発明は、上記課題を解決するために以下の手段を採用しても良い。
即ち、予混合圧縮着火内燃機関において、該内燃機関の運転状態が過渡運転となったときに、吸気弁の閉弁時期を一時的に変更することによって、気筒内における予混合気のEGR率の応答遅れを加味して、予混合気の実圧縮比を制御する。
【0033】
より詳しくは、本発明に係る予混合圧縮着火内燃機関の吸気制御方法は、
吸気ポートにEGRガスを導入する排気再循環装置と、
吸気ポートの吸気弁の閉弁時期を変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関であって、
定常運転時は、吸気弁の閉弁時期が吸気行程下死点以降である予混合圧縮着火燃焼内燃機関において、
該内燃機関の運転状態が気筒内のEGRガス量を増加させる過渡運転となったときは、所定期間、可変動弁機構によって吸気弁の閉弁時期を所定角度以上遅角することを特徴とする。
【0034】
ここでの予混合圧縮着火燃焼内燃機関においては、吸気ポートは1つであっても複数であっても良い。また、吸気ポートが複数の場合、上記のような制御を全ての吸気ポートに適用しても良く、また一部の吸気ポートに適用しても良い。
【0035】
また、ここでの所定期間とは、内燃機関の運転状態が過渡運転となってから、吸気弁の閉弁時期を変更することによって予混合気の実際のEGR率が要求EGR率となるまでの期間である。内燃機関の運転状態が過渡運転となってから該所定期間が経過したときは、吸気弁の閉弁時期を定常運転時と同様の時期に戻す。
【0036】
また、所定角度とは、吸気弁の閉弁時期を吸気行程下死点から該所定角度内の範囲で遅角したとしても、吸気行程下死点以降も慣性効果によって吸気ポートから吸気が気筒内に流入する角度である。即ち、吸気弁の閉弁時期を吸気行程下死点から該所定角度以上遅角すると気筒内の吸気が吸気ポートに流出する。
【0037】
上記のような制御によれば、吸気弁の閉弁時期が吸気行程下死点より所定角度以上遅角されることによって、気筒内の吸気が吸気ポートに流出するため、予混合気の実圧縮比が低下し、該予混合気の着火時期は遅くなる。従って、内燃機関の運転状態が気筒内のEGRガス量を増加させる過渡運転となり、気筒内のEGR率に応答遅れが発生し、実際の気筒内のEGR率が要求EGR率より低くなった場合であっても、過早着火の発生を抑制することが出来る。
【0038】
また、本発明に係る予混合圧縮着火内燃機関の吸気制御方法においては、
吸気ポートにEGRガスを導入する排気再循環装置と、
吸気ポートの吸気弁の閉弁時期を変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関であって、
定常運転時は、吸気弁の閉弁時期が吸気行程下死点よりも遅い予混合圧縮着火燃焼内燃機関において、
該内燃機関の運転状態が、低回転領域にあり、且つ気筒内のEGRガス量を減少させる過渡運転となったときは、所定期間、可変動弁機構によって吸気弁の閉弁時期を吸気行程下死点の方へ進角しても良い。
【0039】
内燃機関の運転状態が低回転領域にあるときは、吸気弁の閉弁時期が吸気行程下死点より遅い場合は気筒内の吸気が吸気ポートへ流出する。上記のような制御によれば、吸気弁の閉弁時期を吸気行程下死点の方へ進角することによって、気筒内からの吸気の流出量が減少するため、予混合気の実圧縮比が上昇し、該予混合気の着火時期は早くなる。従って、内燃機関の運転状態が気筒内のEGRガス量を減少させる過渡運転となり、気筒内のEGR率に応答遅れが発生し、実際の気筒内のEGR率が要求EGR率より高くなった場合であっても、着火遅れや失火の発生を抑制することが出来る。
【0040】
【発明の実施の形態】
<第1の実施の形態>
以下、本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法の具体的な実施の形態について図面に基づいて説明する。
【0041】
図1,2は、本実施の形態に係る内燃機関の概略構成を示す図である。 図1に示す内燃機関1は、4つの気筒2(1つの気筒のみ図示)を有する多気筒ディーゼル機関である。気筒2の略中心部には燃焼室に直接燃料を噴射する燃料噴射弁10が備えられている。また、気筒2には第1吸気ポート3と第2吸気ポート4と2つの排気ポート5が備えられている。
【0042】
第1吸気ポート3と第2吸気ポート4とはインテークマニホルド12と連通されており、インテークマニホルド12は吸気通路11に接続されている。吸気通路11には、該吸気通路11を流れる新気(空気)の流量を調整するスロットル弁15が設けられている。一方、2つの排気ポート5はエキゾーストマニホルド13と連通されており、エキゾーストマニホルド13は排気通路14に接続されている。
【0043】
また、第1吸気ポート3と第2吸気ポート4とには、図2に示すとおり、それぞれ第1吸気弁6と第2吸気弁7とが設けられており、2つの排気ポート5には、図示しない排気弁がそれぞれ設けられている。第1吸気弁6と第2吸気弁7とには、各吸気弁6,7のリフト量および開閉時期を制御する第1可変動弁機構8と第2可変動弁機構9とがそれぞれ設けられている。可変動弁機構としては電磁駆動弁等が例示出来る。
【0044】
また、本実施の形態に係る内燃機関1には、該内燃機関1から排出された排気の一部を吸気系へ再循環させる排気再循環装置20が備えられている。該排気再循環装置20は、エキゾーストマニホルド13と連通する主EGR通路21と、該主EGR通路21と第1吸気ポート3とを連通する第1EGR通路22と、該主EGR通路21と第2吸気ポート4とを連通する第2EGR通路23と、を備えている。また、主EGR通路21と第1EGR通路22と第2EGR通路23とには、電磁弁等からなり印加電圧の大きさに応じて、主EGR通路21もしくは第1EGR通路22もしくは第2EGR通路23内を流れる排気(EGRガス)の流量を調整する主EGR弁26と第1EGR弁24と第2EGR弁25とがそれぞれ設けられている。
【0045】
このように構成された排気再循環装置20では、主EGR弁26と第1EGR弁24と第2EGR弁25とが開弁されると、内燃機関1から排出された排気の一部(EGRガス)がエキゾーストマニホルド13を介して主EGR通路21へ流入し、該主EGR通路21を流通するEGRガスが、第1EGR通路22または第2EGR通路23を通って、第1吸気ポート3または第2吸気ポート4へ導入される。各吸気ポート3,4に導入されたEGRガスは新気(空気)と混ざり合って吸気を形成し、該吸気が気筒2内へ導入される。また、第1EGR弁24と第2EGR弁25によって各吸気ポート3,4に導入されるEGRガス量を変更することで、第1吸気ポート3における吸気(以下、第1吸気と称する)と第2吸気ポート4における吸気(以下、第2吸気と称する)とのEGR率がそれぞれ制御される。
【0046】
以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニット(ECU:Electronic Control Unit)30が併設されている。このECU30は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
【0047】
ECU30は、内燃機関1の出力軸の回転角に応じた信号を出力するクランクポジションセンサ31や、アクセル開度に応じた信号を出力するアクセル開度センサ32等の各種センサと電気的に接続されており、これらセンサの出力信号がECU30に入力される。
【0048】
一方、ECU30は、燃料噴射弁10、スロットル弁15、第1可変動弁機構8、第2可変動弁機構9、主EGR弁26、第1EGR弁24、第2EGR弁25等と電気的に接続されており、上記各部がECU30によって制御される。
【0049】
ECU30は、CPU、ROM、RAM等を備えており、例えば、クランクポジションセンサ31がパルス信号を出力する時間的な間隔等に基づき機関回転数を算出し、アクセル開度センサ32の出力信号等に基づき機関負荷を算出する。
【0050】
また、本実施の形態に係る内燃機関1は、ECU30からの指令によって吸気行程中または圧縮行程中に燃料噴射弁10から気筒2内へ燃料を噴射することで、気筒2内において燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される、いわゆる予混合圧縮着火燃焼を行う内燃機関である。
【0051】
本実施の形態に係る内燃機関1では、ECU30は、該内燃機関1の運転状態に応じて、第1吸気弁6と、第2吸気弁7とのリフト量および開閉弁時期や、主EGR弁26と、スロットル弁15と、第1EGR弁24と、第2EGR弁25との開度等を調整することで、気筒2内へ導入される吸気の量やEGR率を制御している。そして、気筒2内へ導入される吸気の量やEGR率を制御することによって気筒2内における予混合気のEGR率を制御している。
【0052】
次に、本実施の形態に係る内燃機関の吸気制御方法について図面に基づいて説明する。図3は、本実施の形態に係る内燃機関1の運転状態と、第1および第2吸気弁6,7の制御と、気筒2内のEGRガス量と、予混合気の着火時期との関係を示すタイムチャートである。図4,5は、本実施の形態に係る内燃機関1の運転状態が、機関負荷が高くなる過渡運転となったときの第1および第2吸気弁6,7の制御を示すバルブプロフィールである。図6〜8は、本実施の形態に係る内燃機関1の運転状態が、機関負荷が低くなる過渡運転となったときの第1および第2吸気弁6,7の制御を示すバルブプロフィールである。
【0053】
本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が定常運転であるときに、第2EGR弁25の開度は第1EGR弁24の開度よりも大きくなるよう調整され、第2吸気ポート4に導入されるEGRガス量が第1吸気ポート3に導入されるEGRガス量よりも多くなるよう制御される。このため、第2吸気のEGR率は第1吸気のEGR率より高くなる。
【0054】
そして、内燃機関1が備えられた車両が加速され、内燃機関1の運転状態が、機関負荷が高くなる過渡運転となったとき、即ち、気筒2内のEGRガス量を増加させる過渡運転となったときは、主EGR弁26の開度が定常運転時より大きくされ、さらに、図3に示すとおり、第1吸気弁6のリフト量が、所定期間、定常運転時よりも小さくなるよう制御される。
【0055】
内燃機関1の運転状態が過渡運転となってから所定期間経過したときは、第1吸気弁6のリフト量は定常運転時と同様のリフト量に戻される。
【0056】
図3において、気筒2内のEGR量を示す線および予混合気の着火時期を示す線の内、実線は、上記のような第1EGR弁6のリフト量の制御を行った場合を示すものであり、点線は、上記のような第1EGR弁6のリフト量の制御を行わず、主EGR弁26の開度のみ制御した場合を示すものである。
【0057】
本実施の形態に係る内燃機関の吸気弁制御方法によれば、内燃機関1の運転状態が、気筒2内のEGRガス量を増加させる過渡運転となったときは、第1吸気弁6のリフト量が一時的に小さくされることによって、EGR率が低い第1吸気の気筒2内への導入量が減少し、EGR率が高い第2吸気の気筒2内への導入量が増加する。そのため、図3に示すとおり、気筒2内のEGR量がより速やかに増加するため、予混合気の実際のEGR率が応答遅れによって要求EGR率より低くなることを抑制することが出来る。従って、図3に示すとおり、内燃機関1の運転状態が上記のような過渡運転となったときであっても、予混合気の過早着火の発生を抑制することが可能となる。
【0058】
ここで、所定期間とは、内燃機関1の運転状態が過渡運転となってから、主EGR弁26と第1吸気弁6とを制御することで、予混合気の実際のEGR率が要求EGR率となるまでの期間である。
【0059】
また、本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が定常運転であるときは、第1吸気弁6の閉弁時期を吸気行程下死点よりも遅くした場合、該内燃機関1の運転状態が、低回転領域にあり、且つ気筒2内のEGRガス量を増加させる過渡運転となったときには、図4に示すとおり、第1吸気弁6のリフト量を小さくすると共に、第1吸気弁6の閉弁時期を吸気行程下死点の方へ進角する制御を所定期間行っても良い。図4における一点鎖線は吸気行程下死点に相当する時期を示す。
【0060】
このような制御によれば、第1吸気弁6のリフト量を小さくすることによって過早着火の発生を抑制することが出来ると同時に、第1吸気弁6の閉弁時期を吸気行程下死点の方へ進角することによって、気筒2内から第1吸気ポート3へ流出する吸気の流出量が低減するため、気筒2内への吸気の吸入効率を向上させることが出来る。
【0061】
また、本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が定常運転であるときは、第1吸気弁6の閉弁時期を吸気行程下死点以降とした場合、該内燃機関1の運転状態が、高回転領域にあり、且つ気筒2内のEGRガス量を増加させる過渡運転となったときには、図5に示すとおり、第1吸気弁6のリフト量を一時的に小さくすると共に、第1吸気弁6の閉弁時期を遅角する制御を所定期間行っても良い。図5における一点鎖線は吸気行程下死点に相当する時期を示す。
【0062】
このような制御によれば、第1吸気弁6のリフト量を小さくすることによって気筒2内のEGRガス量をより速やかに増加させると共に、第1吸気弁6の閉弁時期を遅角するときの遅角度合いを調整することによって圧縮行程における予混合気の実圧縮比を制御することで、上記のような過渡運転時における予混合気の着火時期をより好適な時期とすることが出来る。
【0063】
本実施の形態に係る内燃機関の吸気制御方法においては、上記説明したとおり、内燃機関1の運転状態が定常運転であるときに、第2吸気のEGR率を第1吸気のEGR率より高くしておき、内燃機関1の運転状態が、機関負荷が高くなる過渡運転となったとき、即ち気筒2内のEGRガス量を増加させる過渡運転となったときに、主EGR弁26の開度を大きくすると共に、第1吸気弁6のリフト量を小さくする制御が所定期間行われる。一方、内燃機関1の運転状態が、機関負荷が低くなる過渡運転となったとき、即ち気筒2内のEGRガス量を減少させる過渡運転となったときには、主EGR弁26の開度を小さくすると共に、図6に示すとおり、第2吸気弁7のリフト量を小さくする制御が所定期間行われる。
【0064】
本実施の形態に係る内燃機関の吸気弁制御方法によれば、内燃機関1の運転状態が、気筒2内のEGRガス量を減少させる過渡運転となったときに、第2吸気弁7のリフト量が一時的に小さくされることによって、EGR率が高い第2吸気の気筒2内への導入量が減少し、EGR率が低い第1吸気の気筒2内への導入量が増加する。そのため、気筒2内のEGR量がより速やかに減少するため、予混合気の実際のEGR率が応答遅れによって要求EGR率より高くなることを抑制することが出来る。従って、内燃機関1の運転状態が上記のような過渡運転となったときであっても、予混合気の着火遅れや失火の発生を抑制することが可能となる。
【0065】
ここでの所定期間とは、内燃機関1の運転状態が過渡運転となってから、主EGR弁26と第2吸気弁7とを制御することで、予混合気の実際のEGR率が要求EGR率となるまでの期間である。
【0066】
また、本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が定常運転であるときは、第2吸気弁7の閉弁時期を吸気行程下死点よりも遅くした場合、該内燃機関1の運転状態が、低回転領域にあり、且つ気筒2内のEGRガス量を減少させる過渡運転となったときには、図7に示すとおり、第2吸気弁7のリフト量を小さくすると共に、第2吸気弁7の閉弁時期を吸気行程下死点の方へ進角する制御を所定期間行っても良い。図7における一点鎖線は吸気行程下死点に相当する時期を示す。
【0067】
このような制御によれば、第2吸気弁7のリフト量を小さくすることによって着火遅れや失火の発生を抑制することが出来ると同時に、第2吸気弁7の閉弁時期を吸気行程下死点の方へ進角することによって、気筒2内から第2吸気ポート4へ流出する吸気の流出量が減少するため、気筒2内への吸気の吸入効率を向上させることが出来る。
【0068】
また、本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が定常運転であるときは、第2吸気弁7の閉弁時期を吸気行程下死点以降とした場合、該内燃機関1の運転状態が、高回転領域にあり、且つ気筒2内のEGRガス量を減少させる過渡運転となったときには、図8に示すとおり、第2吸気弁7のリフト量を小さくすると共に、第2吸気弁7の閉弁時期を遅角する制御を所定期間行っても良い。図8における一点鎖線は吸気行程下死点に相当する時期を示す。
【0069】
このような制御によれば、第2吸気弁7のリフト量を小さくすることによって気筒2内のEGRガス量をより速やかに減少させると共に、第2吸気弁7の閉弁時期を遅角するときの遅角度合いを調整することによって圧縮行程における予混合気の実圧縮比を制御することで、上記のような過渡運転時における予混合気の着火時期をより好適な時期とすることが出来る。
【0070】
次に、本実施の形態に係る第1および第2吸気弁6,7の制御ルーチンについて図9に示すフローチャートに沿って説明する。
【0071】
図9に示すフローチャートは、本実施の形態に係る吸気弁の制御ルーチンを示すフローチャートである。この吸気弁制御ルーチンは、ECU30によって所定時間毎に繰り返し実行されるルーチンであり、ECU30に備えられたROMに予め記憶されている。
【0072】
本ルーチンでは、ECU30は、先ずS101において、機関回転数や機関負荷等に基づき、内燃機関1の運転状態が過渡運転であるか否かを判別する。
【0073】
S101において、内燃機関1の運転状態が過渡運転ではない、即ち内燃機関1の運転状態が定常運転であると判定された場合、ECU30は、S109に進み、第1および第2吸気弁6,7に対し定常運転時の吸気弁制御を実行して本ルーチンの実行を一旦終了する。
【0074】
一方、S101において、内燃機関1の運転状態が過渡運転であると判定された場合、ECU30は、S102に進み、機関回転数や機関負荷等に基づき、内燃機関1の運転状態が加速状態であるか、もしくは減速状態であるかを判定する。
【0075】
次に、ECU30は、S103に進み、機関回転数や機関負荷等に基づき、内燃機関1の運転状態が、どの運転領域にあるか(例えば、高回転領域にあるか、もしくは低回転領域にあるか)を判定する。
【0076】
次に、ECU30は、S104に進み、予混合気のEGR率を要求EGR率とするために必要となる気筒2内のEGRガスの過不足量を算出する。このとき、気筒内のEGRガスの過不足量は、機関回転数と機関負荷とのMAPに基づき算出される。該MAPは実験的または経験的に予め定められており、ECU30のROMに記憶されている。
【0077】
次に、ECU30は、S105に進み、S102における内燃機関1の加減速状態の判定結果と、S103において判定された内燃機関1の運転領域と、S104において算出された気筒2内のEGRガスの過不足量とに基づき、第1吸気弁6または第2吸気弁7のリフト量と閉弁時期との変更量を算出する。
【0078】
次に、ECU30は、S106に進み、予混合気のEGR率の応答遅れ時間を、機関回転数と機関負荷とのMAPに基づき算出する。このときの応答遅れ時間は、第1および第2吸気弁6,7の制御を過渡運転時の吸気弁制御としなかった場合に発生する応答遅れ時間であって、前記MAPは実験的または経験的に予め定められており、ECU30のROMに記憶されている。
【0079】
次に、ECU30は、S107に進み、S106において算出されたEGR率の応答遅れ時間に基づき、S105において算出されたリフト量と閉弁時期との変更量を反映した吸気弁の制御(以下、第1過渡運転時吸気弁制御と称する)を実行する期間を算出する。
【0080】
次に、ECU30は、S108に進み、第1および第2吸気弁6,7に対し第1過渡運転時吸気弁制御を実行して本ルーチンの実行を一旦終了する。
【0081】
このような吸気弁制御ルーチンによれば、内燃機関1の運転状態が過渡運転となったときでも、該内燃機関1の運転状態に応じて、第1吸気弁6または第2吸気弁7のリフト量と閉弁時期とが調整されるため、気筒2内のEGRガス量がより速やかに変化し、予混合気のEGR率の応答遅れが抑制される。従って、予混合気の着火時期をより好適な時期とすることが出来る。
【0082】
また、上記に説明した吸気弁制御ルーチンでは、内燃機関1の運転状態が過渡運転となったときは、該内燃機関1の運転領域や気筒2内のEGRガス過不足量とに基づき、第1吸気弁6または第2吸気弁7のリフト量と閉弁時期との変更量を算出するが、本実施の形態に係る吸気弁の制御においては、内燃機関1の運転状態が過渡運転となったときは、第1吸気弁6または第2吸気弁7のリフト量と閉弁時期とを予め定められた所定リフト量と所定閉弁時期とに変更しても良い。
【0083】
尚、本実施の形態に係る内燃機関1においては、第1吸気ポート3には第1EGR通路22が連通され、第2吸気ポート4には第2EGR通路23が連通されており、内燃機関1の運転状態が定常運転であるときに、第2吸気ポート4に導入されるEGRガス量が第1吸気ポート3に導入されるEGRガス量よりも多くなるよう制御するが、第2吸気ポート4にのみEGRガスが導入されるEGR通路を設け、第1吸気ポート3にはEGRガスが導入されない構成としても良い。
【0084】
このような構成であっても、内燃機関1の運転状態が過渡運転となったときに、第1および第2吸気弁6,7を、これまで説明したように制御することによって、気筒2内のEGRガス量がより速やかに変化し、予混合気のEGR率の応答遅れが抑制される。従って、予混合気の着火時期をより好適な時期とすることが出来る。
【0085】
<第2の実施の形態>
次に、本発明に係る予混合内燃機関の吸気制御方法の第2の実施の形態について図面に基づいて説明する。
【0086】
図10,11は、本実施の形態に係る内燃機関の概略構成を示す図である。
【0087】
本実施の形態に係る内燃機関1の気筒2には、インテークマニホルド12と連通された吸気ポート16と、エキゾーストマニホルド13と連通された排気ポート17がそれぞれ1つづつ備えられている。吸気ポート16には、図11に示すとおり、吸気弁18が設けられており、排気ポート17には、図示しない排気弁が設けられている。また、吸気弁18には、該吸気弁18のリフト量や閉弁時期を制御する可変動弁機構19が設けられている。
【0088】
また、本実施の形態に係る内燃機関1には、該内燃機関1から排出された排気の一部を吸気系へ再循環させる排気再循環装置27が備えられている。該排気再循環装置20は、エキゾーストマニホルド13と吸気ポート16とに連通するEGR通路28を備えており、該EGR通路28には電磁弁等からなり印加電圧の大きさに応じて、該EGR通路28内を流れる排気(EGRガス)の流量を調整するEGR弁29が設けられている。該EGR弁29によって吸気ポート16に導入されるEGRガス量を変更することで、吸気ポート16における吸気のEGR率が制御される。
【0089】
また、可動弁機構19とEGR弁29とは、ECU30と電気的に接続されており、各部がECU30によって制御される。
【0090】
これら以外の構成は、上記した第1の実施の形態と同様であるため説明を割愛する。尚、本実施の形態に係る内燃機関1も、上述した第1の実施の形態に係る内燃機関1と同様、予混合圧縮着火燃焼を行う内燃機関である。
【0091】
次に、本実施の形態に係る内燃機関の吸気制御方法について図面に基づいて説明する。図12は、本実施の形態に係る内燃機関1の運転状態が、機関負荷が高くなる過渡運転となったときの吸気弁18の制御を示すバルブプロフィールである。図13は、本実施の形態に係る内燃機関1の運転状態が、機関負荷が低くなる過渡運転となったときの吸気弁18の制御を示すバルブプロフィールである。図12,13における一点鎖線は吸気行程下死点に相当する時期を示す。
【0092】
本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が定常運転であるときには、吸気弁18の閉弁時期は吸気行程下死点よりも遅くされる。そして、内燃機関1が備えられた車両が加速され、内燃機関1の運転状態が、機関負荷が高くなる過渡運転となったとき、即ち、気筒2内のEGRガス量を増加させる過渡運転となったときには、EGR弁29の開度が定常運転時より大きくされると共に、図12に示すとおり、吸気弁18の閉弁時期を所定角度以上遅角する制御が所定期間行われる。
【0093】
ここで、所定角度とは、吸気弁18の閉弁時期を吸気行程下死点から該所定角度内の範囲で遅角したとしても、吸気行程下死点以降も慣性効果によって、吸気ポート16から吸気が気筒2内に流入する角度である。即ち、吸気弁18の閉弁時期を吸気行程下死点から該所定角度以上遅角すると気筒2内の吸気が吸気ポート16に流出する。
【0094】
一方、本実施の形態に係る内燃機関の吸気制御方法においては、内燃機関1の運転状態が低回転領域にあるときに、内燃機関1が備えられた車両が加速され、内燃機関1の運転状態が、機関負荷が低くなる過渡運転となったとき、即ち、気筒2内のEGRガス量を減少させる過渡運転となったときには、EGR弁29の開度が定常運転時より小さくされ、さらに、図13に示すとおり、吸気弁18のリフト量を小さくすると共に、閉弁時期を吸気行程下死点の方へ進角する制御が所定期間行われる。
【0095】
内燃機関1の運転状態が過渡運転となってから所定期間経過したときは、吸気弁16の閉弁時期は定常運転時と同様の時期に戻される。
【0096】
ここで、所定期間とは、内燃機関1の運転状態が過渡運転となってから、EGR弁29を制御すると共に、吸気弁18の閉弁時期を制御することによって予混合気の実際のEGR率が要求EGR率となるまでの期間である。
【0097】
本実施の形態に係る内燃機関の吸気弁制御方法によれば、内燃機関1の運転状態が、気筒2内のEGRガス量を増加させる過渡運転となったときは、吸気弁18の閉弁時期が所定角度以上遅角されるため、気筒2内の吸気が吸気ポート16へ流出する。そのため、圧縮行程における予混合気の実際の圧縮比である実圧縮比が低下し、該予混合気の着火時期は遅くなる。従って、気筒2内のEGR率に応答遅れが発生し、実際の気筒内のEGR率が要求EGR率より低くなった場合であっても、過早着火の発生を抑制することが出来る。
【0098】
また、本実施の形態に係る内燃機関1の運転状態が低回転領域にあるときは、吸気弁18の閉弁時期が吸気行程下死点より遅いため、気筒2内の吸気が吸気ポート16へ流出する。本実施の形態に係る内燃機関の吸気弁制御方法によれば、内燃機関1の運転状態が、低回転領域にあり、且つ気筒2内のEGRガス量を減少させる過渡運転となったときは、吸気弁18の閉弁時期が吸気行程下死点の方へ進角されるため、気筒2内からの吸気の流出量が減少する。そのため、予混合気の実圧縮比が上昇し、該予混合気の着火時期は早くなる。従って、気筒2内のEGR率に応答遅れが発生し、実際の気筒内のEGR率が要求EGR率より高くなった場合であっても、着火遅れや失火の発生を抑制することが出来る。
【0099】
次に、本実施の形態に係る吸気弁18の制御ルーチンについて図14に示すフローチャートに沿って説明する。
【0100】
図14に示すフローチャートは、本実施の形態に係る吸気弁の制御ルーチンを示すフローチャートである。この吸気弁制御ルーチンは、ECU30によって所定時間毎に繰り返し実行されるルーチンであり、ECU30に備えられたROMに予め記憶されている。
尚、図14に示すフローチャートにおける、S101〜S104、およびS106、S109は、上記第1の実施の形態において説明した図9に示すフローチャートと同様であるため説明を割愛する。
【0101】
本ルーチンでは、ECU30は、S104の次にS205に進む。S205において、ECU30は、S104において算出された気筒2内のEGRガスの過不足量に基づき、予混合気の着火時期がより好適な時期となる予混合気の実圧縮比である目標実圧縮比を算出する。
【0102】
次に、ECU30は、S206に進み、S102における内燃機関1の加減速状態の判定結果と、S103において判定された内燃機関1の運転領域と、S205において算出された目標実圧縮比とに基づき、吸気弁18の閉弁時期の変更量を算出する。
【0103】
また、S106の次に、ECU30は、S207に進み、S106において算出されたEGR率の応答遅れ時間に基づき、S206において算出された閉弁時期の変更量を反映した吸気弁の制御(以下、第2過渡運転時吸気弁制御と称する)を実行する期間を算出する。
【0104】
次に、ECU30は、S208に進み、吸気弁18に対し第2過渡運転時吸気弁制御を実行して本ルーチンの実行を一旦終了する。
【0105】
このような吸気弁制御ルーチンによれば、内燃機関1の運転状態が過渡運転となり、予混合気のEGR率の応答遅れが発生した場合であっても、内燃機関1の運転状態に応じて、吸気弁18の閉弁時期が調整され、予混合気の実圧縮比が制御されるため、予混合気の着火時期をより好適な時期とすることが出来る。
【0106】
また、上記に説明した吸気弁制御ルーチンでは、内燃機関1の運転状態が過渡運転となったときは、気筒内のEGRガス過不足量に基づき、目標実圧縮比が算出され、該目標実圧縮比や内燃機関1の運転領域に基づき、吸気弁18の閉弁時期の変更量を算出するが、本実施の形態に係る吸気弁の制御においては、内燃機関1の運転状態が過渡運転となったときは、吸気弁18の閉弁時期を予め定められた所定閉弁時期に変更しても良い。
【0107】
【発明の効果】
本発明に係る予混合圧縮着火燃焼内燃機関の吸気制御方法によれば、予混合圧縮着火燃焼内燃機関において、該内燃機関の運転状態が過渡運転となったときでも予混合気の着火時期をより好適な時期とすることが出来る。
【図面の簡単な説明】
【図1】第1の実施の形態に係る内燃機関の概略構成を示す図。
【図2】第1の実施の形態に係る内燃機関の要部の概略構成を示す図。
【図3】第1の実施の形態に係る内燃機関の運転状態と、吸気弁の制御と、気筒内のEGRガス量と、予混合気の着火時期の関係を示すタイムチャート。
【図4】第1の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を増加させる過渡運転となったときの吸気弁の制御を示す第1のバルブプロフィール。
【図5】第1の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を増加させる過渡運転となったときの吸気弁の制御を示す第2のバルブプロフィール。
【図6】第1の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を減少させる過渡運転となったときの吸気弁の制御を示す第1のバルブプロフィール。
【図7】第1の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を減少させる過渡運転となったときの吸気弁の制御を示す第2のバルブプロフィール。
【図8】第1の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を減少させる過渡運転となったときの吸気弁の制御を示す第3のバルブプロフィール。
【図9】第1の実施の形態に係る吸気弁の制御ルーチンを示すフローチャート。
【図10】第2の実施の形態に係る内燃機関の概略構成を示す図。
【図11】第2の実施の形態に係る内燃機関の要部の概略構成を示す図。
【図12】第2の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を増加させる過渡運転となったときの吸気弁の制御を示すバルブプロフィール。
【図13】第2の実施の形態に係る内燃機関の運転状態が、気筒内のEGRガス量を減少させる過渡運転となったときの吸気弁の制御を示すバルブプロフィール。
【図14】第2の実施の形態に係る吸気弁の制御ルーチンを示すフローチャート。
【符号の説明】
1・・・内燃機関
2・・・気筒
3・・・第1吸気ポート
4・・・第2吸気ポート
5・・・排気ポート
6・・・第1吸気弁
7・・・第2吸気弁
8・・・第1可変動弁機構
9・・・第2可変動弁機構
10・・燃料噴射弁
11・・吸気通路
12・・インテークマニホルド
13・・エキゾーストマニホルド
14・・排気通路
15・・スロットル弁
16・・吸気ポート
17・・排気ポート
18・・吸気弁
19・・可変動弁機構
20・・排気再循環装置
21・・主EGR通路
22・・第1EGR通路
23・・第2EGR通路
24・・第1EGR弁
25・・第2EGR弁
26・・主EGR弁
27・・排気再循環装置
28・・EGR通路
29・・EGR弁
30・・ECU
31・・クランクポジションセンサ
32・・アクセル開度センサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a premixed compression ignition combustion internal combustion engine in which a premixed gas used for combustion is formed in a cylinder, and more particularly to intake control in a premixed compression ignition combustion engine.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in an internal combustion engine, by injecting fuel into a cylinder during an intake stroke and / or a compression stroke, a premixed air of the fuel and intake air (air) is formed, and the premixed air is used for combustion. Accordingly, the development of a homogeneous charge compression ignition combustion internal combustion engine in which emission of NOx and smoke is suppressed is being promoted.
[0003]
In such a premixed compression ignition combustion internal combustion engine, there is a possibility that a so-called premature ignition may occur, in which the formed premixed gas is ignited and burned before reaching the top dead center of the compression stroke due to a rise in pressure or temperature in the cylinder. There is. Therefore, there is known a technique for preventing the occurrence of premature ignition by adjusting the amount of recirculated exhaust gas (hereinafter, referred to as EGR gas) introduced into a cylinder based on the NOx concentration in the exhaust gas (for example, see, for example, Japanese Patent Application Laid-Open No. H11-157556). And Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-152853 A
[Patent Document 2]
JP-A-2000-120457
[Patent Document 3]
JP-A-10-274104
[0005]
[Problems to be solved by the invention]
In the premixed compression ignition combustion internal combustion engine, the ignition timing is controlled by controlling the recirculation exhaust rate of the premixed gas in the cylinder (the ratio of the amount of EGR gas in the gas, hereinafter referred to as the EGR rate). I have. When the EGR rate increases, the oxygen concentration decreases, so that the ignitability of the premixed gas decreases and the ignition timing is delayed. On the other hand, when the EGR rate decreases, the oxygen concentration of the premixed gas increases, so that the ignitability increases and the ignition timing is advanced.
[0006]
Conventionally, the amount of fresh air (air) flowing into a cylinder is controlled by changing the opening degree of a throttle valve provided in an intake passage, or the EGR valve provided in an EGR passage provided in an EGR passage for guiding EGR gas to an intake system. The EGR rate of the premixed air is controlled by controlling the amount of EGR gas flowing into the cylinder by changing the opening. In the transient operation in which the change in the engine load is large, such as during acceleration or deceleration, in order to set the ignition timing of the premixed gas to an appropriate time, the change in the EGR gas amount in the cylinder is also larger than that in the steady operation. There is a need to. However, since the response of the new air amount control by changing the opening of the throttle valve and the control of the EGR amount by changing the opening of the EGR valve have a large response delay, the response of the control of the EGR rate of the premixed gas also occurs, and the ignition timing is reduced. There is a possibility that premature ignition, ignition delay, or misfire may occur at an inappropriate time.
[0007]
Accordingly, an object of the present invention is to provide a technique capable of setting the ignition timing of the premixed gas during transient operation to a more suitable timing in a premixed compression ignition combustion internal combustion engine.
[0008]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
That is, in a premixed compression ignition combustion internal combustion engine having a plurality of intake ports, during normal operation, the EGR rate of intake air at one intake port is set higher than the EGR rate of intake air at the other intake port in advance. When the operation state of the engine becomes a transient operation, the amount of EGR gas in the cylinder is changed by temporarily changing the lift amount and / or closing timing of the intake valve of each intake port.
[0009]
More specifically, the intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to the present invention has a plurality of intake ports per cylinder,
An exhaust gas recirculation device that introduces EGR gas into each of the one intake port and the other intake port;
An exhaust gas recirculation exhaust rate control device that controls the EGR rate of intake air at each intake port by changing the amount of EGR gas introduced into one intake port and the other intake port by the exhaust gas recirculation device; ,
A variable valve that changes a lift amount and a valve closing timing of an intake valve of one intake port (hereinafter, referred to as one intake valve) and an intake valve of the other intake port (hereinafter, referred to as another intake valve). And a mechanism,
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. At
When the operating state of the internal combustion engine is a steady operation, the EGR rate of the intake air at one intake port is set to be higher than the EGR rate of the intake air at the other intake port in advance by the intake recirculation exhaust rate control device. When the operating state of the internal combustion engine is changed to a transient operation in which the change in the amount of EGR gas in the cylinder is larger than that in the steady operation, the variable valve mechanism is used to set one of the intake valves and / or the other of the intake valves for a predetermined period. The EGR gas amount in the cylinder is changed by changing the lift amount and / or the valve closing timing of the cylinder.
[0010]
Control of the amount of intake air introduced into the cylinder by changing the lift amount of the intake valve or closing timing is more responsive than control of the new air amount by changing the opening of the throttle valve or EGR gas amount by changing the opening of the EGR valve. The delay is small. Therefore, according to the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, when the operation state of the internal combustion engine is in the transient operation, the EGR gas amount in the cylinder changes more quickly. Therefore, the response delay of the EGR rate of the premixed gas in the cylinder is suppressed, and the EGR rate of the premixed gas is more quickly changed to an EGR rate (hereinafter, required EGR) at which the ignition timing of the premixed gas becomes a desired timing. Rate). That is, even during the transient operation, the ignition timing of the premixture can be set to a more suitable timing.
[0011]
Here, the predetermined period is defined as a period of time when the operation state of the internal combustion engine is changed to a transient operation, and then changing the lift amount and / or closing timing of one intake valve and / or the other intake valve to change the premixed air-fuel mixture. This is a period until the actual EGR rate becomes the required EGR rate. After changing the lift amount and / or closing timing of one of the intake valves and / or the other intake valve, when this predetermined period has elapsed, the control of these intake valves is returned to the same control as in the normal operation. .
[0012]
Further, in the intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to the present invention, the homogeneous charge compression ignition combustion internal combustion engine has a plurality of intake ports per cylinder, and supplies EGR gas only to one intake port. If the engine includes an exhaust recirculation device to be introduced, and a variable valve mechanism that changes a lift amount and a valve closing timing of one intake valve and the other intake valve, respectively, the operation state of the internal combustion engine However, when the operation becomes a transient operation in which the change in the amount of EGR gas in the cylinder becomes larger than that during the steady operation, the lift amount and / or the lift amount of one intake valve and / or the other intake valve are controlled by the variable valve mechanism for a predetermined period. Alternatively, the EGR gas amount in the cylinder may be changed by changing the valve closing timing.
[0013]
According to such an intake control method of the homogeneous charge compression ignition combustion internal combustion engine, similarly to the above, when the operation state of the internal combustion engine becomes a transient operation, the EGR gas amount in the cylinder changes more quickly. Therefore, the response delay of the EGR rate of the premixed gas in the cylinder is suppressed, and the actual EGR rate of the premixed gas can be more quickly set to the required EGR rate. That is, even during the transient operation, the ignition timing of the premixture can be set to a more suitable timing.
[0014]
In the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, when the operation state of the internal combustion engine is a transient operation in which the amount of EGR gas in the cylinder is increased, the lift amount of the other intake valve is maintained for a predetermined period. May be reduced.
[0015]
By reducing the lift amount of the other intake valve, the introduction amount of intake air having a low EGR rate into the cylinder decreases, and the introduction amount of intake air having a high EGR rate into the cylinder increases. Therefore, the amount of EGR gas in the cylinder increases more quickly. Therefore, even when the operation state of the internal combustion engine is a transient operation in which the amount of EGR gas in the cylinder is increased, the actual EGR rate of the premixed gas is prevented from being lower than the required EGR rate due to a response delay. As a result, it is possible to suppress the occurrence of premature ignition.
[0016]
Here, when the operation state of the internal combustion engine is the transient operation in which the amount of EGR gas in the cylinder is increased, the time of acceleration of the vehicle at which the engine load becomes higher can be exemplified.
[0017]
On the other hand, in the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, when the operation state of the internal combustion engine is a transient operation in which the amount of EGR gas in the cylinder is reduced, the operation of one of the intake valves is performed for a predetermined period. The lift amount may be reduced.
[0018]
By reducing the lift amount of one intake valve, the amount of intake of intake air with a high EGR rate into the cylinder decreases, and the amount of intake of intake air with a low EGR rate into the cylinder increases. Therefore, the amount of EGR gas in the cylinder decreases more quickly. Therefore, even when the operation state of the internal combustion engine is a transient operation in which the amount of EGR gas in the cylinder is reduced, the actual EGR rate of the premixed gas is prevented from becoming higher than the required EGR rate due to a response delay. Therefore, it is possible to suppress ignition delay and occurrence of misfire.
[0019]
Here, when the operation state of the internal combustion engine is a transient operation in which the amount of EGR gas in the cylinder is reduced, a time of deceleration of the vehicle at which the engine load becomes lower can be exemplified.
[0020]
In the method of the present invention, when the homogeneous charge compression ignition combustion internal combustion engine is an engine in which the closing timing of the other intake valve is later than the intake stroke bottom dead center during steady operation, the operating state of the internal combustion engine is changed to When the engine is in the low rotation region and the transient operation is performed to increase the amount of EGR gas in the cylinder, the lift amount of the other intake valve is reduced for a predetermined period, and the closing timing of the other intake valve is reduced. May be advanced toward the bottom dead center of the intake stroke.
[0021]
When the operation state of the internal combustion engine is in the low rotation region, the flow rate of the intake air flowing into the cylinder from the intake port is slow, so if the closing timing of the intake valve is later than the bottom dead center of the intake stroke, the intake air in the cylinder will be reduced. Outflow to intake port. Therefore, the intake efficiency of the intake air is deteriorated.
[0022]
According to the control as described above, the occurrence of premature ignition can be suppressed by reducing the lift amount of the other intake valve, and at the same time, the closing timing of the other intake valve is set at the bottom dead center of the intake stroke. By advancing in the direction, the amount of outflow of intake air flowing out of the cylinder to the other intake port is reduced, so that the intake efficiency of intake air can be improved.
[0023]
Further, in the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, when the homogeneous charge compression ignition combustion internal combustion engine is in a steady operation, the closing timing of one intake valve is more than the intake stroke bottom dead center. In the case of a slow engine, when the operation state of the internal combustion engine is in the low rotation region and becomes a transient operation in which the amount of EGR gas in the cylinder is reduced, the lift amount of one intake valve is reduced for a predetermined period. In addition, the closing timing of the one intake valve may be advanced toward the bottom dead center of the intake stroke.
[0024]
According to such control, the occurrence of misfire can be suppressed by reducing the lift amount of one intake valve, and at the same time, the closing timing of one intake valve is advanced toward the bottom dead center of the intake stroke. By squaring, the amount of outflow of intake air flowing out of the cylinder to one intake port is reduced, so that the intake efficiency of intake air can be improved as described above.
[0025]
In the above control, if the intake valve closing timing is earlier than the intake stroke bottom dead center, the amount of intake air in the cylinder decreases. It may be up to the bottom dead center of the travel.
[0026]
In the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, the engine for which the close timing of the other intake valve is at or after the bottom dead center of the intake stroke during steady operation is performed. In this case, when the operating state of the internal combustion engine is in the high rotation region and becomes a transient operation in which the amount of EGR gas in the cylinder is increased, the lift amount of the other intake valve is reduced for a predetermined period. In addition, the closing timing of the other intake valve may be retarded.
[0027]
When the operation state of the internal combustion engine is in the high rotation region, the flow rate of the intake air flowing into the cylinder from the intake port is high, so even if the closing timing of the intake valve is somewhat later than the intake stroke bottom dead center, Even after the dead center, the intake air flows into the cylinder due to the inertial effect. However, even when the operation state of the internal combustion engine is in the high rotation region, if the closing timing of the intake valve becomes too late from the bottom dead center of the intake stroke, the intake air in the cylinder flows out to the intake port. Therefore, when the operating state of the internal combustion engine is in the high rotation region, the amount of intake air in the cylinder changes depending on the timing at which the closing timing of the intake valve is retarded from the bottom dead center of the intake stroke. When the amount of intake air in the cylinder changes, the actual compression ratio, which is the actual compression ratio of the premixed gas in the compression stroke, changes. If the actual compression ratio of the premix changes, the ignition time of the premix also changes.
[0028]
Therefore, according to the above control, the amount of EGR gas in the cylinder is increased more quickly by reducing the lift amount of the other intake valve, and the closing timing of the other intake valve is retarded. By controlling the actual compression ratio of the premixed gas by adjusting the retard angle of the premixed gas, the ignition timing of the premixed gas during the transient operation can be made more suitable.
[0029]
Further, in the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, when the homogeneous charge compression ignition combustion internal combustion engine is in a steady operation, the closing timing of one intake valve is at or after the bottom dead center of the intake stroke. In the case of a certain engine, when the operation state of the internal combustion engine is in the high rotation region and becomes a transient operation in which the amount of EGR gas in the cylinder is reduced, the lift amount of one of the intake valves is reduced for a predetermined period. In addition, the closing timing of the one intake valve may be retarded.
[0030]
According to such control, the amount of EGR gas in the cylinder is reduced more quickly by reducing the lift amount of one intake valve, and the retard angle at the time of retarding the closing timing of one intake valve is reduced. By controlling the actual compression ratio of the premixed gas by adjusting the matching, the ignition timing of the premixed gas during the transient operation can be set to a more suitable timing as described above.
[0031]
It should be noted that in the premixed compression ignition combustion internal combustion engine according to the present invention as described above, at least one intake port and at least one other intake port are required. Further, the number of one intake port and the number of the other intake port may be the same or different. Further, when there is a plurality of one intake port or the other intake port, the above-described control may be applied to all the intake ports, or may be applied to some of the intake ports.
[0032]
Further, the present invention may employ the following means in order to solve the above problems.
That is, in the premixed compression ignition internal combustion engine, when the operating state of the internal combustion engine is in a transient operation, the closing timing of the intake valve is temporarily changed to thereby reduce the EGR rate of the premixed air in the cylinder. The actual compression ratio of the premixed gas is controlled in consideration of the response delay.
[0033]
More specifically, an intake control method for a premixed compression ignition internal combustion engine according to the present invention comprises:
An exhaust gas recirculation device for introducing EGR gas into the intake port;
A variable valve mechanism for changing the closing timing of the intake valve of the intake port,
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. And
During steady-state operation, in a homogeneous charge compression ignition combustion internal combustion engine in which the intake valve closing timing is after the intake stroke bottom dead center,
When the operation state of the internal combustion engine becomes a transient operation in which the amount of EGR gas in the cylinder is increased, the closing timing of the intake valve is retarded by a predetermined angle or more by a variable valve mechanism for a predetermined period. .
[0034]
In the premixed compression ignition combustion internal combustion engine, the number of intake ports may be one or more. When there are a plurality of intake ports, the above control may be applied to all the intake ports or may be applied to some of the intake ports.
[0035]
Here, the predetermined period is defined as a period from when the operation state of the internal combustion engine becomes the transient operation to when the actual EGR rate of the premixed air becomes the required EGR rate by changing the closing timing of the intake valve. Period. When the predetermined period has elapsed since the operation state of the internal combustion engine became the transient operation, the closing timing of the intake valve is returned to the same timing as in the normal operation.
[0036]
Further, the predetermined angle means that even if the closing timing of the intake valve is retarded within a range of the predetermined angle from the bottom dead center of the intake stroke, even after the bottom dead center of the intake stroke, the intake air flows from the intake port into the cylinder due to the inertia effect. Is the angle that flows into That is, when the closing timing of the intake valve is retarded by more than the predetermined angle from the bottom dead center of the intake stroke, the intake air in the cylinder flows out to the intake port.
[0037]
According to the above-described control, the closing timing of the intake valve is retarded by a predetermined angle or more from the bottom dead center of the intake stroke, so that the intake air in the cylinder flows out to the intake port. As a result, the ignition timing of the premixed gas is delayed. Therefore, when the operation state of the internal combustion engine becomes a transient operation in which the amount of EGR gas in the cylinder increases, a response delay occurs in the EGR rate in the cylinder, and the actual EGR rate in the cylinder becomes lower than the required EGR rate. Even if there is, the occurrence of premature ignition can be suppressed.
[0038]
Further, in the intake control method for a homogeneous charge compression ignition internal combustion engine according to the present invention,
An exhaust gas recirculation device for introducing EGR gas into the intake port;
A variable valve mechanism for changing the closing timing of the intake valve of the intake port,
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. And
During steady-state operation, in a premixed compression ignition combustion internal combustion engine in which the closing timing of the intake valve is slower than the intake stroke bottom dead center,
When the operation state of the internal combustion engine is in the low rotation region and the operation is a transient operation in which the amount of EGR gas in the cylinder is reduced, the closing timing of the intake valve is reduced by the variable valve operating mechanism during the intake stroke for a predetermined period. You may advance to the dead point.
[0039]
When the operation state of the internal combustion engine is in the low rotation region, if the closing timing of the intake valve is later than the bottom dead center of the intake stroke, the intake air in the cylinder flows out to the intake port. According to the above-described control, the amount of intake air flowing out of the cylinder is reduced by advancing the closing timing of the intake valve toward the bottom dead center of the intake stroke. And the ignition timing of the premixed gas is advanced. Therefore, when the operation state of the internal combustion engine is a transient operation in which the amount of EGR gas in the cylinder is reduced, a response delay occurs in the EGR rate in the cylinder, and the actual EGR rate in the cylinder becomes higher than the required EGR rate. Even if there is, ignition delay and occurrence of misfire can be suppressed.
[0040]
BEST MODE FOR CARRYING OUT THE INVENTION
<First embodiment>
Hereinafter, a specific embodiment of an intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to the present invention will be described with reference to the drawings.
[0041]
1 and 2 are diagrams showing a schematic configuration of an internal combustion engine according to the present embodiment. The internal combustion engine 1 shown in FIG. 1 is a multi-cylinder diesel engine having four cylinders 2 (only one cylinder is shown). A fuel injection valve 10 for directly injecting fuel into the combustion chamber is provided at a substantially central portion of the cylinder 2. The cylinder 2 has a first intake port 3, a second intake port 4, and two exhaust ports 5.
[0042]
The first intake port 3 and the second intake port 4 communicate with an intake manifold 12, and the intake manifold 12 is connected to an intake passage 11. The intake passage 11 is provided with a throttle valve 15 for adjusting a flow rate of fresh air (air) flowing through the intake passage 11. On the other hand, the two exhaust ports 5 are communicated with an exhaust manifold 13, and the exhaust manifold 13 is connected to an exhaust passage 14.
[0043]
As shown in FIG. 2, the first intake port 3 and the second intake port 4 are provided with a first intake valve 6 and a second intake valve 7, respectively. Exhaust valves not shown are provided. The first intake valve 6 and the second intake valve 7 are respectively provided with a first variable valve mechanism 8 and a second variable valve mechanism 9 for controlling the lift amount and opening / closing timing of each intake valve 6, 7. ing. An example of the variable valve mechanism is an electromagnetically driven valve.
[0044]
Further, the internal combustion engine 1 according to the present embodiment is provided with an exhaust gas recirculation device 20 that recirculates part of the exhaust gas discharged from the internal combustion engine 1 to the intake system. The exhaust gas recirculation device 20 includes a main EGR passage 21 that communicates with the exhaust manifold 13, a first EGR passage 22 that communicates the main EGR passage 21 with the first intake port 3, and a main EGR passage 21 that communicates with the second intake air. A second EGR passage 23 communicating with the port 4. The main EGR passage 21, the first EGR passage 22, and the second EGR passage 23 are formed of an electromagnetic valve or the like, and the inside of the main EGR passage 21, the first EGR passage 22, or the second EGR passage 23 depends on the magnitude of the applied voltage. A main EGR valve 26, a first EGR valve 24, and a second EGR valve 25 for adjusting a flow rate of flowing exhaust gas (EGR gas) are provided, respectively.
[0045]
In the exhaust gas recirculation device 20 configured as described above, when the main EGR valve 26, the first EGR valve 24, and the second EGR valve 25 are opened, a part of the exhaust gas (EGR gas) discharged from the internal combustion engine 1 is opened. Flows into the main EGR passage 21 via the exhaust manifold 13, and EGR gas flowing through the main EGR passage 21 passes through the first EGR passage 22 or the second EGR passage 23 and passes through the first intake port 3 or the second intake port. 4 is introduced. The EGR gas introduced into each of the intake ports 3 and 4 mixes with fresh air (air) to form intake air, and the intake air is introduced into the cylinder 2. In addition, the first EGR valve 24 and the second EGR valve 25 change the amount of EGR gas introduced into each of the intake ports 3 and 4, thereby changing the intake at the first intake port 3 (hereinafter, referred to as first intake) and the second intake port. The EGR rate with respect to intake air (hereinafter, referred to as second intake) at intake port 4 is controlled.
[0046]
The internal combustion engine 1 configured as described above is provided with an electronic control unit (ECU: Electronic Control Unit) 30 for controlling the internal combustion engine 1. The ECU 30 is a unit that controls the operating state of the internal combustion engine 1 according to the operating conditions of the internal combustion engine 1 and the driver's requirements.
[0047]
The ECU 30 is electrically connected to various sensors such as a crank position sensor 31 that outputs a signal corresponding to the rotation angle of the output shaft of the internal combustion engine 1 and an accelerator opening sensor 32 that outputs a signal corresponding to the accelerator opening. The output signals of these sensors are input to the ECU 30.
[0048]
On the other hand, the ECU 30 is electrically connected to the fuel injection valve 10, the throttle valve 15, the first variable valve mechanism 8, the second variable valve mechanism 9, the main EGR valve 26, the first EGR valve 24, the second EGR valve 25, and the like. The above components are controlled by the ECU 30.
[0049]
The ECU 30 includes a CPU, a ROM, a RAM, and the like. For example, the ECU 30 calculates an engine speed based on a time interval or the like at which the crank position sensor 31 outputs a pulse signal, and outputs the engine speed to an output signal of the accelerator opening sensor 32 and the like. The engine load is calculated based on the engine load.
[0050]
Further, the internal combustion engine 1 according to the present embodiment injects fuel from the fuel injection valve 10 into the cylinder 2 during an intake stroke or a compression stroke in accordance with a command from the ECU 30, so that fuel and intake air are This is an internal combustion engine that performs so-called premixed compression ignition combustion in which a premixed gas is formed and the premixed gas is used for combustion.
[0051]
In the internal combustion engine 1 according to the present embodiment, the ECU 30 determines the lift amount and the opening / closing valve timing of the first intake valve 6 and the second intake valve 7 and the main EGR valve in accordance with the operating state of the internal combustion engine 1. The amount of intake air introduced into the cylinder 2 and the EGR rate are controlled by adjusting the degrees of opening of the 26, the throttle valve 15, the first EGR valve 24, and the second EGR valve 25. The EGR rate of the premixed gas in the cylinder 2 is controlled by controlling the amount of intake air introduced into the cylinder 2 and the EGR rate.
[0052]
Next, an intake control method for an internal combustion engine according to the present embodiment will be described with reference to the drawings. FIG. 3 shows the relationship between the operating state of the internal combustion engine 1 according to the present embodiment, the control of the first and second intake valves 6 and 7, the amount of EGR gas in the cylinder 2, and the ignition timing of the premixed gas. It is a time chart which shows. FIGS. 4 and 5 are valve profiles showing control of the first and second intake valves 6 and 7 when the operation state of the internal combustion engine 1 according to the present embodiment is a transient operation in which the engine load increases. . 6 to 8 are valve profiles showing control of the first and second intake valves 6, 7 when the operation state of the internal combustion engine 1 according to the present embodiment is in a transient operation in which the engine load is reduced. .
[0053]
In the intake control method for an internal combustion engine according to the present embodiment, the opening of the second EGR valve 25 is adjusted to be larger than the opening of the first EGR valve 24 when the operating state of the internal combustion engine 1 is steady operation. The control is performed such that the amount of EGR gas introduced into the second intake port 4 becomes larger than the amount of EGR gas introduced into the first intake port 3. For this reason, the EGR rate of the second intake becomes higher than the EGR rate of the first intake.
[0054]
Then, when the vehicle provided with the internal combustion engine 1 is accelerated, and the operating state of the internal combustion engine 1 becomes a transient operation in which the engine load increases, that is, a transient operation in which the amount of EGR gas in the cylinder 2 increases. In this case, the opening degree of the main EGR valve 26 is made larger than in the normal operation, and further, as shown in FIG. 3, the lift amount of the first intake valve 6 is controlled to be smaller than that in the normal operation for a predetermined period. You.
[0055]
When a predetermined period has elapsed after the operation state of the internal combustion engine 1 has changed to the transient operation, the lift amount of the first intake valve 6 is returned to the same lift amount as in the normal operation.
[0056]
In FIG. 3, the solid line of the line indicating the EGR amount in the cylinder 2 and the line indicating the ignition timing of the premixed air indicates the case where the lift amount of the first EGR valve 6 is controlled as described above. The dotted line shows a case where the lift amount of the first EGR valve 6 is not controlled as described above, and only the opening degree of the main EGR valve 26 is controlled.
[0057]
According to the intake valve control method for the internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is a transient operation in which the amount of EGR gas in the cylinder 2 is increased, the lift of the first intake valve 6 By temporarily reducing the amount, the amount of first intake air having a low EGR rate introduced into the cylinder 2 decreases, and the amount of second intake air having a high EGR rate introduced into the cylinder 2 increases. Therefore, as shown in FIG. 3, since the EGR amount in the cylinder 2 increases more quickly, it is possible to suppress the actual EGR rate of the premixed air from becoming lower than the required EGR rate due to a response delay. Therefore, as shown in FIG. 3, even when the operating state of the internal combustion engine 1 is in the transient operation as described above, it is possible to suppress the occurrence of premature ignition of the premixture.
[0058]
Here, the predetermined period refers to controlling the main EGR valve 26 and the first intake valve 6 after the operation state of the internal combustion engine 1 becomes the transient operation, so that the actual EGR rate of the premixed gas becomes the required EGR rate. This is the period until the rate is reached.
[0059]
Further, in the intake control method for the internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is a steady operation, the closing timing of the first intake valve 6 is set later than the bottom dead center of the intake stroke. In this case, when the operation state of the internal combustion engine 1 is in the low rotation region and the operation is a transient operation in which the amount of EGR gas in the cylinder 2 is increased, the lift amount of the first intake valve 6 is reduced as shown in FIG. The control may be performed for a predetermined period of time while the valve timing is made smaller and the valve closing timing of the first intake valve 6 is advanced toward the bottom dead center of the intake stroke. The dashed line in FIG. 4 indicates a period corresponding to the bottom dead center of the intake stroke.
[0060]
According to such control, the occurrence of premature ignition can be suppressed by reducing the lift amount of the first intake valve 6, and at the same time, the closing timing of the first intake valve 6 is set at the bottom dead center of the intake stroke. In this case, the amount of intake air flowing out of the cylinder 2 to the first intake port 3 is reduced, so that the efficiency of intake of intake air into the cylinder 2 can be improved.
[0061]
In the intake control method for an internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is a steady operation, the closing timing of the first intake valve 6 is set to be after the bottom dead center of the intake stroke. When the operation state of the internal combustion engine 1 is in the high rotation region and the operation is a transient operation in which the amount of EGR gas in the cylinder 2 is increased, the lift amount of the first intake valve 6 is temporarily reduced as shown in FIG. The control for delaying the valve closing timing of the first intake valve 6 may be performed for a predetermined period of time, in addition to the control for a predetermined period. The dashed line in FIG. 5 indicates a period corresponding to the bottom dead center of the intake stroke.
[0062]
According to such control, the amount of EGR gas in the cylinder 2 is increased more quickly by reducing the lift amount of the first intake valve 6, and the valve closing timing of the first intake valve 6 is retarded. By controlling the actual compression ratio of the premixed gas in the compression stroke by adjusting the retard angle of the premixed gas, the ignition timing of the premixed gas during the transient operation as described above can be made more suitable.
[0063]
In the intake control method for the internal combustion engine according to the present embodiment, as described above, when the operation state of the internal combustion engine 1 is a steady operation, the EGR rate of the second intake is set to be higher than the EGR rate of the first intake. In addition, when the operation state of the internal combustion engine 1 is a transient operation in which the engine load is increased, that is, a transient operation in which the amount of EGR gas in the cylinder 2 is increased, the opening degree of the main EGR valve 26 is changed. Control for increasing the value and decreasing the lift amount of the first intake valve 6 is performed for a predetermined period. On the other hand, when the operating state of the internal combustion engine 1 is a transient operation in which the engine load is reduced, that is, a transient operation in which the amount of EGR gas in the cylinder 2 is reduced, the opening degree of the main EGR valve 26 is reduced. At the same time, as shown in FIG. 6, control for reducing the lift amount of the second intake valve 7 is performed for a predetermined period.
[0064]
According to the intake valve control method for the internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is in a transient operation in which the amount of EGR gas in the cylinder 2 is reduced, the lift of the second intake valve 7 By temporarily reducing the amount, the amount of the second intake having a high EGR rate introduced into the cylinder 2 decreases, and the amount of the first intake having a low EGR rate introduced into the cylinder 2 increases. Therefore, since the EGR amount in the cylinder 2 decreases more quickly, it is possible to suppress the actual EGR rate of the premixed air from becoming higher than the required EGR rate due to a response delay. Therefore, even when the operation state of the internal combustion engine 1 is in the transient operation as described above, it is possible to suppress the ignition delay of the premixed gas and the occurrence of misfire.
[0065]
Here, the predetermined period is a period in which the operation state of the internal combustion engine 1 becomes a transient operation, and then the main EGR valve 26 and the second intake valve 7 are controlled so that the actual EGR rate of the premixed gas becomes the required EGR rate. This is the period until the rate is reached.
[0066]
Further, in the intake control method for the internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is a steady operation, the closing timing of the second intake valve 7 is set later than the bottom dead center of the intake stroke. In this case, when the operation state of the internal combustion engine 1 is in the low rotation region and the operation is a transient operation in which the EGR gas amount in the cylinder 2 is reduced, the lift amount of the second intake valve 7 is reduced as shown in FIG. At the same time, control for advancing the closing timing of the second intake valve 7 toward the bottom dead center of the intake stroke may be performed for a predetermined period. The dashed line in FIG. 7 indicates a time corresponding to the bottom dead center of the intake stroke.
[0067]
According to such control, the ignition delay and the occurrence of misfire can be suppressed by reducing the lift amount of the second intake valve 7, and at the same time, the closing timing of the second intake valve 7 is reduced to the intake stroke bottom dead center. By advancing to the point, the outflow amount of the intake air flowing from the cylinder 2 to the second intake port 4 is reduced, so that the efficiency of intake of the intake air into the cylinder 2 can be improved.
[0068]
In the intake control method for an internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is a steady operation, the closing timing of the second intake valve 7 is set to be after the bottom dead center of the intake stroke. When the operating state of the internal combustion engine 1 is in the high rotation region and is in the transient operation in which the amount of EGR gas in the cylinder 2 is reduced, the lift amount of the second intake valve 7 is reduced as shown in FIG. At the same time, control for delaying the closing timing of the second intake valve 7 may be performed for a predetermined period. The dashed line in FIG. 8 indicates a period corresponding to the bottom dead center of the intake stroke.
[0069]
According to such control, the EGR gas amount in the cylinder 2 is reduced more quickly by reducing the lift amount of the second intake valve 7, and the valve closing timing of the second intake valve 7 is retarded. By controlling the actual compression ratio of the premixed gas in the compression stroke by adjusting the retard angle of the premixed gas, the ignition timing of the premixed gas during the transient operation as described above can be made more suitable.
[0070]
Next, a control routine for the first and second intake valves 6, 7 according to the present embodiment will be described with reference to a flowchart shown in FIG.
[0071]
The flowchart shown in FIG. 9 is a flowchart showing a control routine of the intake valve according to the present embodiment. This intake valve control routine is a routine that is repeatedly executed by the ECU 30 at predetermined time intervals, and is stored in advance in a ROM provided in the ECU 30.
[0072]
In this routine, first, in S101, the ECU 30 determines whether or not the operating state of the internal combustion engine 1 is a transient operation based on the engine speed, the engine load, and the like.
[0073]
In S101, when it is determined that the operation state of the internal combustion engine 1 is not the transient operation, that is, the operation state of the internal combustion engine 1 is the steady operation, the ECU 30 proceeds to S109, and the first and second intake valves 6, 7 Then, the intake valve control at the time of steady operation is executed, and the execution of this routine is temporarily ended.
[0074]
On the other hand, when it is determined in S101 that the operation state of the internal combustion engine 1 is a transient operation, the ECU 30 proceeds to S102, and based on the engine speed, the engine load, and the like, the operation state of the internal combustion engine 1 is in the acceleration state. Or whether the vehicle is in a deceleration state.
[0075]
Next, the ECU 30 proceeds to S103, and based on the engine speed, the engine load, and the like, the operating state of the internal combustion engine 1 is in which operating region (for example, in the high rotation region or in the low rotation region). Is determined.
[0076]
Next, the ECU 30 proceeds to S104, and calculates an excess or deficiency amount of the EGR gas in the cylinder 2 necessary for setting the EGR rate of the premixed gas to the required EGR rate. At this time, the excess or deficiency of the EGR gas in the cylinder is calculated based on the MAP of the engine speed and the engine load. The MAP is predetermined experimentally or empirically, and is stored in the ROM of the ECU 30.
[0077]
Next, the ECU 30 proceeds to S105, where the determination result of the acceleration / deceleration state of the internal combustion engine 1 in S102, the operating region of the internal combustion engine 1 determined in S103, and the excess amount of EGR gas in the cylinder 2 calculated in S104. The amount of change between the lift amount of the first intake valve 6 or the second intake valve 7 and the valve closing timing is calculated based on the shortage amount.
[0078]
Next, the ECU 30 proceeds to S106 and calculates a response delay time of the EGR rate of the premixed gas based on the MAP between the engine speed and the engine load. The response delay time at this time is a response delay time that occurs when the control of the first and second intake valves 6 and 7 is not the intake valve control during the transient operation, and the MAP is experimental or empirical. And is stored in the ROM of the ECU 30.
[0079]
Next, the ECU 30 proceeds to S107, and based on the response delay time of the EGR rate calculated in S106, controls the intake valve (hereinafter, referred to as the first control) reflecting the change amount between the lift amount and the valve closing timing calculated in S105. (Periodical operation intake valve control) is calculated.
[0080]
Next, the ECU 30 proceeds to S108, executes the first transient operation intake valve control on the first and second intake valves 6, 7, and ends the execution of this routine once.
[0081]
According to such an intake valve control routine, even when the operation state of the internal combustion engine 1 is in a transient operation, the lift of the first intake valve 6 or the second intake valve 7 is determined according to the operation state of the internal combustion engine 1. Since the amount and the valve closing timing are adjusted, the amount of EGR gas in the cylinder 2 changes more quickly, and the response delay of the EGR rate of the premixed gas is suppressed. Therefore, the ignition timing of the premixed gas can be made more suitable.
[0082]
Further, in the above-described intake valve control routine, when the operating state of the internal combustion engine 1 is in the transient operation, the first state is determined based on the operating region of the internal combustion engine 1 and the EGR gas excess / deficiency in the cylinder 2. The amount of change between the lift amount and the closing timing of the intake valve 6 or the second intake valve 7 is calculated. In the control of the intake valve according to the present embodiment, the operating state of the internal combustion engine 1 is changed to the transient operation. At this time, the lift amount and the valve closing timing of the first intake valve 6 or the second intake valve 7 may be changed to a predetermined predetermined lift amount and a predetermined valve closing timing.
[0083]
In the internal combustion engine 1 according to the present embodiment, a first EGR passage 22 is communicated with the first intake port 3 and a second EGR passage 23 is communicated with the second intake port 4. When the operation state is steady operation, the control is performed such that the amount of EGR gas introduced into the second intake port 4 becomes larger than the amount of EGR gas introduced into the first intake port 3. Only the EGR passage into which the EGR gas is introduced may be provided, and the EGR gas may not be introduced into the first intake port 3.
[0084]
Even with such a configuration, when the operation state of the internal combustion engine 1 is in a transient operation, the first and second intake valves 6 and 7 are controlled as described above to thereby control the inside of the cylinder 2. The EGR gas amount changes more quickly, and the response delay of the EGR rate of the premixed gas is suppressed. Therefore, the ignition timing of the premixed gas can be made more suitable.
[0085]
<Second embodiment>
Next, a second embodiment of the intake control method for a premixed internal combustion engine according to the present invention will be described with reference to the drawings.
[0086]
10 and 11 are diagrams showing a schematic configuration of the internal combustion engine according to the present embodiment.
[0087]
The cylinder 2 of the internal combustion engine 1 according to the present embodiment is provided with one intake port 16 communicating with the intake manifold 12 and one exhaust port 17 communicating with the exhaust manifold 13. As shown in FIG. 11, the intake port 16 is provided with an intake valve 18, and the exhaust port 17 is provided with an exhaust valve (not shown). The intake valve 18 is provided with a variable valve mechanism 19 that controls the lift amount and the valve closing timing of the intake valve 18.
[0088]
Further, the internal combustion engine 1 according to the present embodiment includes an exhaust gas recirculation device 27 that recirculates a part of the exhaust gas discharged from the internal combustion engine 1 to the intake system. The exhaust gas recirculation device 20 includes an EGR passage 28 that communicates with the exhaust manifold 13 and the intake port 16. The EGR passage 28 includes an electromagnetic valve or the like, and is provided with an EGR passage according to the magnitude of an applied voltage. An EGR valve 29 for adjusting the flow rate of the exhaust gas (EGR gas) flowing through the inside 28 is provided. By changing the amount of EGR gas introduced into the intake port 16 by the EGR valve 29, the EGR rate of intake air at the intake port 16 is controlled.
[0089]
Further, the movable valve mechanism 19 and the EGR valve 29 are electrically connected to the ECU 30, and each unit is controlled by the ECU 30.
[0090]
Configurations other than these are the same as in the above-described first embodiment, and a description thereof will not be repeated. The internal combustion engine 1 according to the present embodiment is an internal combustion engine that performs homogeneous charge compression ignition combustion, similarly to the internal combustion engine 1 according to the above-described first embodiment.
[0091]
Next, an intake control method for an internal combustion engine according to the present embodiment will be described with reference to the drawings. FIG. 12 is a valve profile showing control of the intake valve 18 when the operation state of the internal combustion engine 1 according to the present embodiment is in a transient operation in which the engine load increases. FIG. 13 is a valve profile showing control of the intake valve 18 when the operation state of the internal combustion engine 1 according to the present embodiment is in a transient operation in which the engine load is reduced. 12 and 13 indicate a period corresponding to the bottom dead center of the intake stroke.
[0092]
In the intake control method for the internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is in a steady operation, the closing timing of the intake valve 18 is made later than the bottom dead center of the intake stroke. Then, when the vehicle provided with the internal combustion engine 1 is accelerated, and the operating state of the internal combustion engine 1 becomes a transient operation in which the engine load increases, that is, a transient operation in which the amount of EGR gas in the cylinder 2 increases. In this case, the opening degree of the EGR valve 29 is made larger than that during the normal operation, and control for delaying the closing timing of the intake valve 18 by a predetermined angle or more is performed for a predetermined period as shown in FIG.
[0093]
Here, the predetermined angle means that even if the closing timing of the intake valve 18 is retarded within the predetermined angle from the bottom dead center of the intake stroke, the inertia effect is applied to the intake port 18 from the intake port 16 and thereafter. This is the angle at which the intake air flows into the cylinder 2. That is, when the closing timing of the intake valve 18 is delayed from the bottom dead center of the intake stroke by a predetermined angle or more, the intake air in the cylinder 2 flows out to the intake port 16.
[0094]
On the other hand, in the intake control method for the internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is in the low rotation range, the vehicle provided with the internal combustion engine 1 is accelerated, and the operation state of the internal combustion engine 1 is increased. However, when the engine is in the transient operation in which the engine load is low, that is, in the transient operation in which the EGR gas amount in the cylinder 2 is reduced, the opening degree of the EGR valve 29 is made smaller than that in the normal operation. As shown in FIG. 13, a control for reducing the lift amount of the intake valve 18 and advancing the valve closing timing toward the bottom dead center of the intake stroke is performed for a predetermined period.
[0095]
When a predetermined period has elapsed since the operation state of the internal combustion engine 1 has changed to the transient operation, the closing timing of the intake valve 16 is returned to the same timing as during the steady operation.
[0096]
Here, the predetermined period refers to the actual EGR rate of the premixed air by controlling the EGR valve 29 and controlling the closing timing of the intake valve 18 after the operation state of the internal combustion engine 1 becomes the transient operation. Is a period until the required EGR rate is reached.
[0097]
According to the intake valve control method for an internal combustion engine according to the present embodiment, when the operation state of the internal combustion engine 1 is a transient operation in which the amount of EGR gas in the cylinder 2 is increased, the closing timing of the intake valve 18 Is retarded by a predetermined angle or more, so that the intake air in the cylinder 2 flows out to the intake port 16. Therefore, the actual compression ratio, which is the actual compression ratio of the premixed gas in the compression stroke, decreases, and the ignition timing of the premixed gas is delayed. Therefore, even if a response delay occurs in the EGR rate in the cylinder 2 and the actual EGR rate in the cylinder becomes lower than the required EGR rate, occurrence of premature ignition can be suppressed.
[0098]
Further, when the operating state of the internal combustion engine 1 according to the present embodiment is in the low rotation region, the closing timing of the intake valve 18 is later than the bottom dead center of the intake stroke, so that the intake air in the cylinder 2 flows to the intake port 16. leak. According to the intake valve control method for the internal combustion engine according to the present embodiment, when the operating state of the internal combustion engine 1 is in the low rotation region and the operation becomes the transient operation in which the EGR gas amount in the cylinder 2 is reduced, Since the closing timing of the intake valve 18 is advanced toward the bottom dead center of the intake stroke, the outflow of intake air from the cylinder 2 decreases. Therefore, the actual compression ratio of the premixed gas increases, and the ignition timing of the premixed gas is advanced. Therefore, even if a response delay occurs in the EGR rate in the cylinder 2 and the actual EGR rate in the cylinder becomes higher than the required EGR rate, it is possible to suppress the occurrence of ignition delay and misfire.
[0099]
Next, a control routine of the intake valve 18 according to the present embodiment will be described with reference to a flowchart shown in FIG.
[0100]
The flowchart shown in FIG. 14 is a flowchart showing a control routine of the intake valve according to the present embodiment. This intake valve control routine is a routine that is repeatedly executed by the ECU 30 at predetermined time intervals, and is stored in advance in a ROM provided in the ECU 30.
Note that S101 to S104, S106, and S109 in the flowchart shown in FIG. 14 are the same as those in the flowchart shown in FIG. 9 described in the first embodiment, and thus description thereof will be omitted.
[0101]
In this routine, the ECU 30 proceeds to S205 after S104. In S205, the ECU 30 determines the target actual compression ratio, which is the actual compression ratio of the premixed gas at which the ignition timing of the premixed gas becomes more suitable, based on the excess or deficiency of the EGR gas in the cylinder 2 calculated in S104. Is calculated.
[0102]
Next, the ECU 30 proceeds to S206, and based on the determination result of the acceleration / deceleration state of the internal combustion engine 1 in S102, the operating region of the internal combustion engine 1 determined in S103, and the target actual compression ratio calculated in S205, The change amount of the closing timing of the intake valve 18 is calculated.
[0103]
Further, following S106, the ECU 30 proceeds to S207, and controls the intake valve (hereinafter, referred to as the “first”) in which the change amount of the valve closing timing calculated in S206 is reflected based on the response delay time of the EGR rate calculated in S106. 2 Transient operation during intake valve control) is calculated.
[0104]
Next, the ECU 30 proceeds to S208, executes the second transient operation intake valve control for the intake valve 18, and ends the execution of this routine once.
[0105]
According to such an intake valve control routine, even if the operating state of the internal combustion engine 1 becomes a transient operation and a response delay of the EGR rate of the premixed air occurs, the operation state of the internal combustion engine 1 is changed according to the operating state. Since the closing timing of the intake valve 18 is adjusted and the actual compression ratio of the premixed gas is controlled, the ignition timing of the premixed gas can be made more suitable.
[0106]
In the above-described intake valve control routine, when the operating state of the internal combustion engine 1 is in the transient operation, the target actual compression ratio is calculated based on the EGR gas excess / deficiency in the cylinder, and the target actual compression ratio is calculated. The change amount of the closing timing of the intake valve 18 is calculated based on the ratio and the operating range of the internal combustion engine 1. In the control of the intake valve according to the present embodiment, the operating state of the internal combustion engine 1 is a transient operation. In this case, the closing timing of the intake valve 18 may be changed to a predetermined closing timing.
[0107]
【The invention's effect】
According to the intake control method for the homogeneous charge compression ignition combustion internal combustion engine according to the present invention, in the homogeneous charge compression ignition combustion internal combustion engine, even when the operating state of the internal combustion engine is in the transient operation, the ignition timing of the premixed air is more improved. It can be a suitable time.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to a first embodiment.
FIG. 2 is a diagram showing a schematic configuration of a main part of the internal combustion engine according to the first embodiment.
FIG. 3 is a time chart showing a relationship among an operating state of the internal combustion engine, control of an intake valve, an amount of EGR gas in a cylinder, and an ignition timing of premixed gas according to the first embodiment.
FIG. 4 is a first valve profile showing control of an intake valve when the operation state of the internal combustion engine according to the first embodiment is a transient operation in which the amount of EGR gas in a cylinder is increased.
FIG. 5 is a second valve profile showing control of the intake valve when the operation state of the internal combustion engine according to the first embodiment is a transient operation in which the amount of EGR gas in the cylinder is increased.
FIG. 6 is a first valve profile showing control of the intake valve when the operation state of the internal combustion engine according to the first embodiment is a transient operation in which the amount of EGR gas in the cylinder is reduced.
FIG. 7 is a second valve profile showing control of the intake valve when the operation state of the internal combustion engine according to the first embodiment is a transient operation for reducing the amount of EGR gas in the cylinder.
FIG. 8 is a third valve profile showing control of the intake valve when the operation state of the internal combustion engine according to the first embodiment is a transient operation for reducing the amount of EGR gas in the cylinder.
FIG. 9 is a flowchart showing a control routine of the intake valve according to the first embodiment;
FIG. 10 is a diagram showing a schematic configuration of an internal combustion engine according to a second embodiment.
FIG. 11 is a diagram showing a schematic configuration of a main part of an internal combustion engine according to a second embodiment.
FIG. 12 is a valve profile showing control of an intake valve when the operation state of the internal combustion engine according to the second embodiment is a transient operation in which the amount of EGR gas in a cylinder is increased.
FIG. 13 is a valve profile showing control of an intake valve when the operation state of the internal combustion engine according to the second embodiment is a transient operation for reducing the amount of EGR gas in a cylinder.
FIG. 14 is a flowchart illustrating a control routine of an intake valve according to the second embodiment.
[Explanation of symbols]
1 ... internal combustion engine
2 ... cylinder
3 ... First intake port
4 Second intake port
5 ... Exhaust port
6 First intake valve
7 Second intake valve
8 First variable valve mechanism
9 Second variable valve mechanism
10. Fuel injection valve
11 ... Intake passage
12. Intake manifold
13. Exhaust manifold
14. Exhaust passage
15. Throttle valve
16. Intake port
17. Exhaust port
18. Intake valve
19. Variable valve mechanism
20..Exhaust gas recirculation device
21..Main EGR passage
22..First EGR passage
23 .. Second EGR passage
24..First EGR valve
25 .. Second EGR valve
26..Main EGR valve
27..Exhaust gas recirculation device
28 EGR passage
29 EGR valve
30 ECU
31 Crank position sensor
32. Accelerator opening sensor

Claims (10)

1気筒当たりに複数の吸気ポートを有し、
一方の吸気ポートと他方の吸気ポートとのそれぞれに排気の一部を再循環排気として導入する排気再循環装置と、
該排気再循環装置によって前記一方の吸気ポートと前記他方の吸気ポートとに導入される再循環排気量をそれぞれ変更することで、それぞれの吸気ポートにおける吸気の再循環排気率を制御する吸気再循環排気率制御装置と、
前記一方の吸気ポートの吸気弁と前記他方の吸気ポートの吸気弁とのリフト量および閉弁時期をそれぞれ変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関において、
該内燃機関の運転状態が定常運転であるときに、前記吸気再循環排気率制御装置によって、予め、前記一方の吸気ポートにおける吸気の再循環排気率を、他方の吸気ポートにおける吸気の再循環排気率よりも高くしておき、前記内燃機関の運転状態が、前記気筒内の再循環排気量の変化が定常運転時よりも大きい過渡運転となったときには、前記可変動弁機構によって、所定期間、前記一方の吸気ポートの吸気弁および/または前記他方の吸気ポートの吸気弁のリフト量および/または閉弁時期を変更することにより前記気筒内の再循環排気量を変化させることを特徴とする予混合圧縮着火燃焼内燃機関の吸気制御方法。
It has multiple intake ports per cylinder,
An exhaust gas recirculation device that introduces a part of the exhaust gas as recirculated exhaust gas into each of the one intake port and the other intake port;
Intake recirculation for controlling a recirculation exhaust rate of intake air in each intake port by changing a recirculation exhaust amount introduced into the one intake port and the other intake port by the exhaust recirculation device, respectively. An exhaust rate control device,
A variable valve mechanism that changes a lift amount and a valve closing timing of the intake valve of the one intake port and the intake valve of the other intake port, respectively.
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. At
When the operating state of the internal combustion engine is a steady operation, the intake air recirculation / exhaust rate control device determines in advance the intake air recirculation / exhaust rate at the one intake port and the intake air recirculation / exhaust rate at the other intake port. Rate, and when the operating state of the internal combustion engine is in a transient operation in which the change in the amount of recirculated exhaust gas in the cylinder is larger than that in a steady operation, the variable valve mechanism causes a predetermined period of time. The amount of recirculated exhaust gas in the cylinder is changed by changing the lift amount and / or closing timing of the intake valve of the one intake port and / or the intake valve of the other intake port. An intake control method for a mixed compression ignition combustion internal combustion engine.
1気筒当たりに複数の吸気ポートを有し、
一方の吸気ポートにのみ排気の一部を再循環排気として導入する排気再循環装置と、
前記一方の吸気ポートの吸気弁と他方の吸気ポートの吸気弁とのリフト量および閉弁時期をそれぞれ変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関において、
該内燃機関の運転状態が、前記気筒内の再循環排気量の変化が定常運転時よりも大きい過渡運転となったときには、前記可変動弁機構によって、所定期間、前記一方の吸気ポートの吸気弁および/または前記他方の吸気ポートの吸気弁のリフト量および/または閉弁時期を変更することにより前記気筒内の再循環排気量を変化させることを特徴とする予混合圧縮着火燃焼内燃機関の吸気制御方法。
It has multiple intake ports per cylinder,
An exhaust gas recirculation device that introduces a part of exhaust gas to only one intake port as recirculated exhaust gas;
A variable valve mechanism that changes a lift amount and a valve closing timing of the intake valve of the one intake port and the intake valve of the other intake port, respectively,
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. At
When the operating state of the internal combustion engine is a transient operation in which the change in the amount of recirculated exhaust gas in the cylinder is larger than that in the steady operation, the variable valve mechanism controls the intake valve of the one intake port for a predetermined period. And / or changing the lift amount and / or closing timing of the intake valve of the other intake port to change the amount of recirculated exhaust gas in the cylinder. Control method.
前記内燃機関の運転状態が前記気筒内の再循環排気量を増加させる過渡運転となったときには、前記所定期間、前記他方の吸気ポートの吸気弁のリフト量を小さくすることを特徴とする請求項1または2記載の予混合圧縮着火燃焼内燃機関の吸気制御方法。The lift amount of the intake valve of the other intake port is reduced during the predetermined period when the operating state of the internal combustion engine is a transient operation that increases the amount of recirculated exhaust gas in the cylinder. 3. The intake control method for a premixed compression ignition combustion internal combustion engine according to claim 1. 前記内燃機関の運転状態が前記気筒内の再循環排気量を減少させる過渡運転となったときには、前記所定期間、前記一方の吸気ポートの吸気弁のリフト量を小さくすることを特徴とする請求項1から3のいずれかに記載の予混合圧縮着火燃焼内燃機関の吸気制御方法。The lift amount of the intake valve of the one intake port is reduced during the predetermined period when the operating state of the internal combustion engine is a transient operation that reduces the amount of recirculated exhaust gas in the cylinder. An intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to any one of claims 1 to 3. 前記内燃機関は、定常運転時は、前記他方の吸気ポートの吸気弁の閉弁時期が吸気行程下死点よりも遅い予混合圧縮着火燃焼内燃機関であって、
該内燃機関の運転状態が、低回転領域にあり、且つ前記気筒内の再循環排気量を増加させる過渡運転となったときには、前記所定期間、前記他方の吸気ポートの吸気弁のリフト量を小さくすることに加え、該他方の吸気ポートの吸気弁の閉弁時期を吸気行程下死点の方へ進角することを特徴とする請求項3記載の予混合圧縮着火燃焼内燃機関の吸気制御方法。
The internal combustion engine is a premixed compression ignition combustion internal combustion engine in which during normal operation, the closing timing of the intake valve of the other intake port is slower than the intake stroke bottom dead center,
When the operation state of the internal combustion engine is in the low rotation region and becomes a transient operation in which the amount of recirculated exhaust gas in the cylinder is increased, the lift amount of the intake valve of the other intake port is reduced during the predetermined period. 4. The intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to claim 3, wherein the closing timing of the intake valve of the other intake port is advanced toward the bottom dead center of the intake stroke. .
前記内燃機関は、定常運転時は、前記一方の吸気ポートの吸気弁の閉弁時期が吸気行程下死点よりも遅い予混合圧縮着火燃焼内燃機関であって、
該内燃機関の運転状態が、低回転領域にあり、且つ前記気筒内の再循環排気量を減少させる過渡運転となったときには、前記所定期間、前記一方の吸気ポートの吸気弁のリフト量を小さくすることに加え、該一方の吸気ポートの吸気弁の閉弁時期を吸気行程下死点の方へ進角することを特徴とする請求項4記載の予混合圧縮着火燃焼内燃機関の吸気制御方法。
The internal combustion engine is a premixed compression ignition combustion internal combustion engine in which, during steady-state operation, the closing timing of the intake valve of the one intake port is slower than the intake stroke bottom dead center,
When the operating state of the internal combustion engine is in the low rotation region and becomes a transient operation in which the amount of recirculated exhaust gas in the cylinder is reduced, the lift amount of the intake valve of the one intake port is reduced during the predetermined period. 5. The intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to claim 4, wherein the closing timing of the intake valve of the one intake port is advanced toward the bottom dead center of the intake stroke. .
前記内燃機関は、定常運転時は、前記他方の吸気ポートの吸気弁の閉弁時期が吸気行程下死点以降である予混合圧縮着火燃焼内燃機関であって、
該内燃機関の運転状態が、高回転領域にあり、且つ前記気筒内の再循環排気量を増加させる過渡運転となったときには、前記所定期間、前記他方の吸気ポートの吸気弁のリフト量を小さくするとことに加え、該他方の吸気ポートの吸気弁の閉弁時期を遅角することを特徴とする請求項3記載の予混合圧縮着火燃焼内燃機関の吸気制御方法。
The internal combustion engine is a premixed compression ignition combustion internal combustion engine in which during normal operation, the closing timing of the intake valve of the other intake port is after the bottom dead center of the intake stroke,
When the operation state of the internal combustion engine is in the high rotation region and becomes a transient operation in which the amount of recirculated exhaust gas in the cylinder is increased, the lift amount of the intake valve of the other intake port is reduced during the predetermined period. 4. The intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to claim 3, wherein the closing timing of the intake valve of the other intake port is retarded.
前記内燃機関は、定常運転時は、前記一方の吸気ポートの吸気弁の閉弁時期が吸気行程下死点以降である予混合圧縮着火燃焼内燃機関であって、
該内燃機関の運転状態が、高回転領域にあり、且つ前記気筒内の再循環排気量を減少させる過渡運転となったときには、前記所定期間、前記一方の吸気ポートの吸気弁のリフト量を小さくすることに加え、該一方の吸気ポートの吸気弁の閉弁時期を遅角することを特徴とする請求項4記載の予混合圧縮着火燃焼内燃機関の吸気制御方法。
The internal combustion engine is a premixed compression ignition combustion internal combustion engine in which during normal operation, the closing timing of the intake valve of the one intake port is after the bottom dead center of the intake stroke,
When the operation state of the internal combustion engine is in the high rotation region and becomes a transient operation in which the amount of recirculated exhaust gas in the cylinder is reduced, the lift amount of the intake valve of the one intake port is reduced during the predetermined period. 5. The intake control method for a homogeneous charge compression ignition combustion internal combustion engine according to claim 4, wherein the closing timing of the intake valve of the one intake port is retarded.
吸気ポートに排気の一部を再循環排気として導入する排気再循環装置と、
前記吸気ポートの吸気弁の閉弁時期を変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関であって、
定常運転時は、吸気ポートの吸気弁の閉弁時期が吸気行程下死点以降である予混合圧縮着火燃焼内燃機関において、
該内燃機関の運転状態が前記気筒内の再循環排気量を増加させる過渡運転となったときは、所定期間、前記可変動弁機構によって前記吸気弁の閉弁時期を所定角度以上遅角することを特徴とする予混合圧縮着火燃焼内燃機関の吸気制御方法。
An exhaust gas recirculation device that introduces a part of the exhaust gas to the intake port as recirculated exhaust gas;
A variable valve mechanism for changing the closing timing of the intake valve of the intake port,
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. And
At the time of steady operation, in the premixed compression ignition combustion internal combustion engine in which the closing timing of the intake valve of the intake port is after the bottom dead center of the intake stroke,
When the operating state of the internal combustion engine is in a transient operation in which the amount of recirculated exhaust gas in the cylinder is increased, the closing timing of the intake valve is retarded by a predetermined angle or more by the variable valve mechanism for a predetermined period. An intake control method for a homogeneous charge compression ignition combustion internal combustion engine.
吸気ポートに排気の一部を再循環排気として導入する排気再循環装置と、
前記吸気ポートの吸気弁の閉弁時期を変更する可変動弁機構と、を備え、
吸気行程中および/または圧縮行程中に、気筒内に燃料と吸気との予混合気が形成され、該予混合気が燃焼に供される予混合圧縮着火燃焼を行う予混合圧縮着火燃焼内燃機関であって、
定常運転時は、吸気ポートの吸気弁の閉弁時期が吸気行程下死点よりも遅い予混合圧縮着火燃焼内燃機関において、
前記内燃機関の運転状態が、低回転領域にあり、且つ前記気筒内の再循環排気量を減少させる過渡運転となったときは、所定期間、前記可変動弁機構によって前記吸気弁の閉弁時期を吸気行程下死点の方へ進角することを特徴とする予混合圧縮着火燃焼内燃機関の吸気制御方法。
An exhaust gas recirculation device that introduces a part of the exhaust gas to the intake port as recirculated exhaust gas;
A variable valve mechanism for changing the closing timing of the intake valve of the intake port,
A premixed compression ignition combustion internal combustion engine that performs premixed compression ignition combustion in which a premixed mixture of fuel and intake air is formed in a cylinder during an intake stroke and / or a compression stroke, and the premixed gas is used for combustion. And
During steady-state operation, in a premixed compression ignition combustion internal combustion engine in which the closing timing of the intake valve of the intake port is later than the intake stroke bottom dead center,
When the operating state of the internal combustion engine is in the low rotation region and is in a transient operation in which the amount of recirculated exhaust gas in the cylinder is reduced, the closing timing of the intake valve by the variable valve mechanism for a predetermined period. The intake control method for a premixed compression ignition combustion internal combustion engine, wherein the intake stroke is advanced toward the bottom dead center of the intake stroke.
JP2003149508A 2003-05-27 2003-05-27 Intake air control method for premixed compression ignition combustion internal combustion engine Pending JP2004353485A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149508A JP2004353485A (en) 2003-05-27 2003-05-27 Intake air control method for premixed compression ignition combustion internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149508A JP2004353485A (en) 2003-05-27 2003-05-27 Intake air control method for premixed compression ignition combustion internal combustion engine

Publications (1)

Publication Number Publication Date
JP2004353485A true JP2004353485A (en) 2004-12-16

Family

ID=34045601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149508A Pending JP2004353485A (en) 2003-05-27 2003-05-27 Intake air control method for premixed compression ignition combustion internal combustion engine

Country Status (1)

Country Link
JP (1) JP2004353485A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757659B2 (en) 2007-05-23 2010-07-20 Honda Motor Co., Ltd. Controller for homogenous charge compression ignition internal combustion engine
WO2011141988A1 (en) * 2010-05-10 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine
WO2011141998A1 (en) * 2010-05-11 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012193672A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Valve gear for internal combustion engine
CN104204472A (en) * 2012-03-23 2014-12-10 丰田自动车株式会社 Variable valve device of internal combustion engine
JP2019015267A (en) * 2017-07-10 2019-01-31 マツダ株式会社 Multi-cylinder engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7757659B2 (en) 2007-05-23 2010-07-20 Honda Motor Co., Ltd. Controller for homogenous charge compression ignition internal combustion engine
WO2011141988A1 (en) * 2010-05-10 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine
EP2570644A1 (en) * 2010-05-10 2013-03-20 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
JP5338977B2 (en) * 2010-05-10 2013-11-13 トヨタ自動車株式会社 Control device for internal combustion engine
EP2570644A4 (en) * 2010-05-10 2014-04-02 Toyota Motor Co Ltd Control device for internal combustion engine
WO2011141998A1 (en) * 2010-05-11 2011-11-17 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012193672A (en) * 2011-03-16 2012-10-11 Toyota Motor Corp Valve gear for internal combustion engine
CN104204472A (en) * 2012-03-23 2014-12-10 丰田自动车株式会社 Variable valve device of internal combustion engine
EP2829709A4 (en) * 2012-03-23 2016-01-27 Toyota Motor Co Ltd Variable valve device of internal combustion engine
US9546607B2 (en) 2012-03-23 2017-01-17 Toyota Jidosha Kabushiki Kaisha Variable valve device of internal combustion engine
CN104204472B (en) * 2012-03-23 2017-02-22 丰田自动车株式会社 Variable valve device of internal combustion engine
JP2019015267A (en) * 2017-07-10 2019-01-31 マツダ株式会社 Multi-cylinder engine

Similar Documents

Publication Publication Date Title
JP4836088B2 (en) Control device and control method for compression self-ignition internal combustion engine
JP4306642B2 (en) Internal combustion engine control system
US8050846B2 (en) Apparatus and method for controlling engine
EP2444641B1 (en) Control apparatus of a direct injection gasoline engine
US20100012086A1 (en) Control apparatus and method for internal combustion engine
US9014949B2 (en) Apparatus for and method of controlling internal combustion engine
JP4161789B2 (en) Fuel injection control device
JP6732035B2 (en) Internal combustion engine controller
JPH1193731A (en) Fuel injection control device for cylinder injection internal combustion engine
US7063056B2 (en) Valve timing control apparatus for engine
JP2008088910A (en) Operation stop control device for compression ignition type internal combustion engine
JP2004251157A (en) Valve timing control device for engine
US7032567B2 (en) Control apparatus and method for internal combustion engine having variable valve system
JP2004353485A (en) Intake air control method for premixed compression ignition combustion internal combustion engine
JP2013060863A (en) Internal combustion engine control device
JP4059140B2 (en) Recirculation exhaust control system for premixed compression ignition combustion internal combustion engine
JP2009041531A (en) Cylinder injection internal combustion engine
JP2019190289A (en) Fuel injection control device of internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP2005061325A (en) Control device for compression ignition internal combustion engine
JP2005002803A (en) Ignition timing control method for internal combustion engine performing premixed compression ignition combustion
JP2002327651A (en) Control device of internal combustion engine
JP2016125448A (en) Control device for internal combustion engine
JP2000008915A (en) Cylinder direct injection type internal combustion engine
JP2005256778A (en) Engine equipped with exhaust gas circulating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090106