JP2004352548A - Composite ceramic and method for manufacturing the same - Google Patents

Composite ceramic and method for manufacturing the same Download PDF

Info

Publication number
JP2004352548A
JP2004352548A JP2003151143A JP2003151143A JP2004352548A JP 2004352548 A JP2004352548 A JP 2004352548A JP 2003151143 A JP2003151143 A JP 2003151143A JP 2003151143 A JP2003151143 A JP 2003151143A JP 2004352548 A JP2004352548 A JP 2004352548A
Authority
JP
Japan
Prior art keywords
phase
powder
composite ceramic
less
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003151143A
Other languages
Japanese (ja)
Other versions
JP4243514B2 (en
Inventor
Kunihide Yomo
邦英 四方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003151143A priority Critical patent/JP4243514B2/en
Publication of JP2004352548A publication Critical patent/JP2004352548A/en
Application granted granted Critical
Publication of JP4243514B2 publication Critical patent/JP4243514B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite ceramic having excellent wear resistance in addition to high strengths and high toughness and a method for manufacturing the same. <P>SOLUTION: In the composite ceramic constituted of a zirconia crystal phase 1 containing 2.8-4.5 mol% Y<SB>2</SB>O<SB>3</SB>and a metallic phase 3 composed of one of Mo and W or a mixture of Mo with W, the average particle diameter of the zirconia crystal phase 1 is ≤0.35 μm, the average particle diameter of the metallic phase 3 is ≤1 μm, the content of the metallic phase 3 in the composite ceramic is 5-25 mass% and ≥95% of metallic phase 3 exists in the grain boundary of the zirconia crystal phase 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、複合セラミックスおよびその製法に関し、特に、耐摩耗性を有する構造用材料などに好適な複合セラミックスおよびその製法に関する。
【0002】
【従来の技術】
近年、セラミックスは、その優れた機械的特性並びに耐腐食性などの理由から種々の構造用部品に適用されている。例えば、種々の刃物類や工具類、あるいは軸受けなどの機構部品や生体関連部材等である。こうした用途に適用させるために、下記の特許文献1では、ジルコニア系の複合セラミックスが選ばれ、この複合セラミックス中に高融点金属を含有させることにより、その機械的特性のうち特に靭性を高めることができることが記載されている。
【0003】
【特許文献1】
特開平6−172026
【0004】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に記載されたジルコニア系の複合セラミックスでは、上述のように靭性は高いものの、この複合セラミックスを構成するジルコニア結晶相が金属相の一部を取り込み、粒成長しているために、このような複合セラミックスについて耐摩耗性試験を行った場合などに結晶粒子が欠落しやすく、しかも欠落した部分が大きい体積であるために摩耗する速さが急速に高まるという問題があった。
【0005】
従って、本発明は、高強度、高靭性に加えて耐摩耗性に優れた複合セラミックスとその製法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の複合セラミックスは、Yを2.8〜4.5モル%含むジルコニア結晶相と、Mo、Wのいずれか、またはMoおよびWの混合物からなる金属相とを含有する複合セラミックスにおいて、前記ジルコニア結晶相の平均粒径が0.35μm以下、前記金属相の平均粒径が1μm以下であり、前記金属相の含有量が全量中に5〜25質量%であり、かつ前記金属相のうち95%以上が前記ジルコニア結晶相の粒界に存在することを特徴とする。
【0007】
このような構成によれば、複合セラミックスを構成するジルコニア結晶相の平均粒径が金属相の平均粒径よりも小さいために、ジルコニア結晶相中に金属相の一部を取り込むことが困難なことから粒成長が抑制され、このため、このような複合セラミックスについて耐摩耗性試験を行った場合に、ジルコニア結晶相の欠落が抑制され、欠落してもこの部分の体積が小さいために摩耗する速さが遅く、このため耐摩耗性を高めることができる。
【0008】
上記複合セラミックスでは、ジルコニア結晶相および金属相の粒界に平均粒径0.5μm以下のアルミナ相を有することが望ましい。ジルコニア結晶相よりも高い硬度を有したアルミナ相を特に結晶相が欠落するときの境界である粒界に含ませることによりさらに耐摩耗性を高めることができる。
【0009】
そして、上記複合セラミックスでは、前記アルミナ相を30質量%以下の割合で含有することが望ましい。
【0010】
本発明の複合セラミックスの製法は、Yを2.8〜4.5モル%含む平均粒径が0.3μm以下のジルコニア粉末と、平均粒径が0.3〜1μmのMo粉末、W粉末のうちいずれか、若しくは、Mo粉末およびW粉末とを混合した混合粉末を成形する工程と、該成形体を加湿窒素水素混合雰囲気にて常圧焼成して予備焼結体を形成する工程と、該予備焼結体を熱間静水圧加圧焼成することを特徴とする。
【0011】
このような製法によれば、焼成時の雰囲気中を加湿窒素水素混合雰囲気とすることにより、焼成雰囲気を無加湿の条件とする場合よりも、Mo粉末やW粉末の酸化を抑制しつつ、ジルコニア粉末の還元、窒化を抑制でき焼結性を高めることができる。こうして、上記複合セラミックスの製造方法では、予備焼結体の相対密度を95%以上に高めることができる。また、本発明の複合セラミックス中には、さらにアルミナ粉末を30質量%以下の割合で添加することが望ましい。
【0012】
この場合、常圧焼成での最高温度および熱間静水圧加圧焼成での最高温度がそれぞれ1550℃以下であることが望ましい。また本発明では焼結における最高温度を最高でも1550℃以下とすることにより複合セラミックスを構成するジルコニア結晶相およびMo相、W相などの金属相の平均粒径をそれぞれ0.35μm以下、1μm以下にできる。
【0013】
【発明の実施の形態】
以下、この発明を詳細に説明する。図1は本発明の複合セラミックスの内部の模式図である。本発明の複合セラミックスは、Yを2.8〜4.5モル%含有する部分安定化したジルコニア結晶相1と、Mo相、W相のうちのいずれか、もしくはこれらの両相である金属相3とから構成されることを特徴とするものである。ジルコニア結晶相1に含まれるY含有量は、ジルコニア結晶相1の正方晶の安定化、あるいは単斜晶および立方晶の抑制の点で、3〜3.3モル%であることが望ましい。また、ジルコニア結晶相1は平均粒径が0.35μm以下であることが重要である。特に0.25μm以下であることが望ましい。下限は、0.1μm以上、特に0.15μm以上が好ましい。これ以下の粒径とするには、この下限以下の平均粒径を持つジルコニア粉末を用いる必要があり成形性など困難な点が出てくる。
【0014】
一方、金属相3は、Mo相、W相の両相ともに、その平均粒径は1μm以下、特に0.8μm以下であることが望ましい。一方、下限は0.4μm以上が好ましい。
【0015】
この複合セラミックス中における金属相3の含有量は5〜25質量%であることが重要である。特に、10〜20質量%であることがより望ましい。金属相3としては、Mo相あるいはW相のうち少なくとも1種が含まれていればよいが、特にMo相が好ましい。
【0016】
本発明では、上記のようにジルコニア結晶相1の平均粒径を金属相3のそれよりも小さくすることによりジルコニア結晶相1内に金属相3が取り込まれることが少なく、つまり、ジルコニア結晶相1が金属相を取り込むほどに粒成長することがなく、このため金属相3はジルコニア結晶相1の粒界に存在するものである。この点でジルコニア結晶相1の平均粒径をD1、金属相3の平均粒径をD2とした時に、0.3≦D1/D2≦0.5の関係を満足することが望ましい。また、本発明の複合セラミックス中に存在する金属相3はこの金属相3の含有量が多くなった場合のような細長く延びた連続相を形成することもなく、ジルコニア結晶相1と金属相3とはお互いに粒子同士が結合した形態で存在している。そして、ジルコニア結晶相1を粒成長させないという理由で、金属相3のうち95%以上が前記ジルコニア結晶相1の粒界に存在することが重要であり、特に、98%以上がより望ましい。
【0017】
本発明の複合セラミックスの主成分であるジルコニア結晶相1中に含まれるYは2.8モル%よりも少ない場合には、初期の機械的特性は向上するものの準安定相である単斜晶が析出しやすくなる(相安定性が低下する)ために、例えば、オートクレーブ処理した後の機械的特性が半減してしまう。一方、4.5モル%よりも多い場合には立方晶が増加する。
【0018】
また、ジルコニア結晶相1の平均粒径が0.35μmよりも大きい場合や金属相3の平均粒径が1μmよりも大きい場合には、金属相3をジルコニア結晶相1中に取り込み粒成長した状態となり、耐摩耗試験などの摺動試験において粒子の欠落部分の体積が大きくなり耐摩耗性が低くなる。
【0019】
さらに、複合セラミックス中における金属相3の含有量が5質量%より少ない場合には、ジルコニア系セラミックスの機械的強度および靭性向上の効果が得られない。一方、25質量%より多い場合には、上述したように金属相3が細長く延びた連続相を形成するようになり、つまり結果的に金属相3の粒成長した部分が多くなり、却って、耐摩耗性試験において金属相3の欠落が起こりやすくなり耐摩耗性が低下する。
【0020】
また、本発明の複合セラミックス中には、このアルミナ相の高い硬度による耐摩耗性を高められるという点で、上記のジルコニア結晶相や金属相以外にアルミナ相を含有することが望ましい。アルミナ相もまたジルコニア結晶相の粒界に存在することが好ましい。このためアルミナ相の平均粒径は0.5μm以下、特に0.4μm以下、下限としては、0.1μm以上、特に、0.15μm以上であることがより望ましく、その含有量は30質量%以下、特に、15〜25質量%であることがより好ましい。
【0021】
次に、本発明の複合セラミックスの製法について説明する。
【0022】
本発明の複合セラミックスは、Yを2.8〜4.5モル%含むジルコニア粉末と、Mo粉末、W粉末のうちいずれか、若しくは、Mo粉末およびW粉末とを混合した混合粉末を所望の形状に成形して、特定の雰囲気中にて焼結させて形成することを特徴とする。
【0023】
この場合、ジルコニア粉末および上記2種の金属粉末の平均粒径は、それぞれ0.3μm以下、0.3〜1μmのものを用いることが重要である。平均粒径がこれ以上のものを用いた場合には焼結後の複合セラミックスを構成するジルコニア結晶相および金属相の平均粒径が大きくなる恐れがある。そして、適正な平均粒径の範囲はジルコニア粉末が0.15〜0.25μm、金属粉末が0.4〜0.8μmが好ましい。
【0024】
本発明に用いるジルコニア粉末などのセラミック粉末および金属粉末の純度は99.9%以上が望ましい。
【0025】
また、本発明では、2段階の焼成を行うことを特徴とする。まず、常圧焼成して予備焼結体を形成する。この場合の焼成雰囲気はMo粉末やW粉末の酸化を抑制しかつジルコニア粉末の還元を抑制するという点で加湿窒素水素混合雰囲気を用いることが重要である。
【0026】
こうしてできた予備焼結体の相対密度は95%以上であることが重要である。特に、次に行う熱間静水圧加圧焼成時の緻密化を促進するという点で96%以上がより好ましい。
【0027】
本発明では、次に予備焼結体を熱間静水圧加圧焼成することを特徴とする。この時の焼成温度としては、常圧焼成での最高温度および熱間静水圧加圧焼成でのそれぞれの最高温度がともに1550℃以下であることが重要である。焼結時の最高温度を1550℃以下に抑えることにより本発明の複合セラミックスを構成するジルコニア結晶相および金属相の粒成長を抑制できる。焼成温度としては、焼結後の密度を高めるという点で、常圧焼結の場合が1350〜1550℃、熱間静水圧加圧焼成の場合が1250〜1450℃であることが好ましい。さらに、この熱間静水圧加圧焼成の場合の雰囲気はアルゴンガス中、圧力が1000〜3000気圧の範囲が好ましい。
【0028】
本発明にて用いるジルコニア粉末は、Yとジルコニア粉末とを粉末混合した後に仮焼して得られたもの、あるいは、Yおよびジルコニアの金属塩やアルコキシドをpH調整した水溶液中で混合して得られたもの(加水分解法)のいずれかでもよいが、均一な粒子径を有し、かつ、より安定化したジルコニアが得られるという点で加水分解法で合成した粉末が好ましい。
【0029】
また、本発明の複合セラミックス中に第3相として含まれるアルミナ粉末は平均粒径が0.6μm以下、特に、0.4μm以下、下限としては0.1μm以上、特に、0.15μm以上が好ましい。
【0030】
また、本発明では、セラミックスの耐摩耗性などの特性を低下させなければ
上記アルミナ粉末の代わりにあるいはアルミナ粉末とともに他のセラミック粉末を添加することもできる。
【0031】
【実施例】
まず、加水分解法により調製したYを所定モル%含む部分安定化したジルコニア粉末(純度99.9%、平均粒径0.2μm)、Mo粉末、W粉末(それぞれ平均粒径0.4μm、純度99.9%以上)、およびアルミナ粉末(平均粒径0.3μm、純度99.9%)を表1に示す組成になるように配合した。混合は高純度耐摩耗のアルミナボールとポリエチレン容器を用い、IPAを溶媒として24時間湿式ボールミルを用いて行った。その後乾燥して得られた混合粉末をプレス成形し、加湿窒素水素雰囲気H/N=0.25、露点=30℃、1400℃にて焼結し棒状の一次焼結体を作製した。
【0032】
次いで、この焼結体のうち相対密度が95%以上のものについて、圧力2000気圧下において最高温度1350℃で熱間静水圧焼成を行い相対密度99.9%以上の緻密焼結体を得た。次に、得られた焼結体を研削加工して、4×3×35mmの試料を作製した。
【0033】
得られた試料につきJIS−R1601による室温における3点曲げ強度、及びJIS−R1607によるSEPB法により破壊靱性値を測定した。結晶相の同定および定量化はX線回折を用いた。結晶組織観察は分析電子顕微鏡を用いて金属相とジルコニア相の割合を求めた。さらに、ピンオンディスク試験法(JIS−T0303)を用いて耐摩耗性を評価した。得られた結果を表1に示す。
【0034】
【表1】

Figure 2004352548
【0035】
表1に結果から、本発明の複合セラミックスである試料No.2〜5、8〜11、13、14、16では、3点曲げ強度が1320MPa以上、靭性が5以上となり、比摩耗量が0.35以下であった。特に、粒界に第3相として平均粒径0.5μm以下のアルミナ相を含有させた試料No.2〜5、8〜11、13、14では、3点曲げ強度が1370MPa以上、靭性を5.8GPa以上と高まり、比摩耗量が0.3以下とさらに改善できた。
【0036】
一方、本発明外の試料では、3点曲げ強度、靭性、比摩耗量ともに本発明よりも劣っていた。
【0037】
【発明の効果】
以上詳述したように、本発明によれば、複合セラミックスを構成するジルコニア結晶相の平均粒径が金属相の平均粒径よりも小さいために、ジルコニア結晶相中に金属相の一部を取り込むことがないことから粒成長が抑制され、このため、この複合セラミックスについて耐摩耗試験を行った場合にジルコニア結晶相の欠落が抑制され、欠落してもこの部分の質量が小さいために摩耗する速さが遅く、このため耐摩耗性を高めることができる。
【図面の簡単な説明】
【図1】本発明の複合セラミックスの内部の模式図である。
【符号の説明】
1 ジルコニア結晶相
3 金属相[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite ceramic and a method for producing the same, and more particularly to a composite ceramic suitable for a structural material having wear resistance and a method for producing the same.
[0002]
[Prior art]
In recent years, ceramics have been applied to various structural parts because of their excellent mechanical properties and corrosion resistance. For example, various cutting tools and tools, mechanical parts such as bearings, and living body-related members. In order to apply to such applications, in Patent Document 1 below, a zirconia-based composite ceramic is selected, and by including a high melting point metal in the composite ceramic, it is possible to enhance particularly the toughness among the mechanical properties. It states that it can.
[0003]
[Patent Document 1]
JP-A-6-172026
[0004]
[Problems to be solved by the invention]
However, in the zirconia-based composite ceramics described in Patent Literature 1, although the toughness is high as described above, the zirconia crystal phase constituting the composite ceramics takes in a part of the metal phase and grows grains. In addition, when a wear resistance test is performed on such a composite ceramic, for example, there is a problem that crystal grains are likely to be lost, and the speed of abrasion is rapidly increased because the missing portion has a large volume.
[0005]
Accordingly, an object of the present invention is to provide a composite ceramic having excellent wear resistance in addition to high strength and high toughness, and a method for producing the same.
[0006]
[Means for Solving the Problems]
The composite ceramics of the present invention is a composite ceramic containing a zirconia crystal phase containing 2.8 to 4.5 mol% of Y 2 O 3 and a metal phase composed of any of Mo and W or a mixture of Mo and W. In the above, the average particle size of the zirconia crystal phase is 0.35 μm or less, the average particle size of the metal phase is 1 μm or less, the content of the metal phase is 5 to 25% by mass in the total amount, and the metal It is characterized in that 95% or more of the phase exists at the grain boundary of the zirconia crystal phase.
[0007]
According to such a configuration, since the average particle diameter of the zirconia crystal phase constituting the composite ceramics is smaller than the average particle diameter of the metal phase, it is difficult to incorporate a part of the metal phase into the zirconia crystal phase. Therefore, when a wear resistance test is performed on such a composite ceramic, the loss of the zirconia crystal phase is suppressed. However, the wear resistance can be increased.
[0008]
In the above-mentioned composite ceramics, it is desirable that the zirconia crystal phase and the metal phase have an alumina phase having an average particle size of 0.5 μm or less at the grain boundaries. Abrasion resistance can be further enhanced by including an alumina phase having a higher hardness than the zirconia crystal phase in a grain boundary which is a boundary particularly when the crystal phase is missing.
[0009]
And in the said composite ceramics, it is desirable to contain the said alumina phase in the ratio of 30 mass% or less.
[0010]
The method for producing the composite ceramics of the present invention includes: a zirconia powder containing 2.8 to 4.5 mol% of Y 2 O 3 and having an average particle diameter of 0.3 μm or less; a Mo powder having an average particle diameter of 0.3 to 1 μm; Forming a mixed powder obtained by mixing any one of the W powders or Mo powder and the W powder; and forming a pre-sintered body by firing the formed body at normal pressure in a humidified nitrogen-hydrogen mixed atmosphere. And firing the pre-sintered body under hot isostatic pressure.
[0011]
According to such a manufacturing method, the atmosphere during sintering is made to be a humidified nitrogen-hydrogen mixed atmosphere, so that the oxidation of Mo powder and W powder is suppressed more than the case where the sintering atmosphere is not humidified. Reduction and nitriding of the powder can be suppressed, and sinterability can be improved. Thus, in the method for producing a composite ceramic, the relative density of the pre-sintered body can be increased to 95% or more. Further, it is desirable that alumina powder is further added to the composite ceramics of the present invention at a ratio of 30% by mass or less.
[0012]
In this case, it is preferable that the maximum temperature in the normal pressure firing and the maximum temperature in the hot isostatic pressing firing are 1550 ° C. or less, respectively. Further, in the present invention, the average particle size of the zirconia crystal phase and the metal phase such as the Mo phase and the W phase constituting the composite ceramics is set to 0.35 μm or less and 1 μm or less, respectively, by setting the maximum temperature in sintering to 1550 ° C. or less. Can be.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail. FIG. 1 is a schematic view of the inside of the composite ceramics of the present invention. The composite ceramics of the present invention comprises a partially stabilized zirconia crystal phase 1 containing 2.8 to 4.5 mol% of Y 2 O 3 and one of a Mo phase and a W phase, or both of them. And a certain metal phase 3. The content of Y 2 O 3 contained in the zirconia crystal phase 1 may be 3 to 3.3 mol% in terms of stabilizing the tetragonal crystal of the zirconia crystal phase 1 or suppressing monoclinic crystal and cubic crystal. desirable. It is important that the zirconia crystal phase 1 has an average particle size of 0.35 μm or less. In particular, it is desirable that the thickness be 0.25 μm or less. The lower limit is preferably 0.1 μm or more, particularly preferably 0.15 μm or more. In order to make the particle diameter smaller than this, it is necessary to use a zirconia powder having an average particle diameter smaller than the lower limit, which causes difficult points such as moldability.
[0014]
On the other hand, the metal phase 3 preferably has an average particle size of 1 μm or less, particularly 0.8 μm or less, in both the Mo phase and the W phase. On the other hand, the lower limit is preferably 0.4 μm or more.
[0015]
It is important that the content of the metal phase 3 in the composite ceramic is 5 to 25% by mass. In particular, the content is more preferably from 10 to 20% by mass. The metal phase 3 may include at least one of the Mo phase and the W phase, and the Mo phase is particularly preferable.
[0016]
In the present invention, the metal phase 3 is less likely to be taken into the zirconia crystal phase 1 by making the average particle size of the zirconia crystal phase 1 smaller than that of the metal phase 3 as described above. Does not grow so much as to take in the metal phase, so that the metal phase 3 exists at the grain boundary of the zirconia crystal phase 1. In this regard, when the average particle diameter of the zirconia crystal phase 1 is D1 and the average particle diameter of the metal phase 3 is D2, it is desirable that the relationship of 0.3 ≦ D1 / D2 ≦ 0.5 is satisfied. Further, the metal phase 3 present in the composite ceramic of the present invention does not form an elongated continuous phase as in the case where the content of the metal phase 3 is increased, and the zirconia crystal phase 1 and the metal phase 3 are not formed. And exist in a form in which particles are bonded to each other. It is important that 95% or more of the metal phase 3 is present at the grain boundary of the zirconia crystal phase 1 because grain growth of the zirconia crystal phase 1 is not required, and 98% or more is particularly desirable.
[0017]
When the amount of Y 2 O 3 contained in the zirconia crystal phase 1 which is a main component of the composite ceramics of the present invention is less than 2.8 mol%, the mechanical properties at the initial stage are improved but the monostable phase which is a metastable phase is improved. For example, mechanical properties after autoclaving are reduced by half because the clinics are likely to precipitate (the phase stability is reduced). On the other hand, when it is more than 4.5 mol%, cubic crystals increase.
[0018]
When the average particle size of the zirconia crystal phase 1 is larger than 0.35 μm or when the average particle size of the metal phase 3 is larger than 1 μm, the metal phase 3 is taken into the zirconia crystal phase 1 and the grains grow. In a sliding test such as an abrasion resistance test, the volume of the missing part of the particles becomes large, and the abrasion resistance decreases.
[0019]
Further, when the content of the metal phase 3 in the composite ceramics is less than 5% by mass, the effect of improving the mechanical strength and toughness of the zirconia-based ceramics cannot be obtained. On the other hand, when the content is more than 25% by mass, the metal phase 3 forms an elongated continuous phase as described above. In the abrasion test, the metal phase 3 tends to be missing, and the abrasion resistance is reduced.
[0020]
In addition, the composite ceramic of the present invention desirably contains an alumina phase in addition to the zirconia crystal phase and the metal phase in that the wear resistance due to the high hardness of the alumina phase can be enhanced. Preferably, the alumina phase is also present at the grain boundaries of the zirconia crystal phase. Therefore, the average particle size of the alumina phase is 0.5 μm or less, particularly 0.4 μm or less, and the lower limit is more preferably 0.1 μm or more, particularly 0.15 μm or more, and the content is 30% by mass or less. In particular, the content is more preferably 15 to 25% by mass.
[0021]
Next, a method for producing the composite ceramic of the present invention will be described.
[0022]
The composite ceramic of the present invention is obtained by mixing a zirconia powder containing 2.8 to 4.5 mol% of Y 2 O 3 with any one of Mo powder and W powder, or a mixed powder obtained by mixing Mo powder and W powder. It is characterized by being formed into a desired shape and sintering in a specific atmosphere.
[0023]
In this case, it is important that the zirconia powder and the two types of metal powder have an average particle diameter of 0.3 μm or less and 0.3 to 1 μm, respectively. When the average particle diameter is larger than the above, the average particle diameter of the zirconia crystal phase and the metal phase constituting the composite ceramic after sintering may be increased. The suitable range of the average particle size is preferably from 0.15 to 0.25 μm for zirconia powder and from 0.4 to 0.8 μm for metal powder.
[0024]
The purity of the ceramic powder such as zirconia powder and the metal powder used in the present invention is desirably 99.9% or more.
[0025]
Further, the present invention is characterized in that two-stage firing is performed. First, a preliminary sintered body is formed by firing at normal pressure. In this case, it is important to use a humidified nitrogen-hydrogen mixed atmosphere as the firing atmosphere in that the oxidation of the Mo powder and the W powder is suppressed and the reduction of the zirconia powder is suppressed.
[0026]
It is important that the relative density of the pre-sintered body thus obtained is 95% or more. In particular, 96% or more is more preferable from the viewpoint of promoting densification during the subsequent hot isostatic pressing and firing.
[0027]
The present invention is characterized in that the pre-sintered body is then subjected to hot isostatic pressing and firing. As the firing temperature at this time, it is important that both the maximum temperature in the normal pressure firing and the maximum temperature in the hot isostatic pressing firing are 1550 ° C. or less. By suppressing the maximum temperature during sintering to 1550 ° C. or less, the grain growth of the zirconia crystal phase and the metal phase constituting the composite ceramic of the present invention can be suppressed. From the viewpoint of increasing the density after sintering, the firing temperature is preferably 1350 to 1550 ° C for normal pressure sintering and 1250 to 1450 ° C for hot isostatic pressing. Furthermore, the atmosphere in the case of the hot isostatic pressurization firing is preferably in argon gas and the pressure is in the range of 1000 to 3000 atm.
[0028]
The zirconia powder used in the present invention is obtained by powder-mixing Y 2 O 3 and zirconia powder and then calcining, or mixed in a pH-adjusted aqueous solution of Y and zirconia metal salts or alkoxides. Any of those obtained by hydrolysis (hydrolysis method) may be used, but a powder synthesized by a hydrolysis method is preferred in that zirconia having a uniform particle diameter and more stabilized is obtained.
[0029]
The alumina powder contained as the third phase in the composite ceramics of the present invention has an average particle size of 0.6 μm or less, particularly 0.4 μm or less, and the lower limit is preferably 0.1 μm or more, particularly preferably 0.15 μm or more. .
[0030]
In the present invention, other ceramic powders can be added instead of the alumina powder or together with the alumina powder as long as the properties such as wear resistance of the ceramics are not reduced.
[0031]
【Example】
First, partially stabilized zirconia powder (purity 99.9%, average particle size 0.2 μm) containing Y 2 O 3 prepared by a hydrolysis method and having a predetermined mol%, Mo powder, and W powder (each having an average particle size of 0. 4 μm, purity of 99.9% or more) and alumina powder (average particle size: 0.3 μm, purity: 99.9%) were blended to have the composition shown in Table 1. Mixing was performed using a high-purity abrasion-resistant alumina ball and a polyethylene container using a wet ball mill for 24 hours using IPA as a solvent. Thereafter, the mixed powder obtained by drying was press-molded, and sintered at a humidified nitrogen-hydrogen atmosphere of H 2 / N 2 = 0.25 and a dew point of 30 ° C. and 1400 ° C. to produce a rod-shaped primary sintered body.
[0032]
Next, among these sintered bodies, those having a relative density of 95% or more were subjected to hot isostatic firing at a maximum temperature of 1350 ° C. under a pressure of 2000 atm to obtain a dense sintered body having a relative density of 99.9% or more. . Next, the obtained sintered body was ground to prepare a 4 × 3 × 35 mm sample.
[0033]
The three-point bending strength at room temperature according to JIS-R1601 and the fracture toughness value of the obtained sample were measured by the SEPB method according to JIS-R1607. X-ray diffraction was used for identification and quantification of the crystal phase. For the crystal structure observation, the ratio between the metal phase and the zirconia phase was determined using an analytical electron microscope. Further, wear resistance was evaluated using a pin-on-disk test method (JIS-T0303). Table 1 shows the obtained results.
[0034]
[Table 1]
Figure 2004352548
[0035]
From the results in Table 1, it can be seen from the results of Sample No. In 2 to 5, 8 to 11, 13, 14, and 16, the three-point bending strength was 1320 MPa or more, the toughness was 5 or more, and the specific wear amount was 0.35 or less. In particular, Sample No. 3 in which an alumina phase having an average particle size of 0.5 μm or less was contained as a third phase in the grain boundary. In 2 to 5, 8 to 11, 13, and 14, the three-point bending strength was increased to 1370 MPa or more, the toughness was increased to 5.8 GPa or more, and the specific wear amount was further improved to 0.3 or less.
[0036]
On the other hand, the samples outside the present invention were inferior to the present invention in all of the three-point bending strength, toughness and specific wear.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, since the average particle size of the zirconia crystal phase constituting the composite ceramics is smaller than the average particle size of the metal phase, a part of the metal phase is incorporated into the zirconia crystal phase. As a result, grain growth is suppressed, and therefore, when a wear resistance test is performed on this composite ceramic, the loss of the zirconia crystal phase is suppressed. However, the wear resistance can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic view of the inside of a composite ceramic of the present invention.
[Explanation of symbols]
1 Zirconia crystal phase 3 Metal phase

Claims (7)

を2.8〜4.5モル%含むジルコニア結晶相と、Mo、Wのいずれか、またはMoおよびWの混合物からなる金属相とを含有する複合セラミックスにおいて、前記ジルコニア結晶相の平均粒径が0.35μm以下、前記金属相の平均粒径が1μm以下であり、前記金属相の含有量が全量中に5〜25質量%であり、かつ前記金属相のうち95%以上が前記ジルコニア結晶相の粒界に存在することを特徴とする複合セラミックス。Zirconia crystal phase containing Y 2 O 3 2.8 to 4.5 mol%, Mo, either W, or in a composite ceramic containing a metal phase consisting of a mixture of Mo and W, of the zirconia crystal phase The average particle size is 0.35 μm or less, the average particle size of the metal phase is 1 μm or less, the content of the metal phase is 5 to 25% by mass in the total amount, and 95% or more of the metal phase is 95% or more. A composite ceramic, which is present at a grain boundary of the zirconia crystal phase. ジルコニア結晶相および金属相の粒界に平均粒径0.5μm以下のアルミナ相を有することを特徴とする請求項1に記載の複合セラミックス。2. The composite ceramic according to claim 1, wherein the composite ceramic has an alumina phase having an average particle size of 0.5 μm or less at a grain boundary between a zirconia crystal phase and a metal phase. 前記アルミナ相を30質量%以下の割合で含有することを特徴とする請求項1または2に記載の複合セラミックス。3. The composite ceramic according to claim 1, wherein the alumina phase is contained in a proportion of 30% by mass or less. を2.8〜4.5モル%含む平均粒径が0.3μm以下のジルコニア粉末と、平均粒径が0.3〜1μmのMo粉末、W粉末のうちいずれか、若しくは、Mo粉末およびW粉末とを混合した混合粉末を成形する工程と、該成形体を加湿窒素水素混合雰囲気にて常圧焼成して予備焼結体を形成する工程と、該予備焼結体を熱間静水圧加圧焼成することを特徴とする複合セラミックスの製造方法。A zirconia powder having an average particle size of 0.3 μm or less containing 2.8 to 4.5 mol% of Y 2 O 3, and a Mo powder or a W powder having an average particle size of 0.3 to 1 μm, or A step of forming a mixed powder obtained by mixing the Mo powder and the W powder; a step of sintering the formed body under normal pressure in a humidified nitrogen-hydrogen mixed atmosphere to form a pre-sintered body; A method for producing a composite ceramics, which comprises firing under isostatic pressure. 予備焼結体の相対密度が95%以上であることを特徴とする請求項4に記載の複合セラミックスの製法。The method for producing a composite ceramic according to claim 4, wherein the relative density of the pre-sintered body is 95% or more. 常圧焼成での最高温度および熱間静水圧加圧焼成でのそれぞれの最高温度が1550℃以下であることを特徴とする請求項4または請求項5に記載の複合セラミックスの製法。6. The method for producing a composite ceramic according to claim 4, wherein the maximum temperature in normal pressure firing and the maximum temperature in hot isostatic pressure firing are 1550 ° C. or less. 前記アルミナ粉末を30質量%以下の割合で添加することを特徴とする請求項4乃至6のうちいずれか記載の複合セラミックスの製法。The method for producing a composite ceramic according to any one of claims 4 to 6, wherein the alumina powder is added at a ratio of 30% by mass or less.
JP2003151143A 2003-05-28 2003-05-28 Composite ceramics and manufacturing method thereof Expired - Fee Related JP4243514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003151143A JP4243514B2 (en) 2003-05-28 2003-05-28 Composite ceramics and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151143A JP4243514B2 (en) 2003-05-28 2003-05-28 Composite ceramics and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004352548A true JP2004352548A (en) 2004-12-16
JP4243514B2 JP4243514B2 (en) 2009-03-25

Family

ID=34046755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151143A Expired - Fee Related JP4243514B2 (en) 2003-05-28 2003-05-28 Composite ceramics and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4243514B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116574A (en) * 2009-12-01 2011-06-16 Doshisha Ceramic/metal nitride composite and method for producing ceramic/metal nitride composite by capsule-free hot hydrostatic press
CN110183236A (en) * 2018-02-22 2019-08-30 高佑君 A kind of high-temperature flame-proof composite material and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116574A (en) * 2009-12-01 2011-06-16 Doshisha Ceramic/metal nitride composite and method for producing ceramic/metal nitride composite by capsule-free hot hydrostatic press
CN110183236A (en) * 2018-02-22 2019-08-30 高佑君 A kind of high-temperature flame-proof composite material and preparation method

Also Published As

Publication number Publication date
JP4243514B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP5366398B2 (en) Composite ceramics and manufacturing method thereof
JP6637956B2 (en) Sintered ceramic material, powder composition for obtaining sintered ceramic material, method for producing the same, and ceramic component
JP4465173B2 (en) Composite ceramics and manufacturing method thereof
WO2005042047A1 (en) Biological member and method for manufacture thereof
JP2003034572A (en) Alumina ceramic sintered body, its manufacturing method and cutting tool
JP4721635B2 (en) Biomaterial, artificial joint using the same, and method for producing biomaterial
JP2005075659A (en) Ceramic sintered compact, method for producing the same, and biomaterial
JP4589642B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4383099B2 (en) Manufacturing method of composite ceramics
JP4243514B2 (en) Composite ceramics and manufacturing method thereof
JP4761749B2 (en) Biomaterial and artificial joint using the same
JP4753575B2 (en) Biomaterial, artificial joint using the same, and method for producing biomaterial
JP4831945B2 (en) Zirconia-alumina ceramics and process for producing the same
JP4514563B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4570348B2 (en) Biomaterial manufacturing method, biomaterial and artificial joint using the same
JP4601304B2 (en) Alumina / zirconia ceramics and process for producing the same
JP4612358B2 (en) Alumina / zirconia ceramics and production method thereof
Sivakumar et al. The Effect of Copper Oxide on the Mechanical Properties of Y-TZP Ceramics
JP4601303B2 (en) Alumina / zirconia ceramics and process for producing the same
JP3121996B2 (en) Alumina sintered body
Xu et al. Fabrication and characterization of (Nd, Y)-TZP ceramics from stabilizer-coated nanopowder
JP4460918B2 (en) Alumina / zirconia ceramics and process for producing the same
JP2005211253A (en) Biological member, method for manufacture thereof and artificial joint
JP2005211252A (en) Biological member, method for manufacture thereof and artificial joint
CN113518766A (en) Ceramic sintered body and ceramic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees