JP2004351297A - Catalyst for methacrylic acid production, its production method, and production method of methacrylic acid - Google Patents

Catalyst for methacrylic acid production, its production method, and production method of methacrylic acid Download PDF

Info

Publication number
JP2004351297A
JP2004351297A JP2003150697A JP2003150697A JP2004351297A JP 2004351297 A JP2004351297 A JP 2004351297A JP 2003150697 A JP2003150697 A JP 2003150697A JP 2003150697 A JP2003150697 A JP 2003150697A JP 2004351297 A JP2004351297 A JP 2004351297A
Authority
JP
Japan
Prior art keywords
catalyst
methacrylic acid
oxide
precursor
element selected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003150697A
Other languages
Japanese (ja)
Other versions
JP4285084B2 (en
Inventor
Naohiro Fukumoto
直広 福本
Naomasa Kimura
直正 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2003150697A priority Critical patent/JP4285084B2/en
Publication of JP2004351297A publication Critical patent/JP2004351297A/en
Application granted granted Critical
Publication of JP4285084B2 publication Critical patent/JP4285084B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for methacrylic acid production with superior performance, strength and advantageous production cost, its production method, and a production method of methacrylic acid using the catalyst. <P>SOLUTION: This catalyst is obtained by mixing and baking a precursor M of an oxide and an oxide N respectively expressed by general formula I: Mo<SB>a</SB>P<SB>b</SB>A<SB>c</SB>B<SB>d</SB>C<SB>e</SB>D<SB>f</SB>O<SB>x</SB>. Here, A is at least one element selected among As, Sb, Ge, Bi, Zn and Se; B is at least one element selected among Cu, Fe, Cr, Ni, Mn, Co, Sn, Ag, Zn, Pd, Rh and Te; C is at least one element selected among V, W and Nb; D is at least one element selected among alkali metals, alkaline earth metals and Tl; a, b, c, d, e, f and x are each atomic ratio of Mo, A, B, C, D and O; and when a=12, b=0.5-4; c=0-5, d=0-3, e=0-4, f=0.01-4, and x is a value decided by an oxidation state of respective elements. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明はメタクリル酸製造用触媒、その製造方法およびメタクリル酸の製造方法に関する。詳しくは、本発明はメタクリル酸の製造に使用するに好適なヘテロポリ酸系触媒、その製造方法、およびこのヘテロポリ酸系触媒の存在下にメタクロレイン、イソブチルアルデヒドおよび/またはイソ酪酸を気相酸化または気相酸化脱水素してメタクリル酸を製造する方法に関する。
【0002】
【従来の技術】
メタクロレイン、イソブチルアルデヒドおよび/またはイソ酪酸を気相酸化してメタクリル酸を製造するためにヘテロポリ酸系触媒が用いられることはよく知られている。
【0003】
しかし、これらのヘテロポリ酸系触媒は成型性が非常に悪く、機械的強度も悪い。したがって、実用触媒とするために触媒の形態、補強剤の検討が種々行われている。
【0004】
触媒の形態については、適当な担体上に触媒成分を付着させる担持触媒、打錠成型や押し出し成型による加圧成型触媒、転動造粒による造粒触媒などが検討されている。また、補強剤については、触媒物質にグラファイト、セラミックファイバー、ウィスカーなどの耐熱性繊維を混ぜた押し出し成型触媒が提案されている(例えば、特許文献1参照)。
【特許文献1】特公平2−36296号公報
【0005】
【発明が解決しようとする課題】
しかしながら、これら従来の触媒は実用化されているものの、取り扱いに十分な強度を有しておらず、工業触媒として更なる強度向上が望まれている。また、強度が不良であるため、歩留まりが悪く、触媒製造コストが増大している。一方、触媒性能面においても、これまで提案されている触媒は、メタクリル酸の収率および選択性が低く、工業的に満足のいくものではない。
【0006】
本発明は上記の問題点を解決し、従来方法によって得られたヘテロポリ酸系触媒よりも、性能、強度および製造コストの点において、より優れたヘテロポリ酸系触媒を提供しようとするものである。
また、本発明は、上記ヘテロポリ酸系触媒の製造方法を提供するものである。
また、本発明は、上記ヘテロポリ酸系触媒を用い、メタクロレイン、イソブチルアルデヒドおよび/またはイソ酪酸を気相酸化または気相脱水素してメタクリル酸を製造する方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために、ヘテロポリ酸系触媒の改良について検討を行い、成型前の触媒物質に焼成後触媒を特定量混ぜて成型することで、触媒強度が著しく向上し、併せてメタクリル酸生成の選択率が向上し、さらに製造コストが低下することを見出し、本発明を完成した。
【0008】
すなわち、本発明は、一般式I:
Mo (I)
(ここで、Moはモリブデン、Pはリン、Aはヒ素、アンチモン、ゲルマニウム、ビスマス、ジルコニウムおよびセレンから選ばれる少なくとも1種の元素、Bは銅、鉄、クロム、ニッケル、マンガン、コバルト、スズ、銀、亜鉛、パラジウム、ロジウムおよびテルルから選ばれる少なくとも1種の元素、Cはバナジウム、タングステンおよびニオブから選ばれる少なくとも1種の元素、Dはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Oは酸素を表し、a、b、c、d、e、fおよびxは、それぞれ、Mo、A、B、C、DおよびOの原子比を表し、a=12のとき、b=0.5〜4、c=0〜5、d=0〜3、e=0〜4、f=0.01〜4であり、xはそれぞれの元素の酸化状態によって定まる数値である)
で表される酸化物の前駆体[M]と一般式Iで表される酸化物[N]とを混合し、焼成して得られたものであることを特徴とするメタクリル酸製造用触媒である。
【0009】
また、本発明は、上記一般式Iで表される酸化物の前駆体[M]と一般式Iで表される酸化物[N]とを混合し、次いで乾燥、焼成することを特徴とするメタクリル酸製造用触媒の製造方法である。
また、本発明はメタクロレイン、イソブチルアルデヒドおよび/またはイソ酪酸を接触気相酸化または接触気相脱水素してメタクリル酸を製造する際に、上記触媒を用いることを特徴とするメタクリル酸の製造方法である。
【0010】
【発明の実施の形態】
本発明の一般式Iで表される酸化物の前駆体[M]とは、一般式Iの各元素を含む原料化合物を水などの媒体中に溶解または懸濁させて得られる溶液またはスラリー(以下、これらを「スラリー」と総称する。)、またはこのスラリーを300℃未満の温度で乾燥して得られる乾燥物であって、このスラリーまたは乾燥物を、スラリーについては蒸発乾固して乾燥した後、300〜600℃の温度で焼成することにより一般式Iで表される酸化物を形成するものを意味する。
【0011】
上記スラリーの調製は、従来からよく知られている沈殿法、酸化物混合法などの方法で行うことができる。具体的には、一般式Iの各元素を含む原料化合物を所要量の水などの媒体中に適宜溶解または懸濁させればよい。
【0012】
原料化合物については特に制限はなく、ヘテロポリ酸系触媒の調製に一般的に用いられている化合物を使用することができる。例えば、モリブデン原料としては、パラモリブデン酸アンモニウム、ジモリブデン酸アンモニウム等のモリブデン酸アンモニウム類、モリブデン酸、三酸化モリブデンなどを用いることができる。バナジウム原料としては、五酸化バナジウム、メタバナジン酸アンモニウム、メタバナジン酸ナトリウム、シュウ酸バナジル、硫酸バナジルなどを用いることができる。また、リン原料としては、オルトリン酸、リン酸水素二ナトリウム、リン酸アンモニウムなどを用いることができる。もちろん、2種以上の元素を含むモリブドリン酸、モリブドバナドリン酸などを使用してもよい。
【0013】
前駆体[M]の乾燥物は、上記スラリーを一般的な乾燥法によって乾燥して得られる。例えば、蒸発乾固法、噴霧乾燥法、ドラム乾燥法などが用いられる。この際、乾燥時の温度は300℃未満であり、好ましくは250℃未満、さらに好ましくは100〜200℃、なおさらに好ましくは110〜190℃である。なお、補強剤としてグラスファイバー、グラファイト、セラミックファイバー、ウィスカー等の耐熱性繊維をスラリー中および/または乾燥物中に含有させることもできる。
【0014】
酸化物[N]は、一般式Iの各元素を含む原料化合物を水などの媒体中に溶解または懸濁させて得られるスラリーを乾燥した後、酸素流通下、空気流通下または窒素流通下で焼成して得られる。具体的には、例えば、上記のスラリーまたは乾燥物を焼成すればよい。この際、酸化物[N]の組成は、前駆体[M]と同一であってもかまわないし、異なっていてもよい。焼成温度は300〜600℃であり、好ましくは300〜500℃、さらに好ましくは350〜450℃である。焼成時間は特に限定されないが、通常1〜50時間程度が好ましい。
【0015】
酸化物[N]としては、上記のように新たに製造したものを用いても、あるいは反応に使用して性能の劣化した触媒や、触媒製造時に発生する非製品(割れたり、欠けたりしたもの、粉塵、端切品など)を用いてもよい。
【0016】
上記のようにして得られた前駆体[M]と酸化物[N]とを混合するが、両者の混合割合は、通常、[M]:[N]=100:1〜100:50(質量比;以下同じ。)であり、好ましくは100:1〜100:30、さらに好ましくは100:3〜100:15である。なお、前駆体[M]がスラリーの場合、その固形分として換算する。
【0017】
酸化物[N]を混合することなく前駆体[M]のみを用いて得られる触媒は、機械的強度が十分でなく、一方、酸化物[N]の割合が大きくなると触媒の機械的強度、転化率およびメタクリル酸の選択率が低下する。
【0018】
酸化物[N]はそのまま用いてもよいが、最大粒径が1mm以下、好ましくは0.5mm以下に粉砕して使用するのが、触媒の機械的強度が向上するとの理由で好ましいものである。なお、水に溶解または懸濁させて使用することもできる。また、前駆体[M]と同様に、補強剤としてグラスファイバー、グラファイト、セラミックファイバー、ウィスカー等の耐熱性繊維を含有させてもよい。
【0019】
このように前駆体[M]および/または酸化物[N]にグラスファイバー、グラファイト、セラミックファイバー、ウィスカー等の耐熱性繊維の少なくとも一種を含有させることにより、触媒の機械的強度を更に向上させることができる。なお、耐熱性繊維は、前駆体[M]および/または酸化物[N]の調製時、それらのスラリーの段階で添加するのが一般的である。
【0020】
こうして得られた混合物は、このまま焼成しても触媒として使用できるが、通常、必要に応じ、成型助剤として水などを添加して所望形状に成型してから、焼成を行う。この際、混合物がスラリー状の場合は、一般的な乾燥法により乾燥物としてから成型を行う。焼成は酸素流通下、空気流通下または窒素流通下で行う。焼成温度は、通常、300〜600℃であり、好ましくは300〜500℃、さらに好ましくは350〜450℃である。また、焼成時間は特に限定されないが、通常1〜50時間程度が好ましい。
【0021】
上記触媒の存在下でのメタクロレイン、イソブチルアルデヒドおよび/またはイソ酪酸の気相酸化または酸化脱水素反応の条件については特に制限はなく、この種の反応に一般的に用いられている条件下にて行うことができる。例えば、メタクロレインの気相酸化の場合、メタクロレイン1〜10容量%、これに対する容量比で1〜10倍の範囲の分子状酸素、希釈剤としての、窒素、炭酸ガス、水蒸気(特に水蒸気の場合には、副生成物の生成を抑制し、目的性生物の収率向上に有利である。)などの不活性ガスからなる混合ガスを触媒上に200〜400℃の温度範囲および常圧ないし1MPaの圧力下、空間速度100〜5,000hr−1(STP)で導入する。原料メタクロレインは必ずしも純粋である必要はなく、イソブチレンまたはターシャリーブタノールを接触的に反応させて得られるメタクロレイン含有ガスを用いることもできる。この方法は工業的プロセスにおいては特に推奨される。
【0022】
【発明の効果】
本発明の触媒は、性能、強度および製造コストに優れたヘテロポリ酸系触媒である。そして、このヘテロポリ酸系触媒を用いることによりメタクリル酸を高収率で製造することができる。
【0023】
【実施例】
以下、実施例を挙げて本発明を更に具体的に説明する。なお、転化率、選択率および単流収率は次の通り定義される。
転化率(モル%)=(反応したメタクロレインのモル数/供給したメタクロレインのモル数)×100
選択率(モル%)=(生成したメタクリル酸のモル数/反応したメタクロレインのモル数)×100
単流収率(モル%)=(生成したメタクリル酸のモル数/供給したメタクロレインのモル数)×100
実施例1
加熱したイオン交換水1000mlにパラモリブデン酸アンモニウム500gとメタバナジン酸アンモニウム27.6gとを加え攪拌した。これにオルトリン酸(85質量%)35.4gを加え、続いて硝酸セシウム46.0gを溶かした溶液を加え、攪拌下に加熱濃縮した。得られたスラリーを120℃で4時間乾燥した後、粉砕した(以下、この粉体を前駆体[M]という。)。この前駆体[M]の組成は酸素を除いた原子比でMo121.31.0Cs1.0 であった。
新たに、前駆体[M]を同量作り、更に、空気流中400℃で3時間焼成し、粉砕して粒径0.5mm以下の酸化触媒(以下、これを酸化物[N]という。)を得た。この酸化物[N]の組成は酸素を除いた原子比でMo121.31.0Cs1.0であった。
前駆体[M]に酸化物[N]の全回収量の1/10を混合し、水で調湿した後、スクリュー式押出し成型機で直径5mm、長さ6mmのペレット状に成型し、乾燥した後、空気流中400℃で3時間焼成してペレット状触媒を得た。前駆体[M]と酸化物[N]との質量比は100:10であった。
上記のようにして得られた触媒50mlを内径25mmφのステンレス製U字管に充填し、280℃の溶融塩浴中に浸漬し、この管内にイソブチレンをモリブデン、コバルト、ビスマス、鉄などの酸化物多元系触媒の存在下に気相酸化して得られた下記組成の混合ガスを導入し、反応温度280℃、空間速度1,000h−1(STP)で反応を行った。
メタクロレイン:3.5容量%
イソブチレン:0.04容量%
メタクリル酸+酢酸:0.24容量%
水蒸気:20.0容量%
酸素:9.0容量%
その他(窒素、炭酸ガスを主体とする不活性ガス):67.22容量%
また、触媒の機械的強度の測定を次の方法で行った。
磨耗度:
内径100mmφ、幅100mmの12メッシュステンレス製金網からできた円筒の中に触媒50gを入れ、この円筒を毎分100回転の速度で30分間連続してまわした後、円筒内に残った触媒の質量を計り、次の式により磨耗率を計算した。
磨耗率(%)={(触媒質量(50g)−回転後金網内に残った触媒質量(g))/触媒質量(50g)}×100
落下強度:
垂直に立てた内径25mmφで長さが5000mmLの鉄パイプの上部から触媒30gを落下させ4メッシュの篩で受け止め、篩上に残った触媒の質量を計り、次の式により落下強度率を計算した。
落下強度率(%)={(触媒質量(30g)−篩上に残った触媒質量(g))/触媒質量(30g)}×100
触媒の組成および機械的強度を表1に、また反応結果を表2に示す。
実施例2
実施例1において、前駆体[M]および酸化物[N]を調製する際、それらのスラリーの段階でシリコンカーバイドウィスカー9.8g(ウィスカー含有量2質量%)を添加した以外は、実施例1と同様にして触媒調製および酸化反応を行った。触媒の組成および機械的強度を表1に、また反応結果を表2に示す。
実施例3
実施例1において、前駆体[M]および酸化物[N]の乾燥物の段階にグラスファイバー(8〜12μmφ)9.8g(グラスファイバー含有量2質量%)を添加した以外は、実施例1と同様にして触媒調製および酸化反応を行った。触媒の組成および機械的強度を表1に、また反応結果を表2に示す。
実施例4
実施例1において、前駆体[M]および酸化物[N]を調製する際、それらのスラリーにシリコンカーバイドウィスカー9.8g(ウィスカー含有量2質量%)を添加し、乾燥物の段階にグラスファイバー(8〜12μmφ)9.8g(グラスファイバー含有量2質量%)を添加した以外は、実施例1と同様に触媒調製および酸化反応を行った。触媒の組成および機械的強度を表1に、また反応結果を表2に示す。
【表1】

Figure 2004351297
【表2】
Figure 2004351297
比較例1
実施例1において、前駆体[M]のみを水で調湿した後、スクリュー式押出し成型機で直径5mm、長さ6mmのペレット状に成型し、乾燥した後、空気流中400℃で3時間焼成してペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表3に、また反応結果を表4に示す。
比較例2
比較例1において、前駆体[M]のスラリーの段階にシリコンカーバイドウィスカー9.8g(ウィスカー含有量2質量%)を添加した以外は、比較例1と同様にしてペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表3に、また反応結果を表4に示す。
比較例3
比較例1において、前駆体[M]の乾燥物の段階にグラスファイバー(8〜12μmφ)9.8g(グラスファイバー含有量2質量%)を添加した以外は、比較例1と同様にしてペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表3に、また反応結果を表4に示す。
比較例4
比較例1において、前駆体[M]のスラリーの段階にシリコンカーバイドウィスカー9.8g(ウィスカー含有量2質量%)を添加し、乾燥物の段階にグラスファイバー(8〜12μmφ)9.8g(グラスファイバー含有量2質量%)を添加した以外は、比較例1と同様にしてペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表3に、また反応結果を表4に示す。
【表3】
Figure 2004351297
【表4】
Figure 2004351297
実施例5
実施例1において、前駆体[M]に酸化物[N]の全回収量の3/100を混合する以外は、実施例1と同様にして触媒調製を行った。この際の、前駆体[M]と酸化物[N]との質量比は100:3であった。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表5に、また反応結果を表6に示す。
実施例6
実施例1において、前駆体[M]に酸化物[N]の全回収量の15/100を混合する以外は、実施例1と同様にして触媒調製を行った。この際の、前駆体[M]と酸化物[N]との質量比は100:15であった。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表5に、また反応結果を表6に示す。
実施例7
実施例1において、前駆体[M]に酸化物[N]の全回収量の30/100を混合する以外は、実施例1と同様にして触媒調製を行った。この際の、前駆体[M]と酸化物[N]との質量比は100:30であった。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表5に、また反応結果を表6に示す。
【表5】
Figure 2004351297
【表6】
Figure 2004351297
実施例8
実施例1において、酸化物[N]の粒径を0.1mm以下とした以外は、実施例1と同様にして触媒調製を行った。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表7に、また反応結果を表8に示す。
実施例9
実施例1において、前駆体[M]を乾燥前のスラリーに置き換えた以外は、実施例1と同様にして触媒調製を行った。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表7に、また反応結果を表8に示す。
実施例10
実施例1において、前駆体[M]を乾燥前のスラリーに置き換え、酸化物[N]を水に懸濁させてスラリーとした以外は、実施例1と同様にして触媒調製を行った。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表7に、また反応結果を表8に示す。
【表7】
Figure 2004351297
【表8】
Figure 2004351297
実施例11
実施例1において、前駆体[M]の組成が、Mo121.5Cu0.21.0Cs1.5となるように、オルトリン酸と硝酸セシウムを増量し、硝酸銅を硝酸セシウムと同時に添加した以外は、実施例1と同様にして触媒調製を行った。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表9に、また反応結果を表10に示す。
実施例12
実施例1において、前駆体[M]の組成が、Mo121.3Sb1.0Cu0.21.0Csとなるように、三酸化アンチモンと硝酸銅を硝酸セシウムと同時に添加した以外は、実施例1と同様にして触媒調製を行った。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表9に、また反応結果を表10に示す。
実施例13
実施例1において、前駆体[M]の組成が、Mo121.3As0.5Ag0.21.0Csとなるように、亜ヒ酸と硝酸銀を硝酸セシウムと同時に添加し、また酸化物[N]の組成がMo121.5Cu0.21.0Cs1.5となるように、オルトリン酸と硝酸セシウムを増量し、硝酸銅を硝酸セシウムと同時に添加した以外は、実施例1と同様にして触媒調製を行った。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表9に、また反応結果を表10に示す。
【表9】
Figure 2004351297
【表10】
Figure 2004351297
比較例5
実施例11において、前駆体[M]のみを水で調湿した後、スクリュー式押出し成型機で直径5mm、長さ6mmのペレット状に成型し、乾燥した後、空気流中400℃で3時間焼成してペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表11に、また反応結果を表12に示す。
比較例6
実施例12において、前駆体[M]のみを水で調湿した後、スクリュー式押出し成型機で直径5mm、長さ6mmのペレット状に成型し、乾燥した後、空気流中400℃で3時間焼成してペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表11に、また反応結果を表12に示す。
比較例7
実施例13において、前駆体[M]のみを水で調湿した後、スクリュー式押出し成型機で直径5mm、長さ6mmのペレット状に成型し、乾燥した後、空気流中400℃で3時間焼成してペレット状触媒を得た。この触媒について、実施例1と同様に、強度測定および酸化反応を行った。触媒の組成および機械的強度を表11に、また反応結果を表12に示す。
【表11】
Figure 2004351297
【表12】
Figure 2004351297
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for producing methacrylic acid, a method for producing the same, and a method for producing methacrylic acid. Specifically, the present invention relates to a heteropolyacid-based catalyst suitable for use in the production of methacrylic acid, a method for producing the same, and gas-phase oxidation or oxidation of methacrolein, isobutyraldehyde and / or isobutyric acid in the presence of the heteropolyacid-based catalyst. The present invention relates to a method for producing methacrylic acid by gas phase oxidative dehydrogenation.
[0002]
[Prior art]
It is well known that heteropolyacid based catalysts are used to produce methacrylic acid by gas phase oxidation of methacrolein, isobutyraldehyde and / or isobutyric acid.
[0003]
However, these heteropolyacid catalysts have very poor moldability and poor mechanical strength. Therefore, various studies have been made on the form of the catalyst and the reinforcing agent to make it a practical catalyst.
[0004]
Regarding the form of the catalyst, a supported catalyst for attaching a catalyst component to an appropriate carrier, a press-molded catalyst by tableting or extrusion, a granulated catalyst by tumbling granulation, and the like have been studied. As for the reinforcing agent, an extruded catalyst in which heat-resistant fibers such as graphite, ceramic fibers, and whiskers are mixed with a catalytic substance has been proposed (for example, see Patent Document 1).
[Patent Document 1] Japanese Patent Publication No. 2-36296
[Problems to be solved by the invention]
However, although these conventional catalysts have been put to practical use, they do not have sufficient strength for handling, and further improvement in strength as an industrial catalyst is desired. In addition, since the strength is poor, the yield is poor, and the catalyst production cost is increasing. On the other hand, in terms of catalytic performance, the catalysts proposed so far have low methacrylic acid yield and selectivity, and are not industrially satisfactory.
[0006]
The present invention is intended to solve the above problems and provide a heteropolyacid-based catalyst which is more excellent in performance, strength and production cost than the heteropolyacid-based catalyst obtained by the conventional method.
The present invention also provides a method for producing the above heteropolyacid catalyst.
The present invention also provides a method for producing methacrylic acid by vapor-phase oxidation or gas-phase dehydrogenation of methacrolein, isobutyraldehyde and / or isobutyric acid using the above-mentioned heteropolyacid catalyst.
[0007]
[Means for Solving the Problems]
The present inventors have studied the improvement of heteropolyacid catalysts in order to solve the above problems, and by mixing a specific amount of the catalyst after calcination with the catalyst material before molding, the catalyst strength is significantly improved. In addition, they have found that the selectivity of methacrylic acid generation is improved and the production cost is further reduced, and the present invention has been completed.
[0008]
That is, the present invention provides a compound of the general formula I:
Mo a P b A c B d C e D f O x (I)
(Where Mo is molybdenum, P is phosphorus, A is at least one element selected from arsenic, antimony, germanium, bismuth, zirconium and selenium, B is copper, iron, chromium, nickel, manganese, cobalt, tin, At least one element selected from silver, zinc, palladium, rhodium and tellurium, C is at least one element selected from vanadium, tungsten and niobium, D is at least one element selected from alkali metals, alkaline earth metals and thallium The species element, O, represents oxygen, a, b, c, d, e, f, and x represent the atomic ratio of Mo, A, B, C, D, and O, respectively, and when a = 12, b = 0.5 to 4, c = 0 to 5, d = 0 to 3, e = 0 to 4, f = 0.01 to 4, and x is determined by the oxidation state of each element. Is a numerical value)
A catalyst for producing methacrylic acid, characterized by being obtained by mixing a precursor [M] of the oxide represented by the formula [I] and an oxide [N] represented by the general formula I and calcining the mixture. is there.
[0009]
Further, the present invention is characterized in that the precursor [M] of the oxide represented by the general formula I and the oxide [N] represented by the general formula I are mixed, and then dried and fired. This is a method for producing a catalyst for producing methacrylic acid.
In addition, the present invention provides a method for producing methacrylic acid, which comprises using the above catalyst when producing methacrylic acid by catalytic gas phase oxidation or catalytic gas phase dehydrogenation of methacrolein, isobutyraldehyde and / or isobutyric acid. It is.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The oxide precursor [M] represented by the general formula I of the present invention refers to a solution or a slurry obtained by dissolving or suspending a raw material compound containing each element of the general formula I in a medium such as water. Hereinafter, these are collectively referred to as “slurries.”) Or a dried product obtained by drying the slurry at a temperature of less than 300 ° C., and drying the slurry or the dried product by evaporating the slurry to dryness. And then firing at a temperature of 300 to 600 ° C. to form an oxide represented by the general formula I.
[0011]
The slurry can be prepared by a conventionally well-known method such as a precipitation method and an oxide mixing method. Specifically, a raw material compound containing each element of the general formula I may be appropriately dissolved or suspended in a required amount of a medium such as water.
[0012]
The starting compound is not particularly limited, and a compound generally used for preparing a heteropolyacid catalyst can be used. For example, as a molybdenum raw material, ammonium molybdates such as ammonium paramolybdate and ammonium dimolybdate, molybdic acid, molybdenum trioxide and the like can be used. As the vanadium raw material, vanadium pentoxide, ammonium metavanadate, sodium metavanadate, vanadyl oxalate, vanadyl sulfate, or the like can be used. Further, orthophosphoric acid, disodium hydrogen phosphate, ammonium phosphate and the like can be used as the phosphorus raw material. Of course, molybdophosphoric acid, molybdovanadophosphoric acid, or the like containing two or more elements may be used.
[0013]
A dried product of the precursor [M] is obtained by drying the slurry by a general drying method. For example, an evaporation to dryness method, a spray drying method, a drum drying method and the like are used. At this time, the drying temperature is lower than 300 ° C, preferably lower than 250 ° C, more preferably 100 to 200 ° C, and still more preferably 110 to 190 ° C. Note that heat-resistant fibers such as glass fibers, graphite, ceramic fibers, and whiskers may be contained in the slurry and / or the dried product as a reinforcing agent.
[0014]
The oxide [N] is obtained by drying a slurry obtained by dissolving or suspending a raw material compound containing each element of the general formula I in a medium such as water, and then flowing the mixture under oxygen, air or nitrogen. Obtained by firing. Specifically, for example, the above slurry or dried product may be fired. In this case, the composition of the oxide [N] may be the same as or different from that of the precursor [M]. The firing temperature is from 300 to 600 ° C, preferably from 300 to 500 ° C, and more preferably from 350 to 450 ° C. The firing time is not particularly limited, but is preferably about 1 to 50 hours.
[0015]
As the oxide [N], a newly manufactured product as described above, or a catalyst whose performance has been deteriorated by use in the reaction, or a non-product (cracked or chipped) generated during the manufacture of the catalyst. , Dust, trimmings, etc.).
[0016]
The precursor [M] and the oxide [N] obtained as described above are mixed, and the mixing ratio of both is usually [M]: [N] = 100: 1 to 100: 50 (mass Ratio; the same shall apply hereinafter), preferably 100: 1 to 100: 30, more preferably 100: 3 to 100: 15. When the precursor [M] is a slurry, it is converted as its solid content.
[0017]
The catalyst obtained by using only the precursor [M] without mixing the oxide [N] has insufficient mechanical strength, whereas when the proportion of the oxide [N] increases, the mechanical strength of the catalyst increases. The conversion and the selectivity of methacrylic acid decrease.
[0018]
Although the oxide [N] may be used as it is, it is preferable to use the oxide [N] after being pulverized to a maximum particle size of 1 mm or less, preferably 0.5 mm or less, because the mechanical strength of the catalyst is improved. . In addition, it can also be used by dissolving or suspending it in water. Further, similarly to the precursor [M], a heat-resistant fiber such as glass fiber, graphite, ceramic fiber, or whisker may be contained as a reinforcing agent.
[0019]
By adding at least one kind of heat-resistant fiber such as glass fiber, graphite, ceramic fiber, or whisker to the precursor [M] and / or the oxide [N], the mechanical strength of the catalyst is further improved. Can be. The heat-resistant fiber is generally added at the stage of preparing the precursor [M] and / or the oxide [N] at the stage of slurry thereof.
[0020]
The mixture thus obtained can be used as a catalyst even when calcined as it is. However, if necessary, water or the like is added as a molding aid to mold the mixture into a desired shape, and then calcining is performed. At this time, when the mixture is in the form of a slurry, the mixture is formed into a dry product by a general drying method and then molded. The calcination is performed under a flow of oxygen, a flow of air, or a flow of nitrogen. The firing temperature is usually 300 to 600 ° C, preferably 300 to 500 ° C, and more preferably 350 to 450 ° C. The firing time is not particularly limited, but is preferably about 1 to 50 hours.
[0021]
The conditions for the gas-phase oxidation or oxidative dehydrogenation of methacrolein, isobutyraldehyde and / or isobutyric acid in the presence of the above-mentioned catalyst are not particularly limited, and the conditions generally used for this type of reaction are not limited. Can be done. For example, in the case of gas-phase oxidation of methacrolein, 1 to 10% by volume of methacrolein, molecular oxygen in a volume ratio of 1 to 10 times the volume thereof, nitrogen, carbon dioxide gas, and water vapor (particularly water vapor) as a diluent are used. In this case, it is advantageous to suppress the generation of by-products and to improve the yield of the target product. It is introduced under a pressure of 1 MPa at a space velocity of 100 to 5,000 hr -1 (STP). The raw material methacrolein does not necessarily need to be pure, and a methacrolein-containing gas obtained by reacting isobutylene or tertiary butanol catalytically can also be used. This method is particularly recommended in industrial processes.
[0022]
【The invention's effect】
The catalyst of the present invention is a heteropolyacid catalyst excellent in performance, strength and production cost. Then, methacrylic acid can be produced in high yield by using this heteropolyacid catalyst.
[0023]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. The conversion, selectivity and single-stream yield are defined as follows.
Conversion (mol%) = (mol number of reacted methacrolein / mol number of supplied methacrolein) × 100
Selectivity (mol%) = (mol number of generated methacrylic acid / mol number of reacted methacrolein) × 100
Single stream yield (mol%) = (mol number of methacrylic acid generated / mol number of supplied methacrolein) × 100
Example 1
500 g of ammonium paramolybdate and 27.6 g of ammonium metavanadate were added to 1000 ml of heated ion-exchanged water and stirred. To this, 35.4 g of orthophosphoric acid (85% by mass) was added, followed by the addition of a solution of 46.0 g of cesium nitrate, and the mixture was heated and concentrated under stirring. The obtained slurry was dried at 120 ° C. for 4 hours, and then pulverized (hereinafter, this powder is referred to as a precursor [M]). The composition of this precursor [M] was Mo 12 P 1.3 V 1.0 Cs 1.0 in atomic ratio excluding oxygen.
A new precursor [M] is prepared in the same amount, and further calcined at 400 ° C. for 3 hours in an air stream, pulverized, and oxidized with a particle size of 0.5 mm or less (hereinafter referred to as oxide [N]). ) Got. The composition of this oxide [N] was Mo 12 P 1.3 V 1.0 Cs 1.0 in atomic ratio excluding oxygen.
The precursor [M] was mixed with 1/10 of the total recovered amount of the oxide [N], humidified with water, formed into a pellet having a diameter of 5 mm and a length of 6 mm by a screw type extruder, and dried. After that, the mixture was calcined at 400 ° C. for 3 hours in an air stream to obtain a pellet catalyst. The mass ratio between the precursor [M] and the oxide [N] was 100: 10.
50 ml of the catalyst obtained as described above is filled in a stainless U-shaped tube having an inner diameter of 25 mmφ and immersed in a molten salt bath at 280 ° C. A mixed gas having the following composition obtained by vapor-phase oxidation in the presence of a multicomponent catalyst was introduced, and the reaction was performed at a reaction temperature of 280 ° C. and a space velocity of 1,000 h −1 (STP).
Methacrolein: 3.5% by volume
Isobutylene: 0.04% by volume
Methacrylic acid + acetic acid: 0.24% by volume
Steam: 20.0% by volume
Oxygen: 9.0% by volume
Others (inert gas mainly composed of nitrogen and carbon dioxide): 67.22% by volume
Further, the mechanical strength of the catalyst was measured by the following method.
Wear degree:
50 g of the catalyst was placed in a cylinder made of a 12 mesh stainless steel wire mesh having an inner diameter of 100 mmφ and a width of 100 mm, and the cylinder was continuously rotated at a speed of 100 rotations per minute for 30 minutes, and then the mass of the catalyst remaining in the cylinder Was measured, and the wear rate was calculated by the following equation.
Wear rate (%) = {(mass of catalyst (50 g) −mass of catalyst remaining in wire mesh after rotation (g)) / mass of catalyst (50 g)} × 100
Drop strength:
30 g of the catalyst was dropped from the upper part of an iron pipe having an inner diameter of 25 mmφ and a length of 5,000 mmL, received by a 4-mesh sieve, the weight of the catalyst remaining on the sieve was measured, and the drop strength factor was calculated by the following equation. .
Drop strength rate (%) = {(mass of catalyst (30 g) −mass of catalyst remaining on sieve (g)) / mass of catalyst (30 g)} × 100
Table 1 shows the composition and mechanical strength of the catalyst, and Table 2 shows the reaction results.
Example 2
Example 1 was repeated except that, when preparing the precursor [M] and the oxide [N], 9.8 g of silicon carbide whiskers (whisker content 2% by mass) were added at the slurry stage. Preparation of a catalyst and an oxidation reaction were carried out in the same manner as described above. Table 1 shows the composition and mechanical strength of the catalyst, and Table 2 shows the reaction results.
Example 3
Example 1 Example 1 was repeated except that 9.8 g (glass fiber content: 2% by mass) of glass fiber (8 to 12 µmφ) was added to the dried product of the precursor [M] and the oxide [N]. Preparation of a catalyst and an oxidation reaction were carried out in the same manner as described above. Table 1 shows the composition and mechanical strength of the catalyst, and Table 2 shows the reaction results.
Example 4
In Example 1, when preparing the precursor [M] and the oxide [N], 9.8 g of silicon carbide whiskers (whisker content: 2% by mass) were added to the slurry thereof, and glass fiber was added to the dried product. Catalyst preparation and oxidation reaction were carried out in the same manner as in Example 1 except that 9.8 g (8 to 12 μmφ) (glass fiber content: 2% by mass) was added. Table 1 shows the composition and mechanical strength of the catalyst, and Table 2 shows the reaction results.
[Table 1]
Figure 2004351297
[Table 2]
Figure 2004351297
Comparative Example 1
In Example 1, only the precursor [M] was conditioned with water, molded into a pellet having a diameter of 5 mm and a length of 6 mm by a screw-type extruder, dried, and then dried at 400 ° C. for 3 hours in an air stream. Calcination gave a pelletized catalyst. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 3 shows the composition and mechanical strength of the catalyst, and Table 4 shows the reaction results.
Comparative Example 2
A pellet-shaped catalyst was obtained in the same manner as in Comparative Example 1, except that 9.8 g of silicon carbide whiskers (whisker content: 2% by mass) were added to the slurry of the precursor [M]. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 3 shows the composition and mechanical strength of the catalyst, and Table 4 shows the reaction results.
Comparative Example 3
In Comparative Example 1, pellets were prepared in the same manner as in Comparative Example 1, except that 9.8 g (glass fiber content: 2% by mass) of glass fiber (8 to 12 μmφ) was added at the stage of drying the precursor [M]. A catalyst was obtained. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 3 shows the composition and mechanical strength of the catalyst, and Table 4 shows the reaction results.
Comparative Example 4
In Comparative Example 1, 9.8 g of silicon carbide whiskers (whisker content: 2% by mass) were added to the slurry of the precursor [M], and 9.8 g of glass fibers (8 to 12 μmφ) were added to the dry matter. A pellet-shaped catalyst was obtained in the same manner as in Comparative Example 1 except that a fiber content of 2% by mass) was added. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 3 shows the composition and mechanical strength of the catalyst, and Table 4 shows the reaction results.
[Table 3]
Figure 2004351297
[Table 4]
Figure 2004351297
Example 5
A catalyst was prepared in the same manner as in Example 1 except that 3/100 of the total recovered amount of the oxide [N] was mixed with the precursor [M]. At this time, the mass ratio between the precursor [M] and the oxide [N] was 100: 3. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 5 shows the composition and mechanical strength of the catalyst, and Table 6 shows the reaction results.
Example 6
A catalyst was prepared in the same manner as in Example 1 except that 15/100 of the total recovered amount of the oxide [N] was mixed with the precursor [M]. At this time, the mass ratio between the precursor [M] and the oxide [N] was 100: 15. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 5 shows the composition and mechanical strength of the catalyst, and Table 6 shows the reaction results.
Example 7
A catalyst was prepared in the same manner as in Example 1 except that 30/100 of the total recovered amount of the oxide [N] was mixed with the precursor [M]. At this time, the mass ratio between the precursor [M] and the oxide [N] was 100: 30. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 5 shows the composition and mechanical strength of the catalyst, and Table 6 shows the reaction results.
[Table 5]
Figure 2004351297
[Table 6]
Figure 2004351297
Example 8
A catalyst was prepared in the same manner as in Example 1 except that the particle size of the oxide [N] was changed to 0.1 mm or less. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 7 shows the composition and mechanical strength of the catalyst, and Table 8 shows the reaction results.
Example 9
A catalyst was prepared in the same manner as in Example 1 except that the precursor [M] was replaced with the slurry before drying. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 7 shows the composition and mechanical strength of the catalyst, and Table 8 shows the reaction results.
Example 10
A catalyst was prepared in the same manner as in Example 1, except that the precursor [M] was replaced with a slurry before drying, and the oxide [N] was suspended in water to form a slurry. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 7 shows the composition and mechanical strength of the catalyst, and Table 8 shows the reaction results.
[Table 7]
Figure 2004351297
[Table 8]
Figure 2004351297
Example 11
In Example 1, orthophosphoric acid and cesium nitrate were increased and copper nitrate was converted to nitric acid so that the composition of the precursor [M] was Mo 12 P 1.5 Cu 0.2 V 1.0 Cs 1.5. A catalyst was prepared in the same manner as in Example 1 except that it was added simultaneously with cesium. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 9 shows the composition and mechanical strength of the catalyst, and Table 10 shows the reaction results.
Example 12
In Example 1, antimony trioxide and copper nitrate were added simultaneously with cesium nitrate so that the composition of the precursor [M] was Mo 12 P 1.3 Sb 1.0 Cu 0.2 V 1.0 Cs 1. A catalyst was prepared in the same manner as in Example 1 except that the catalyst was added. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 9 shows the composition and mechanical strength of the catalyst, and Table 10 shows the reaction results.
Example 13
In Example 1, arsenous acid and silver nitrate were added simultaneously with cesium nitrate so that the composition of the precursor [M] was Mo 12 P 1.3 As 0.5 Ag 0.2 V 1.0 Cs 1. Orthophosphoric acid and cesium nitrate are increased so that the composition of the oxide [N] becomes Mo 12 P 1.5 Cu 0.2 V 1.0 Cs 1.5, and copper nitrate is added simultaneously with cesium nitrate. A catalyst was prepared in the same manner as in Example 1 except that the catalyst was added. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. Table 9 shows the composition and mechanical strength of the catalyst, and Table 10 shows the reaction results.
[Table 9]
Figure 2004351297
[Table 10]
Figure 2004351297
Comparative Example 5
In Example 11, only the precursor [M] was conditioned with water, molded into a pellet having a diameter of 5 mm and a length of 6 mm by a screw-type extruder, dried, and then dried at 400 ° C. for 3 hours in an air stream. Calcination gave a pelletized catalyst. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. The composition and mechanical strength of the catalyst are shown in Table 11, and the reaction results are shown in Table 12.
Comparative Example 6
In Example 12, only the precursor [M] was humidified with water, molded into a pellet having a diameter of 5 mm and a length of 6 mm with a screw-type extruder, dried, and then dried at 400 ° C. for 3 hours in an air stream. Calcination gave a pelletized catalyst. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. The composition and mechanical strength of the catalyst are shown in Table 11, and the reaction results are shown in Table 12.
Comparative Example 7
In Example 13, only the precursor [M] was conditioned with water, molded into a pellet having a diameter of 5 mm and a length of 6 mm by a screw-type extruder, dried, and then dried at 400 ° C. for 3 hours in an air stream. Calcination gave a pelletized catalyst. This catalyst was subjected to strength measurement and oxidation reaction in the same manner as in Example 1. The composition and mechanical strength of the catalyst are shown in Table 11, and the reaction results are shown in Table 12.
[Table 11]
Figure 2004351297
[Table 12]
Figure 2004351297

Claims (7)

一般式I:
Mo (I)
(ここで、Moはモリブデン、Pはリン、Aはヒ素、アンチモン、ゲルマニウム、ビスマス、ジルコニウムおよびセレンから選ばれる少なくとも1種の元素、Bは銅、鉄、クロム、ニッケル、マンガン、コバルト、スズ、銀、亜鉛、パラジウム、ロジウムおよびテルルから選ばれる少なくとも1種の元素、Cはバナジウム、タングステンおよびニオブから選ばれる少なくとも1種の元素、Dはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Oは酸素を表し、a、b、c、d、e、fおよびxは、それぞれ、Mo、A、B、C、DおよびOの原子比を表し、a=12のとき、b=0.5〜4、c=0〜5、d=0〜3、e=0〜4、f=0.01〜4であり、xはそれぞれの元素の酸化状態によって定まる数値である)
で表される酸化物の前駆体[M]と一般式Iで表される酸化物[N]とを混合し、焼成して得られたものであることを特徴とするメタクリル酸製造用触媒。
General formula I:
Mo a P b A c B d C e D f O x (I)
(Where Mo is molybdenum, P is phosphorus, A is at least one element selected from arsenic, antimony, germanium, bismuth, zirconium and selenium, B is copper, iron, chromium, nickel, manganese, cobalt, tin, At least one element selected from silver, zinc, palladium, rhodium and tellurium, C is at least one element selected from vanadium, tungsten and niobium, D is at least one element selected from alkali metals, alkaline earth metals and thallium The species element, O, represents oxygen, a, b, c, d, e, f, and x represent the atomic ratio of Mo, A, B, C, D, and O, respectively, and when a = 12, b = 0.5 to 4, c = 0 to 5, d = 0 to 3, e = 0 to 4, f = 0.01 to 4, and x is determined by the oxidation state of each element. Is a numerical value)
A catalyst for producing methacrylic acid, characterized by being obtained by mixing an oxide precursor [M] represented by the formula [I] and an oxide [N] represented by the general formula I and calcining the mixture.
前駆体[M]と酸化物[N]との割合が、[M]:[N]=100:1〜100:50(質量比)である請求項1に記載のメタクリル酸製造用触媒。The catalyst for producing methacrylic acid according to claim 1, wherein the ratio of the precursor [M] and the oxide [N] is [M]: [N] = 100: 1 to 100: 50 (mass ratio). 前駆体[M]および/または酸化物[N]がグラスファイバー、グラファイト、セラミックファイバーおよびウィスカーから選ばれる少なくとも一種の耐熱性繊維を含有している請求項1または2に記載のメタクリル酸製造用触媒。The catalyst for producing methacrylic acid according to claim 1 or 2, wherein the precursor [M] and / or the oxide [N] contains at least one heat-resistant fiber selected from glass fiber, graphite, ceramic fiber, and whisker. . 酸化物[N]を最大粒径1mm以下に粉砕して用いる請求項1、2または3に記載のメタクリル酸製造用触媒。The catalyst for producing methacrylic acid according to claim 1, 2 or 3, wherein the oxide [N] is pulverized to a maximum particle size of 1 mm or less. 一般式I:
Mo (I)
(ここで、Moはモリブデン、Pはリン、Aはヒ素、アンチモン、ゲルマニウム、ビスマス、ジルコニウムおよびセレンから選ばれる少なくとも1種の元素、Bは銅、鉄、クロム、ニッケル、マンガン、コバルト、スズ、銀、亜鉛、パラジウム、ロジウムおよびテルルから選ばれる少なくとも1種の元素、Cはバナジウム、タングステンおよびニオブから選ばれる少なくとも1種の元素、Dはアルカリ金属、アルカリ土類金属およびタリウムから選ばれる少なくとも1種の元素、Oは酸素を表し、a、b、c、d、e、fおよびxは、それぞれ、Mo、A、B、C、DおよびOの原子比を表し、a=12のとき、b=0.5〜4、c=0〜5、d=0〜3、e=0〜4、f=0.01〜4であり、xはそれぞれの元素の酸化状態によって定まる数値である)
で表される酸化物の前駆体[M]と一般式Iで表される酸化物[N]とを混合し、次いで乾燥、焼成することを特徴とするメタクリル酸製造用触媒の製造方法。
General formula I:
Mo a P b A c B d C e D f O x (I)
(Where Mo is molybdenum, P is phosphorus, A is at least one element selected from arsenic, antimony, germanium, bismuth, zirconium and selenium, B is copper, iron, chromium, nickel, manganese, cobalt, tin, At least one element selected from silver, zinc, palladium, rhodium and tellurium, C is at least one element selected from vanadium, tungsten and niobium, D is at least one element selected from alkali metals, alkaline earth metals and thallium The species element, O, represents oxygen, a, b, c, d, e, f, and x represent the atomic ratio of Mo, A, B, C, D, and O, respectively, and when a = 12, b = 0.5 to 4, c = 0 to 5, d = 0 to 3, e = 0 to 4, f = 0.01 to 4, and x is determined by the oxidation state of each element. Is a numerical value)
A method for producing a catalyst for producing methacrylic acid, comprising mixing an oxide precursor [M] represented by the formula (I) and an oxide [N] represented by the general formula I, followed by drying and calcining.
前駆体[M]と酸化物[N]との割合が、[M]:[N]=100:1〜100:50(質量比)である請求項5に記載のメタクリル酸製造用触媒の製造方法。The production of the catalyst for producing methacrylic acid according to claim 5, wherein the ratio of the precursor [M] and the oxide [N] is [M]: [N] = 100: 1 to 100: 50 (mass ratio). Method. メタクロレイン、イソブチルアルデヒドおよび/またはイソ酪酸を接触気相酸化または接触気相脱水素してメタクリル酸を製造する際に、請求項1〜4のいずれかのメタクリル酸製造用触媒を用いることを特徴とするメタクリル酸の製造方法。The catalyst for producing methacrylic acid according to any one of claims 1 to 4, wherein methacrylic acid is produced by subjecting methacrolein, isobutyraldehyde and / or isobutyric acid to catalytic gas phase oxidation or catalytic gas phase dehydrogenation to produce methacrylic acid. A method for producing methacrylic acid.
JP2003150697A 2003-05-28 2003-05-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid Expired - Fee Related JP4285084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003150697A JP4285084B2 (en) 2003-05-28 2003-05-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003150697A JP4285084B2 (en) 2003-05-28 2003-05-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Publications (2)

Publication Number Publication Date
JP2004351297A true JP2004351297A (en) 2004-12-16
JP4285084B2 JP4285084B2 (en) 2009-06-24

Family

ID=34046431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003150697A Expired - Fee Related JP4285084B2 (en) 2003-05-28 2003-05-28 Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid

Country Status (1)

Country Link
JP (1) JP4285084B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008062231A (en) * 2006-09-07 2008-03-21 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2008535646A (en) * 2005-03-08 2008-09-04 ビーエーエスエフ ソシエタス・ヨーロピア How to charge the reactor
JP2009279555A (en) * 2008-05-26 2009-12-03 Sumitomo Chemical Co Ltd Method for manufacturing molded catalyst consisting of heteropolyacid compound
WO2012073584A1 (en) 2010-12-03 2012-06-07 株式会社日本触媒 Catalyst for producing unsaturated carboxylic acids and unsaturated carboxylic acid production method using said catalyst
CN102802790A (en) * 2009-05-26 2012-11-28 日本化药株式会社 Method for producing a catalyst for producing methacrylic acid, and method for producing methacrylic acid
EP2540393A1 (en) 2005-05-12 2013-01-02 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110052265A (en) * 2018-01-18 2019-07-26 上海华谊新材料有限公司 The oxidation of aldehydes catalyst and preparation method thereof for preparing methacrylic acid of metering system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535646A (en) * 2005-03-08 2008-09-04 ビーエーエスエフ ソシエタス・ヨーロピア How to charge the reactor
EP2540393A1 (en) 2005-05-12 2013-01-02 Nippon Kayaku Kabushiki Kaisha Method for preparing catalyst for production of methacrylic acid
JP2008062231A (en) * 2006-09-07 2008-03-21 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2011078982A (en) * 2006-09-07 2011-04-21 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2011101882A (en) * 2006-09-07 2011-05-26 Rohm & Haas Co Activated mixed metal oxide oxidation catalyst
JP2009279555A (en) * 2008-05-26 2009-12-03 Sumitomo Chemical Co Ltd Method for manufacturing molded catalyst consisting of heteropolyacid compound
CN102802790A (en) * 2009-05-26 2012-11-28 日本化药株式会社 Method for producing a catalyst for producing methacrylic acid, and method for producing methacrylic acid
CN102802790B (en) * 2009-05-26 2014-07-30 日本化药株式会社 Method for producing a catalyst for producing methacrylic acid, and method for producing methacrylic acid
WO2012073584A1 (en) 2010-12-03 2012-06-07 株式会社日本触媒 Catalyst for producing unsaturated carboxylic acids and unsaturated carboxylic acid production method using said catalyst
US8940658B2 (en) 2010-12-03 2015-01-27 Nippon Shokubai Co., Ltd. Catalyst for producing unsaturated carboxylic acid and a process for producing unsaturated carboxylic acid using the catalyst

Also Published As

Publication number Publication date
JP4285084B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
KR890000517B1 (en) Catalyst for manufacturing methacrolein
JP4318367B2 (en) Method for producing acrolein and acrylic acid
KR100807972B1 (en) Complex metal oxide catalyst with high acrylic acid selectivity
KR100986898B1 (en) Multi-metal oxide catalyst and method for producing methacrylic acid by using the same
JP2003514788A (en) Catalytic gas phase oxidation of propene to acrylic acid.
KR20160032037A (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP4242597B2 (en) Unsaturated aldehyde synthesis catalyst, production method thereof, and production method of unsaturated aldehyde using the catalyst
JP5680373B2 (en) Catalyst and method for producing acrylic acid
JP4045693B2 (en) Method for producing methacrylic acid
JP4285084B2 (en) Method for producing catalyst for producing methacrylic acid and method for producing methacrylic acid
JP4442317B2 (en) Method for producing composite oxide catalyst
JP4863436B2 (en) Catalysts for the synthesis of unsaturated aldehydes and unsaturated carboxylic acids
JPH0232017B2 (en)
JP4811977B2 (en) Method for producing catalyst for synthesis of methacrylic acid
JP2005305421A (en) Method of producing compound oxide catalyst
JP2005058909A (en) Production method for catalyst for synthesizing methacrylic acid
JPS6033539B2 (en) Oxidation catalyst and its preparation method
JP3772389B2 (en) Method for producing oxidation catalyst and method for producing methacrylic acid
JP4225530B2 (en) Process for producing methacrolein and methacrylic acid synthesis catalyst
JP3523455B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP5112849B2 (en) Fixed bed reactor and method for producing unsaturated carboxylic acid
JP5451271B2 (en) Method for producing unsaturated aldehyde or unsaturated carboxylic acid
JPH05293389A (en) Preparation of catalyst for production of acrolein and acrylic acid
JPH0236296B2 (en)
JPH0597761A (en) Production of methacrolein and catalyst used for producing methacrolein

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080131

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees