JP2004351151A - Ophthalmological device - Google Patents

Ophthalmological device Download PDF

Info

Publication number
JP2004351151A
JP2004351151A JP2003155800A JP2003155800A JP2004351151A JP 2004351151 A JP2004351151 A JP 2004351151A JP 2003155800 A JP2003155800 A JP 2003155800A JP 2003155800 A JP2003155800 A JP 2003155800A JP 2004351151 A JP2004351151 A JP 2004351151A
Authority
JP
Japan
Prior art keywords
index
image
optical system
measurement
working distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003155800A
Other languages
Japanese (ja)
Other versions
JP4126249B2 (en
Inventor
Naoki Isogai
直己 磯貝
Kokei Nakanishi
弘敬 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidek Co Ltd
Original Assignee
Nidek Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidek Co Ltd filed Critical Nidek Co Ltd
Priority to JP2003155800A priority Critical patent/JP4126249B2/en
Publication of JP2004351151A publication Critical patent/JP2004351151A/en
Application granted granted Critical
Publication of JP4126249B2 publication Critical patent/JP4126249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/107Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning

Abstract

<P>PROBLEM TO BE SOLVED: To easily detect an alignment state in a working distance direction. <P>SOLUTION: This ophthalmological device is equipped with an index projecting means which projects an index for positioning to the cornea of the eye to be examined from the outside of the optical axis of a measurement optical system, an index detecting means which detects a corneal reflex image of the index from the optical axial direction of the measurement optical system, and an alignment detecting means which detects an alignment state in the working distance direction based on a relationship between the size and the image height of the detected corneal reflex image. The image height of the corneal reflex image is detected as an image interval of the corneal reflex image by two indexes or ring indexes. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、眼科医院等で使用される眼科装置に関する。
【0002】
【従来技術】
眼屈折力測定装置、角膜形状測定装置、眼底カメラ等の眼科装置では、被検眼角膜にアライメント用指標を投影し、その角膜反射像をCCDカメラ等の受光素子で検出することにより、測定光学系(被検眼を撮影、観察する光学系も含む)の上下左右及び作動距離方向のアライメント状態を判定している。作動距離方向におけるアライメントとしては、角膜反射像が最も小さくなる位置にアライメントし、反射像のぼけ状態(反射像のサイズ)により作動距離方向のアライメント状態の適否を判定する方法が一般的に知られている(例えば、特許文献1参照)。また、他の方法としては、光学的に被検眼との距離が異なる一対の指標を被検眼に投影し、投影された一対の指標の角膜反射像に基づいて、作動距離方向のアライメント状態を判定する方法も知られている(例えば、特許文献2参照)
【0003】
【特許文献1】
特開平3−1835号公報
【0004】
【特許文献2】
特開平6−46999号公報
【0005】
【発明が解決しようとする課題】
しかしながら、角膜反射像のサイズだけで作動距離方向のアライメント状態を判定しようとすると、角膜曲率の違いによって角膜反射像のサイズが変化するため、ずれ量の判定ができない。また、前後どちらにずれても角膜反射像のサイズが同じように大きくなるため、その方向も判定できない。
作動距離検出用に専用の指標投影光学系を設ける場合には、構造の複雑化やコストアップの欠点がある。さらに、角膜に測定指標を投影する角膜形状測定等においては、その測定中に作動距離検出用の指標像がノイズ光となる場合があり、作動距離検出用の投影指標を消すと、測定中のアライメントが検出できない問題がある。手動で測定光学系を移動したり、測定中に眼が動いたりした場合、適正作動距離で測定が実行されないと、測定結果に誤差が生じることとなる。
【0006】
本発明は、上記従来技術の問題点に鑑み、作動距離方向のアライメント状態を容易に検出できる眼科装置を提供することを技術課題とする。また、装置構成を複雑にすることなく、測定実行時のアライメント状態の判断が可能な眼科装置を提供することを技術課題とする。
【0007】
【課題を解決するための手段】
上記課題を解決するために、本発明は以下のような構成を備えることを特徴とする。
【0008】
(1) 測定光学系を被検眼にアライメントする眼科装置において、測定光学系の光軸外から被検眼角膜の向けて位置合わせ用の指標を投影する指標投影手段と、前記指標の角膜反射像を前記測定光学系の光軸方向から検出する指標検出手段と、該検出された角膜反射像のサイズと像高さの関係に基づいて作動距離方向のアライメント状態を検出するアライメント検出手段と、を備えることを特徴とする。
(2) (1)の眼科装置において、前記指標投影手段は測定光学系の光軸外から少なくとも2つの指標を投影する手段、または測定光学系の光軸を中心にリング状の指標を投影する手段であり、前記角膜反射像の像高さは角膜反射像の像間隔として検出することを特徴とする。
(3) (1)のアライメント検出手段は、前記測定光学系が被検眼に対して作動距離方向に相対的に変化したときの角膜反射像の像高さの変化に基づいて適正作動距離に対する前後ずれを判定することを特徴とする。
(4) (1)の眼科装置において、前記アライメント検出手段の検出結果に基づいて前記測定光学系による測定結果の適否を判断する判断手段を備えることを特徴とする。
(5) (1)の眼科装置において、前記測定光学系は被検眼の光学特性を測定する測定用指標を角膜に投影する測定指標投影光学系を備え、前記位置合わせ用の指標は測定用指標と兼用されることを特徴とする。
(6) (1)の眼科装置において、前記指標投影手段は光学的に距離が異なる指標を投影する少なくとも2つの指標投影光学系を備え、前記アライメント検出手段は少なくとも1つの指標投影光学系による角膜反射像のサイズと像高さの関係に基づいて作動距離方向のアライメント状態の適否を検出し、2つの指標投影光学系による角膜反射像のサイズの違いに基づいて適正作動距離に対する前後ずれを検出することを特徴とする。
(7) 測定光学系を被検眼にアライメントする眼科装置において、測定光学系の光軸外から被検眼角膜の向けて光学的に距離が異なる第1指標と第2指標を投影する指標投影光学系と、前記第1及び第2指標の角膜反射像を検出する指標検出手段と、該検出された両角膜反射像のサイズの関係に基づいて作動距離方向のアライメント状態の適否を判定するアライメント判定手段と、を備えることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図面に基づいて説明する。図1は、本発明に係る装置の測定光学系及び制御系の概略図である。
【0010】
10は作動距離検出用のアライメント指標を測定光軸L1外から角膜に向けて投影する指標投影光学系である。指標投影光学系10は、測定光軸L1 を挟んで所定の角度で対称に配置された2組の第1投影光学系10a、10bと、この第1投影光学系10a,10bより広い角度に配置された光軸を持ち測定光軸L1を中心に90度間隔に配置された4組の第2投影光学系10c,10d,10e,10f(10e,10fは図示を略す)を備える。第1投影光学系10a,10bは赤外光を出射する点光源11a,11bを持ち、被検眼Eに対して発散光束により指標を投影する。第2投影光学系10c,10d,10e,10fは、測定光軸L1 に対して点光源11a,11bよりも外側に位置し赤外光を出射する点光源11c,11d,11e,11f(11e,11fは図示を略す)と、レンズ12c,12d,12e,12f(12e,12fは図示を略す)をそれぞれ持つ。点光源11c〜11fはそれぞれレンズ12c〜12fにより光学的に異なる距離に置かれ、第2投影光学系10c〜10fは第1投影光学系10a,10bに対して光学的に距離が異なる指標を被検眼Eに投影する。言い換えれば、第1投影光学系及び第2投影光学系は、異なった集光状態で角膜に入射する指標を被検眼に向けて投影する。また、第2投影光学系10c〜10fは角膜形状測定用の指標投影光学系を兼ねる。
【0011】
なお、レンズ12c〜12fをコリーメーティングレンズとすれば、被検眼角膜には無限遠の指標が投影される。また、第1投影光学系10a,10bによる指標投影は、いわゆるマイヤリングによりリング状の指標を角膜に投影する光学系としても良い。
【0012】
14は結像レンズである。被検眼前眼部からの光束は、結像レンズ14を介してCCDカメラ17に結像する。結像レンズ14及びCCDカメラ17は前眼部観察光学系系、測定光学系及びアライメント検出光学系を兼ねる。CCDカメラ17から画像信号は画像処理部21に入力され、指標投影光学系10による指標像(角膜反射像)が検出される。制御部20は、画像処理部21により検出された指標像に基づいてアライメント状態の判定や角膜形状測定における演算等を行う。また、CCDカメラ17に撮像された前眼部の画像は、TVモニタ22に映し出される。
【0013】
次に、作動距離のアライメント状態の判定方法について説明する。図2は、上下左右のアライメントが完了した時のTVモニタ22の表示例を示す図である。41a,41bは点光源11a,11bの角膜反射による指標像であり、その外側にある41c〜41fは点光源11c〜11fの角膜反射による指標像である。以下では、水平方向に形成される指標像41a及び41bをM像とし、指標像41c及び41dをK像とする。作動距離のアライメント状態の検出には、M像のサイズSm、K像のサイズSk、2つのM像の像間隔Lm、2つのK像の像間隔Lkを利用する。Smのサイズは、CCDカメラ17からの輝度信号に対して、あるスレッショレベルで二値化することにより求めることができる。2つのM像の像間隔Lmは、各M像の像中心位置(又は重心位置)の間隔として求めることができる。K像のサイズSk、2つのK像の像間隔Lkも同様とする。なお、M像及びK像のぞれぞれの像間隔は、測定光軸L1からの像高さとして検出することができる。また、角膜にマイヤリングを投影するときは、角膜反射によるマイヤリング像のリング間隔とすることできる。
【0014】
図4は、作動距離方向の変化に対するの指標像のサイズSk及びSmの関係を示したものである。K像を形成する光源11c,11dは、M像を形成する光源11a,11bより光学的に遠方距離にあるので、それぞれの指標像が形成される位置にはずれが生じる。図3に示すようにM像が被検眼の手前側に形成され、K像が被検眼の奥側に形成される。よって、図4に示すように、K像のサイズSk及びM像のサイズSmがそれぞれ最も小さくなるときの装置(測定光学系)の作動距離も異なる。
【0015】
ここで、Skが最も小さくなるときの作動距離をamm、Smが最も小さくなるときの作動距離をbmmとし、両者の中間位置Tが適正作動距離となるように光学系を設定しておく。装置が適正作動距離Tに対して被検眼側に近づくときは、Smは大きくなり、Skは一旦小さくなった後に大きくなる。逆に装置が適正作動距離Tに対して遠ざかるときは、Smは一旦小さくなった後に大きくなり、Skは大きくなる。したがって、適正作動距離TでのSk及びSmのサイズ関係を予め記憶しておけば(適正作動距離Tで両像の大きさが同一になるように設定しておくと分かり易い)、適正作動距離Tに対する前後ずれが分かる。すなわち、Sm>Skの場合には適正作動距離より被検眼に近い側(前側)にあり、Sm<Skの場合には適正作動距離より被検眼に遠い側(後側)にあり、Sm=Sk(アライメント精度との関係である幅を持たせても良い)の場合に適正作動距離に位置する。
【0016】
なお、光学的に距離が異なる指標を投影する光学系として、実施形態では発散光としたが、収束光で指標を投影しても良い。収束光の場合は、指標像がさらに被検眼の奥側に形成されるので、拡散光と組み合わせれば、両指標像のサイズが最も小さくなるときの作動距離差が大きくなり、違いを検出しやすくなる。
【0017】
作動距離のずれ量の検出について説明する。M像及びK像の大きさは作動距離のずれによって変化するが、角膜曲率によっても変化してしまう。つまり、角膜曲率が小さいと像サイズも小さくなり、角膜曲率が大きいと像サイズも大きくなる。このため、作動距離のずれ量は単に像サイズを検出しただけでは正確に検出できず、作動距離のずれ量から測定結果を補正する場合等に不都合となる。そこで、2つのM像の像間隔Lm、又は2つのK像の像間隔Lkを検出し、それに応じて像サイズの判定を行う。像サイズ(Sm,Sk)と像間隔(Lm,Lk)は共に角膜曲率の変化に比例して変化するので、Sm/Lm又はSk/Lkを計算することにより、角膜曲率の違いの影響を取り除いて作動距離のずれ量を判定できる。
【0018】
図5にSm/LmとSk/Lkの関係を示す。ここで、例えば、ある形状(半径8mmのスチールボール等)で、適正作動距離TでのM像のSm/Lm、K像のSk/Lkを予め求めて記憶しておく。そして、実際のアライメント時及び測定時には、Sm/Lmに対するSm/Lmの差の関係、またはSk/Lkに対するSk/Lkの差の関係によりずれ量が検出できる。この時、適正作動距離Tより近い場合は、M像のSmが大きくなるので、Sm/Lmの値を用いてずれ量を判定することができる。適正作動距離Tより遠い場合は、K像のSkが大きくなるので、Sk/Lkの値を用いてずれ量を判定することができる。
【0019】
アライメント動作を説明する。据え置きタイプの眼科装置においては、測定光学系を収納する測定部を上下左右及び前後(作動距離)方向に移動可能に設ける。モータを駆動して測定部を自動アライメントする場合、各方向のアライメントの検出結果に基づいて測定部を各方向に移動するモータを駆動制御する。上下左右のアライメント検出は、図2における指標像41a及び41b(41c及び41d、41e及び41fでも良い)の指標像間の中心から検出することができる。別に測定光軸L1方向から角膜中心に指標を投影する光学系を設けても良い。作動距離方向のアライメントは上記の方法によりアライメント状態を検出し、適正作動距離の許容範囲に入るように測定部を移動する。手動操作の場合、あるいは、手持ち装置の場合には、アライメント状態の検出結果に基づいて測定部を移動すべき方向を誘導するガイドをモニタ22に表示すれば良い。上下左右方向及び作動距離方向のアライメント状態が所定の許容範囲になれば、制御部20により測定実行のトリガ信号が発せられ、自動的に測定が実行される。
【0020】
角膜形状の測定については、指標像41c〜41fの位置から算出される。例えば、特開昭61−85920等に記載されるように少なくとも3点の角膜投影の指標像が検出されれば、角膜形状を測定できる。測定時に被検眼が動いたり、又は手動により測定を開始し、アライメントずれがあった場合は、上記のSm/Lm又はSk/Lkによりずれ量が検出できるので、そのずれ量にに応じて測定結果を補正する。測定結果の補正についは、予め作動距離のずれ量に対する角膜曲率の補正係数を求めておけば良い。なお、Sm/Lm又はSk/Lkの値が、適正距離位置の値より大きくずれた場合はエラーとする。その範囲は期待される精度に入らない範囲を予め設定して記憶しておけば良い。
【0021】
上記で説明した実施形態では、被検眼角膜に向けて光学的に距離が異なる指標を投影する2つの投影光学系を用いたが、角膜形状測定用の第2投影光学系10c〜10fによるK像のみでもアライメント状態の検出が可能である。以下、この変容例について説明する。
【0022】
図6は作動距離距離の変化に対するK像のSk/Lkの関係を示した図であり、図7は作動距離距離の変化に対するK像のLkの関係を示した図である。適正作動距離はSk/Lkが最小となる位置aとし、前述と同様に、適正作動距離の位置aでのSk/Lkを予め求めて記憶しておく。そして、Sk/Lkに対するSk/Lkの差の関係から、角膜曲率の影響を排除したずれ量が判定できる。ずれ量がある一定値以下であれば適正作動距離の許容範囲にあると判定できる。
【0023】
ここで、適正作動距離位置に対する前後ずれの判定には、Sk/LkとLkの検出結果を利用する。Sk/Lkの変化は適正作動距離の位置aを境に逆転する。一方、Lkは被検眼に近くなるほど大きくなり、遠くなるほど小さくなる。この関係を利用して、ある位置P1でのLkとSk/Lkの値を一時的に記憶しておき、次の検出時の位置P2でのLkとSk/Lkの変化から、位置P2についての適正作動距離位置aに対する前後ずれの判定を次のように行う。
(1)Sk/Lk及びLkが共に大きくなったとき(図8(a)及び(b))→適正作動距離位置aより近くにある。
(2)Sk/Lkが大きくなり、かつLkが小さくなったとき(図8(c)及び(d))→適正作動距離位置aより遠くにある。
(3)Sk/Lkが小さくなり、かつLkも小さくなったときは、図9(a)と(b)のパターンがある。P1は何れも適正作動距離位置aより近くにあるときである。ここで、作動距離に対するLkの変化量は角膜曲率が異なってもほぼ一定であるので、Lkの変化量から求められる作動距離の変化量を計算する。作動距離とLkの変化量の関係は予め記憶していく。適正作動距離位置aからP1までの作動距離の変化量をΔZ、P1からP2に移動したときの作動距離の変化量をΔZとし、ΔZoに対するΔZの大小を比較する。ΔZ<ΔZの場合(図9(a))→適正作動距離位置aより近くにある。ΔΔZ>ΔZの場合(図9(b))→適正作動距離位置aより遠くにある。
(4)Sk/Lkが小さくなり、かつLkが大きくなったときは、図9(c)と(d)のパターンがある。P1は何れも適正作動距離より遠くにあるときである。この場合も上記(3)と同様な方法により判定する。すなわち、ΔZ>ΔZの場合(図9(c))→適正作動距離位置aより近くにある。ΔZ<ΔZの場合(図9(d))→適正作動距離位置aより遠くにある。
【0024】
上記の変容例においては、角膜形状測定用の指標投影光学系(実施形態では、第2投影光学系10c〜10f)を用いてアライメント状態の検出が可能であるので、光学系の簡素化を図ることができ、経済的にも有利となる。また、作動距離検出用の指標像がノイズ光とならずに済む。また、測定中に眼が動いた場合(アライメント完了後に眼が動いた場合)、あるいは手動により測定を開始する場合においても、測定用の角膜反射像から測定結果の補正も可能である。
また、上記では角膜形状測定装置を例にとって説明したが、本発明は眼屈折力測定装置や、非接触式眼圧計、眼底カメラ等のアライメント調整が必要な装置に適用可能である。
【0025】
【発明の効果】
以上説明したように、本発明により、作動距離方向のアライメント状態を容易に判定できる。また、装置構成を簡素化しつつ、測定中もアライメント状態の判断も可能になる。
【図面の簡単な説明】
【図1】本発明に係る装置の測定光学系及び制御系の概略図である。
【図2】モニタの表示例を示す図である。
【図3】M像とK像が被検眼に形成される位置を説明する図である。
【図4】作動距離方向の変化に対するの指標像のサイズSk及びSmの関係を示した図である。
【図5】Sm/LmとSk/Lkの関係を示す図である。
【図6】作動距離距離の変化に対するK像のSk/Lkの関係を示した図である。
【図7】作動距離距離の変化に対するK像のLkの関係を示した図である。
【図8】K像のみを用いた場合の、適正作動距離位置に対する前後ずれの判定を説明する図である。
【図9】K像のみを用いた場合の、適正作動距離位置に対する前後ずれの判定を説明する図である。
【符号の説明】
10 指標投影光学系
10a、10b 第1投影光学系
10c,10d 第2投影光学系
17 CCDカメラ
20 制御部
21 画像処理部
22 TVモニタ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ophthalmologic apparatus used in an ophthalmic clinic or the like.
[0002]
[Prior art]
In ophthalmic devices such as an eye refractive power measurement device, a corneal shape measurement device, and a fundus camera, a measurement optical system is formed by projecting an alignment index onto the cornea of a subject's eye and detecting a corneal reflection image with a light receiving element such as a CCD camera. The alignment state in the up, down, left, right, and working distance directions (including the optical system for photographing and observing the subject's eye) is determined. As the alignment in the working distance direction, a method is generally known in which alignment is performed at a position where the corneal reflection image is minimized, and the appropriateness of the alignment state in the working distance direction is determined based on the blur state of the reflection image (the size of the reflection image). (For example, see Patent Document 1). Further, as another method, a pair of indices optically different from the eye to be inspected are projected on the eye to be inspected, and the alignment state in the working distance direction is determined based on the projected corneal reflection image of the pair of indices. There is also a known method (see, for example, Patent Document 2).
[0003]
[Patent Document 1]
JP-A-3-1835
[Patent Document 2]
JP-A-6-46999 [0005]
[Problems to be solved by the invention]
However, if an attempt is made to determine the alignment state in the working distance direction only by the size of the corneal reflection image, the size of the corneal reflection image changes due to a difference in corneal curvature, and therefore, the amount of deviation cannot be determined. In addition, the size of the corneal reflection image is similarly increased regardless of whether it is shifted forward or backward, so that the direction cannot be determined.
When a dedicated target projection optical system is provided for detecting the working distance, there are disadvantages in that the structure is complicated and the cost is increased. Further, in corneal shape measurement or the like that projects a measurement index on the cornea, the index image for working distance detection may become noise light during the measurement, and when the projection index for working distance detection is turned off, There is a problem that alignment cannot be detected. If the measurement optical system is manually moved or the eye moves during the measurement, an error occurs in the measurement result unless the measurement is performed at the proper working distance.
[0006]
An object of the present invention is to provide an ophthalmologic apparatus that can easily detect an alignment state in a working distance direction in view of the above-described problems of the related art. It is another technical object of the present invention to provide an ophthalmologic apparatus capable of determining an alignment state during measurement without complicating the apparatus configuration.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is characterized by having the following configuration.
[0008]
(1) In an ophthalmologic apparatus that aligns a measurement optical system with an eye to be inspected, an index projecting unit that projects an index for alignment from outside the optical axis of the measurement optical system toward the cornea of the eye to be inspected, and a corneal reflection image of the index. Index detecting means for detecting from the optical axis direction of the measuring optical system, and alignment detecting means for detecting an alignment state in a working distance direction based on a relationship between the size and the image height of the detected corneal reflection image. It is characterized by the following.
(2) In the ophthalmologic apparatus according to (1), the index projection unit projects at least two indices from outside the optical axis of the measurement optical system, or projects a ring-shaped index around the optical axis of the measurement optical system. Means for detecting an image height of the corneal reflection image as an image interval of the corneal reflection image.
(3) The alignment detecting means according to (1), based on the change in image height of the corneal reflection image when the measurement optical system relatively changes in the working distance direction with respect to the eye to be examined, before and after the proper working distance. It is characterized in that the deviation is determined.
(4) The ophthalmologic apparatus according to (1), further including a determination unit that determines whether the measurement result obtained by the measurement optical system is appropriate based on a detection result of the alignment detection unit.
(5) In the ophthalmologic apparatus according to (1), the measurement optical system includes a measurement index projection optical system that projects a measurement index for measuring optical characteristics of the eye to be inspected onto the cornea, and the alignment index is a measurement index. It is also characterized by being shared.
(6) In the ophthalmologic apparatus according to (1), the index projection unit includes at least two index projection optical systems that project indices having different optical distances, and the alignment detection unit includes a cornea formed by at least one index projection optical system. Based on the relationship between the size of the reflected image and the image height, the appropriateness of the alignment state in the working distance direction is detected, and based on the difference in the size of the corneal reflected image by the two target projection optical systems, the longitudinal deviation from the proper working distance is detected. It is characterized by doing.
(7) In an ophthalmologic apparatus that aligns a measurement optical system with an eye to be inspected, an index projection optical system that projects a first index and a second index having optically different distances from outside the optical axis of the measurement optical system toward the cornea of the eye to be inspected. Index detection means for detecting the corneal reflection images of the first and second indexes; and alignment determination means for judging whether or not the alignment state in the working distance direction is appropriate based on the relationship between the sizes of the detected corneal reflection images. And the following.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a measurement optical system and a control system of the apparatus according to the present invention.
[0010]
Reference numeral 10 denotes an index projection optical system that projects an alignment index for detecting a working distance from outside the measurement optical axis L1 toward the cornea. The index projection optical system 10 has two sets of first projection optical systems 10a and 10b symmetrically arranged at a predetermined angle with respect to the measurement optical axis L1, and is arranged at a wider angle than the first projection optical systems 10a and 10b. And four sets of second projection optical systems 10c, 10d, 10e, and 10f (10e and 10f are not shown) arranged at 90-degree intervals around the measurement optical axis L1. The first projection optical systems 10a and 10b have point light sources 11a and 11b that emit infrared light, and project an index onto the eye E using a divergent light beam. The second projection optical systems 10c, 10d, 10e, and 10f are located outside the point light sources 11a and 11b with respect to the measurement optical axis L1, and emit point light 11c, 11d, 11e, and 11f (11e, 11f). 11f is omitted) and lenses 12c, 12d, 12e and 12f (12e and 12f are not illustrated). The point light sources 11c to 11f are placed at optically different distances by the lenses 12c to 12f, respectively, and the second projection optical systems 10c to 10f receive indices having optically different distances from the first projection optical systems 10a and 10b. The image is projected on the optometry E. In other words, the first projection optical system and the second projection optical system project an index incident on the cornea in different light condensing states toward the eye to be inspected. The second projection optical systems 10c to 10f also serve as target projection optical systems for measuring a corneal shape.
[0011]
If the lenses 12c to 12f are collimating lenses, an index at infinity is projected on the cornea of the subject's eye. In addition, the index projection by the first projection optical systems 10a and 10b may be an optical system that projects a ring-shaped index onto the cornea by so-called myring.
[0012]
Reference numeral 14 denotes an imaging lens. The light beam from the anterior segment of the subject's eye forms an image on the CCD camera 17 via the imaging lens 14. The imaging lens 14 and the CCD camera 17 also serve as an anterior ocular segment observation optical system, a measurement optical system, and an alignment detection optical system. An image signal is input from the CCD camera 17 to the image processing unit 21 and an index image (corneal reflection image) by the index projection optical system 10 is detected. The control unit 20 determines the alignment state based on the index image detected by the image processing unit 21 and performs calculations and the like in corneal shape measurement. Further, the image of the anterior segment captured by the CCD camera 17 is displayed on the TV monitor 22.
[0013]
Next, a method of determining the alignment state of the working distance will be described. FIG. 2 is a diagram showing a display example of the TV monitor 22 when the vertical and horizontal alignments are completed. 41a and 41b are index images due to corneal reflection of the point light sources 11a and 11b, and 41c to 41f outside thereof are index images due to corneal reflection of the point light sources 11c to 11f. Hereinafter, the index images 41a and 41b formed in the horizontal direction are referred to as M images, and the index images 41c and 41d are referred to as K images. The size Sm of the M image, the size Sk of the K image, the image interval Lm of the two M images, and the image interval Lk of the two K images are used to detect the alignment state of the working distance. The size of Sm can be obtained by binarizing the luminance signal from the CCD camera 17 at a certain threshold level. The image interval Lm between the two M images can be obtained as the interval between the image center positions (or centroid positions) of the M images. The same applies to the size Sk of the K image and the image interval Lk between the two K images. The image interval between each of the M image and the K image can be detected as an image height from the measurement optical axis L1. When projecting the earring on the cornea, the distance between rings of the earring image due to corneal reflection can be used.
[0014]
FIG. 4 shows the relationship between the index image sizes Sk and Sm with respect to the change in the working distance direction. Since the light sources 11c and 11d that form the K image are optically farther than the light sources 11a and 11b that form the M image, the positions where the respective index images are formed are shifted. As shown in FIG. 3, an M image is formed on the near side of the subject's eye, and a K image is formed on the far side of the subject's eye. Therefore, as shown in FIG. 4, the working distances of the apparatus (measurement optical system) when the size Sk of the K image and the size Sm of the M image are each the smallest also differ.
[0015]
Here, the working distance when Sk is the smallest is amm, the working distance when Sm is the smallest is bmm, and the optical system is set so that the intermediate position T between them is an appropriate working distance. When the apparatus approaches the eye to be examined with respect to the proper working distance T, Sm increases, and Sk once decreases and then increases. Conversely, when the device moves away from the proper working distance T, Sm once decreases and then increases, and Sk increases. Therefore, if the size relationship between Sk and Sm at the proper working distance T is stored in advance (it is easy to understand if the sizes of both images are set to be the same at the proper working distance T), the proper working distance is obtained. The deviation from front to back with respect to T can be seen. That is, when Sm> Sk, it is closer to the eye to be examined than the proper working distance (front side), and when Sm <Sk, it is farther to the eye than the proper working distance (rear side), and Sm = Sk. (It may have a width that is related to the alignment accuracy.)
[0016]
In the embodiment, the divergent light is used as an optical system that projects an index having an optically different distance. However, the index may be projected using convergent light. In the case of convergent light, the index image is further formed on the far side of the subject's eye. It will be easier.
[0017]
The detection of the deviation amount of the working distance will be described. The sizes of the M image and the K image change depending on the deviation of the working distance, but also change depending on the corneal curvature. That is, when the corneal curvature is small, the image size is small, and when the corneal curvature is large, the image size is large. For this reason, the shift amount of the working distance cannot be accurately detected merely by detecting the image size, and this is inconvenient when the measurement result is corrected from the shift amount of the working distance. Therefore, the image interval Lm between two M images or the image interval Lk between two K images is detected, and the image size is determined accordingly. Since both the image size (Sm, Sk) and the image interval (Lm, Lk) change in proportion to the change in the corneal curvature, the influence of the difference in the corneal curvature is removed by calculating Sm / Lm or Sk / Lk. The working distance can be determined.
[0018]
FIG. 5 shows the relationship between Sm / Lm and Sk / Lk. Here, for example, Sm 0 / Lm 0 of the M image and Sk 0 / Lk 0 of the K image at a proper working distance T in a certain shape (steel ball having a radius of 8 mm) are obtained and stored in advance. Then, at the time of actual alignment and measurement, the amount of deviation can be detected by the relationship of the difference of Sm / Lm to Sm 0 / Lm 0 or the relationship of the difference of Sk / Lk to Sk 0 / Lk 0 . At this time, when the working distance is shorter than the appropriate working distance T, the Sm of the M image becomes large, so that the deviation amount can be determined using the value of Sm / Lm. If the working distance is longer than the appropriate working distance T, the Sk of the K image becomes large, and thus the amount of deviation can be determined using the value of Sk / Lk.
[0019]
The alignment operation will be described. In a stationary ophthalmologic apparatus, a measurement unit that accommodates a measurement optical system is provided so as to be movable up, down, left, right, and back and forth (working distance). When the motor is driven to perform automatic alignment of the measurement unit, the driving of the motor that moves the measurement unit in each direction is controlled based on the detection result of the alignment in each direction. The vertical and horizontal alignment can be detected from the center between the index images 41a and 41b (or 41c and 41d, 41e and 41f) in FIG. Alternatively, an optical system for projecting an index from the direction of the measurement optical axis L1 to the center of the cornea may be provided. In the alignment in the working distance direction, the alignment state is detected by the above-described method, and the measuring unit is moved so as to fall within the allowable range of the proper working distance. In the case of manual operation or in the case of a hand-held device, a guide for guiding the direction in which the measuring unit should be moved based on the detection result of the alignment state may be displayed on the monitor 22. When the alignment state in the up / down / left / right direction and the working distance direction falls within a predetermined allowable range, a trigger signal for measurement execution is issued by the control unit 20, and the measurement is automatically executed.
[0020]
The measurement of the corneal shape is calculated from the positions of the index images 41c to 41f. For example, if at least three index images of corneal projection are detected as described in JP-A-61-85920, the corneal shape can be measured. If the subject's eye moves during the measurement or the measurement is started manually and there is a misalignment, the misalignment can be detected by the above Sm / Lm or Sk / Lk, and the measurement result is determined according to the misalignment. Is corrected. For correction of the measurement result, a correction coefficient of the corneal curvature with respect to the displacement amount of the working distance may be obtained in advance. If the value of Sm / Lm or Sk / Lk deviates significantly from the value of the appropriate distance position, it is regarded as an error. As the range, a range that does not fall within the expected accuracy may be set and stored in advance.
[0021]
In the embodiment described above, two projection optical systems that project indices having optically different distances toward the cornea of the eye to be inspected are used. However, the K images obtained by the second projection optical systems 10c to 10f for measuring the corneal shape are used. It is possible to detect the alignment state only with the above. Hereinafter, this modified example will be described.
[0022]
FIG. 6 is a diagram showing the relationship of Sk / Lk of the K image to the change of the working distance, and FIG. 7 is a diagram showing the relationship of Lk of the K image to the change of the working distance. The appropriate working distance is a position a where Sk / Lk is minimum, and Sk 0 / Lk 0 at the appropriate working distance position a is previously obtained and stored as described above. Then, from the relationship of the difference of Sk / Lk with respect to Sk 0 / Lk 0, the shift amount excluding the influence of the corneal curvature can be determined. If the amount of deviation is below a certain value, it can be determined that the deviation is within the allowable range of the proper working distance.
[0023]
Here, the result of the detection of Sk / Lk and Lk is used for the determination of the longitudinal deviation from the appropriate working distance position. The change in Sk / Lk reverses at the position a of the proper working distance. On the other hand, Lk increases as the distance to the eye to be examined increases and decreases as the distance increases. Utilizing this relationship, the values of Lk and Sk / Lk at a certain position P1 are temporarily stored, and the change of Lk and Sk / Lk at the position P2 at the time of the next detection is used. The determination of the longitudinal displacement with respect to the appropriate working distance position a is performed as follows.
(1) When both Sk / Lk and Lk increase (FIGS. 8A and 8B) → they are closer to the proper working distance position a.
(2) When Sk / Lk increases and Lk decreases (FIGS. 8 (c) and 8 (d)) → It is far from the proper working distance position a.
(3) When Sk / Lk becomes small and Lk also becomes small, there are the patterns shown in FIGS. 9A and 9B. P1 is a time when all of them are closer to the proper working distance position a. Here, since the amount of change of Lk with respect to the working distance is substantially constant even if the corneal curvature is different, the amount of change of the working distance calculated from the amount of change of Lk is calculated. The relationship between the working distance and the amount of change in Lk is stored in advance. The amount of change in the working distance from the appropriate working distance position a to P1 is ΔZ 0 , the amount of change in the working distance when moving from P1 to P2 is ΔZ, and the magnitude of ΔZ with respect to ΔZo is compared. When ΔZ <ΔZ 0 (FIG. 9A) → the working distance is closer than the proper working distance position a. When ΔΔZ> ΔZ 0 (FIG. 9 (b)) → It is far from the proper working distance position a.
(4) When Sk / Lk decreases and Lk increases, there are the patterns shown in FIGS. 9C and 9D. P1 is when all are farther than the proper working distance. Also in this case, the determination is made by a method similar to the above (3). That is, when ΔZ> ΔZ 0 (FIG. 9 (c)), it is closer to the proper working distance position a. In the case of ΔZ <ΔZ 0 (FIG. 9 (d)) → It is far from the proper working distance position a.
[0024]
In the above modification example, the alignment state can be detected using the target projection optical system for measuring the corneal shape (in the embodiment, the second projection optical systems 10c to 10f), so that the optical system is simplified. Can be economically advantageous. Further, the index image for detecting the working distance does not need to be noise light. Further, even when the eye moves during the measurement (when the eye moves after the alignment is completed) or when the measurement is manually started, the measurement result can be corrected from the corneal reflection image for measurement.
In the above description, the corneal shape measuring device has been described as an example. However, the present invention is applicable to an eye refractive power measuring device, a non-contact tonometer, a fundus camera, and other devices requiring alignment adjustment.
[0025]
【The invention's effect】
As described above, according to the present invention, the alignment state in the working distance direction can be easily determined. Further, it is possible to determine the alignment state even during measurement while simplifying the device configuration.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a measurement optical system and a control system of an apparatus according to the present invention.
FIG. 2 is a diagram illustrating a display example of a monitor.
FIG. 3 is a diagram illustrating positions where an M image and a K image are formed on an eye to be inspected.
FIG. 4 is a diagram showing the relationship between the index image sizes Sk and Sm with respect to changes in the working distance direction.
FIG. 5 is a diagram showing the relationship between Sm / Lm and Sk / Lk.
FIG. 6 is a diagram showing a relationship of Sk / Lk of a K image with respect to a change in working distance.
FIG. 7 is a diagram showing a relationship between Lk of a K image and a change in working distance.
FIG. 8 is a diagram for explaining determination of front-rear shift with respect to an appropriate working distance position when only the K image is used.
FIG. 9 is a diagram for explaining determination of front-rear shift with respect to an appropriate working distance position when only the K image is used.
[Explanation of symbols]
10 Target Projection Optical System 10a, 10b First Projection Optical System 10c, 10d Second Projection Optical System 17 CCD Camera 20 Control Unit 21 Image Processing Unit 22 TV Monitor

Claims (7)

測定光学系を被検眼にアライメントする眼科装置において、測定光学系の光軸外から被検眼角膜の向けて位置合わせ用の指標を投影する指標投影手段と、前記指標の角膜反射像を前記測定光学系の光軸方向から検出する指標検出手段と、該検出された角膜反射像のサイズと像高さの関係に基づいて作動距離方向のアライメント状態を検出するアライメント検出手段と、を備えることを特徴とする眼科装置。In an ophthalmologic apparatus that aligns a measurement optical system with an eye to be inspected, an index projection unit that projects an index for alignment from outside the optical axis of the measurement optical system toward the cornea of the eye to be inspected, and a corneal reflection image of the index is measured by the measurement optical Index detecting means for detecting from the optical axis direction of the system, and alignment detecting means for detecting an alignment state in the working distance direction based on the relationship between the size and the image height of the detected corneal reflection image. Ophthalmic device. 請求項1の眼科装置において、前記指標投影手段は測定光学系の光軸外から少なくとも2つの指標を投影する手段、または測定光学系の光軸を中心にリング状の指標を投影する手段であり、前記角膜反射像の像高さは角膜反射像の像間隔として検出することを特徴とする眼科装置。2. The ophthalmologic apparatus according to claim 1, wherein the index projection unit is a unit that projects at least two indices from outside the optical axis of the measurement optical system, or a unit that projects a ring-shaped index around the optical axis of the measurement optical system. An ophthalmologic apparatus, wherein an image height of the corneal reflection image is detected as an image interval of the corneal reflection image. 請求項1のアライメント検出手段は、前記測定光学系が被検眼に対して作動距離方向に相対的に変化したときの角膜反射像の像高さの変化に基づいて適正作動距離に対する前後ずれを判定することを特徴とする眼科装置。The alignment detecting means according to claim 1 determines a longitudinal deviation from an appropriate working distance based on a change in image height of a corneal reflection image when the measuring optical system relatively changes in a working distance direction with respect to an eye to be examined. An ophthalmologic apparatus characterized in that: 請求項1の眼科装置において、前記アライメント検出手段の検出結果に基づいて前記測定光学系による測定結果の適否を判断する判断手段を備えることを特徴とする眼科装置。The ophthalmologic apparatus according to claim 1, further comprising: a determination unit configured to determine whether the measurement result obtained by the measurement optical system is appropriate based on a detection result of the alignment detection unit. 請求項1の眼科装置において、前記測定光学系は被検眼の光学特性を測定する測定用指標を角膜に投影する測定指標投影光学系を備え、前記位置合わせ用の指標は測定用指標と兼用されることを特徴とする眼科装置。2. The ophthalmologic apparatus according to claim 1, wherein the measurement optical system includes a measurement index projection optical system that projects a measurement index for measuring an optical characteristic of the eye to be inspected onto the cornea, and the alignment index is also used as a measurement index. An ophthalmologic apparatus, comprising: 請求項1の眼科装置において、前記指標投影手段は光学的に距離が異なる指標を投影する少なくとも2つの指標投影光学系を備え、前記アライメント検出手段は少なくとも1つの指標投影光学系による角膜反射像のサイズと像高さの関係に基づいて作動距離方向のアライメント状態の適否を検出し、2つの指標投影光学系による角膜反射像のサイズの違いに基づいて適正作動距離に対する前後ずれを検出することを特徴とする眼科装置。2. The ophthalmologic apparatus according to claim 1, wherein the index projection unit includes at least two index projection optical systems that project indices having different optical distances, and the alignment detection unit includes a corneal reflection image formed by the at least one index projection optical system. Based on the relationship between the size and the image height, the appropriateness of the alignment state in the working distance direction is detected, and based on the difference in the size of the corneal reflection image by the two target projection optical systems, the forward / backward deviation from the proper working distance is detected. Ophthalmic device characterized. 測定光学系を被検眼にアライメントする眼科装置において、測定光学系の光軸外から被検眼角膜の向けて光学的に距離が異なる第1指標と第2指標を投影する指標投影光学系と、前記第1及び第2指標の角膜反射像を検出する指標検出手段と、該検出された両角膜反射像のサイズの関係に基づいて作動距離方向のアライメント状態の適否を判定するアライメント判定手段と、を備えることを特徴とする眼科装置。An ophthalmic apparatus that aligns a measurement optical system with an eye to be inspected, an index projection optical system that projects a first index and a second index having different optical distances from the outside of the optical axis of the measurement optical system toward the cornea of the eye, and Index detection means for detecting the corneal reflection images of the first and second indexes, and alignment determination means for determining whether or not the alignment state in the working distance direction is appropriate based on the relationship between the sizes of the detected corneal reflection images. An ophthalmologic apparatus comprising:
JP2003155800A 2003-05-30 2003-05-30 Ophthalmic equipment Expired - Fee Related JP4126249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155800A JP4126249B2 (en) 2003-05-30 2003-05-30 Ophthalmic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155800A JP4126249B2 (en) 2003-05-30 2003-05-30 Ophthalmic equipment

Publications (2)

Publication Number Publication Date
JP2004351151A true JP2004351151A (en) 2004-12-16
JP4126249B2 JP4126249B2 (en) 2008-07-30

Family

ID=34050096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155800A Expired - Fee Related JP4126249B2 (en) 2003-05-30 2003-05-30 Ophthalmic equipment

Country Status (1)

Country Link
JP (1) JP4126249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268651A (en) * 2008-05-03 2009-11-19 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2009291595A (en) * 2008-05-03 2009-12-17 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011036273A (en) * 2009-08-06 2011-02-24 Canon Inc Fundus camera
JP2016093249A (en) * 2014-11-12 2016-05-26 株式会社ニデック Ophthalmologic apparatus and processing program used for the same
CN111542258A (en) * 2017-11-07 2020-08-14 诺达尔视觉有限公司 Method and system for alignment of ophthalmic imaging devices
WO2020192900A1 (en) * 2019-03-26 2020-10-01 Haag-Streit Ag Device and method for determining the orientation of an ophthalmologic microscope device
WO2020192899A1 (en) * 2019-03-26 2020-10-01 Haag-Streit Ag Device and method for measuring at least one geometric parameter of the eye

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055922A1 (en) * 2007-12-21 2009-06-25 Carl Zeiss Surgical Gmbh Method for determining properties and / or the position of characteristic ocular components

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268651A (en) * 2008-05-03 2009-11-19 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2009291595A (en) * 2008-05-03 2009-12-17 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011036273A (en) * 2009-08-06 2011-02-24 Canon Inc Fundus camera
US8721079B2 (en) 2009-08-06 2014-05-13 Canon Kabushiki Kaisha Fundus camera
JP2016093249A (en) * 2014-11-12 2016-05-26 株式会社ニデック Ophthalmologic apparatus and processing program used for the same
CN111542258A (en) * 2017-11-07 2020-08-14 诺达尔视觉有限公司 Method and system for alignment of ophthalmic imaging devices
US11723536B2 (en) 2017-11-07 2023-08-15 Notal Vision, Ltd. Methods and systems for alignment of ophthalmic imaging devices
CN111542258B (en) * 2017-11-07 2023-10-20 诺达尔视觉有限公司 Method and system for alignment of ophthalmic imaging devices
WO2020192900A1 (en) * 2019-03-26 2020-10-01 Haag-Streit Ag Device and method for determining the orientation of an ophthalmologic microscope device
WO2020192899A1 (en) * 2019-03-26 2020-10-01 Haag-Streit Ag Device and method for measuring at least one geometric parameter of the eye

Also Published As

Publication number Publication date
JP4126249B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
JP4492847B2 (en) Eye refractive power measuring device
JP6349701B2 (en) Ophthalmic measuring device
JP6071304B2 (en) Ophthalmic apparatus and alignment method
JP3703310B2 (en) Hand-held ophthalmic device
JP2005103103A (en) Refractive power measuring apparatus
JP6471466B2 (en) Ophthalmic apparatus and processing program used therefor
JP2005349095A (en) Ophthalmological apparatus
JP6221247B2 (en) Ophthalmic equipment
JP5767026B2 (en) Anterior segment measurement device
JP4126249B2 (en) Ophthalmic equipment
JP5601614B2 (en) Eye refractive power measuring device
WO2019111788A1 (en) Ocular refractive power measurement device
JP6221249B2 (en) Eye refractive power measuring device
JP4653576B2 (en) Eye refractive power measuring device
JP2012249809A (en) Optometer
JP5188534B2 (en) Ophthalmic equipment
JP2005342284A (en) Eye refractivity measuring device
JP4700785B2 (en) Ophthalmic equipment
JP2011005131A (en) Eye refractive power measurement apparatus
JP6589378B2 (en) Ophthalmic measuring device
JP6662412B2 (en) Ophthalmic measurement device
JP4412998B2 (en) Eye refractive power measuring device
JP4436914B2 (en) Eye refractive power measuring device
JP2000296109A (en) Optometer
JP2630956B2 (en) Automatic eye refractive power measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees