JP2004350649A - Nucleic acid-detecting tool - Google Patents

Nucleic acid-detecting tool Download PDF

Info

Publication number
JP2004350649A
JP2004350649A JP2003155359A JP2003155359A JP2004350649A JP 2004350649 A JP2004350649 A JP 2004350649A JP 2003155359 A JP2003155359 A JP 2003155359A JP 2003155359 A JP2003155359 A JP 2003155359A JP 2004350649 A JP2004350649 A JP 2004350649A
Authority
JP
Japan
Prior art keywords
nucleic acid
amplification reaction
acid amplification
detection
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003155359A
Other languages
Japanese (ja)
Inventor
Masaharu Aritomi
正治 有富
Masato Ikeda
誠人 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2003155359A priority Critical patent/JP2004350649A/en
Publication of JP2004350649A publication Critical patent/JP2004350649A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nucleic acid-detecting tool, capable of using a nucleic acid amplifying reaction in a state of being absorbed on a nucleic acid absorption membrane and without preparing purified nucleic acid solution and capable of simultaneously detecting the progress of the nucleic acid amplification, and a nucleic acid detection kit including the tool. <P>SOLUTION: This nucleic acid-detecting tool is provided by installing a nucleic acid adsorption membrane at the one end of a tubular structural body and making another end as joinable to a sucking/discharging instrument. By using the nucleic acid detection tubular body with a nucleic acid amplification reaction vessel as combined, the nucleic acid in a specimen is subjected to the nucleic acid-amplifying reaction in the state of being adsorbed on the nucleic acid-absorption membrane, and the progress of the nucleic acid amplification reaction is simultaneously detected by an optical means. It is possible to detect the degeneration of a gene and harmful bacteria simply in an actual place of medical or food industrial place. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、新規な構造を有する核酸検出用器具に関する。詳しくは、核酸を含む試料から、核酸吸着物質に核酸を吸着させ、核酸吸着物質に吸着した核酸を鋳型にして核酸増幅反応を行い、同時に核酸反応による光学的な性質の変化を検出するのに用いられる核酸検出用器具に関する。
さらに、この器具を含んだ核酸検出用キットおよび核酸検出方法に関する。
【0002】
【従来の技術】
従来、核酸を用いた検出反応においては、検体中の核酸を様々な方法で精製して、核酸溶液とし、それを増幅反応溶液に添加して行うことが一般的であった。近年、核酸を精製する場合において、核酸溶液を調製する手間を省くことのできる技術が開発された。この技術により、核酸増幅用容器の器壁内側の核酸増幅反応液が接触する面に、核酸吸着性樹脂の粒子をコーティングしたものが、市販されるに至った(XtraBind、Xtrana社)。この商品は、溶液中に核酸を含む試料を、該容器に導入して、該核酸を樹脂に吸着させ、洗浄液で樹脂を洗った後、容器にPCR等の核酸増幅反応液を入れて核酸増幅を行うことができる。この容器では、核酸溶液を調製する必要がないので、手間が省けて有用である。
【0003】
一方、核酸の増幅反応の検出において、検出までの時間を短縮するために、増幅反応を行いながら、同時に検出反応を行う手法が開発されている。たとえば核酸の増幅反応として広く用いられているPCR法では、核酸増幅反応液中にインターカレーターと呼ばれる物質を共存させて、核酸増幅反応によって生じる2本鎖DNAに、該インターカレターが結合(インタカレート)して、蛍光を発するようになることを利用して、反応と検出を同時に行う、いわゆるリアルタイム検出を行う手法が開発されている。
【0004】
しかし、上記の2つの技術を融合して、核酸を吸着した状態で、核酸増幅を適用し、更に、同時に核酸増幅反応を検出することは不可能であった。それは、増幅反応液が接している器壁に、核酸吸着樹脂がコーティングされているため、更に樹脂が光学的に透明でない為である。すなわち、核酸増幅反応において、核酸が精製された溶液を調製することなく、核酸吸着性担体に結合させたまま、核酸増幅反応が適応でき、さらに同時に核酸増幅反応の進行を検出することができる器具が要望されていた。
【0005】
【発明が解決しようとする課題】
本発明の課題は、核酸が精製された溶液を調製することなく、核酸吸着性膜に吸着させたまま、核酸増幅反応が適応でき、さらに同時に核酸増幅反応の進行を検出することができる器具及び核酸検出用キットを提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、本発明者らのなした国際特許公表公報 WO03/006650号の発明をもとに、前記の課題を解決するために鋭意検討を進めた結果、図1に示したように、筒状の構造体(1a)の一端(1b)が、吸引機器に接続可能になっている開放端、もう一方の端に、核酸吸着膜(1c)を設置し、その筒状体(2a)を、図2に模式的に示したように市販されている注射器などの吸引器具(2b)と、核酸増幅反応容器(2c)に組み合わせて用いることで、前述の課題を一挙に解決できることを見出し、本発明を完成させるに至った。本発明の基本原理は、図3に示したように、筒状体(3a)に設置された核酸吸着膜(3b)に吸着させた核酸を鋳型として、核酸増幅反応容器(3c)の中で、核酸増幅反応溶液(3d)を添加し、核酸増幅反応を進行させながら、同時に、光(3e)などを用いて核酸増幅反応の進行を検出することができるようになっているものである。
【0007】
すなわち、本発明は、以下のとおりである。
(1) 両端が開放された筒状体において、核酸を吸着する膜がその筒状体の一端の開放部を覆うように設置されていて、該膜が、核酸増幅反応容器中の核酸増幅反応溶液に接触して、かつ、該筒状体が該核酸増幅反応容器に密閉されるように収納可能であり、さらに収納された状態で核酸増幅反応が可能である核酸検出用筒状体。
(2)膜が設置されていないもう一方の開放部が、膜を通過した溶液の吸引あるいは排出が可能な吸引/排出手段に接続可能である(1)に記載の核酸検出用筒状体。
(3) 核酸吸着膜が不織布である(1)または (2)に記載の核酸検出用筒状体。
(4)筒状体の膜が核酸増幅反応容器中の核酸増幅反応溶液の液面によって形成される水平面に対して、傾斜をなすように設置された(1)〜(3)のいずれかに記載の核酸検出用筒状体。
(5)核酸増幅反応を行う場合に生じる気泡を上部へ移送するための溝が、外側部分に刻まれている(1)〜(4)のいずれかに記載の核酸検出用筒状体。
(6)前記(1)〜(5)のいずれかに記載の核酸検出用筒状体と、核酸増幅反応容器とからなる核酸検出用器具であって、その筒状体の核酸吸着膜が核酸増幅反応容器中の核酸増幅反応溶液に接触して、かつ、該筒状体が核酸増幅反応容器に密閉されるように収納可能であり、さらに収納された状態で核酸増幅反応が可能であり、光学的性質の変化を用いてその核酸増幅反応の検出が可能である核酸検出用器具。
(7)核酸増幅反応溶液が核酸インタカレーターを含み、核酸増幅反応に伴う蛍光強度の変化が検出可能である(6)に記載の核酸検出用器具。
(8)核酸増幅反応に伴って増幅した核酸に対して、相補的な核酸を含むオリゴ核酸をハイブリダイズさせ、それに伴う蛍光強度の変化が検出可能である(6)に記載の核酸検出用器具。
(9)核酸増幅反応に伴って生成する不純物による光の透過度の変化が検出可能である(6)に記載の核酸検出用器具。
(10)核酸増幅反応が、PCRで行われる(6)〜(9)のいずれかに記載の核酸検出用器具。
(11)核酸増幅反応が、LAMP反応で行われる(6)〜(9)のいずれかに記載の核酸検出用器具。
(12)イ.前記(1)〜(5)のいずれかに記載の核酸検出用筒状体を含み、更に、ロ.検体から、核酸を遊離させる遊離液、ハ.核酸を吸着させた後、不純物を膜から洗浄除去する洗浄液、ニ.核酸増幅反応を行う、プライマー、基質、酵素を含む核酸増幅反応試薬のロ〜ニのいずれか1つ以上をセットにした核酸検出用キット。
(13)イ.前記(6)〜(9)のいずれかに記載の核酸検出用器具を含み、更に、ロ.検体から、核酸を遊離させる遊離液、ハ.核酸を吸着させた後、不純物を膜から洗浄除去する洗浄液、ニ.核酸増幅反応を行う、プライマー、基質、酵素を含む核酸増幅反応試薬のロ〜ニのいずれか1つ以上をセットにした核酸検出用キット。
(14)核酸増幅反応試薬が、PCRを達成できるものである(12)または(13)に記載の核酸検出用キット。
(15)核酸増幅反応試薬が、LAMP反応を達成できるものである(12)または(13)に記載の核酸検出用キット。
(16) 前記(1)〜(5)のいずれかに記載の核酸検出用筒状体と、核酸増幅反応容器とからなる核酸検出用器具を用いて、核酸吸着膜に検体の核酸を吸着させた後に、核酸吸着膜と核酸増幅反応溶液が接触して核酸吸着膜に吸着されている検体の核酸の増幅反応が行えるように核酸検出用筒状体を核酸増幅反応容器に収納し、密閉し、この核酸増幅反応を実施してその光学的性質の変化を用いて核酸増幅反応を検出することを特徴とする核酸検出方法。
【0008】
以下、本発明を詳細に説明する。まず本発明は前記したような核酸検出用筒状体に関する。本発明の筒状体を図1に一形態として例示して説明すると、筒状体(1a)において、開放部(1b)は、核酸を含む試料を膜に通過させるために、吸引あるいは排出が可能な器具に接合可能ないずれかの形状に加工されていることが好ましい。これらを用いることにより、核酸吸着性膜(1c)に、試料を通過させることが可能になる。吸引あるいは排出が可能な器具としては、注射筒(図2参照)、マイクロピペット、マイクロピペットの先端に取り付けるチップ、スポイト、真空ポンプ、あるいはこれらに接続できる管が挙げられる。試料を通過させ、さらに洗浄液で不純物を除いた筒状体は、あらかじめ核酸増幅反応試薬を添加した核酸増幅反応用マイクロテストチューブに設置され、図3に示した状態で核酸増幅反応が適用されると同時に、核酸増幅反応の有無が検出される。なお、核酸増幅反応の検出は、反応終了後に行われてもよい。また反応終了後の試料を、容器から取り出して検出することも可能であるが、この方法は、増幅反応産物を飛散させ、別の試料中への増幅産物を混入させる可能性を高めることになり、検査における偽陽性(本来は、核酸増幅反応がおこらない試料においても、鋳型DNAの混入による増幅反応が起きてしまうこと)が発生する原因となる。従って、核酸反応容器を開放することなく、密閉状態を保ったまま、検出を行うことが好ましい。
【0009】
核酸吸着膜面は、光学的な検出が妨害されないように核酸増幅反応試薬の中に生じる気泡を、核酸増幅反応容器の上部側あるいは側面などに逃がすことが好ましく、このために、図4に示すように、筒状体に設置される核酸吸着膜(4)を、水平面に対して傾斜角度をつけることが好ましい。この傾斜角度は5〜60度が望ましい。または、図5に示すように、気泡の通り道として筒状体に溝(5)をつけることが好ましい。傾斜および溝は同時に筒状体に設けても良い。
【0010】
筒状体の材質としては、本発明の形状に加工できるものであれば、特に限定されるものではないが、診断に用いる為に、安く大量に生産するには、プラスチックを加工して作成するのが望ましい。特に、射出成形により作成するのが好ましい。このような加工を行える材質としては、例えば、塩化ビニール樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニリデン樹脂、ポリウレタン樹脂、テフロン樹脂、ナイロン樹脂、ポリスチレン樹脂、ABS樹脂、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、メチルペンテン樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂等が挙げられる。
【0011】
核酸吸着性膜としては、不織布、織布、濾紙、グラスフィルターなどが挙げられる。このうち、不織布は、作成するコストがかからず、核酸の吸着性もよく、また次いで行われる核酸増幅反応を阻害しないので、特に好ましい。不織布とは、短繊維またはフィラメントを機械的、熱的、化学的な手段を用いて接着または交絡させて作るシート状またはウェブ構造のものである(第2版 繊維便覧 繊維学会編 丸善)。不織布は、さまざまな方法で生産されるが、基本的な工程はウェブ(繊維の方向がある程度揃った繊維塊のシート状のもの)の形成工程、ウェブの接着工程および仕上げ工程である。ウェブを形成する方式は、湿式、乾式および直接式に大別される。直接式は紡糸直結式ともいわれる方法で、溶融高分子溶液から紡糸された繊維を集めて直接ウェブとする工程である。これに含まれる方法は、スパンレース法、スパンボンド法、メルトブロー法、ニードルパンチ法、ステッチボンド法等であるが、本発明においては、メルトブロー法でつくられた超極細繊維不織布が最も好ましい。不織布には、天然繊維から化学繊維まで種々の繊維が用いられているが、一般的に用いられるのは、綿、レーヨン、ポリエステル繊維、ポリプロピレン繊維、ナイロン繊維であり、その他にもアクリル繊維、ビニロ繊維ン、ガラス繊維、パルプ、炭素繊維等が使用される。
【0012】
核酸吸着性膜を筒状物体に取り付ける方法としては、大量に生産する場合においては、接着剤、あるいは溶着によって取り付ける方法が好ましい。また、実験的に数十個の量を作成する場合においては、図6に示したように、筒状体を内筒(6a)と外筒(6b)の2重構造にし、核酸吸着膜(6c)を、機械的に挟み込む方法などでもよい。従って、これらの方法に限定されるものではない。
【0013】
また、本発明はこのような核酸検出用筒状体と核酸増幅反応容器とからなり、この容器の中で核酸増幅反応が可能である核酸検出用器具に関する。核酸増幅反応としては、該容器の中で達成されるものであれば限定されないが、広く行われているPCRは好適である。またPCRやLCR(Ligase Chain Reaction)のように温度を変化させるのではなくて、一定の温度で増幅させることが可能であるLAMP、ICAN(Isothermaland Chimeric Primer−initiated Amplification ofNucleic acids)、SDA(Strand Displacement Amplification)、NASBA(Nucleic acids Sequence−BasedAmplification)、TMA
(Transcription Medicated Amplification)も好適である。特にLAMP法は、増幅効率が高く、反応に伴って生成するピロリン酸と、反応溶液中のマグネシウムイオンの反応による白濁によって核酸の増幅反応を検出できるので、特に好ましい。
核酸増幅反応容器が核酸増幅反応を検出するための光は、例えばLAMP反応による濁度の変化を検出するためには、可視光であり、蛍光強度の変化を検出するためには、可視光あるいは紫外光である。
【0014】
さらに、本発明は、このようなイ.核酸検出用筒状体または核酸検出用器具と、ロ.検体から核酸を遊離させる遊離液、ハ.核酸を核酸吸着膜に吸着させた後に、不純物を膜から洗浄除去する洗浄液、二.核酸増幅反応を行う、プライマー、基質、酵素を含む核酸増幅反応用試薬のロ〜ニの少なくとも一種の成分とをセットにした核酸検出用キットに関する。
本発明では、前記したように、検体に遊離液を加えて検体から核酸を遊離させ、これを核酸吸着性膜を通過させて核酸を核酸吸着膜に吸着させ、洗浄液を用いて不純物を核酸吸着膜から除去し、これを核酸増幅反応を行うプライマー、基質、酵素などとともに核酸検出用器具の中で密閉状態で核酸増幅反応を行う。
反応終了後もしくは反応途中で、検体中に検出対象となる核酸が含まれていたか否かを、核酸の増幅反応に伴う光学的な性質の変化を外部から測定することによって検出する。
【0015】
本発明において検体としては、例えば、人の疾患の診断に用いる臨床検体である喀痰、唾液、尿、便、精液、血液、組織、臓器、その他の体液、これらの体液の画分、微生物汚染の検査に用いる食品、飲料水、土壌、排水、河川水、海水、ふき取り液、ふき取り綿などが挙げられる。また、例えば大腸菌などの細菌懸濁液を使用することができる。また、ロの検体から核酸を遊離させる遊離液としては界面活性剤やカオトロピック剤などを含む溶液が用いられる。検体に遊離液を加えただけでは固形成分等が残るような場合には、加熱、機械的振動等の手段による処理により、核酸吸着膜を通過できる性状とすることが望ましい。ハの核酸を核酸吸着膜に吸着させた後、不純物を膜から洗浄除去する洗浄液には、SDS(ラウリル硫酸ナトリウム)やトリトンX−100などの界面活性剤、NaClなどの塩溶液、エタノール等の有機溶媒などを使用するが、必ずしもこれらに限定されるものではなく、除去する不純物に応じて選択すればよい。また場合によっては、洗浄工程を省略することも可能である。さらに、ニのプライマーとしては、使用する核酸増幅反応に応じ、また検出する対象となる目的の核酸の配列に応じて、化学的に合成されたオリゴヌクレオチドなどが用いられる。オリゴヌクレオチドは使用する核酸増幅反応に応じて、DNAからなる、あるいはRNAからなる、あるいは、DNAとRNAの混成からなるオリゴヌクレオチドが用いられる。また、ジゴキシゲニン、ビオチンなどの化合物で修飾したオリゴヌクレオチドを用いることもある。基質としてはデオキシアデニン三リン酸(dATP)、デオキシグアニン三リン酸(dGTP)、デオキシチミン三リン酸(dTTP)、デオキシシトシン三リン酸(dCTP)の混合溶液(一般にdNTPと記載されている)などが用いられる。
【0016】
使用する核酸増幅反応によっては、アデニン、チミン、グアニン、シトシン以外の塩基からなるデオキシ塩基三リン酸を用いることもある。例えば、デオキシウラシル三リン酸(dUTP)を追加した、あるいはdGTPの代わりにdUTPを加えたdNTP溶液を使用する、などである。また、塩基部分をジゴキシゲニン(DIG)、ビオチン、蛍光物質などの化合物で修飾したデオキシ三リン酸を用いることもある。酵素としては、使用する核酸増幅反応によってDNAポリメラ−ゼ、RNAポリメラ−ゼ、DNAリガーゼ、逆転写酵素、制限酵素などが単独あるいは組み合わせて用いられる。たとえばPCRの場合は、Taq DNAポリメラ−ゼなどの耐熱性DNAポリメラ−ゼなどが、LAMP反応の場合には、Bst DNAポリメラ−ゼなどの鎖置換型DNAポリメラ−ゼなどが用いられる。この他に、核酸増幅反応による反応液の光学的変化を検出するために、エチジウムブロマイド、サイバーグリーン等のインターカレーターを加えておいてもよい。
前記ロ〜ニの少なくとも一種の成分をイの核酸検出用筒状体または核酸検出器具と組み合わせて核酸検出キットにしておくと医療の現場、食品製造の現場等で検体中の核酸を即座に検出することができるので有用である。
【0017】
【発明実施の形態】
以下に実施例により本発明を具体的に説明するが、本発明は、これらにより限定されるものではない。
【0018】
【実施例1】
本体部品(筒状体2a)を、ポリプロピレン製のマイクロピペット用のチップ(エッペンドルフ製)を切断して、図7に示した外筒、図8に示した内筒をそれぞれ作成した。PET製の不織布(A040C01、旭化成)を直径5mmの円形に切断し、それを図6に示すように、内筒と外筒の間に挟みこみ、本体部品を作成した。この本体部品(筒状体2a)の不織布を設置していない開放端に長さ2cm、内径3mm、外形4mmの塩化ビニール製のチューブを取り付け、その先に、2.5ml用プラスチック製注射筒(テルモ社)(2b)に取り付けた(図2参照)。
【0019】
牛血液1μlを、1mlの0.5%SDS、100mMの塩化ナトリウム、25mMのEDTA(エチレンジアミン4酢酸)を含むpH=7.6の10mMのトリス(トリスヒドロキシメチルアミノメタン/塩酸)緩衝液で溶解し、核酸を含む検体とした。この検体を、注射筒のピストンを吸引することで、本体部品の不織布を通過して注射筒へ導き、検体中の核酸を不織布に吸着させた。
【0020】
次いで、洗浄液1(0.2mlの0.5%SDS、100mMの塩化ナトリウム、25mMのEDTAを含むpH=7.6の10mMのトリス緩衝液、洗浄液2(0.2mlの1Mの塩化ナトリウムを含むpH=7.4の10mMのリン酸ナトリウム緩衝液)、洗浄液3(0.2mlのTE緩衝液(1mMのEDTAを含む10mMのトリス緩衝液))各1mlで、順に、注射筒で各液を吸引することで不織布を洗浄した。
【0021】
LAMP反応専用容器(栄研化学)(3c)に、牛胎児胚雌雄判別キット(栄研化学)のRMI反応液(3d)40μlに、溶解液10μl、酵素液1μlを加えた。この容器に、前記した検体中の核酸を吸着させ、洗浄した本体部品(筒状体3a)を入れ、蓋をして密封した後、65℃の恒温槽で30分間反応させた。反応後、溶液を肉眼で観察することにより、白濁を確認した。従って、本発明の器具を使用することにより、牛血液中の核酸が容易に検出されることが実証された(図3参照)。
【0022】
【実施例2】
BCG菌の検出
1%小川培地(極東製薬工業)上で37℃、20日間培養したBCG菌を白金耳で採取して、ガラスビーズが入ったディスパースチューブ(極東製薬工業)に入れた。これに10%Tween80溶液を2滴加え、蓋をして撹拌ミキサー(ボルテックス社)で15分間撹拌した。15分静置した後、水を3ml添加して撹拌し、更に15分間静置した。このBCG懸濁液を水で10倍づつ希釈していき、100μl中に10、100、1,000、10,000、100,000CFUのBCG菌を含むBCG菌の懸濁液を調製した。BCG懸濁液、および陰性コントロール(Nega)として、BCG菌を含まない水、それぞれ100μlに、溶解液 (100mM NaHPO/NaHPO(pH7.5)、200mMNaCl、50mMEDTA、1%SDS)を100μlと10% Dithiothreitolを2.5μl加えて撹拌し、95℃で10分加熱してBCG溶解液とした。
BCG菌の菌数は、以下の方法で決めた濁度と菌数の係数を利用して求めた。まず、McFarlandNo1の濁度標準液と同じ濁度を示すBCGの懸濁液を調製した。そのBCGの懸濁液を希釈し、さらにその一定量の希釈液体を抗酸菌培養用の培地に播種した。その培地を培養し生えてきたコロニーを数えた。コロニー数と希釈倍率を考慮することで、McFarlandNo1と同じ濁度のBCG菌懸濁液中には10CFU/mlの菌が含まれることがわかった。
【0023】
実施例1に準じて、本体部品を作製した(図6〜8参照)。本体部品の不織布部分を、上記のBCG溶解液に浸し、シリンジのピストンをゆっくり引きながらBCG溶解液を吸引した(図2参照)。次に、洗浄液1(0.2mlの0.5%SDS、100mMの塩化ナトリウム、25mMのEDTAを含むpH=7.6の10mMのリン酸ナトリウム緩衝液)、洗浄液2(0.2mlの1Mの塩化ナトリウムを含むpH=7.4の10mMのリン酸ナトリウム緩衝液)、洗浄液(0.2mlのTE緩衝液(1mMのEDTAを含む10mMのトリス緩衝液))各1mlで、順に、注射筒で各液を吸引することで不織布を洗浄した。
【0024】
次に、別のLAMP反応チューブに50μlのLAMP反応液を加えて、この反応液にミニカラムの不織布部分が接するようにミニカラムを入れてチューブに蓋をした(図3参照)。LAMP反応液は次のように調製した。まず、配列番号1のFIPプライマー 20pmol/μl、配列番号2のBIPプライマー 20pmol/μl、配列番号3のFLプライマー 10pmol/μl、配列番号4のBLプライマー10pmol/μl、配列番号5のF3プライマー2.5pmol/μl、配列番号6のB3プライマー 2.5pmol/μlとなるようにLAMP用プライマーミックス(以下、TB#019と記す)を調製した。プライマーは日本バイオサービス社に依頼して化学的に合成した。
【0025】
LAMP反応液50μl中には、4μlのTB#019、2μlのBst DNA Polymerase LargeFragment (8000U/ml、NEW ENGLAND BioLabs Inc.)、20mM Tris・HCl(pH8.8)、20mM KCl、8mM MgSO、10mM(NHSO、0.1%Tween20、0.8M Betaine、 1.4mMdATP、 1.4mM dCTP、1.4mM dGTP、 1.4mM dTTPが含まれる。LAMP反応液にミニカラムを入れたチューブをリアルタイム濁度測定装置LA−200(テラメックス社)にセットし、反応温度を64℃にして1時間反応させ、LAMP増幅反応中の濁度をリアルタイムにて測定した。結果を図9に示す。100CFUのBCG菌が、約30分で検出された。従って、本発明により検体中のBCG菌が迅速かつ簡便に検出されることが実証された。
【0026】
【発明の効果】
本発明によって、核酸を用いた検出反応が容易に行うことが可能になり、例えば医療現場における感染症の病原菌検出や、ヒト遺伝子の変異検出、また食品工業分野における有害菌の検出に用いる器具やキットを提供することが可能となる。
【0027】
【配列表】

Figure 2004350649
Figure 2004350649
Figure 2004350649
【0028】
【図面の簡単な説明】
【図1】本発明の核酸検出用筒状体の一例の見取図(斜視図)。
【図2】本発明の核酸検出用器具の使用の模式図。
【図3】本発明の核酸検出用器具を使用した核酸検出の模式図(縦断面図)。
【図4】本発明の核酸検出用器具の改良の一例を示した模式図(縦断面図)。
【図5】本発明の核酸検出用筒状体の改良の一例を示した見取図(斜視図)。
【図6】本発明の核酸検出用筒状体の組み立て方法の一例を示した模式図(縦断面図)。
【図7】本発明の核酸検出用筒状体の部品である外筒の設計図(側面図及び見取図(斜視図))。
【図8】本発明の核酸検出用筒状体の部品である内筒の設計図(側面図及び見取図(斜視図))。
【図9】本発明の核酸検出用器具による核酸検出の結果を示すグラフ。
【符号の説明】
1a:筒状体
1b:開放端
1c:核酸吸着膜
2a:筒状体
2b:吸引器具
2c:核酸増幅反応容器
3a:筒状体
3b:核酸吸着膜
3c:核酸増幅反応容器
3d:核酸増幅反応溶液
3e:核酸増幅反応を検出するための光
4:核酸吸着膜
5:溝
6a:内筒
6b:外筒
6c:核酸吸着膜[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a nucleic acid detection device having a novel structure. Specifically, nucleic acid is adsorbed on a nucleic acid-adsorbing substance from a sample containing the nucleic acid, a nucleic acid amplification reaction is performed using the nucleic acid adsorbed on the nucleic acid-adsorbing substance as a template, and at the same time, changes in optical properties due to the nucleic acid reaction are detected. The present invention relates to a nucleic acid detection instrument used.
Further, the present invention relates to a nucleic acid detection kit and a nucleic acid detection method including the device.
[0002]
[Prior art]
Conventionally, in a detection reaction using a nucleic acid, it has been common practice to purify a nucleic acid in a sample by various methods to prepare a nucleic acid solution, and to add it to an amplification reaction solution. In recent years, a technology has been developed that can save the trouble of preparing a nucleic acid solution when purifying a nucleic acid. According to this technique, a surface of a container for nucleic acid amplification, which is coated with particles of a nucleic acid-adsorbing resin on a surface in contact with a nucleic acid amplification reaction solution, has come to be commercially available (XtraBind, Xtrana). This product introduces a sample containing a nucleic acid in a solution into the container, adsorbs the nucleic acid to a resin, wash the resin with a washing solution, and then puts a nucleic acid amplification reaction solution such as PCR into the container to perform nucleic acid amplification. It can be performed. In this container, there is no need to prepare a nucleic acid solution, which is useful because it saves time and effort.
[0003]
On the other hand, in the detection of an amplification reaction of a nucleic acid, in order to shorten the time until the detection, a method of simultaneously performing the detection reaction while performing the amplification reaction has been developed. For example, in a PCR method widely used as a nucleic acid amplification reaction, a substance called an intercalator is allowed to coexist in a nucleic acid amplification reaction solution, and the intercalator binds to double-stranded DNA generated by the nucleic acid amplification reaction. A method of performing so-called real-time detection, in which reaction and detection are performed at the same time by utilizing the fact that the fluorescent light is emitted after being callated, has been developed.
[0004]
However, it has not been possible to apply the nucleic acid amplification while adsorbing the nucleic acid and to simultaneously detect the nucleic acid amplification reaction by fusing the above two techniques. This is because the nucleic acid-adsorbing resin is coated on the vessel wall in contact with the amplification reaction solution, and the resin is not optically transparent. That is, in a nucleic acid amplification reaction, a device capable of adapting a nucleic acid amplification reaction without preparing a solution in which a nucleic acid is purified and being attached to a nucleic acid-adsorbing carrier, and simultaneously detecting the progress of the nucleic acid amplification reaction Was requested.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a device capable of adapting a nucleic acid amplification reaction while maintaining a nucleic acid-adsorbing membrane without preparing a solution in which a nucleic acid is purified, and further capable of simultaneously detecting the progress of the nucleic acid amplification reaction. An object of the present invention is to provide a kit for detecting a nucleic acid.
[0006]
[Means for Solving the Problems]
Based on the invention of International Patent Publication No. WO 03/006650 made by the present inventors, the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, as shown in FIG. One end (1b) of the tubular structure (1a) is an open end connectable to a suction device, and the other end is provided with a nucleic acid adsorption membrane (1c), and the tubular body (2a) It has been found that the above-mentioned problem can be solved at a stroke by using in combination with a commercially available suction device (2b) such as a syringe and a nucleic acid amplification reaction container (2c) as schematically shown in FIG. Thus, the present invention has been completed. As shown in FIG. 3, the basic principle of the present invention is that a nucleic acid adsorbed on a nucleic acid adsorption film (3b) provided on a cylindrical body (3a) is used as a template in a nucleic acid amplification reaction vessel (3c). While the nucleic acid amplification reaction solution (3d) is added and the nucleic acid amplification reaction proceeds, the progress of the nucleic acid amplification reaction can be simultaneously detected using light (3e) or the like.
[0007]
That is, the present invention is as follows.
(1) In a cylindrical body having both ends opened, a film for adsorbing nucleic acid is provided so as to cover an open portion at one end of the cylindrical body, and the film is used for a nucleic acid amplification reaction in a nucleic acid amplification reaction vessel. A nucleic acid detection tubular body that can be housed in contact with a solution so that the tubular body is hermetically sealed in the nucleic acid amplification reaction container, and that is capable of performing a nucleic acid amplification reaction in the housed state.
(2) The nucleic acid detection tubular body according to (1), wherein the other open portion on which the membrane is not installed can be connected to suction / discharge means capable of sucking or discharging the solution that has passed through the membrane.
(3) The nucleic acid detection tubular body according to (1) or (2), wherein the nucleic acid adsorption film is a nonwoven fabric.
(4) In any one of (1) to (3), the membrane of the cylindrical body is installed so as to be inclined with respect to a horizontal plane formed by the liquid surface of the nucleic acid amplification reaction solution in the nucleic acid amplification reaction container. The cylindrical body for nucleic acid detection according to any one of the preceding claims.
(5) The nucleic acid detection tubular body according to any one of (1) to (4), wherein a groove for transferring bubbles generated when performing a nucleic acid amplification reaction to the upper portion is cut in an outer portion.
(6) A nucleic acid detection instrument comprising the nucleic acid detection tubular body according to any one of the above (1) to (5) and a nucleic acid amplification reaction container, wherein the nucleic acid adsorption film of the tubular body is a nucleic acid. In contact with the nucleic acid amplification reaction solution in the amplification reaction container, and can be stored so that the cylindrical body is sealed in the nucleic acid amplification reaction container, further nucleic acid amplification reaction is possible in the stored state, A nucleic acid detection device capable of detecting a nucleic acid amplification reaction using a change in optical properties.
(7) The nucleic acid detection instrument according to (6), wherein the nucleic acid amplification reaction solution contains a nucleic acid intercalator, and a change in fluorescence intensity accompanying the nucleic acid amplification reaction can be detected.
(8) The nucleic acid detection device according to (6), wherein the nucleic acid amplified by the nucleic acid amplification reaction is hybridized with an oligonucleic acid containing a complementary nucleic acid, and the accompanying change in fluorescence intensity can be detected. .
(9) The nucleic acid detection instrument according to (6), wherein a change in light transmittance due to impurities generated by the nucleic acid amplification reaction can be detected.
(10) The nucleic acid detection device according to any one of (6) to (9), wherein the nucleic acid amplification reaction is performed by PCR.
(11) The nucleic acid detection device according to any one of (6) to (9), wherein the nucleic acid amplification reaction is performed by a LAMP reaction.
(12) a. It comprises the nucleic acid detection tubular body according to any one of the above (1) to (5). A release solution for releasing nucleic acids from the sample; c. A washing solution for washing and removing impurities from the membrane after the nucleic acid is adsorbed; A nucleic acid detection kit comprising a set of any one or more of nucleic acid amplification reaction reagents containing primers, substrates, and enzymes for performing a nucleic acid amplification reaction.
(13) a. The device for detecting nucleic acid according to any one of the above (6) to (9) is further provided. A release solution for releasing nucleic acids from the sample; c. A washing solution for washing and removing impurities from the membrane after the nucleic acid is adsorbed; A nucleic acid detection kit comprising a set of any one or more of nucleic acid amplification reaction reagents containing primers, substrates, and enzymes for performing a nucleic acid amplification reaction.
(14) The nucleic acid detection kit according to (12) or (13), wherein the nucleic acid amplification reaction reagent is capable of achieving PCR.
(15) The nucleic acid detection kit according to (12) or (13), wherein the nucleic acid amplification reaction reagent is capable of achieving a LAMP reaction.
(16) The nucleic acid of the specimen is adsorbed on the nucleic acid adsorption film using the nucleic acid detection instrument comprising the nucleic acid detection tubular body according to any one of the above (1) to (5) and a nucleic acid amplification reaction container. After that, the nucleic acid detection membrane is brought into contact with the nucleic acid amplification reaction solution to carry out amplification reaction of the nucleic acid of the sample adsorbed on the nucleic acid adsorption film, and the nucleic acid detection tubular body is housed in the nucleic acid amplification reaction container and sealed. A method for detecting a nucleic acid, comprising performing the nucleic acid amplification reaction and detecting the nucleic acid amplification reaction by using the change in the optical properties.
[0008]
Hereinafter, the present invention will be described in detail. First, the present invention relates to the above-described cylindrical body for nucleic acid detection. The tubular body of the present invention will be described by way of example in FIG. 1 as an embodiment. In the tubular body (1a), an opening (1b) is provided with an aspiration or discharge for allowing a nucleic acid-containing sample to pass through a membrane. It is preferably processed to any shape that can be joined to a possible appliance. By using these, the sample can be passed through the nucleic acid-adsorbing membrane (1c). Instruments that can be suctioned or discharged include a syringe (see FIG. 2), a micropipette, a tip attached to the tip of the micropipette, a dropper, a vacuum pump, and a tube that can be connected to these. The cylindrical body through which the sample has been passed and further the impurities have been removed with the washing solution is placed in a nucleic acid amplification reaction microtest tube to which a nucleic acid amplification reaction reagent has been previously added, and the nucleic acid amplification reaction is applied in the state shown in FIG. At the same time, the presence or absence of the nucleic acid amplification reaction is detected. The detection of the nucleic acid amplification reaction may be performed after the completion of the reaction. Although it is possible to remove the sample after the reaction from the container and detect it, this method increases the possibility of scattering the amplification reaction product and mixing the amplification product into another sample. In addition, this may cause false positives in the test (that is, even in a sample in which a nucleic acid amplification reaction does not occur, an amplification reaction occurs due to contamination of a template DNA). Therefore, it is preferable to perform the detection without opening the nucleic acid reaction container and keeping the sealed state.
[0009]
The nucleic acid adsorption film surface preferably allows bubbles generated in the nucleic acid amplification reaction reagent to escape to the upper side or the side of the nucleic acid amplification reaction container so that optical detection is not hindered. As described above, it is preferable that the nucleic acid-adsorbing film (4) provided on the cylindrical body has an inclination angle with respect to the horizontal plane. This inclination angle is desirably 5 to 60 degrees. Alternatively, as shown in FIG. 5, it is preferable to provide a groove (5) in the cylindrical body as a passage for the air bubbles. The inclination and the groove may be provided on the cylindrical body at the same time.
[0010]
The material of the cylindrical body is not particularly limited as long as it can be processed into the shape of the present invention. It is desirable. In particular, it is preferable to make it by injection molding. Examples of materials capable of performing such processing include, for example, vinyl chloride resin, polyethylene resin, polypropylene resin, polyvinylidene chloride resin, polyurethane resin, Teflon resin, nylon resin, polystyrene resin, ABS resin, acrylic resin, fluorine resin, and polycarbonate resin. , A methylpentene resin, a phenol resin, a melamine resin, an epoxy resin and the like.
[0011]
Examples of the nucleic acid-adsorbing membrane include a nonwoven fabric, a woven fabric, a filter paper, and a glass filter. Among them, the nonwoven fabric is particularly preferable because the production cost is low, the nucleic acid adsorption property is good, and the nucleic acid amplification reaction to be performed subsequently is not inhibited. The nonwoven fabric has a sheet or web structure formed by bonding or entanglement of short fibers or filaments using mechanical, thermal, or chemical means (2nd edition, Textile Handbook, edited by Fiber Society, Maruzen). Nonwoven fabrics are produced by various methods, and the basic steps are a web forming step (a sheet of fibrous mass with a certain degree of fiber orientation), a web bonding step, and a finishing step. The method of forming the web is roughly classified into a wet method, a dry method and a direct method. The direct type is a process also called a direct spinning type, and is a process in which fibers spun from a molten polymer solution are collected into a direct web. The methods included therein include a spunlace method, a spun bond method, a melt blow method, a needle punch method, a stitch bond method and the like. In the present invention, a nonwoven fabric made of a microfiber formed by a melt blow method is most preferable. Various fibers are used for non-woven fabrics, from natural fibers to chemical fibers.Generally used are cotton, rayon, polyester fibers, polypropylene fibers, and nylon fibers. Fiber, glass fiber, pulp, carbon fiber and the like are used.
[0012]
As a method for attaching the nucleic acid-adsorbing membrane to the cylindrical object, in the case of mass production, an attachment method using an adhesive or welding is preferable. Further, when several tens of pieces are experimentally produced, as shown in FIG. 6, the tubular body is made to have a double structure of the inner cylinder (6a) and the outer cylinder (6b), and the nucleic acid adsorption film ( 6c) may be mechanically sandwiched. Therefore, it is not limited to these methods.
[0013]
In addition, the present invention relates to a nucleic acid detection instrument comprising such a nucleic acid detection tubular body and a nucleic acid amplification reaction container, and capable of performing a nucleic acid amplification reaction in this container. The nucleic acid amplification reaction is not limited as long as it can be achieved in the container, but widely used PCR is suitable. In addition, it is possible to amplify at a constant temperature, instead of changing the temperature like PCR and LCR (Ligase Chain Reaction), and LAMP, ISAN (Isothermalin Chimeric Primer-initiated Amplification of Nuclear Dispersion, D.A.C. Amplification), NASBA (Nucleic acids Sequence-Based Amplification), TMA
(Transscription Medication Amplification) is also suitable. In particular, the LAMP method is particularly preferred because the amplification efficiency is high and the nucleic acid amplification reaction can be detected by the turbidity of the reaction between pyrophosphate generated during the reaction and magnesium ions in the reaction solution.
The light for the nucleic acid amplification reaction vessel to detect the nucleic acid amplification reaction is, for example, visible light for detecting a change in turbidity due to a LAMP reaction, and visible light or light for detecting a change in fluorescence intensity. UV light.
[0014]
Further, the present invention relates to such a. A nucleic acid detection cylinder or a nucleic acid detection device; A release solution for releasing nucleic acids from the sample; c. 1. a washing solution for washing and removing impurities from the nucleic acid-adsorbing film after the nucleic acid is adsorbed on the film; The present invention relates to a kit for detecting a nucleic acid, comprising a set of at least one of components (a) to (d) of a nucleic acid amplification reaction reagent containing a primer, a substrate, and an enzyme for performing a nucleic acid amplification reaction.
In the present invention, as described above, a release solution is added to a sample to release nucleic acids from the sample, which is passed through a nucleic acid-adsorbing membrane to adsorb nucleic acids to the nucleic acid-adsorbing film, and a washing solution is used to adsorb impurities to the nucleic acid. The nucleic acid amplification reaction is performed in a sealed state in a nucleic acid detection device together with primers, substrates, enzymes, and the like for performing the nucleic acid amplification reaction.
After or during the reaction, whether or not the nucleic acid to be detected is contained in the sample is detected by externally measuring a change in optical properties accompanying the nucleic acid amplification reaction.
[0015]
Samples in the present invention include, for example, sputum, saliva, urine, stool, semen, blood, tissues, organs, other body fluids, fractions of these body fluids, microbial contamination, which are clinical samples used for diagnosis of human diseases. Examples include food, drinking water, soil, drainage, river water, seawater, wiping liquid, and wiping cotton used for inspection. Also, a bacterial suspension such as E. coli can be used. Further, a solution containing a surfactant, a chaotropic agent, or the like is used as a release solution for releasing nucleic acids from the sample (b). When the solid component or the like remains only by adding the free liquid to the sample, it is desirable that the sample be passed through the nucleic acid adsorption membrane by a treatment such as heating or mechanical vibration. After the nucleic acid of C is adsorbed on the nucleic acid-adsorbing film, the washing solution for washing and removing impurities from the film includes a surfactant such as SDS (sodium lauryl sulfate) and Triton X-100, a salt solution such as NaCl, ethanol and the like. An organic solvent or the like is used, but is not limited thereto, and may be selected according to the impurities to be removed. In some cases, the washing step can be omitted. Further, as the primers, oligonucleotides chemically synthesized according to the nucleic acid amplification reaction to be used and the sequence of the target nucleic acid to be detected are used. Depending on the nucleic acid amplification reaction to be used, an oligonucleotide consisting of DNA, RNA, or a mixture of DNA and RNA is used. Oligonucleotides modified with compounds such as digoxigenin and biotin may also be used. As a substrate, a mixed solution of deoxyadenine triphosphate (dATP), deoxyguanine triphosphate (dGTP), deoxythymine triphosphate (dTTP), and deoxycytosine triphosphate (dCTP) (generally described as dNTP) Are used.
[0016]
Depending on the nucleic acid amplification reaction used, a deoxybase triphosphate consisting of a base other than adenine, thymine, guanine and cytosine may be used. For example, a dNTP solution to which deoxyuracil triphosphate (dUTP) is added or dUTP is added instead of dGTP is used. Deoxytriphosphate in which the base is modified with a compound such as digoxigenin (DIG), biotin, or a fluorescent substance may be used. As the enzyme, DNA polymerase, RNA polymerase, DNA ligase, reverse transcriptase, restriction enzyme, etc. are used alone or in combination depending on the nucleic acid amplification reaction to be used. For example, in the case of PCR, a heat-resistant DNA polymerase such as Taq DNA polymerase is used, and in the case of a LAMP reaction, a strand displacement DNA polymerase such as Bst DNA polymerase is used. In addition, an intercalator such as ethidium bromide or cyber green may be added to detect an optical change in the reaction solution due to the nucleic acid amplification reaction.
If at least one of the components (a) to (d) is combined with the nucleic acid detection tube or the nucleic acid detection device in (a) to prepare a nucleic acid detection kit, the nucleic acid in the sample can be immediately detected at a medical site, a food manufacturing site, etc. It is useful because it can be done.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
[0018]
Embodiment 1
The main body part (cylindrical body 2a) was cut from a polypropylene micropipette tip (made by Eppendorf) to produce an outer cylinder shown in FIG. 7 and an inner cylinder shown in FIG. 8, respectively. A PET non-woven fabric (A040C01, Asahi Kasei) was cut into a circular shape having a diameter of 5 mm, which was sandwiched between an inner cylinder and an outer cylinder as shown in FIG. 6 to prepare a main body part. At the open end of the main body part (cylindrical body 2a) where the nonwoven fabric is not installed, a vinyl chloride tube having a length of 2 cm, an inner diameter of 3 mm, and an outer diameter of 4 mm is attached. Terumo Corporation (2b) (see FIG. 2).
[0019]
1 μl of bovine blood is dissolved in 1 ml of 0.5% SDS, 100 mM sodium chloride, 25 mM EDTA (ethylenediaminetetraacetic acid), 10 mM Tris (trishydroxymethylaminomethane / hydrochloric acid) buffer at pH = 7.6. Then, a sample containing nucleic acid was obtained. This sample was guided through the nonwoven fabric of the main body part to the injection tube by sucking the piston of the injection cylinder, and the nucleic acid in the sample was adsorbed on the nonwoven fabric.
[0020]
Wash solution 1 (0.2 ml of 0.5% SDS, 100 mM sodium chloride, 10 mM Tris buffer at pH = 7.6 with 25 mM EDTA, wash solution 2 (containing 0.2 ml of 1 M sodium chloride Using a 10 ml sodium phosphate buffer (pH = 7.4) and 1 ml each of washing solution 3 (0.2 ml of TE buffer (10 mM of Tris buffer containing 1 mM of EDTA)), inject each solution in order with an injection syringe. The nonwoven fabric was washed by suction.
[0021]
To a container dedicated to LAMP reaction (Eiken Chemical) (3c), 10 μl of a lysate and 1 μl of an enzyme solution were added to 40 μl of an RMI reaction solution (3d) of a bovine embryo embryo sex kit (Eiken Chemical). The nucleic acid in the sample described above was adsorbed to the container, and the washed main body part (cylindrical body 3a) was put in the container, and the container was sealed with a lid, followed by a reaction in a thermostat at 65 ° C. for 30 minutes. After the reaction, cloudiness was confirmed by visually observing the solution. Therefore, it was demonstrated that the nucleic acid in bovine blood was easily detected by using the device of the present invention (see FIG. 3).
[0022]
Embodiment 2
Detection of BCG bacteria BCG bacteria cultured at 37 ° C. for 20 days on a 1% Ogawa medium (Farto Pharmaceutical) were collected with a platinum loop and placed in a disperse tube containing glass beads (Farto Pharmaceutical). Two drops of a 10% Tween 80 solution was added thereto, and the mixture was covered and stirred with a stirring mixer (Vortex) for 15 minutes. After standing for 15 minutes, 3 ml of water was added and stirred, and the mixture was left still for 15 minutes. This BCG suspension was diluted 10-fold with water to prepare a suspension of BCG bacteria containing 10, 100, 1,000, 10,000, 100,000 CFU of BCG bacteria in 100 μl. As a BCG suspension and as a negative control (Nega), 100 μl each of water containing no BCG bacteria, a lysis solution (100 mM Na 2 HPO 4 / NaH 2 PO 4 (pH 7.5), 200 mM NaCl, 50 mM EDTA, 1% SDS) ) And 2.5 μl of 10% Dithiothreitol were added, stirred, and heated at 95 ° C. for 10 minutes to obtain a BCG solution.
The number of BCG bacteria was determined using the turbidity and the coefficient of the number of bacteria determined by the following method. First, a suspension of BCG having the same turbidity as the turbidity standard solution of McFarland No1 was prepared. The BCG suspension was diluted, and a certain amount of the diluted liquid was seeded on a medium for culturing the acid-fast bacterium. The medium was cultured and the growing colonies were counted. By considering the number of colonies and the dilution ratio, during BCG bacteria suspension of the same turbidity as McFarlandNo1 was found to contain 10 7 CFU / ml of bacteria.
[0023]
A body component was manufactured according to Example 1 (see FIGS. 6 to 8). The nonwoven fabric part of the main body part was immersed in the BCG solution, and the BCG solution was sucked while slowly pulling the piston of the syringe (see FIG. 2). Next, Wash 1 (0.2 ml of 0.5% SDS, 100 mM sodium chloride, 10 mM sodium phosphate buffer at pH = 7.6 containing 25 mM EDTA), Wash 2 (0.2 ml of 1M 1M 1 ml each of 10 mM sodium phosphate buffer (pH = 7.4 containing sodium chloride) and washing solution (0.2 ml TE buffer (10 mM Tris buffer containing 1 mM EDTA)). The nonwoven fabric was washed by sucking each liquid.
[0024]
Next, 50 μl of a LAMP reaction solution was added to another LAMP reaction tube, and a mini-column was placed so that the nonwoven fabric portion of the mini-column was in contact with the reaction solution, and the tube was covered (see FIG. 3). The LAMP reaction solution was prepared as follows. First, 20 pmol / μl of the FIP primer of SEQ ID NO: 1, 20 pmol / μl of the BIP primer of SEQ ID NO: 2, 10 pmol / μl of the FL primer of SEQ ID NO: 3, 10 pmol / μl of the BL primer of SEQ ID NO: 4, and F3 primer of SEQ ID NO: 5. A primer mix for LAMP (hereinafter, referred to as TB # 019) was prepared so that 5 pmol / μl and B3 primer of SEQ ID NO: 6 became 2.5 pmol / μl. Primers were chemically synthesized at the request of Japan Bioservices.
[0025]
In 50 μl of the LAMP reaction solution, 4 μl of TB # 019, 2 μl of Bst DNA Polymerase Large Fragment (8000 U / ml, NEW ENGLAND BioLabs Inc.), 20 mM Tris · HCl (pH 8.8), 20 mM KCl, 10 mM MgSO 4 (NH 4 ) 2 SO 4 , 0.1% Tween 20, 0.8 M Betaine, 1.4 mM dATP, 1.4 mM dCTP, 1.4 mM dGTP, 1.4 mM dTTP. The tube in which the mini column was put in the LAMP reaction solution was set in a real-time turbidity measuring device LA-200 (Teramex), and the reaction was performed at a reaction temperature of 64 ° C. for 1 hour, and the turbidity during the LAMP amplification reaction was measured in real time did. FIG. 9 shows the results. 100 CFU of BCG bacteria was detected in about 30 minutes. Therefore, it was demonstrated that the BCG bacterium in a sample can be detected quickly and easily according to the present invention.
[0026]
【The invention's effect】
According to the present invention, it is possible to easily perform a detection reaction using a nucleic acid, for example, detection of pathogenic bacteria of infectious diseases in medical settings, detection of mutations in human genes, and instruments used for detection of harmful bacteria in the food industry field and A kit can be provided.
[0027]
[Sequence list]
Figure 2004350649
Figure 2004350649
Figure 2004350649
[0028]
[Brief description of the drawings]
FIG. 1 is a perspective view (perspective view) of an example of a cylindrical body for nucleic acid detection of the present invention.
FIG. 2 is a schematic view of use of the nucleic acid detection device of the present invention.
FIG. 3 is a schematic diagram (longitudinal sectional view) of nucleic acid detection using the nucleic acid detection device of the present invention.
FIG. 4 is a schematic view (longitudinal sectional view) showing an example of improvement of the nucleic acid detection device of the present invention.
FIG. 5 is a perspective view (perspective view) showing an example of an improvement of the cylindrical body for nucleic acid detection of the present invention.
FIG. 6 is a schematic view (longitudinal sectional view) showing an example of a method for assembling the nucleic acid detection tubular body of the present invention.
FIG. 7 is a plan view (side view and perspective view (perspective view)) of an outer cylinder which is a component of the nucleic acid detection tubular body of the present invention.
FIG. 8 is a design diagram (side view and perspective view (perspective view)) of an inner cylinder which is a component of the nucleic acid detection tubular body of the present invention.
FIG. 9 is a graph showing the results of nucleic acid detection by the nucleic acid detection device of the present invention.
[Explanation of symbols]
1a: cylindrical body 1b: open end 1c: nucleic acid adsorption film 2a: cylindrical body 2b: suction device 2c: nucleic acid amplification reaction vessel 3a: cylindrical body 3b: nucleic acid adsorption film 3c: nucleic acid amplification reaction vessel 3d: nucleic acid amplification reaction Solution 3e: Light for detecting nucleic acid amplification reaction 4: Nucleic acid adsorption film 5: Groove 6a: Inner cylinder 6b: Outer cylinder 6c: Nucleic acid adsorption membrane

Claims (16)

両端が開放された筒状体において、核酸を吸着する膜がその筒状体の一端の開放部を覆うように設置されていて、該膜が核酸増幅反応容器中の核酸増幅反応溶液に接触して、かつ、該筒状体が該核酸増幅反応容器に密閉されるように収納可能であり、さらに収納された状態で核酸増幅反応が可能である核酸検出用筒状体。In the cylindrical body having both ends open, a film for adsorbing nucleic acid is provided so as to cover an open portion at one end of the cylindrical body, and the film comes into contact with the nucleic acid amplification reaction solution in the nucleic acid amplification reaction container. And a tubular body for nucleic acid detection, wherein the tubular body can be housed so as to be hermetically sealed in the nucleic acid amplification reaction container, and a nucleic acid amplification reaction can be performed in the housed state. 膜が設置されていないもう一方の開放部が、膜を通過した溶液の吸引あるいは排出が可能な吸引/排出手段に接続可能である請求項1記載の核酸検出用筒状体。2. The nucleic acid detection tubular body according to claim 1, wherein the other open portion on which the membrane is not installed is connectable to a suction / discharge means capable of sucking or discharging the solution that has passed through the membrane. 核酸吸着膜が不織布である請求項1または請求項2に記載の核酸検出用筒状体。The nucleic acid detection cylindrical body according to claim 1 or 2, wherein the nucleic acid adsorption film is a nonwoven fabric. 筒状体の膜が核酸増幅反応容器中の核酸増幅反応溶液の液面によって形成される水平面に対して、傾斜をなすように設置された請求項1〜請求項3のいずれかに記載の核酸検出用筒状体。The nucleic acid according to any one of claims 1 to 3, wherein the cylindrical membrane is provided so as to be inclined with respect to a horizontal plane formed by the liquid surface of the nucleic acid amplification reaction solution in the nucleic acid amplification reaction container. Detection cylinder. 核酸増幅反応を行う場合に生じる気泡を上部へ移送するための溝が、外側部分に刻まれている請求項1〜請求項4のいずれかに記載の核酸検出用筒状体。The nucleic acid detection tubular body according to any one of claims 1 to 4, wherein a groove for transferring bubbles generated when performing a nucleic acid amplification reaction to the upper portion is formed in an outer portion. 請求項1〜請求項5のいずれかに記載の核酸検出用筒状体と、核酸増幅反応容器とからなる核酸検出用器具であって、その筒状体の核酸吸着膜が核酸増幅反応容器中の核酸増幅反応溶液に接触して、かつ、該筒状体が核酸増幅反応容器に密閉されるように収納可能であり、さらに収納された状態で核酸増幅反応が可能であり、光学的性質の変化を用いてその核酸増幅反応の検出が可能である核酸検出用器具。A nucleic acid detection instrument comprising the nucleic acid detection tubular body according to any one of claims 1 to 5 and a nucleic acid amplification reaction container, wherein the nucleic acid adsorption film of the cylindrical body is in the nucleic acid amplification reaction container. In contact with the nucleic acid amplification reaction solution, and can be stored so that the cylindrical body is sealed in the nucleic acid amplification reaction vessel, further nucleic acid amplification reaction is possible in the stored state, optical properties An instrument for nucleic acid detection capable of detecting the nucleic acid amplification reaction using the change. 核酸増幅反応溶液が核酸インタカレーターを含み、核酸増幅反応に伴う蛍光強度の変化が検出可能である請求項6記載の核酸検出用器具。The nucleic acid detection instrument according to claim 6, wherein the nucleic acid amplification reaction solution contains a nucleic acid intercalator, and a change in fluorescence intensity accompanying the nucleic acid amplification reaction can be detected. 核酸増幅反応に伴って増幅した核酸に対して、相補的な核酸を含むオリゴ核酸をハイブリダイズさせ、それに伴う蛍光強度の変化が検出可能である請求項6記載の核酸検出用器具。The nucleic acid detection device according to claim 6, wherein the nucleic acid amplified by the nucleic acid amplification reaction is hybridized with an oligonucleic acid containing a complementary nucleic acid, and the accompanying change in fluorescence intensity can be detected. 核酸増幅反応に伴って生成する不純物による光の透過度の変化が検出可能である請求項6記載の核酸検出用器具。The nucleic acid detecting device according to claim 6, wherein a change in light transmittance due to impurities generated by the nucleic acid amplification reaction can be detected. 核酸増幅反応が、PCR(Polymerase Chain Reaction)で行われる請求項6〜請求項9のいずれかに記載の核酸検出用器具。The nucleic acid detection device according to any one of claims 6 to 9, wherein the nucleic acid amplification reaction is performed by PCR (Polymerase Chain Reaction). 核酸増幅反応が、LAMP (Loop−mediated Iso thermalAmplification)反応で行われる請求項6〜請求項9のいずれかに記載の核酸検出用器具。The nucleic acid detection device according to any one of claims 6 to 9, wherein the nucleic acid amplification reaction is performed by a LAMP (Loop-mediated Iso thermal Amplification) reaction. イ.請求項1〜請求項5のいずれかに記載の核酸検出用筒状体を含み、更に、ロ.検体から、核酸を遊離させる遊離液、ハ.核酸を吸着させた後、不純物を膜から洗浄除去する洗浄液、ニ.核酸増幅反応を行う、プライマー、基質、酵素を含む核酸増幅反応試薬のロ〜ニのいずれか1つ以上をセットにした核酸検出用キット。I. The nucleic acid detection tubular body according to any one of claims 1 to 5, further comprising: A release solution for releasing nucleic acids from the sample; c. A washing solution for washing and removing impurities from the membrane after the nucleic acid is adsorbed; A nucleic acid detection kit comprising a set of any one or more of reagents for nucleic acid amplification reaction including primers, substrates, and enzymes for performing a nucleic acid amplification reaction. イ.請求項6〜請求項9のいずれかに記載の核酸検出用器具を含み、更に、ロ.検体から、核酸を遊離させる遊離液、ハ.核酸を吸着させた後、不純物を膜から洗浄除去する洗浄液、ニ.核酸増幅反応を行う、プライマー、基質、酵素を含む核酸増幅反応試薬のロ〜ニのいずれか1つ以上をセットにした核酸検出用キット。I. The apparatus for detecting nucleic acid according to any one of claims 6 to 9, further comprising: A release solution for releasing nucleic acids from the sample; c. A washing solution for washing and removing impurities from the membrane after the nucleic acid is adsorbed; A nucleic acid detection kit comprising a set of any one or more of reagents for nucleic acid amplification reaction including primers, substrates, and enzymes for performing a nucleic acid amplification reaction. 核酸増幅反応試薬が、PCRを達成できるものである請求項12または請求項13に記載の核酸検出用キット。14. The kit for detecting a nucleic acid according to claim 12, wherein the nucleic acid amplification reaction reagent is capable of achieving PCR. 核酸増幅反応試薬が、LAMP反応を達成できるものである請求項12または請求項13に記載の核酸検出用キット。14. The kit for detecting a nucleic acid according to claim 12, wherein the nucleic acid amplification reaction reagent is capable of achieving a LAMP reaction. 請求項1〜請求項5のいずれかに記載の核酸検出用筒状体と、核酸増幅反応容器とからなる核酸検出用器具を用いて、核酸吸着膜に検体の核酸を吸着させた後に、核酸吸着膜と核酸増幅反応溶液が接触して核酸吸着膜に吸着されている検体の核酸の増幅反応が行えるように核酸検出用筒状体を核酸増幅反応容器に収納し、密閉し、この核酸増幅反応を実施してその光学的性質の変化を用いて核酸増幅反応を検出することを特徴とする核酸検出方法。Using a nucleic acid detection instrument comprising the nucleic acid detection tubular body according to any one of claims 1 to 5 and a nucleic acid amplification reaction container, the nucleic acid of the sample is adsorbed to the nucleic acid adsorption film, The nucleic acid amplification tube is housed in a nucleic acid amplification reaction vessel and sealed so that the nucleic acid amplification reaction solution can be brought into contact with the adsorption film to perform amplification reaction of the nucleic acid of the sample adsorbed on the nucleic acid adsorption film. A method for detecting a nucleic acid, comprising performing a reaction and detecting a nucleic acid amplification reaction using a change in optical properties of the reaction.
JP2003155359A 2003-05-30 2003-05-30 Nucleic acid-detecting tool Withdrawn JP2004350649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003155359A JP2004350649A (en) 2003-05-30 2003-05-30 Nucleic acid-detecting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003155359A JP2004350649A (en) 2003-05-30 2003-05-30 Nucleic acid-detecting tool

Publications (1)

Publication Number Publication Date
JP2004350649A true JP2004350649A (en) 2004-12-16

Family

ID=34049757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003155359A Withdrawn JP2004350649A (en) 2003-05-30 2003-05-30 Nucleic acid-detecting tool

Country Status (1)

Country Link
JP (1) JP2004350649A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200028A (en) * 2007-01-26 2008-09-04 Eiken Chem Co Ltd Tube container for reaction or detection, and reagent kit comprising the container
WO2009008158A1 (en) * 2007-07-11 2009-01-15 Panasonic Corporation Biosensor
WO2009013869A1 (en) * 2007-07-25 2009-01-29 Panasonic Corporation Biosensor
CN105849283A (en) * 2013-12-31 2016-08-10 纳米生物系统株式会社 Ultra-high speed and real-time PCR device on basis of lab-on-a-chip for detecting food poisoning bacteria of agricultural food, and food poisoning detection method using same
WO2018105302A1 (en) * 2016-12-08 2018-06-14 株式会社ミズホメディー Device for nucleic acid amplification reaction

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200028A (en) * 2007-01-26 2008-09-04 Eiken Chem Co Ltd Tube container for reaction or detection, and reagent kit comprising the container
WO2009008158A1 (en) * 2007-07-11 2009-01-15 Panasonic Corporation Biosensor
US8354271B2 (en) 2007-07-11 2013-01-15 Panasonic Corporation Biosensor
WO2009013869A1 (en) * 2007-07-25 2009-01-29 Panasonic Corporation Biosensor
JP5375609B2 (en) * 2007-07-25 2013-12-25 パナソニック株式会社 Biosensor
CN105849283A (en) * 2013-12-31 2016-08-10 纳米生物系统株式会社 Ultra-high speed and real-time PCR device on basis of lab-on-a-chip for detecting food poisoning bacteria of agricultural food, and food poisoning detection method using same
WO2018105302A1 (en) * 2016-12-08 2018-06-14 株式会社ミズホメディー Device for nucleic acid amplification reaction
JP2018093750A (en) * 2016-12-08 2018-06-21 株式会社ミズホメディー Device for nucleic acid amplification reaction
US11618028B2 (en) 2016-12-08 2023-04-04 Mizuho Medy Co., Ltd. Device for nucleic acid amplification reaction

Similar Documents

Publication Publication Date Title
JP3580801B2 (en) Methods for separating and purifying nucleic acids
KR100718220B1 (en) Method of Purifying Nucleic Acid Using Nonwoven Fabric and Detection Method
WO2005012518A1 (en) Kit for nucleic acid detection
US7615347B2 (en) Method for trapping nucleic acids using divalent metal ions
CN108410951B (en) Novel nucleic acid extraction reagent and application thereof
JP5871600B2 (en) General matrix for control nucleic acids
WO2003016552A2 (en) Dna purification and recovery from high particulate and solids samples
US20180094295A1 (en) Integrated capture and amplification of target nucleic acid for sequencing
JP6169489B2 (en) General sample preparation
JP4340298B2 (en) Nucleic acid recovery method and nucleic acid recovery apparatus
JP2004350649A (en) Nucleic acid-detecting tool
US10590469B2 (en) Methods for performing multiplexed real-time PCR in a self-contained nucleic acid analysis pouch
JP6838815B2 (en) Non-woven fabric article for detecting microorganisms in fluid sample and how to use the non-woven fabric article
JP2008220377A (en) Method and means for isolation and purification of nucleic acid on surface
JP2008220377A6 (en) Methods and means for isolation and purification of nucleic acids on surfaces
US20060252058A1 (en) Chip for detection of nucleic acid
JP4102149B2 (en) Nucleic acid separation and purification equipment
JP2005218439A (en) Chip for detecting nucleic acid
CN105177010B (en) A kind of aptamer and application with tonyred specific bond
JP2011115122A (en) Specimen pretreatment method and gene detection method
JP6348202B2 (en) General sample preparation
JP3819001B2 (en) Nucleic acid separation and purification method
JP2024500169A (en) Method for performing multiplexed real-time PCR using large Stokes shift fluorescent dyes
JPH11178571A (en) Extraction of nucleic acid and reagent therefor
JPH11164698A (en) Detection of legionella in floc

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801