JP2004349479A - Heat treatment device for processing wafers piece by piece - Google Patents

Heat treatment device for processing wafers piece by piece Download PDF

Info

Publication number
JP2004349479A
JP2004349479A JP2003145026A JP2003145026A JP2004349479A JP 2004349479 A JP2004349479 A JP 2004349479A JP 2003145026 A JP2003145026 A JP 2003145026A JP 2003145026 A JP2003145026 A JP 2003145026A JP 2004349479 A JP2004349479 A JP 2004349479A
Authority
JP
Japan
Prior art keywords
processing chamber
heat
heat treatment
heating
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145026A
Other languages
Japanese (ja)
Inventor
Chikahide Fujiyama
周秀 藤山
Satoyuki Ishibashi
智行 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2003145026A priority Critical patent/JP2004349479A/en
Publication of JP2004349479A publication Critical patent/JP2004349479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment device processing wafers piece by piece capable of quickly and uniformly heating a matter to be processed while mitigating the variety of temperature in a heat ray supplying means which is generated in connection with rapid heating, and capable of effecting the heating more correctly. <P>SOLUTION: The heat treatment device processing wafers piece by piece 1 is provided with a treatment chamber 3 and the heat ray supplying means 4 arranged at the outer wall surface 3a side of the treatment chamber 3. In this case, the treatment chamber 3 is formed of a heat ray non-transmittable material to heat the matter to be processed (semiconductor wafer) W received in the treatment chamber 3 through atmosphere heating. An opaque quartz, for example, is employed as the heat ray non-transmittable material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、枚葉式熱処理装置に関する。
【0002】
【従来の技術】
従来から、半導体デバイスや表示デバイス等の製造においては、半導体ウエハなどの平板状の被処理物に、酸化、拡散、成膜(CVD:Chemical Vapor Deposition等)、アニールなどの熱処理を行うために、各種の熱処理装置が用いられている。この種の熱処理装置としては、複数枚の平板状の被処理物を一括で熱処理するバッチ式の熱処理装置と、1枚ずつ熱処理する枚葉式の熱処理装置が知られている。このうち、枚葉式熱処理装置は、バッチ式に比べ、急速な昇降温を要する熱処理や半導体ウエハ面内の均一な熱処理を比較的容易にできることから、半導体ウエハの大径化に伴い、汎用されつつある。
【0003】
枚葉式熱処理装置は、加熱手段(熱線供給手段)に応じて、誘導加熱式、抵抗加熱式、ランプ加熱式に分類できるが、いずれの方式も、平板状の被処理物の面内温度の均一化と昇降温速度の向上とが大きな技術課題となっている。すなわち、面内温度の均一化は、プロセス時はもちろんのこと、昇降温の過程においても重要であり、半導体ウエハの品質や歩留まりを支配する極めて重要な因子である。一方、昇降温速度の向上は、スループットの向上やサーマルバジェットの低減を実現するのに極めて重要な因子である。ところが、一般に、昇降温の速度を大きくすると面内温度のばらつきが発生しやすくなる。つまり、面内温度の均一化と昇降温速度の向上は二律背反の関係にあり、半導体ウエハの品質や歩留まりの向上と、スループット向上やサーマルバジェット低減の双方を実現するのは非常に難しい。
【0004】
このようななか、従来の枚葉式熱処理装置では、平板状の被処理物が収容されるチャンバの材質として、透明石英がよく用いられている(例えば、特許文献1参照)。これは、透明石英の光透過率(加熱に大きく寄与する近赤外線波長1〜5μmの光透過率)が90%以上と大きいことから、熱線供給手段からの熱線が、チャンバ自体に殆ど吸収されることなく、直接的に被処理物に供給されることによる。
【0005】
【特許文献1】
特開平11−224879号公報(第4頁)
【0006】
【発明が解決しようとする課題】
しかしながら、最近の半導体ウエハなどの被処理物の大型化(例えば直径300mm以上の半導体ウエハ)、スループット向上やサーマルバジェット低減に対する要求のさらなる高まりから、面内温度の均一化及び昇降温速度の向上について一層要求が高くなっており、透明石英製のチャンバを用いた直接的な加熱では、その要求に応えるのが難しくなってきている。
具体的には、被処理物に熱線を直接的に供給すると、(1)急速加熱に伴い発生する熱線供給手段の温度ムラがそのまま被処理物の面内温度の均一化に悪影響を及ぼす、(2)被処理物の温度上昇の方が処理室内の雰囲気温度の上昇よりも速いので、処理室内の所定位置に配置した熱電対で処理室内の雰囲気温度を測定しその測定データに基づいて加熱制御を行っている現状では、被処理物の過剰加熱などが発生しやすく、被処理物の正確な加熱制御が非常に難しい、などの問題がある。
【0007】
本発明はこのような事情に鑑みなされたものであり、急速加熱に伴い発生する熱線供給手段の温度ムラを緩和して、被処理物を急速かつ均一に加熱することができ、しかも加熱をより正確に行うことができる枚葉式熱処理装置の提供をその目的とする。
【0008】
【課題を解決するための手段】
本発明の枚葉式熱処理装置は、平板状の被処理物が1枚ずつ収容される処理室と、前記処理室の外壁面側に配置され、その処理室の外壁面に向けて熱線を供給する熱線供給手段と、を備えた枚葉式熱処理装置であって、前記処理室が熱線不透過性材料で形成され、かつ、前記処理室内に収容された被処理物を雰囲気加熱するよう構成したことを特徴としている。
【0009】
上記の構成によれば、熱線供給手段から熱線が供給されると、熱線不透過性材料製の処理室自体が熱線を吸収して発熱する。そして、この処理室の再輻射によって処理室内の雰囲気温度が上昇し、再輻射とともに雰囲気による対流伝熱を伴った被処理物の熱処理を行うことができる。このため、急速加熱に伴う熱線供給手段の温度ムラがそのまま被処理物の面内温度の不均一化に繋がるのを抑制することができ、その結果として被処理物を急速かつ均一に加熱することができる。また、本発明の誘導加熱装置によれば、処理室内の所定位置に配設した温度センサによって処理室内の雰囲気温度を測定しその測定データに基づき加熱制御を行っても、雰囲気温度の上昇の方が被処理物の温度上昇よりも速くなるので、被処理物の過剰加熱などの発生を抑制でき、被処理物のより正確な加熱制御を行うことができる。
【0010】
ここで、本発明において「熱線供給手段」とは、加熱に大きく寄与する近赤外線波長(1〜5μm)を含む熱線を供給するものをいい、誘導加熱式、抵抗加熱式、ランプ加熱式といった公知の加熱手段を含む。
また、「熱線不透過性材料」とは、加熱に大きく寄与する近赤外線波長(1〜5μm)の光透過率が透明石英に比べて小さい各種の材料をいう。なかでも、光透過率が15%以下である材料が好ましい。
【0011】
上記の枚葉式熱処理装置において、前記熱線不透過性材料が不透明石英であるのが好ましい。この場合、確実に、急速加熱に伴い発生する熱線供給手段の温度ムラを緩和して、被処理物を急速かつ均一に加熱することができ、しかも加熱をより正確に行うことができる。
【0012】
上記の枚葉式熱処理装置において、前記熱線供給手段が、誘導加熱コイルと、この誘導加熱コイルにより誘導加熱される加熱体とを有するのが好ましい。この場合、抵抗加熱式に比べ、昇降温速度を大きくすることができるという利点がある。
【0013】
【発明の実施の形態】
以下、本発明の好ましい実施形態について、図面を参照しながら説明する。図1(a)は本発明の一実施形態に係る枚葉式熱処理装置の構成を示す正面断面図を示し、図1(b)はその側面断面図である。本形態に係る枚葉式熱処理装置1は、例えば被処理物としての円板状の半導体ウエハWの熱処理(酸化、拡散、成膜、アニール等)に用いられ、半導体ウエハWが1枚ずつ収容される処理室3と、この処理室3の外壁面3a側に離隔して外装された熱線供給手段(加熱手段)4と、前記処理室3の外壁面3aと熱線供給手段4の内壁面4aとの間に設けられた冷却媒体用流通路5とを備えている。
【0014】
処理室3は、全体が略偏平な筒状であり、その一端側(図1(b)では左側)に半導体ウエハWを搬出入するための開口3bを有し、他端側(図1(b)では右側)にガスの導入や脱気等のための小径の通気口3cを有している。また、処理室3の内部には、半導体ウエハWを載置できるように、支持部3dが設けられている。なお、図示しないが、処理室3内には、雰囲気温度を測定すべく、温度センサとしての熱電対が所定位置に配設される。また、同様に図示しないが、開口3bや通気口3cには、処理室3を密閉空間にすることができるように、蓋体や弁体などが適宜配設される。
【0015】
そして、前記処理室3は、その全体が熱線不透過性材料としての不透明石英で形成されている。不透明石英は、良質の珪石を溶融して形成されたものであり、アルカリ金属や銅などの不純物の含有量が少なく、全体に多数の微小気泡を有するものである。このように多数の微小気泡が表面から内部にまで分布した不透明石英は、近赤外線波長(1〜5μm)の光線を約90%吸収する。このため、処理室3自体が、熱線供給手段4から供給された熱線により高温となる。
【0016】
熱線供給手段4は、例えば誘導加熱式のものが採用されており、処理室3の外壁面側に巻回され、鉄心4b内に軸方向(図1(b)では左右方向)に所定の間隔で配列された誘導加熱コイル4cと、この誘導加熱コイル4cにより誘導加熱される略偏平な筒状でグラファイトなどの熱伝導率及び輻射率が大きい導電性材料により形成された加熱体4dと、前記誘導加熱コイル4cと加熱体4dとの間に介在させ、加熱体4dの輻射熱から誘導加熱コイル4cを保護するための略偏平な筒状の断熱材4eと、誘導加熱コイル4cに接続された高周波電流供給手段(図示せず)とを有している。なお、高周波電流供給手段は、高周波(30〜50kHz程度)の交流電源を備える他、軸方向に配列された誘導加熱コイル4cの所定位置への出力制御が行えるよう構成されている。
【0017】
冷却媒体用流通路5は、処理室3の外壁面3aと加熱手段4の内壁面4aとの間に、処理室3の長手方向(図1(b)では左右方向)に沿って延設され、かつ周方向に沿って偏平な環状に構成されている。そして、図示しない冷却媒体供給手段から供給された冷却ガスなどの冷却媒体が流通することによって、高温となった加熱体4dや処理室3自体、さらには処理室3内の雰囲気を冷却するよう構成されている。
【0018】
上記構成の枚葉式熱処理装置1による半導体ウエハWの熱処理は、例えば、つぎのようにして行われる。すなわち、図示しない高周波電流供給手段によって高周波電流が誘導加熱コイル4cに供給されると、誘導加熱コイル4cから磁束(磁力線)が発生する。そして、この磁束が加熱体4dを貫通すると、加熱体4d内に渦電流が発生し、この渦電流と加熱体4d自体の電気抵抗とによりジュール熱が生じて、加熱体4dが発熱する。その後、この加熱体4dからの熱線が処理室3の外壁面3aに向けて供給され、不透明石英製の処理室3がその熱線を殆ど透過させずに吸収し、これにより処理室3自体の温度が上昇する。そして、処理室3自体の温度が高くなると、処理室3の再輻射によって処理室3内の雰囲気温度が上昇し、再輻射とともに雰囲気による対流伝熱を伴った半導体ウエハWの加熱(雰囲気加熱)が行われる。続いて、冷却は、例えば、つぎのようにして行われる。すなわち、図示しない冷却媒体供給手段によって冷却媒体としての冷却ガスが冷却媒体用流通路5に供給されると、その冷却ガスが流通路5を流通しながら加熱体4dと処理室3自体の熱を奪う。これにより、加熱体4dと処理室3自体の温度が下降する。そして、処理室3自体の温度が処理室3内の雰囲気温度よりも低くなると、輻射伝熱による半導体ウエハWの冷却に加え、処理室3自体が処理室3内の雰囲気から熱を奪ってその雰囲気温度が下降し、さらにその雰囲気が半導体ウエハWから熱を奪うことで冷却が行われる。
【0019】
上記のように構成された本形態に係る枚葉式熱処理装置1は、処理室3自体が熱線を吸収して発熱し、発熱した処理室3からの再輻射によって処理室3内の雰囲気温度が上昇し、再輻射とともに雰囲気による対流伝熱を伴った半導体ウエハWの熱処理を行うことができるので、急速加熱に伴う熱線供給手段4の温度ムラがそのまま半導体ウエハWの面内温度の不均一化に繋がるのを緩和することができる。また、処理室3内の所定位置に配設された温度センサとしての熱電対からの雰囲気温度の測定データに基づいて加熱制御を行っても、処理室3内の雰囲気温度を上昇させてから被処理物の加熱処理を行うので、半導体ウエハWに対し過剰に加熱処理を行ってしまうといったこともない。よって、従来の枚葉式熱処理装置に比べ、大径の半導体ウエハWの品質や歩留まりを向上させることができるとともに、スループットの向上やサーマルバジェットの低減を実現することができる。また、上記の枚葉式熱処理装置において、誘導加熱コイル4cの縦列方向(図1(b)の左右方向)に誘導加熱コイル4cへのゾーニング等による出力制御を行って加熱制御を行う場合、従来の透明石英製の処理室では、縦列方向に直交する方向(図1(b)の上下方向)の温度ムラを解消するのが非常に難しかったが、熱線不透過性材料製の処理室にして被処理物を雰囲気加熱するよう構成したことにより、縦列方向に直交する方向の温度ムラを大幅に解消できるという利点を有する。
【0020】
なお、本発明は上述した実施形態に限定されるものではない。例えば、熱線不透過性材料として、炭化珪素(SiC)を用いてもよい。また、被処理物2は、半導体ウエハに限らず、平板状であれば形状、材質を問わない。代表的なものとしては、ガラス基板等の絶縁性基板と、その表面に形成された各種の薄膜を含むものであってもよい。また、処理室3は、矩形状のものでも良い。さらに、熱線供給手段(加熱手段)4は、例えば抵抗ヒータを用いる抵抗加熱式、ハロゲンランプを用いるランプ加熱式でもよい。なお、抵抗加熱式により急速加熱を行う場合は、予め加熱された処理室に被処理物を導入する等によって行うことができる。
【0021】
【発明の効果】
以上のように、本発明の枚葉式熱処理装置は、熱線不透過性材料で形成された処理室を備え、この処理室内に収容された被処理物を雰囲気加熱するよう構成されているので、急速加熱に伴い発生する熱線供給手段の温度ムラを緩和して、被処理物を急速かつ均一に加熱することができ、しかも加熱をより正確に行うことができる。したがって、従来の枚葉式熱処理装置に比べ、大径の半導体ウエハ等の被処理物の品質や歩留まりの向上、およびスループットの向上やサーマルバジェットの低減を実現することができる。
【図面の簡単な説明】
【図1】(a)は本発明の一実施形態に係る枚葉式熱処理装置の正面断面図であり、(b)はその側面断面図である。
【符号の説明】
1 枚葉式熱処理装置
3 処理室
3a 外壁面
4 熱線供給手段
4c 誘導加熱コイル
4d 加熱体
W 半導体ウエハ(被処理物)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a single-wafer heat treatment apparatus.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in the manufacture of a semiconductor device, a display device, or the like, a flat object to be processed such as a semiconductor wafer is subjected to heat treatment such as oxidation, diffusion, film formation (CVD: Chemical Vapor Deposition, etc.), and annealing. Various heat treatment apparatuses are used. As this type of heat treatment apparatus, there are known a batch heat treatment apparatus for heat treating a plurality of plate-shaped workpieces at once, and a single-wafer heat treatment apparatus for heat treating one sheet at a time. Among these, the single-wafer heat treatment apparatus can be relatively easily used for heat treatment that requires rapid temperature rise and fall and uniform heat treatment within the semiconductor wafer surface as compared with the batch type heat treatment apparatus. It is getting.
[0003]
Single-wafer heat treatment apparatuses can be classified into induction heating type, resistance heating type, and lamp heating type according to the heating means (hot-wire supply means). Uniformization and improvement of the temperature rise / fall rate are major technical issues. That is, the uniformization of the in-plane temperature is important not only in the process but also in the process of raising and lowering the temperature, and is a very important factor that governs the quality and yield of the semiconductor wafer. On the other hand, the improvement of the temperature rise / fall rate is a very important factor for achieving an improvement in throughput and a reduction in thermal budget. However, in general, when the speed of temperature rise / fall is increased, variation in the in-plane temperature tends to occur. In other words, the uniformity of the in-plane temperature and the improvement of the temperature rise / fall rate are in a trade-off relationship, and it is very difficult to achieve both improvement of the quality and yield of the semiconductor wafer, and improvement of the throughput and reduction of the thermal budget.
[0004]
In such a case, in a conventional single-wafer heat treatment apparatus, transparent quartz is often used as a material of a chamber for accommodating a flat object to be processed (for example, see Patent Document 1). This is because the light transmittance of the transparent quartz (light transmittance at a near-infrared wavelength of 1 to 5 μm which greatly contributes to heating) is as large as 90% or more, so that the heat rays from the heat ray supply means are almost absorbed by the chamber itself. Without being supplied directly to the workpiece.
[0005]
[Patent Document 1]
JP-A-11-224879 (page 4)
[0006]
[Problems to be solved by the invention]
However, with the recent increase in the size of an object to be processed such as a semiconductor wafer (for example, a semiconductor wafer having a diameter of 300 mm or more) and a further increase in the demand for improving the throughput and reducing the thermal budget, the uniformization of the in-plane temperature and the improvement of the rate of temperature rise and fall have been considered. Demands have become even higher, and direct heating using a chamber made of transparent quartz has become more difficult to meet the demands.
Specifically, when a heat ray is directly supplied to an object to be processed, (1) the temperature unevenness of the heat ray supply means generated due to rapid heating directly affects the uniformity of the in-plane temperature of the object to be processed. 2) Since the temperature of the object to be processed rises faster than the temperature of the atmosphere in the processing chamber, the temperature of the atmosphere in the processing chamber is measured with a thermocouple disposed at a predetermined position in the processing chamber, and the heating control is performed based on the measured data. However, there is a problem that overheating of the object to be processed is apt to occur, and it is very difficult to accurately control the heating of the object to be processed.
[0007]
The present invention has been made in view of such circumstances, and can mitigate the temperature unevenness of the hot-wire supply means generated due to rapid heating, and can quickly and uniformly heat an object to be processed. It is an object of the present invention to provide a single-wafer heat treatment apparatus that can be performed accurately.
[0008]
[Means for Solving the Problems]
The single-wafer heat treatment apparatus of the present invention is arranged on a processing chamber in which a flat object to be processed is accommodated one by one, and is disposed on an outer wall surface side of the processing chamber, and supplies a heat ray toward the outer wall surface of the processing chamber. A heat treatment apparatus, wherein the processing chamber is formed of a heat-impermeable material, and the object to be processed accommodated in the processing chamber is heated in an atmosphere. It is characterized by:
[0009]
According to the above configuration, when a heat ray is supplied from the heat ray supply means, the processing chamber itself made of a heat ray impermeable material absorbs the heat ray and generates heat. Then, the ambient temperature in the processing chamber is increased by the re-radiation of the processing chamber, and the object to be processed can be heat-treated with the re-radiation and convection heat transfer by the atmosphere. For this reason, it is possible to suppress the temperature unevenness of the heat ray supply means accompanying the rapid heating from directly leading to the non-uniformity of the in-plane temperature of the object to be processed, and as a result, the object to be processed is rapidly and uniformly heated. Can be. Further, according to the induction heating apparatus of the present invention, even if the temperature of the atmosphere in the processing chamber is measured by the temperature sensor disposed at a predetermined position in the processing chamber, and the heating control is performed based on the measured data, the temperature of the atmosphere is not increased. Is faster than the temperature rise of the object to be processed, so that excessive heating of the object to be processed can be suppressed, and more accurate heating control of the object to be processed can be performed.
[0010]
Here, in the present invention, the "heat ray supply means" refers to a means for supplying a heat ray containing a near-infrared wavelength (1 to 5 μm) which greatly contributes to heating, and is a known type such as an induction heating type, a resistance heating type, and a lamp heating type. Heating means.
The term “heat-ray opaque material” refers to various materials that have a light transmittance at a near-infrared wavelength (1 to 5 μm) that greatly contributes to heating, as compared with transparent quartz. Above all, a material having a light transmittance of 15% or less is preferable.
[0011]
In the above-mentioned single-wafer heat treatment apparatus, it is preferable that the heat-impermeable material is opaque quartz. In this case, it is possible to surely alleviate the temperature unevenness of the heat ray supply means caused by the rapid heating, to rapidly and uniformly heat the object to be processed, and to perform the heating more accurately.
[0012]
In the above-described single-wafer heat treatment apparatus, it is preferable that the hot-wire supply unit includes an induction heating coil and a heating element that is induction-heated by the induction heating coil. In this case, there is an advantage that the temperature rise / fall rate can be increased as compared with the resistance heating type.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1A is a front sectional view showing a configuration of a single-wafer heat treatment apparatus according to an embodiment of the present invention, and FIG. 1B is a side sectional view thereof. The single-wafer heat treatment apparatus 1 according to the present embodiment is used, for example, for heat treatment (oxidation, diffusion, film formation, annealing, etc.) of a disc-shaped semiconductor wafer W as an object to be processed, and accommodates one semiconductor wafer W at a time. Processing chamber 3, heat-ray supply means (heating means) 4 which is provided separately on the outer wall 3 a side of processing chamber 3, and outer wall 3 a of processing chamber 3 and inner wall 4 a of heat-ray supply means 4 And a cooling medium flow passage 5 provided between them.
[0014]
The processing chamber 3 has a substantially flat cylindrical shape as a whole, and has an opening 3b at one end side (left side in FIG. 1B) for loading and unloading the semiconductor wafer W, and the other end side (FIG. The b) has a small-diameter vent 3c on the right side for gas introduction and degassing. A support 3d is provided inside the processing chamber 3 so that the semiconductor wafer W can be placed thereon. Although not shown, a thermocouple as a temperature sensor is provided at a predetermined position in the processing chamber 3 to measure the ambient temperature. Similarly, although not shown, a cover, a valve, and the like are appropriately provided in the opening 3b and the vent 3c so that the processing chamber 3 can be a closed space.
[0015]
The processing chamber 3 is entirely formed of opaque quartz as a heat-impermeable material. Opaque quartz is formed by melting high-quality silica stone, has a low content of impurities such as alkali metals and copper, and has many microbubbles as a whole. Opaque quartz in which a large number of microbubbles are distributed from the surface to the inside absorbs about 90% of light having a near infrared wavelength (1 to 5 μm). For this reason, the temperature of the processing chamber 3 itself becomes high due to the heat rays supplied from the heat ray supply means 4.
[0016]
The heat ray supply means 4 is, for example, of an induction heating type, is wound around the outer wall surface of the processing chamber 3, and has a predetermined distance in the axial direction (left and right direction in FIG. 1B) inside the iron core 4b. An induction heating coil 4c, a heating element 4d formed of a conductive material having a large heat conductivity and a high emissivity, such as graphite, having a substantially flat cylindrical shape and heated by the induction heating coil 4c; A substantially flat cylindrical heat insulating material 4e interposed between the induction heating coil 4c and the heating element 4d to protect the induction heating coil 4c from radiant heat of the heating element 4d, and a high frequency connected to the induction heating coil 4c. And a current supply means (not shown). The high-frequency current supply means includes a high-frequency (approximately 30 to 50 kHz) AC power supply, and is configured to perform output control to a predetermined position of the induction heating coils 4c arranged in the axial direction.
[0017]
The cooling medium flow passage 5 extends between the outer wall surface 3a of the processing chamber 3 and the inner wall surface 4a of the heating means 4 along the longitudinal direction of the processing chamber 3 (the left-right direction in FIG. 1B). And is formed in a flat annular shape along the circumferential direction. Then, a cooling medium such as a cooling gas supplied from a cooling medium supply unit (not shown) flows to cool the heated body 4 d, the processing chamber 3 itself, and further the atmosphere in the processing chamber 3. Have been.
[0018]
The heat treatment of the semiconductor wafer W by the single-wafer heat treatment apparatus 1 having the above configuration is performed, for example, as follows. That is, when a high-frequency current is supplied to the induction heating coil 4c by a high-frequency current supply unit (not shown), a magnetic flux (lines of magnetic force) is generated from the induction heating coil 4c. When the magnetic flux penetrates through the heating element 4d, an eddy current is generated in the heating element 4d. Joule heat is generated by the eddy current and the electric resistance of the heating element 4d itself, and the heating element 4d generates heat. Thereafter, the heat rays from the heating element 4d are supplied toward the outer wall surface 3a of the processing chamber 3, and the processing chamber 3 made of opaque quartz absorbs the heat rays while hardly transmitting the heat rays. Rises. When the temperature of the processing chamber 3 itself increases, the temperature of the atmosphere in the processing chamber 3 increases due to the re-radiation of the processing chamber 3, and the semiconductor wafer W is heated together with the re-radiation and convective heat transfer by the atmosphere (atmospheric heating). Is performed. Subsequently, the cooling is performed, for example, as follows. That is, when a cooling gas as a cooling medium is supplied to the cooling medium flow passage 5 by a cooling medium supply unit (not shown), the cooling gas flows through the flow passage 5 and removes heat of the heating element 4 d and the processing chamber 3 itself. Take away. Thereby, the temperature of the heating body 4d and the temperature of the processing chamber 3 itself decrease. When the temperature of the processing chamber 3 becomes lower than the ambient temperature in the processing chamber 3, the processing chamber 3 itself removes heat from the atmosphere in the processing chamber 3 in addition to cooling the semiconductor wafer W by radiant heat transfer. Cooling is performed by lowering the ambient temperature, and further, the atmosphere removes heat from the semiconductor wafer W.
[0019]
In the single-wafer heat treatment apparatus 1 according to the present embodiment configured as described above, the processing chamber 3 itself absorbs heat rays to generate heat, and the temperature of the atmosphere in the processing chamber 3 is reduced by re-radiation from the heated processing chamber 3. Since the heat treatment of the semiconductor wafer W accompanied by convection heat transfer due to the atmosphere as well as the re-radiation can be performed, the temperature unevenness of the heat ray supplying means 4 caused by the rapid heating can make the in-plane temperature of the semiconductor wafer W non-uniform. Can be alleviated. Further, even if the heating control is performed based on the measurement data of the ambient temperature from a thermocouple as a temperature sensor disposed at a predetermined position in the processing chamber 3, the heating is performed after the ambient temperature in the processing chamber 3 is increased. Since the heat treatment of the processed object is performed, the semiconductor wafer W is not excessively heated. Therefore, as compared with the conventional single-wafer heat treatment apparatus, the quality and yield of the large-diameter semiconductor wafer W can be improved, and the throughput can be improved and the thermal budget can be reduced. In addition, in the above-described single-wafer heat treatment apparatus, when performing heating control by performing output control by zoning or the like to the induction heating coil 4c in the column direction of the induction heating coil 4c (the left-right direction in FIG. 1B). In the processing chamber made of transparent quartz described above, it was very difficult to eliminate the temperature unevenness in the direction perpendicular to the column direction (the vertical direction in FIG. 1B), but the processing chamber made of a heat-impermeable material was used. The configuration in which the object to be processed is heated in the atmosphere has an advantage that temperature unevenness in a direction perpendicular to the column direction can be largely eliminated.
[0020]
Note that the present invention is not limited to the embodiment described above. For example, silicon carbide (SiC) may be used as the heat-impermeable material. The object 2 is not limited to a semiconductor wafer, and may be any shape and material as long as it is flat. A typical example may include an insulating substrate such as a glass substrate and various thin films formed on the surface thereof. Further, the processing chamber 3 may have a rectangular shape. Further, the heat ray supply means (heating means) 4 may be of a resistance heating type using a resistance heater or a lamp heating type using a halogen lamp, for example. Note that in the case where rapid heating is performed by a resistance heating method, the heating can be performed by, for example, introducing an object to be processed into a preheated processing chamber.
[0021]
【The invention's effect】
As described above, the single-wafer heat treatment apparatus of the present invention includes a processing chamber formed of a heat-impermeable material, and is configured to heat an object to be processed accommodated in this processing chamber in an atmosphere. The unevenness in the temperature of the heat ray supply means caused by the rapid heating can be reduced, and the object can be heated quickly and uniformly, and the heating can be performed more accurately. Therefore, as compared with the conventional single-wafer heat treatment apparatus, it is possible to improve the quality and yield of an object to be processed such as a semiconductor wafer having a large diameter, to improve the throughput, and to reduce the thermal budget.
[Brief description of the drawings]
FIG. 1A is a front sectional view of a single-wafer heat treatment apparatus according to an embodiment of the present invention, and FIG. 1B is a side sectional view thereof.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Single-wafer heat treatment apparatus 3 Processing chamber 3a Outer wall surface 4 Heat ray supply means 4c Induction heating coil 4d Heating body W Semiconductor wafer (workpiece)

Claims (3)

平板状の被処理物が1枚ずつ収容される処理室と、前記処理室の外壁面側に配置され、その処理室の外壁面に向けて熱線を供給する熱線供給手段と、を備えた枚葉式熱処理装置であって、
前記処理室が熱線不透過性材料で形成され、かつ、前記処理室内に収容された被処理物を雰囲気加熱するよう構成したことを特徴とする枚葉式熱処理装置。
A processing chamber in which flat objects to be processed are accommodated one by one, and a hot-wire supply means arranged on the outer wall surface side of the processing chamber and supplying a hot wire toward the outer wall surface of the processing chamber A leaf-type heat treatment apparatus,
The single-wafer heat treatment apparatus, wherein the processing chamber is formed of a heat-ray-impermeable material, and the processing target housed in the processing chamber is configured to be heated in an atmosphere.
前記熱線不透過性材料が不透明石英である請求項1記載の枚葉式熱処理装置。The single-wafer heat treatment apparatus according to claim 1, wherein the heat-opaque material is opaque quartz. 前記熱線供給手段が、誘導加熱コイルと、この誘導加熱コイルにより誘導加熱される加熱体とを有する請求項1または2記載の枚葉式熱処理装置。3. The single-wafer heat treatment apparatus according to claim 1, wherein the heating wire supply unit includes an induction heating coil and a heating body that is induction-heated by the induction heating coil. 4.
JP2003145026A 2003-05-22 2003-05-22 Heat treatment device for processing wafers piece by piece Pending JP2004349479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145026A JP2004349479A (en) 2003-05-22 2003-05-22 Heat treatment device for processing wafers piece by piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145026A JP2004349479A (en) 2003-05-22 2003-05-22 Heat treatment device for processing wafers piece by piece

Publications (1)

Publication Number Publication Date
JP2004349479A true JP2004349479A (en) 2004-12-09

Family

ID=33532326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145026A Pending JP2004349479A (en) 2003-05-22 2003-05-22 Heat treatment device for processing wafers piece by piece

Country Status (1)

Country Link
JP (1) JP2004349479A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199258A (en) * 2010-02-23 2011-10-06 Hitachi Kokusai Electric Inc Heat treatment apparatus
JP2015005652A (en) * 2013-06-21 2015-01-08 独立行政法人産業技術総合研究所 Thermal treatment device
CN109964309A (en) * 2016-10-11 2019-07-02 欧司朗光电半导体有限公司 Heating equipment, the method and system that semiconductor chip is manufactured in chip composite members

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856958U (en) * 1971-11-01 1973-07-20
JPS6225428A (en) * 1985-07-25 1987-02-03 Toshiba Corp Heater for semiconductor wafer
JPH08143329A (en) * 1993-10-08 1996-06-04 Tosoh Corp High purity opaque quartz glass, its production and its use
JPH08162423A (en) * 1994-11-30 1996-06-21 Shinetsu Quartz Prod Co Ltd Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JP2003142243A (en) * 2001-11-06 2003-05-16 Koyo Thermo System Kk Induction heating device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4856958U (en) * 1971-11-01 1973-07-20
JPS6225428A (en) * 1985-07-25 1987-02-03 Toshiba Corp Heater for semiconductor wafer
JPH08143329A (en) * 1993-10-08 1996-06-04 Tosoh Corp High purity opaque quartz glass, its production and its use
JPH08162423A (en) * 1994-11-30 1996-06-21 Shinetsu Quartz Prod Co Ltd Sheet type wafer heat-treating equipment and manufacture of reaction vessel to be used in the equipment
JPH0912325A (en) * 1995-06-29 1997-01-14 Nitto Chem Ind Co Ltd High-purity opaque quartz glass and its production as well as its application
JP2003142243A (en) * 2001-11-06 2003-05-16 Koyo Thermo System Kk Induction heating device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199258A (en) * 2010-02-23 2011-10-06 Hitachi Kokusai Electric Inc Heat treatment apparatus
JP2015005652A (en) * 2013-06-21 2015-01-08 独立行政法人産業技術総合研究所 Thermal treatment device
CN109964309A (en) * 2016-10-11 2019-07-02 欧司朗光电半导体有限公司 Heating equipment, the method and system that semiconductor chip is manufactured in chip composite members
US11574823B2 (en) 2016-10-11 2023-02-07 Osram Oled Gmbh Heating apparatus, method and system for producing semiconductor chips in the wafer assembly
CN109964309B (en) * 2016-10-11 2023-09-08 欧司朗光电半导体有限公司 Heating apparatus, method and system for manufacturing semiconductor chips in wafer composite

Similar Documents

Publication Publication Date Title
TW459270B (en) Fast heating and cooling apparatus for semiconductor wafers
KR101070667B1 (en) Substrate processing apparatus, heating device and semiconductor device manufacturing method
TW529059B (en) Method and apparatus for thermally processing wafers
TW303498B (en)
JP6687829B2 (en) Induction heating device
JP4336283B2 (en) Induction heating device
JP2007227461A (en) Device and method for heat treatment
JP5877920B1 (en) Rapid heating / cooling heat treatment furnace
JP2004349479A (en) Heat treatment device for processing wafers piece by piece
JP5021347B2 (en) Heat treatment equipment
JP2003297544A (en) Induction heater
JP4467730B2 (en) Substrate heating device
JP5543123B2 (en) Heat treatment susceptor and heat treatment apparatus
JP2005072468A (en) Heat treatment apparatus of semiconductor wafer
TWI725666B (en) Plasma processing device and substrate support for processing device
JP5449645B2 (en) A method of manufacturing a silicon plate for heat treatment.
JP2003142241A (en) Induction heating device
JP2004071596A (en) Heat treatment apparatus
JP2005025983A (en) Induction heating apparatus
JP2000012478A (en) Heat treatment system for substrate
JPH06104198A (en) Lamp annealing system
JP2004260097A (en) Method for thermally processing semiconductor
JPH04318923A (en) Heater
JP2003133319A (en) High-voltage annealing apparatus
JPH0763059B2 (en) Semiconductor manufacturing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127