JP2004347811A - Structure and method for optical coupling, optical coupling element, and optical distribution substrate - Google Patents

Structure and method for optical coupling, optical coupling element, and optical distribution substrate Download PDF

Info

Publication number
JP2004347811A
JP2004347811A JP2003144012A JP2003144012A JP2004347811A JP 2004347811 A JP2004347811 A JP 2004347811A JP 2003144012 A JP2003144012 A JP 2003144012A JP 2003144012 A JP2003144012 A JP 2003144012A JP 2004347811 A JP2004347811 A JP 2004347811A
Authority
JP
Japan
Prior art keywords
optical
metal film
wiring board
coupling element
solder connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003144012A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yagyu
博之 柳生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003144012A priority Critical patent/JP2004347811A/en
Publication of JP2004347811A publication Critical patent/JP2004347811A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical coupling structure permitting an efficient and exact optical coupling to an optical input/output part arranged on the surface of an optical distribution substrate. <P>SOLUTION: This invention relates to the optical coupling structure for optically coupling the optical distribution substrate having an optical input/output part on the surface and an optical coupling element 4 having an optical input/output part 3 on the end face between the optical coupling parts 3. The optical coupling structure is provided with metallic films for soldering in the vicinity of the optical input/output part on the surface of the optical distribution substrate, and is provided with metallic films 6 for soldering in the vicinity of the optical input/output part 3 on the end face of the optical coupling element 4. Then, the optical distribution substrate and each metallic film 6 for soldering of the optical coupling element 4 are formed so that the positional relation between the optical input/output part and the metallic films for soldering on the optical distribution substrate corresponds to that between the input/output part 3 and the metallic films 6 for soldering of the optical coupling element 4. And the optical input/output part on the optical distribution substrate is optically coupled to the optical input/output part 3 of the optical coupling element 4 by jointing the metallic films for soldering on the optical distribution substrate to the metallic films 6 for soldering of the optical coupling element 4 by soldering. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、高速信号伝送等の用途に用いられる光配線基板の光入出力部において光結合を行なうための光結合構造及び光結合方法、および光結合に用いる光結合素子あるいは光配線基板に関するものである。
【0002】
【従来の技術】
近年、通信インフラの急速な広帯域化、コンピュータ等の情報処理能力の飛躍的な増大に伴ない、非常に高速な情報伝送路を有する情報処理回路へのニーズが高まっている。この背景の下、電気信号の伝送速度限界を突破する手段の一つとして、光信号による伝送が考えられており、例えば、従来から使用されてきた電気配線基板の電気配線に光配線を複合させた光配線基板が種々提案されている。
【0003】
この電気配線と光配線を複合させた光配線基板は、従来の電気配線基板(電気プリント基板)に光導波路等からなる光配線を設けて形成されるものであり、例えば、電気信号を一旦レーザーダイオード等の発光素子によって光信号に変換し、これを光導波路に入射させて所定の距離伝播させた後、光導波路から光信号を出射させ、フォトダイオード等の受光素子で受光して再び電気信号に変換するというのが、光配線の一般的な使用形態である。またこの他に、光導波路の入射側もしくは出射側あるいは両方を、光ファイバーと光学的に結合することによって、光配線に光信号を入出力させることも提案されている(例えば特許文献1等参照)。
【0004】
ここで、プリント基板などと呼ばれている電気配線基板は平面状の板として形成されており、搭載される電子部品やコネクタ等は殆どがその基板の平面上に実装されている。これはリフロー等のハンダによる一括実装が量産に向くためであり、電気配線と光配線を複合させた光配線基板においても同様に、光信号を平面上から出し入れできるように光配線の光入出力部を平面上に形成することが、プリント基板の利点をそのまま活かすうえで好ましい。このため、光配線を形成する光導波路の端部には光入出力部に入出力される光信号を偏向させる偏向素子が設けられており、この偏向素子としては通常、波長、偏波及びモード等の依存性がない反射ミラーが用いられている。そして、光導波路内を伝播される光信号を反射ミラーで偏向させて光配線基板の表面に取り出したり、反射ミラーで偏向させて光導波路内に伝播させる光信号を取り入れたりする、光入出力部を光配線基板の表面に形成する構造が多く提案されている(例えば、特許文献2等参照)。
【0005】
【特許文献1】
特開平8−313758号公報
【特許文献2】
特開2001−188150号公報
【0006】
【発明が解決しようとする課題】
上記のように反射ミラー等の偏向素子を介して光信号を光配線基板の表面から入出力させる場合、光配線基板に搭載される受発光素子等と光配線の光導波路とを光学的に結合するにあたって、光配線基板の側に具備される光導波路や反射ミラーなどが高精度に位置決めして形成されていることが必要なのは勿論であるが、受発光素子等が光配線基板に高精度に搭載されることが必要である。しかしこの場合、効率の良い結合のためには、光の収束発散を最適化するためにレンズ等の光学部品を介在させることが必要であるが、光学部品は高精度に位置決めする必要があり、このような部品数の増加によって受発光素子等の搭載にかかる手間が大きくなり、効率のよい光結合が困難であるという問題があった。
【0007】
また、光配線基板の光導波路と光結合させるのは、光配線基板に搭載される受発光素子等だけではなく、光配線基板の光導波路と光ファイバーとを光結合したり、さらには他の光配線基板とも光結合させたいというニーズもある。しかしこの場合には、例えば特許文献1のように、光配線基板の端面を切断・研磨等して光導波路の端面を露出させ、光導波路の露出端面に光ファイバーやコネクタなどを接続する構造にしており、光配線基板の端面を切断や研磨する加工の手間が必要となり、光配線基板の表面に光入出力部が形成されていることの利点が活かされていないという問題があった。
【0008】
本発明は上記の点に鑑みてなされたものであり、光配線基板の表面に備えられた光入出力部と光結合素子との光結合を効率よく正確に行なうことができる光結合構造及び光結合方法、さらに光結合素子、光配線基板を提供することを目的とするものである。
【0009】
【課題を解決するための手段】
本発明の請求項1に係る光結合構造は、表面に光入出力部1を有する光配線基板2と、端面に光入出力部3を有する光結合素子4とを、それぞれの光入出力部1,3間で光学的に結合する光結合構造であって、光配線基板2の表面の光入出力部1の近傍にハンダ接続用金属膜5を備えると共に、光結合素子4の端面の光入出力部3の近傍にハンダ接続用金属膜6を備え、光配線基板2の光入出力部1とハンダ接続用金属膜5の位置関係と、光結合素子4の光入出力部3とハンダ接続用金属膜6の位置関係とが対応するように、光配線基板2と光結合素子4の各ハンダ接続用金属膜5,6の形成位置を設定し、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6とをハンダ接合することによって、光配線基板2の光入出力部1と光結合素子4の光入出力部3を光学的に結合して成ることを特徴とするものである。
【0010】
この請求項1の発明によれば、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6とをハンダ接合する際に、光配線基板2や光結合素子4の表面に対するハンダの表面張力とハンダ接続用金属膜5,6に対するハンダの表面張力の差で、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6とを位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜5,6と位置関係が対応している光配線基板2の光入出力部1と光結合素子4の光入出力部3とを高精度に位置合わせした状態で、光配線基板2に光結合素子4を搭載することができるものであり、光配線基板2の表面に備えられた光入出力部1に光結合素子4の光入出力部3を効率よく正確に光結合させることができるものである。
【0011】
また請求項2の発明は、請求項1において、光配線基板2のハンダ接続用金属膜5と、光結合素子4のハンダ接続用金属膜6を、それぞれ光入出力部1,3を挟む複数箇所において、光配線基板2の表面と、光結合素子4の端面に備えて成ることを特徴とするものである。
【0012】
この請求項2の発明によれば、光配線基板2と光結合素子4の複数箇所のハンダ接続用金属膜5,6で、ハンダの表面張力の方向のバランスをとることができ、光配線基板2の光入出力部1と光結合素子4の光入出力部3とを高精度に位置合わせすることができるものである。
【0013】
また請求項3の発明は、請求項1又は2において、光結合素子4の光入出力部3を設けた端面と対向する端部に、光ファイバーを物理的・光学的に結合するためのコネクタ部7を有することを特徴とするものである。
【0014】
この請求項3の発明によれば、光結合素子4のコネクタ部7によって、光ファイバーを光配線基板2に簡易に接続することができるものである。
【0015】
本発明の請求項4に係る光結合方法は、表面に光入出力部1を有する光配線基板2と、端面に光入出力部3を有する光結合素子4とを、それぞれの光入出力部1,3間で光学的に結合する光結合方法であって、光配線基板2の表面の光入出力部1の近傍にハンダ接続用金属膜5を設けると共に、光結合素子4の端面の光入出力部3の近傍にハンダ接続用金属膜6を設け、光配線基板2の光入出力部1とハンダ接続用金属膜5の位置関係と、光結合素子4の光入出力部3とハンダ接続用金属膜6の位置関係とが対応するように、光配線基板2と光結合素子4の各ハンダ接続用金属膜1,3の形成位置を設定し、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6の間に液状のハンダを供給して、各ハンダ接続用金属膜5,6に対するハンダの表面張力で光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6とを位置合わせし、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6をハンダ接合することによって、光配線基板2の光入出力部1と光結合素子4の光入出力部3を光学的に結合することを特徴とするものである。
【0016】
この請求項4の発明によれば、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6とをハンダ接合する際に、光配線基板2や光結合素子4の表面に対するハンダの表面張力とハンダ接続用金属膜5,6に対するハンダの表面張力の差で、光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6とを位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜5,6と位置関係が対応している光配線基板2の光入出力部1と光結合素子4の光入出力部3とを高精度に位置合わせした状態で、光配線基板2に光結合素子4を搭載することができるものであり、光配線基板2の表面に備えられた光入出力部1に光結合素子4の光入出力部3を効率よく正確に光結合させることができるものである。
【0017】
また請求項5の発明は、請求項4において、ハンダの表面張力で光配線基板2のハンダ接続用金属膜5と光結合素子4のハンダ接続用金属膜6を位置合わせした後、光配線基板2と光結合素子4とを機械的に接続することを特徴とするものである。
【0018】
この請求項5の発明によれば、ハンダ接合だけでなく、機械的手段で光配線基板2と光結合素子4とを強固に接続することができるものである。
【0019】
本発明の請求項6に係る光結合素子は、光配線基板2の表面に設けられた光入出力部1と光学的に結合される光入出力部3を端面に備えると共に、光配線基板2の表面の光入出力部1の近傍に設けられたハンダ接続用金属膜5とハンダ接合されるハンダ接続用金属膜6を光入出力部3の近傍に備える光結合素子4であって、光配線基板2の光入出力部1とハンダ接続用金属膜5の位置関係と、光結合素子4の光入出力部3とハンダ接続用金属膜6の位置関係とが対応するように、光結合素子4に形成するハンダ接続用金属膜6の位置を設定して成ることを特徴とするものである。
【0020】
この請求項6の発明によれば、ハンダに対する光配線基板2や光結合素子4の表面とハンダ接続用金属膜5,6との濡れの差による表面張力で、光配線基板2のハンダ接続用金属膜5に光結合素子4のハンダ接続用金属膜6を位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜5,6と位置関係が対応している光配線基板2の光入出力部1と光結合素子4の光入出力部3とを高精度に位置合わせした状態で、光配線基板2に光結合素子4を搭載して、光配線基板2の表面に備えられた光入出力部1に光結合素子4の光入出力部3を効率よく正確に光結合させることができるものである。
【0021】
本発明の請求項7に係る光配線基板は、光結合素子4に設けられた光入出力部3と光学的に結合される光入出力部1を表面に備えると共に、光結合素子4の光入出力部3の近傍に設けられたハンダ接続用金属膜6とハンダ接合されるハンダ接続用金属膜5を光入出力部1の近傍に備える光配線基板2であって、光結合素子4の光入出力部3とハンダ接続用金属膜6の位置関係と、光配線基板2の光入出力部1とハンダ接続用金属膜5の位置関係とが対応するように、光配線基板2に形成するハンダ接続用金属膜5の位置を設定して成ることを特徴とするものである。
【0022】
この請求項7の発明によれば、ハンダに対する光配線基板2や光結合素子4の表面とハンダ接続用金属膜5,6との濡れの差による表面張力で、光配線基板2のハンダ接続用金属膜5に光結合素子4のハンダ接続用金属膜6を位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜5,6と位置関係が対応している光配線基板2の光入出力部1と光結合素子4の光入出力部3とを高精度に位置合わせした状態で、光配線基板2に光結合素子4を搭載して、光配線基板2の表面に備えられた光入出力部1に光結合素子4の光入出力部3を効率よく正確に光結合させることができるものである。
【0023】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
【0024】
光配線基板2としては、特に限定されるものではないが、電気配線基板の電気配線に光配線を複合させた光電気複合配線基板を用いることができる。この光配線基板2にあって、図2の実施の形態では、透明樹脂のコア11と、コア11を囲む透明樹脂のクラッド層12によって基板を形成するようにしてあり、コア11による光導波路13を光配線基板2の表面と平行に形成し、この光導波路13で光配線が構成されるようにしてある。光導波路13は、例えばコア11の径が40μm□のものとして形成することができる。図2の実施の形態にあって、光配線基板2の表面に形成した金属導体の回路パターン15で電気配線が構成されるようにしてあり、また光配線基板2には表裏に貫通して複数箇所に固定用孔20が設けてある。
【0025】
また光導波路13の端部には光路偏向ミラー14を設けて光偏向部が形成してある。このミラー14は金の蒸着膜などで形成してあり、光導波路13の長手方向及び光配線基板2の表面に対して45°の角度で傾斜するように形成してある。このミラー14に対して45°の角度で対向する光配線基板2のクラッド層12の表面部分が光入出力部1となるものである。
【0026】
光配線基板2の表面には図2(b)(c)に示すように、光入出力部1を囲むように金属層17が積層してあり、金属層17の表面の全面はソルダーレジストなど有機材料の保護膜18で被覆してある。この金属層17は光配線基板2の表面に回路パターン15を形成するために積層した銅箔等で形成することができる。そして光入出力部1の周囲の複数箇所において保護膜18をレーザで開口させることによって、この開口内に金属層17の一部を露出させ、金属層17の露出させた部分でハンダ接続用金属膜5が形成されるようにしてある。各ハンダ接続用金属膜5は例えば直径250μmφに形成されるものであり、光入出力部1から所定の距離の円周上において、所定の一定間隔で設けられるものである。ハンダ接続用金属膜5の形成は、光入出力部1を中心としてレーザ照射の位置決めをし、保護膜18にレーザを照射して開口させることによって行なうことができるものであり、ハンダ接続用金属膜5の位置精度はレーザ加工機によるレーザ照射の位置決め精度で決まり、±1μm以下の精度で各ハンダ接続用金属膜5を形成することができるものである。
【0027】
光結合素子4は、図1に示すように、一端部(下端部)にフランジ片22を張り出して設けると共に他端部(上部)にコネクタ部7を設けたハウジング23を具備して形成されるものであり、ハウジング23の中央部に下端から上端部へと貫通する孔部24が設けてある。コネクタ部7には係合爪29等が設けてあり、SC形などの光コネクタプラグに係合爪29を係合させることによって、コネクタ部7に光コネクタプラグを接続することができるようにしてある。またフランジ片22には複数箇所において固定用孔30が設けてある。
【0028】
ハウジング23の孔部24の上端部内にはフェルール25が取り付けてあり、フェルール25の中心に光ファイバー26の一端部を挿入すると共に光ファイバー26の他端部が結合用筒体27に挿入してあり、この結合用筒体27は孔部24の下端部内に配設してある。光ファイバー26としては例えば外径125μmφ、コア径62.5μmφの多モードガラス光ファイバーを用いることができるものであり、フェルール25及び結合用筒体27は直径2.5mmφのものを用いることができる。フェルール25は端面を研磨仕上げをして、孔部24の上端部に固定してある。また結合用筒体27は樹脂あるいはガラスなどで形成してあり、その直径は孔部24の下端部の内径よりも小さく形成されている。従って結合用筒体27は、光ファイバー26で吊り下げられた状態で孔部24の下端部内に支持されているものであり、結合用筒体27の外周と孔部24の内周の間のクリアランス分、結合用筒体27は左右に自由に移動することができるようになっている。また結合用筒体27の下端面はハウジング23の下端面とほぼ面一になるようにしてある。光ファイバー26の端部は結合用筒体27の中心に挿入してあり、結合用筒体27の下端面に光ファイバー26の端面を露出させると共に研磨仕上げすることによって、結合用筒体27の下端面と光ファイバー26の端面を揃えてあり、結合用筒体27の下端面に露出する光ファイバー26の端面が光入出力部3となるものである。
【0029】
また、結合用筒体27の下端面には図1(c)に示すように、光入出力部3の周囲の複数箇所に銅箔や銅メッキなどでハンダ接続用金属膜6が設けてある。各ハンダ接続用金属膜6は例えば直径300μmφに形成されるものであり、光入出力部3から所定の距離の円周上において、所定の一定間隔で設けられるものである。この結合用筒体27に設けられる各ハンダ接続用金属膜6の位置は、上記の光配線基板2における光入出力部1とハンダ接続用金属膜5の位置関係と対応するように設定されるものである。すなわち、光入出力部3と各ハンダ接続用金属膜6との間の寸法を、光配線基板2における光入出力部1と各ハンダ接続用金属膜5との間の寸法と等しく設定すると共に、各ハンダ接続用金属膜6の間隔寸法を、光配線基板2における各ハンダ接続用金属膜5の間隔寸法と等しく設定するようにしてあり、±1μm以下の精度で各ハンダ接続用金属膜6を形成するようにしてある。
【0030】
上記のように表面に光入出力部1を有する光配線基板2に、下端面に光入出力部3を有する光結合素子4を搭載して、光入出力部1に光入出力部3を光学的に結合するにあたっては、まず光配線基板2の各ハンダ接続用金属膜5の表面にハンダペーストをスクリーン印刷などの方法で微量塗布し、これを加熱することによってハンダバンプを形成する。そして光配線基板2の表面上に光結合素子4を載置して重ね、光配線基板2の固定用孔20と光結合素子4の固定用孔30にネジ32を通して軽くナット33を螺合することによって、光配線基板2に光結合素子4を軽く仮固定する。このとき、光配線基板2の固定用孔20と光結合素子4の固定用孔30は相互に対応する位置に設けてあり、固定用孔20,30同士を合致させた状態では、光配線基板2の表面の光入出力部1と光結合素子4の結合用筒体27の端面の光入出力部3が大略対向するようになっていると共に、結合用筒体27の下端面の各ハンダ接続用金属膜6は光配線基板2の表面の各ハンダ接続用金属膜5と大略対向し、結合用筒体27の各ハンダ接続用金属膜6は光配線基板2の各ハンダ接続用金属膜5のハンダボールに接触している。
【0031】
この後に、これをリフロー炉に通して加熱し、ハンダボールを溶融させると、光配線基板2や光結合素子4の結合用筒体27は有機物やガラスなど非金属材料で形成されているので、光配線基板2や結合用筒体27に対する液状のハンダの表面張力と、ハンダ接続用金属膜5,6に対する液状のハンダの表面張力の差で、ハンダ接続用金属膜5とハンダ接続用金属膜6が相互に引き寄せられて位置が合うように結合用筒体27が移動し、光配線基板2のハンダ接続用金属膜5と結合用筒体27のハンダ接続用金属膜6とを正確に位置合わせした状態でハンダ接合をすることができる。そして光配線基板2の光入出力部1に対するハンダ接続用金属膜5の位置関係と、光結合素子4の結合用筒体27の光入出力部3に対するハンダ接続用金属膜6の位置関係とが対応するように設定してあるので、このように光配線基板2と光結合素子4の結合用筒体27をハンダ34で接合すると、光配線基板2の表面の光入出力部1と光結合素子4の結合用筒体27の端面の光入出力部3とは高精度に位置合わせされた状態で近接対向し、光学的に結合させることができるものである。
【0032】
この後に、ネジ32とナット33を締めて光配線基板2に光結合素子4を物理的にしっかり固定することによって、図3に示すように、光配線基板2に光結合素子4を搭載することができるものであり、光配線基板2の表面に備えられた光入出力部1に光結合素子4の光入出力部3を効率よく正確に光結合することができるものである。そして光結合素子4のコネクタ部7にSC形コネクタプラグを嵌め込んで、図示しない光ファイバーをフェルール25に光学的に接続することができるものである。このものにあって、光配線基板2の光導波路13を伝播する光信号をミラー14で偏向させ、光結合した光配線基板2の光入出力部3と光結合素子4の光入出力部3から、光ファイバー26及びフェルール25を通して図示しない光ファイバーに光信号を出力することができるものである。またこれと逆の経路で、図示しない光ファイバーから光信号を光導波路13に入力させることができるものである。
【0033】
尚、上記の実施の形態では、光結合素子4に設けられる各ハンダ接続用金属膜6を、光配線基板2における光入出力部1とハンダ接続用金属膜5の位置関係と対応する位置に形成するようにしたが、これとは逆に、光配線基板2の光入出力部1と各ハンダ接続用金属膜5との間の寸法を、光結合素子4における光入出力部3と各ハンダ接続用金属膜6との間の寸法と等しく設定すると共に、光配線基板2の各ハンダ接続用金属膜5の間隔寸法を、光結合素子4における各ハンダ接続用金属膜6の間隔寸法と等しく設定するようにして、光配線基板2に設けられる各ハンダ接続用金属膜5を、光結合素子4における光入出力部3とハンダ接続用金属膜6の位置関係と対応する位置に形成するようにしてもよい。
【0034】
また、本発明は上記の実施の形態に限定されるものではなく、例えば、先端面にレンズ加工をした光ファイバー26を用い、結合用筒体27の下端面にこの光ファイバー26の先端面を合わせることによって、光結合の効率を高めるようにすることができる。また光ファイバー26として、光配線基板2の光導波路13に合わせて、異なるコア径や外径のものを変更できるようにしたものであってもよい。さらに、結合用筒体27とフェルール25の間の光ファイバー26の長さを長く形成して、緩く折り曲げることによってコネクタ部7を90°の角度で屈曲させた、折り曲げ接続型に光結合素子4を形成することも可能である。また、光結合素子4にコネクタ部7の代わりに、ベアチップ搭載やパッケージ品(ベアチップ素子と封止パッケージ、ときにはレンズなどが一体化されたものをいう)搭載などの態様で受発光素子をマウントした構造に形成することによって、光配線基板2への光結合素子4の搭載で受発光素子を光配線基板2に簡便に搭載することができるものである。この場合、光結合素子4にも電気接続端子を設けることによって、光配線基板2の側の電気的接続と、光結合素子4の側の電気的接続とを同時に行なうことができるものである。また、一つのハウジングの中に、光入出力部3とその近傍のハンダ接続用金属膜6とを設けた複数の結合用筒体27を備えて光結合素子を形成すると共に、これと対応するように光配線基板2の表面にハンダ接続用金属膜5を近傍に備えた複数の光入出力部1を形成しておき、対となる各結合用筒体27の光入出力部3と、光配線基板2の各光入出力部1との間の位置合わせを、対となる光入出力部1,3の近傍に形成されたハンダ接続用金属膜5,6の間にハンダを供給することによって行なうようにしてもよい。この場合は、一度のハンダの供給で複数対の光入出力部1,3の光結合を同時に行なうことができるものである。
【0035】
【発明の効果】
上記のように本発明の請求項1に係る光結合構造によれば、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜とをハンダ接合する際に、光配線基板や光結合素子の表面に対するハンダの表面張力とハンダ接続用金属膜に対するハンダの表面張力の差で、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜とを位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜と位置関係が対応している光配線基板の光入出力部と光結合素子の光入出力部とを高精度に位置合わせした状態で、光配線基板に光結合素子を搭載することができるものであり、光配線基板の表面に備えられた光入出力部に光結合素子の光入出力部を効率よく正確に光結合させることができるものである。
【0036】
また請求項2の発明によれば、光配線基板と光結合素子の複数箇所のハンダ接続用金属膜で、ハンダの表面張力の方向のバランスをとることができ、光配線基板の光入出力部と光結合素子の光入出力部とを高精度に位置合わせすることができるものである。
【0037】
また請求項3の発明によれば、光結合素子のコネクタ部によって、光ファイバを光配線基板に簡易に接続することができるものである。
【0038】
本発明の請求項4に係る光結合方法によれば、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜とをハンダ接合する際に、光配線基板や光結合素子の表面に対するハンダの表面張力とハンダ接続用金属膜に対するハンダの表面張力の差で、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜とを位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜と位置関係が対応している光配線基板の光入出力部と光結合素子の光入出力部とを高精度に位置合わせした状態で、光配線基板に光結合素子を搭載することができるものであり、光配線基板の表面に備えられた光入出力部に光結合素子の光入出力部を効率よく正確に光結合させることができるものである。
【0039】
また請求項5の発明によれば、ハンダ接合だけでなく、機械的手段で光配線基板と光結合素子とを強固に接続することができるものである。
【0040】
本発明の請求項6に係る光結合素子によれば、ハンダに対する光配線基板や光結合素子の表面とハンダ接続用金属膜との濡れの差による表面張力で、光配線基板のハンダ接続用金属膜に光結合素子のハンダ接続用金属膜を位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜と位置関係が対応している光配線基板の光入出力部と光結合素子の光入出力部とを高精度に位置合わせした状態で、光配線基板に光結合素子を搭載して、光配線基板の表面に備えられた光入出力部に光結合素子の光入出力部を効率よく正確に光結合させることができるものである。
【0041】
本発明の請求項7に係る光配線基板によれば、ハンダに対する光配線基板や光結合素子の表面とハンダ接続用金属膜との濡れの差による表面張力で、光配線基板のハンダ接続用金属膜に光結合素子のハンダ接続用金属膜を位置合わせさせた状態でハンダ接合をすることができ、ハンダ接続用金属膜と位置関係が対応している光配線基板の光入出力部と光結合素子の光入出力部とを高精度に位置合わせした状態で、光配線基板に光結合素子を搭載して、光配線基板の表面に備えられた光入出力部に光結合素子の光入出力部を効率よく正確に光結合させることができるものである。
【図面の簡単な説明】
【図1】本発明の実施の形態の一例を示すものであり、(a)は光結合素子の正面断面図、(b)は同上の底面図、(c)は同上の結合用筒体の端面の拡大図である。
【図2】本発明の実施の形態の一例を示すものであり、(a)は光配線基板の一部の正面断面図、(b)は同上の一部の拡大した断面図、(c)は同上の一部の平面図である。
【図3】本発明の実施の形態の一例を示すものであり、光配線基板に光結合素子を搭載した状態の断面図である。
【符号の説明】
1 光入出力部
2 光配線基板
3 光入出力部
4 光結合素子
5 ハンダ接続用金属膜
6 ハンダ接続用金属膜
7 コネクタ部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical coupling structure and an optical coupling method for performing optical coupling in an optical input / output unit of an optical wiring substrate used for applications such as high-speed signal transmission, and an optical coupling element or an optical wiring substrate used for optical coupling. It is.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with a rapid increase in the bandwidth of communication infrastructure and a dramatic increase in information processing capabilities of computers and the like, the need for information processing circuits having an extremely high-speed information transmission path has been increasing. Under this background, transmission using an optical signal has been considered as one of means for breaking through the transmission speed limit of an electric signal. For example, optical wiring is combined with electric wiring of an electric wiring board which has been conventionally used. Various optical wiring boards have been proposed.
[0003]
An optical wiring board in which electric wiring and optical wiring are combined is formed by providing an optical wiring made of an optical waveguide or the like on a conventional electric wiring board (electric printed board). The light signal is converted into an optical signal by a light emitting element such as a diode, and the light signal is incident on an optical waveguide and propagated for a predetermined distance. Then, an optical signal is emitted from the optical waveguide. Is a general usage of optical wiring. In addition, it has also been proposed to input / output an optical signal to / from an optical wiring by optically coupling an incident side and / or an exit side of an optical waveguide to an optical fiber (for example, see Patent Document 1). .
[0004]
Here, an electric wiring board called a printed circuit board or the like is formed as a flat plate, and almost all electronic components and connectors to be mounted are mounted on the plane of the board. This is because batch mounting by soldering such as reflow is suitable for mass production. Similarly, in an optical wiring board that combines electrical wiring and optical wiring, optical input and output of optical wiring so that optical signals can be taken in and out from a plane. It is preferable to form the part on a flat surface in order to take advantage of the printed circuit board as it is. Therefore, a deflection element for deflecting an optical signal input / output to / from an optical input / output unit is provided at an end of an optical waveguide forming an optical wiring. This deflection element usually has a wavelength, a polarization, and a mode. For example, a reflection mirror that does not have any dependency is used. An optical input / output unit that deflects an optical signal propagating in the optical waveguide by a reflection mirror and takes out the signal to the surface of the optical wiring substrate, or takes in an optical signal that is deflected by the reflection mirror and propagated in the optical waveguide. Are formed on the surface of an optical wiring board (for example, see Patent Document 2).
[0005]
[Patent Document 1]
JP-A-8-313758
[Patent Document 2]
JP 2001-188150 A
[0006]
[Problems to be solved by the invention]
As described above, when an optical signal is input / output from the surface of the optical wiring board through a deflecting element such as a reflection mirror, the light receiving / emitting element mounted on the optical wiring board is optically coupled with the optical waveguide of the optical wiring. In doing so, it is, of course, necessary that the optical waveguides and reflection mirrors provided on the side of the optical wiring board are formed with high precision positioning. It needs to be mounted. However, in this case, for efficient coupling, it is necessary to interpose an optical component such as a lens in order to optimize the convergence and divergence of light, but the optical component needs to be positioned with high precision, Due to such an increase in the number of components, the labor required for mounting the light receiving and emitting elements and the like is increased, and there is a problem that efficient optical coupling is difficult.
[0007]
Further, the optical coupling with the optical waveguide of the optical wiring board is not limited to the light receiving / emitting element mounted on the optical wiring board, but also the optical coupling of the optical waveguide of the optical wiring board with the optical fiber, and further, other optical coupling. There is also a need for optical coupling with a wiring board. However, in this case, as in Patent Document 1, for example, the end face of the optical wiring board is cut or polished to expose the end face of the optical waveguide, and the optical fiber or connector is connected to the exposed end face of the optical waveguide. Therefore, there is a problem in that the labor for cutting or polishing the end face of the optical wiring board is required, and the advantage that the optical input / output portion is formed on the surface of the optical wiring board is not utilized.
[0008]
The present invention has been made in view of the above points, and has an optical coupling structure and an optical coupling device capable of efficiently and accurately performing optical coupling between an optical input / output unit provided on a surface of an optical wiring board and an optical coupling element. An object of the present invention is to provide a coupling method, an optical coupling element, and an optical wiring board.
[0009]
[Means for Solving the Problems]
The optical coupling structure according to claim 1 of the present invention comprises: an optical wiring board 2 having an optical input / output unit 1 on a surface; and an optical coupling element 4 having an optical input / output unit 3 on an end face. This is an optical coupling structure for optically coupling between the optical coupling elements 1 and 3. The optical coupling structure includes a solder connection metal film 5 near the optical input / output unit 1 on the surface of the optical wiring board 2 and the light on the end face of the optical coupling element 4. A solder connection metal film 6 is provided in the vicinity of the input / output unit 3, and the positional relationship between the optical input / output unit 1 and the solder connection metal film 5 of the optical wiring board 2 and the light input / output unit 3 of the optical coupling element 4 and the solder The formation positions of the solder connection metal films 5 and 6 of the optical wiring board 2 and the optical coupling element 4 are set so that the positional relationship of the connection metal film 6 corresponds to the solder connection metal film of the optical wiring board 2. By joining the film 5 and the metal film 6 for solder connection of the optical coupling element 4 by soldering, the light input A force unit 1 and the light output unit 3 of the optocoupler 4 is characterized in that comprising coupling to optically.
[0010]
According to the first aspect of the present invention, when the solder connection metal film 5 of the optical wiring board 2 and the solder connection metal film 6 of the optical coupling element 4 are solder-bonded, the optical wiring board 2 and the optical coupling element 4 are connected. The difference between the surface tension of the solder with respect to the surface of the substrate and the surface tension of the solder with respect to the metal films for solder connection 5 and 6 makes the metal film 5 for solder connection of the optical wiring board 2 and the metal film 6 for solder connection of the optical coupling element 4 different. Solder bonding can be performed in the aligned state, and the optical input / output unit 1 of the optical wiring board 2 and the optical input / output unit of the optical coupling element 4 whose positional relationship corresponds to the metal films 5 and 6 for solder connection. The optical coupling element 4 can be mounted on the optical wiring board 2 in a state where the optical coupling element 3 and the optical input / output unit 1 provided on the surface of the optical wiring board 2 are aligned. 4, the optical input / output unit 3 can be efficiently and accurately optically coupled. Than it is.
[0011]
According to a second aspect of the present invention, in the first aspect, the solder connection metal film 5 of the optical wiring board 2 and the solder connection metal film 6 of the optical coupling element 4 are formed by sandwiching the optical input / output units 1 and 3 respectively. It is provided on the surface of the optical wiring board 2 and on the end face of the optical coupling element 4 at a location.
[0012]
According to the second aspect of the present invention, the direction of the surface tension of the solder can be balanced by the solder connection metal films 5 and 6 at a plurality of positions of the optical wiring board 2 and the optical coupling element 4. The optical input / output unit 1 and the optical input / output unit 3 of the optical coupling element 4 can be positioned with high accuracy.
[0013]
According to a third aspect of the present invention, in the first or second aspect, a connector section for physically and optically coupling an optical fiber to an end of the optical coupling element 4 opposite to the end face on which the optical input / output section 3 is provided. 7 is provided.
[0014]
According to the third aspect of the present invention, the optical fiber can be easily connected to the optical wiring board 2 by the connector section 7 of the optical coupling element 4.
[0015]
The optical coupling method according to claim 4 of the present invention comprises: an optical wiring board 2 having an optical input / output unit 1 on a surface; and an optical coupling element 4 having an optical input / output unit 3 on an end face. This is an optical coupling method for optically coupling between the optical coupling elements 1 and 3, wherein a metal film 5 for solder connection is provided near the optical input / output unit 1 on the surface of the optical wiring board 2 and the light on the end face of the optical coupling element 4 is provided. A solder connection metal film 6 is provided in the vicinity of the input / output unit 3, and the positional relationship between the optical input / output unit 1 and the solder connection metal film 5 of the optical wiring board 2 and the light input / output unit 3 of the optical coupling element 4 and the solder The formation positions of the solder connection metal films 1 and 3 of the optical wiring board 2 and the optical coupling element 4 are set so that the positional relationship of the connection metal film 6 corresponds to the solder connection metal film of the optical wiring board 2. Liquid solder is supplied between the film 5 and the solder connection metal film 6 of the optical coupling element 4 so that each solder connection metal film , 6, the solder connection metal film 5 of the optical wiring board 2 and the solder connection metal film 6 of the optical coupling element 4 are aligned with each other by the surface tension of the solder, and the solder connection metal film 5 of the optical wiring board 2 is aligned with the light. The optical input / output unit 1 of the optical wiring board 2 and the optical input / output unit 3 of the optical coupling element 4 are optically coupled by soldering the solder connection metal film 6 of the coupling element 4. It is.
[0016]
According to the fourth aspect of the present invention, when the solder connection metal film 5 of the optical wiring board 2 and the solder connection metal film 6 of the optical coupling element 4 are solder-bonded, the optical wiring board 2 and the optical coupling element 4 are connected. The difference between the surface tension of the solder with respect to the surface of the substrate and the surface tension of the solder with respect to the metal films for solder connection 5 and 6 makes the metal film 5 for solder connection of the optical wiring board 2 and the metal film 6 for solder connection of the optical coupling element 4 different. Solder bonding can be performed in the aligned state, and the optical input / output unit 1 of the optical wiring board 2 and the optical input / output unit of the optical coupling element 4 whose positional relationship corresponds to the metal films 5 and 6 for solder connection. The optical coupling element 4 can be mounted on the optical wiring board 2 in a state where the optical coupling element 3 and the optical input / output unit 1 provided on the surface of the optical wiring board 2 are aligned. 4, the optical input / output unit 3 can be efficiently and accurately optically coupled. Than it is.
[0017]
According to a fifth aspect of the present invention, in the fourth aspect, after the solder connection metal film 5 of the optical wiring board 2 and the solder connection metal film 6 of the optical coupling element 4 are aligned by the surface tension of the solder, 2 and the optical coupling element 4 are mechanically connected.
[0018]
According to the fifth aspect of the present invention, the optical wiring board 2 and the optical coupling element 4 can be firmly connected not only by solder bonding but also by mechanical means.
[0019]
The optical coupling device according to claim 6 of the present invention includes an optical input / output unit 3 provided on the surface of the optical wiring board 2 and an optical input / output unit 3 optically coupled to an end face thereof. An optical coupling element 4 provided with a solder connection metal film 6 provided near the optical input / output unit 1 on the surface of the optical input / output unit 1 and a solder connection metal film 6 to be solder-bonded near the optical input / output unit 3; The optical coupling so that the positional relationship between the optical input / output unit 1 of the wiring board 2 and the metal film 5 for solder connection and the positional relationship between the optical input / output unit 3 of the optical coupling element 4 and the metal film 6 for solder connection correspond. It is characterized in that the position of the solder connection metal film 6 formed on the element 4 is set.
[0020]
According to the sixth aspect of the present invention, the surface tension of the optical wiring board 2 or the optical coupling element 4 and the solder connection metal films 5 and 6 with respect to the solder is used as the surface tension due to the difference in wetting. Solder bonding can be performed in a state where the solder connection metal film 6 of the optical coupling element 4 is aligned with the metal film 5, and the optical wiring board 2 whose positional relationship corresponds to the solder connection metal films 5 and 6. The optical coupling element 4 is mounted on the optical wiring board 2 in a state where the optical input / output section 1 of the optical coupling section 1 and the optical input / output section 3 of the optical coupling element 4 are positioned with high accuracy, and is provided on the surface of the optical wiring board 2. It is possible to efficiently and accurately optically couple the optical input / output unit 3 of the optical coupling element 4 to the optical input / output unit 1 thus obtained.
[0021]
The optical wiring board according to claim 7 of the present invention includes, on its surface, an optical input / output unit 1 that is optically coupled to an optical input / output unit 3 provided in the optical coupling element 4, and the light of the optical coupling element 4. An optical wiring board 2 including a solder connection metal film 5 provided near an input / output unit 3 and a solder connection metal film 5 to be solder-bonded near an optical input / output unit 1. Formed on the optical wiring board 2 so that the positional relationship between the optical input / output unit 3 and the solder connection metal film 6 and the positional relationship between the optical input / output unit 1 and the solder connection metal film 5 of the optical wiring board 2 correspond. The position of the metal film 5 for solder connection to be formed is set.
[0022]
According to the seventh aspect of the present invention, the surface tension of the optical wiring board 2 or the optical coupling element 4 and the solder connection metal films 5 and 6 with respect to the solder is used as the surface tension due to the difference in wettability. Solder bonding can be performed in a state where the solder connection metal film 6 of the optical coupling element 4 is aligned with the metal film 5, and the optical wiring board 2 whose positional relationship corresponds to the solder connection metal films 5 and 6. The optical coupling element 4 is mounted on the optical wiring board 2 in a state where the optical input / output section 1 of the optical coupling section 1 and the optical input / output section 3 of the optical coupling element 4 are positioned with high accuracy, and is provided on the surface of the optical wiring board 2. It is possible to efficiently and accurately optically couple the optical input / output unit 3 of the optical coupling element 4 to the optical input / output unit 1 thus obtained.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0024]
The optical wiring board 2 is not particularly limited, but an optical / electrical composite wiring board in which optical wiring is combined with electric wiring of the electric wiring board can be used. In the optical wiring board 2, in the embodiment of FIG. 2, the substrate is formed by a transparent resin core 11 and a transparent resin clad layer 12 surrounding the core 11. Is formed in parallel with the surface of the optical wiring board 2 so that the optical waveguide 13 constitutes an optical wiring. The optical waveguide 13 can be formed, for example, so that the core 11 has a diameter of 40 μm square. In the embodiment shown in FIG. 2, electric wiring is configured by a circuit pattern 15 of a metal conductor formed on the surface of the optical wiring board 2, and a plurality of electrical wirings penetrate the optical wiring board 2 from front to back. A fixing hole 20 is provided at a location.
[0025]
An optical path deflecting mirror 14 is provided at an end of the optical waveguide 13 to form an optical deflecting section. The mirror 14 is formed of a deposited film of gold or the like, and is formed so as to be inclined at an angle of 45 ° with respect to the longitudinal direction of the optical waveguide 13 and the surface of the optical wiring board 2. The surface portion of the clad layer 12 of the optical wiring board 2 facing the mirror 14 at an angle of 45 ° becomes the light input / output unit 1.
[0026]
As shown in FIGS. 2B and 2C, a metal layer 17 is laminated on the surface of the optical wiring substrate 2 so as to surround the optical input / output unit 1. The entire surface of the metal layer 17 is made of solder resist or the like. It is covered with a protective film 18 made of an organic material. The metal layer 17 can be formed of a copper foil or the like laminated on the surface of the optical wiring board 2 to form the circuit pattern 15. The protective film 18 is opened at a plurality of locations around the optical input / output unit 1 by a laser so that a part of the metal layer 17 is exposed in the opening. The film 5 is formed. Each solder connection metal film 5 is formed, for example, to have a diameter of 250 μmφ, and is provided at a predetermined constant interval on a circumference at a predetermined distance from the light input / output unit 1. The formation of the solder connection metal film 5 can be performed by positioning the laser irradiation centering on the optical input / output unit 1 and irradiating the protective film 18 with a laser to make it open. The positional accuracy of the film 5 is determined by the positioning accuracy of laser irradiation by the laser beam machine, and the metal film 5 for solder connection can be formed with an accuracy of ± 1 μm or less.
[0027]
As shown in FIG. 1, the optical coupling element 4 is formed to include a housing 23 provided with a flange piece 22 protruding at one end (lower end) and a connector 7 provided at the other end (upper). A hole 24 is provided at the center of the housing 23 to penetrate from the lower end to the upper end. The connector portion 7 is provided with an engagement claw 29 and the like. By engaging the engagement claw 29 with an optical connector plug such as an SC type, the optical connector plug can be connected to the connector portion 7. is there. Further, fixing holes 30 are provided at a plurality of locations on the flange piece 22.
[0028]
A ferrule 25 is attached to the upper end of the hole 24 of the housing 23. One end of the optical fiber 26 is inserted into the center of the ferrule 25, and the other end of the optical fiber 26 is inserted into the coupling cylinder 27. The coupling cylinder 27 is provided in the lower end of the hole 24. As the optical fiber 26, for example, a multi-mode glass optical fiber having an outer diameter of 125 μmφ and a core diameter of 62.5 μmφ can be used, and the ferrule 25 and the coupling cylinder 27 having a diameter of 2.5 mmφ can be used. The ferrule 25 has an end face polished and fixed to the upper end of the hole 24. The coupling cylinder 27 is made of resin, glass, or the like, and has a diameter smaller than the inner diameter of the lower end of the hole 24. Therefore, the coupling cylinder 27 is supported within the lower end of the hole 24 while being suspended by the optical fiber 26, and a clearance between the outer periphery of the coupling cylinder 27 and the inner periphery of the hole 24 is provided. The coupling cylinder 27 can be freely moved to the left and right. The lower end surface of the connecting cylinder 27 is substantially flush with the lower end surface of the housing 23. The end of the optical fiber 26 is inserted into the center of the coupling cylinder 27, and the lower end of the coupling fiber 27 is exposed and polished at the lower end face of the coupling cylinder 27. The end faces of the optical fiber 26 that are exposed at the lower end face of the coupling cylinder 27 serve as the light input / output unit 3.
[0029]
Further, as shown in FIG. 1 (c), the solder connection metal film 6 is provided on the lower end surface of the coupling cylinder 27 at a plurality of locations around the optical input / output unit 3 by copper foil or copper plating. . Each solder connection metal film 6 is formed, for example, to have a diameter of 300 μmφ, and is provided at a predetermined constant interval on a circumference at a predetermined distance from the light input / output unit 3. The position of each solder connection metal film 6 provided on the coupling cylinder 27 is set so as to correspond to the positional relationship between the optical input / output unit 1 and the solder connection metal film 5 in the optical wiring board 2. Things. That is, the dimension between the optical input / output unit 3 and each solder connection metal film 6 is set to be equal to the dimension between the optical input / output unit 1 and each solder connection metal film 5 in the optical wiring board 2 and The spacing between the solder connection metal films 6 is set to be equal to the spacing between the solder connection metal films 5 on the optical wiring board 2, and each solder connection metal film 6 has an accuracy of ± 1 μm or less. Is formed.
[0030]
As described above, the optical coupling element 4 having the optical input / output unit 3 on the lower end surface is mounted on the optical wiring substrate 2 having the optical input / output unit 1 on the surface, and the optical input / output unit 3 is mounted on the optical input / output unit 1. In optically coupling, first, a small amount of solder paste is applied to the surface of each solder connection metal film 5 of the optical wiring substrate 2 by a method such as screen printing, and the solder paste is heated to form solder bumps. Then, the optical coupling element 4 is placed on the surface of the optical wiring substrate 2 to be superimposed thereon, and the nut 33 is lightly screwed into the fixing hole 20 of the optical wiring substrate 2 and the fixing hole 30 of the optical coupling element 4 through a screw 32. Thus, the optical coupling element 4 is lightly temporarily fixed to the optical wiring board 2. At this time, the fixing holes 20 of the optical wiring board 2 and the fixing holes 30 of the optical coupling element 4 are provided at positions corresponding to each other, and when the fixing holes 20 and 30 are aligned with each other, The optical input / output unit 1 on the surface of the optical coupling unit 2 and the optical input / output unit 3 on the end face of the coupling cylinder 27 of the optical coupling element 4 are substantially opposed to each other, and each solder on the lower end face of the coupling cylinder 27 is connected. The connection metal film 6 is substantially opposed to each solder connection metal film 5 on the surface of the optical wiring board 2, and each solder connection metal film 6 of the coupling cylinder 27 is each solder connection metal film of the optical wiring board 2. 5 is in contact with the solder ball.
[0031]
Thereafter, when the solder ball is melted by passing it through a reflow furnace to melt the solder balls, the coupling cylinder 27 of the optical wiring board 2 and the optical coupling element 4 is formed of a nonmetallic material such as an organic substance or glass. The difference between the surface tension of the liquid solder with respect to the optical wiring board 2 and the coupling cylinder 27 and the surface tension of the liquid solder with respect to the solder connection metal films 5 and 6, and the solder connection metal film 5 and the solder connection metal film. 6 are attracted to each other and the coupling cylinder 27 is moved so that the positions thereof are aligned with each other, and the solder connection metal film 5 of the optical wiring board 2 and the solder connection metal film 6 of the coupling cylinder 27 are accurately positioned. Solder bonding can be performed in a state where they are combined. The positional relationship of the solder connection metal film 5 with respect to the optical input / output unit 1 of the optical wiring board 2 and the positional relationship of the solder connection metal film 6 with respect to the optical input / output unit 3 of the coupling cylinder 27 of the optical coupling element 4 are described. Are set so as to correspond to each other. Thus, when the coupling cylindrical body 27 of the optical wiring board 2 and the optical coupling element 4 is joined with the solder 34, the optical input / output unit 1 on the surface of the optical wiring board 2 The optical input / output unit 3 on the end face of the coupling cylinder 27 of the coupling element 4 is closely opposed to the optical input / output unit 3 in a state of being accurately aligned, and can be optically coupled.
[0032]
Thereafter, the optical coupling element 4 is physically and firmly fixed to the optical wiring board 2 by tightening the screw 32 and the nut 33, thereby mounting the optical coupling element 4 on the optical wiring board 2 as shown in FIG. The optical input / output unit 3 of the optical coupling element 4 can be efficiently and accurately optically coupled to the optical input / output unit 1 provided on the surface of the optical wiring board 2. Then, an SC type connector plug is fitted into the connector portion 7 of the optical coupling element 4 so that an optical fiber (not shown) can be optically connected to the ferrule 25. In this device, an optical signal propagating through the optical waveguide 13 of the optical wiring board 2 is deflected by a mirror 14 and optically coupled to the optical input / output section 3 of the optical wiring board 2 and the optical input / output section 3 of the optical coupling element 4. Thus, an optical signal can be output to an optical fiber (not shown) through the optical fiber 26 and the ferrule 25. In addition, an optical signal can be input to the optical waveguide 13 from an optical fiber (not shown) through the reverse route.
[0033]
In the above embodiment, each solder connection metal film 6 provided on the optical coupling element 4 is placed at a position corresponding to the positional relationship between the optical input / output unit 1 and the solder connection metal film 5 on the optical wiring board 2. On the contrary, the dimension between the optical input / output unit 1 of the optical wiring board 2 and each of the solder connection metal films 5 is made different from that of the optical input / output unit 3 in the optical coupling element 4. The distance between the solder connection metal films 6 of the optical wiring board 2 is set equal to the distance between the solder connection metal films 6 of the optical wiring board 2. The solder connection metal films 5 provided on the optical wiring board 2 are formed at positions corresponding to the positional relationship between the optical input / output unit 3 and the solder connection metal film 6 in the optical coupling element 4 by setting the same. You may do so.
[0034]
In addition, the present invention is not limited to the above-described embodiment. For example, an optical fiber 26 with a lens processed on the distal end surface is used, and the distal end surface of the optical fiber 26 is aligned with the lower end surface of the coupling cylinder 27. Thereby, the efficiency of optical coupling can be enhanced. Further, the optical fiber 26 may have a different core diameter or outer diameter in accordance with the optical waveguide 13 of the optical wiring board 2. Further, the length of the optical fiber 26 between the coupling cylinder 27 and the ferrule 25 is made long, and the optical coupling element 4 is bent in a bent connection type in which the connector portion 7 is bent at an angle of 90 ° by being gently bent. It is also possible to form. Further, instead of the connector section 7, the light receiving / emitting element is mounted on the optical coupling element 4 in such a manner that a bare chip is mounted or a packaged product (a bare chip element and a sealed package, sometimes a lens or the like is integrated) is mounted. By forming the structure, the light receiving / emitting element can be easily mounted on the optical wiring board 2 by mounting the optical coupling element 4 on the optical wiring board 2. In this case, by providing the optical coupling element 4 with the electrical connection terminal, the electrical connection on the optical wiring board 2 side and the electrical connection on the optical coupling element 4 side can be simultaneously performed. In addition, a single housing is provided with a plurality of coupling cylinders 27 provided with the optical input / output unit 3 and the solder connection metal film 6 in the vicinity thereof to form an optical coupling element and to correspond thereto. A plurality of light input / output portions 1 each having a solder connection metal film 5 in the vicinity thereof are formed on the surface of the optical wiring board 2 as described above, and the light input / output portions 3 of each pair of coupling cylinders 27 are formed. For positioning between the optical input / output units 1 of the optical wiring board 2, solder is supplied between the solder connection metal films 5 and 6 formed near the paired optical input / output units 1 and 3. Alternatively, it may be performed. In this case, the optical coupling of a plurality of pairs of optical input / output units 1 and 3 can be performed simultaneously by a single supply of solder.
[0035]
【The invention's effect】
According to the optical coupling structure according to claim 1 of the present invention as described above, when the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element are solder-bonded, The difference between the surface tension of the solder with respect to the surface of the optical coupling element and the surface tension of the solder with respect to the solder connection metal film was used to align the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element. Solder bonding can be performed in a state, and the optical input / output unit of the optical wiring board and the optical input / output unit of the optical coupling element, whose positional relationship corresponds to the metal film for solder connection, are aligned with high precision. The optical coupling element can be mounted on the optical wiring board, and the optical input / output section of the optical coupling element can be efficiently and accurately coupled to the optical input / output section provided on the surface of the optical wiring board. You can do it.
[0036]
According to the second aspect of the present invention, the direction of the surface tension of the solder can be balanced by the solder connection metal films at a plurality of locations of the optical wiring board and the optical coupling element, and the optical input / output portion of the optical wiring board can be balanced. And the optical input / output unit of the optical coupling element can be positioned with high precision.
[0037]
According to the third aspect of the present invention, the optical fiber can be easily connected to the optical wiring board by the connector portion of the optical coupling element.
[0038]
According to the optical coupling method according to claim 4 of the present invention, when the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element are solder-joined, the optical wiring board and the optical coupling element are not connected. The difference between the surface tension of the solder on the surface and the surface tension of the solder on the metal film for solder connection, and the solder connection with the metal film for solder connection on the optical wiring board and the metal film for solder connection on the optical coupling element aligned. The optical input / output section of the optical wiring board and the optical input / output section of the optical coupling element, which have a positional relationship corresponding to the metal film for solder connection, are aligned with high precision. The optical input / output unit of the optical coupling device can be efficiently and accurately coupled to the optical input / output unit provided on the surface of the optical wiring board. .
[0039]
According to the invention of claim 5, the optical wiring board and the optical coupling element can be firmly connected not only by solder bonding but also by mechanical means.
[0040]
According to the optical coupling device according to the sixth aspect of the present invention, the solder connection metal of the optical wiring substrate is formed by the surface tension caused by the difference in wettability between the surface of the optical wiring substrate or the optical coupling device and the metal film for solder connection. Solder bonding can be performed with the solder connection metal film of the optical coupling element aligned with the film, and the optical coupling with the optical input / output section of the optical wiring board that corresponds to the solder connection metal film. With the optical input / output part of the element aligned with high precision, the optical coupling element is mounted on the optical wiring board, and the optical input / output part of the optical coupling element is mounted on the optical input / output part provided on the surface of the optical wiring board. The parts can be efficiently and accurately optically coupled.
[0041]
According to the optical wiring board according to claim 7 of the present invention, the solder connection metal of the optical wiring board is formed by the surface tension due to the difference in wettability between the surface of the optical wiring board or the optical coupling element and the solder connection metal film with respect to the solder. Solder bonding can be performed with the solder connection metal film of the optical coupling element aligned with the film, and the optical coupling with the optical input / output section of the optical wiring board that corresponds to the solder connection metal film. With the optical input / output part of the element aligned with high precision, the optical coupling element is mounted on the optical wiring board, and the optical input / output part of the optical coupling element is mounted on the optical input / output part provided on the surface of the optical wiring board. The parts can be efficiently and accurately optically coupled.
[Brief description of the drawings]
FIG. 1 shows an example of an embodiment of the present invention, in which (a) is a front sectional view of an optical coupling element, (b) is a bottom view of the same, and (c) is a coupling cylinder of the same. It is an enlarged view of an end surface.
FIGS. 2A and 2B show an example of an embodiment of the present invention, in which FIG. 2A is a front sectional view of a part of an optical wiring board, FIG. 2B is an enlarged sectional view of a part of the same, and FIG. FIG. 2 is a partial plan view of the same.
FIG. 3 illustrates an example of an embodiment of the present invention, and is a cross-sectional view illustrating a state where an optical coupling element is mounted on an optical wiring board.
[Explanation of symbols]
1 Optical input / output unit
2 Optical wiring board
3 Optical input / output unit
4 Optical coupling device
5 Metal film for solder connection
6 Metal film for solder connection
7 Connector part

Claims (7)

表面に光入出力部を有する光配線基板と、端面に光入出力部を有する光結合素子とを、それぞれの光入出力部間で光学的に結合する光結合構造であって、光配線基板の表面の光入出力部の近傍にハンダ接続用金属膜を備えると共に、光結合素子の端面の光入出力部の近傍にハンダ接続用金属膜を備え、光配線基板の光入出力部とハンダ接続用金属膜の位置関係と、光結合素子の光入出力部とハンダ接続用金属膜の位置関係とが対応するように、光配線基板と光結合素子の各ハンダ接続用金属膜の形成位置を設定し、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜とをハンダ接合することによって、光配線基板の光入出力部と光結合素子の光入出力部を光学的に結合して成ることを特徴とする光結合構造。An optical coupling structure for optically coupling an optical wiring board having an optical input / output section on the surface and an optical coupling element having an optical input / output section on an end face between the respective optical input / output sections, comprising: A solder connection metal film is provided near the optical input / output portion on the surface of the optical coupling device, and a solder connection metal film is provided near the optical input / output portion on the end face of the optical coupling element. The formation positions of the solder connection metal films of the optical wiring board and the optical coupling element so that the positional relationship between the connection metal film and the optical input / output portion of the optical coupling element corresponds to the positional relationship between the solder connection metal film. The optical input / output section of the optical wiring board and the optical input / output section of the optical coupling element are optically connected by soldering the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element. An optical coupling structure characterized by being optically coupled. 光配線基板のハンダ接続用金属膜と、光結合素子のハンダ接続用金属膜を、それぞれ光入出力部を挟む複数箇所において、光配線基板の表面と、光結合素子の端面に備えて成ることを特徴とする請求項1に記載の光結合構造。The solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element are provided on the surface of the optical wiring board and the end face of the optical coupling element at a plurality of positions sandwiching the optical input / output unit, respectively. The optical coupling structure according to claim 1, wherein: 光結合素子の光入出力部を設けた端面と対向する端部に、光ファイバーを物理的・光学的に結合するためのコネクタ部を有することを特徴とする請求項1又は2に記載の光結合構造。3. The optical coupling according to claim 1, further comprising a connector for physically and optically coupling the optical fiber to an end of the optical coupling element opposite to the end face provided with the optical input / output unit. Construction. 表面に光入出力部を有する光配線基板と、端面に光入出力部を有する光結合素子とを、それぞれの光入出力部間で光学的に結合する光結合方法であって、光配線基板の表面の光入出力部の近傍にハンダ接続用金属膜を設けると共に、光結合素子の端面の光入出力部の近傍にハンダ接続用金属膜を設け、光配線基板の光入出力部とハンダ接続用金属膜の位置関係と、光結合素子の光入出力部とハンダ接続用金属膜の位置関係とが対応するように、光配線基板と光結合素子の各ハンダ接続用金属膜の形成位置を設定し、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜の間に液状のハンダを供給して、各ハンダ接続用金属膜に対するハンダの表面張力で光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜を位置合わせし、光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜とをハンダ接合することによって、光配線基板の光入出力部と光結合素子の光入出力部を光学的に結合することを特徴とする光結合方法。An optical coupling method for optically coupling an optical wiring board having an optical input / output section on a surface and an optical coupling element having an optical input / output section on an end face between respective optical input / output sections, comprising: A metal film for solder connection is provided near the optical input / output portion on the surface of the optical coupling element, and a metal film for solder connection is provided near the optical input / output portion on the end face of the optical coupling element, and the optical input / output portion of the optical wiring board is connected to the solder. The formation positions of the solder connection metal films of the optical wiring board and the optical coupling element so that the positional relationship between the connection metal film and the optical input / output portion of the optical coupling element corresponds to the positional relationship between the solder connection metal film. Liquid solder is supplied between the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element, and the surface tension of the solder with respect to each solder connection metal film is applied to the optical wiring board. The metal film for solder connection and the metal film for solder connection of the optical coupling device The optical input / output part of the optical wiring board and the optical input / output part of the optical coupling element are optically connected by soldering the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element. An optical coupling method, comprising: ハンダの表面張力で光配線基板のハンダ接続用金属膜と光結合素子のハンダ接続用金属膜を位置合わせした後、光配線基板と光結合素子とを機械的に接続することを特徴とする請求項4に記載の光結合方法。After the solder connection metal film of the optical wiring board and the solder connection metal film of the optical coupling element are aligned by the surface tension of the solder, the optical wiring board and the optical coupling element are mechanically connected. Item 5. The optical coupling method according to Item 4. 光配線基板の表面に設けられた光入出力部と光学的に結合される光入出力部を端面に備えると共に、光配線基板の表面の光入出力部の近傍に設けられたハンダ接続用金属膜とハンダ接合されるハンダ接続用金属膜を光入出力部の近傍に備える光結合素子であって、光配線基板の光入出力部とハンダ接続用金属膜の位置関係と、光結合素子の光入出力部とハンダ接続用金属膜の位置関係とが対応するように、光結合素子に形成するハンダ接続用金属膜の位置を設定して成ることを特徴とする光結合素子。An end face has an optical input / output section optically coupled to an optical input / output section provided on the surface of the optical wiring board, and a solder connection metal provided near the optical input / output section on the surface of the optical wiring board. An optical coupling element having a solder connection metal film solder-bonded to the film in the vicinity of the optical input / output unit, wherein a positional relationship between the optical input / output unit of the optical wiring board and the solder connection metal film is determined. An optical coupling element, wherein a position of a solder connection metal film formed on an optical coupling element is set such that a positional relationship between an optical input / output unit and a solder connection metal film corresponds. 光結合素子に設けられた光入出力部と光学的に結合される光入出力部を表面に備えると共に、光結合素子の光入出力部の近傍に設けられたハンダ接続用金属膜とハンダ接合されるハンダ接続用金属膜を光入出力部の近傍に備える光配線基板であって、光結合素子の光入出力部とハンダ接続用金属膜の位置関係と、光配線基板の光入出力部とハンダ接続用金属膜の位置関係とが対応するように、光配線基板に形成するハンダ接続用金属膜の位置を設定して成ることを特徴とする光配線基板。An optical input / output section optically coupled to the optical input / output section provided on the optical coupling element is provided on the surface, and a solder connection metal film provided near the optical input / output section of the optical coupling element and a solder joint. An optical wiring board provided with a solder connection metal film in the vicinity of an optical input / output unit, the positional relationship between the optical input / output unit of the optical coupling element and the solder connection metal film, and the optical input / output unit of the optical wiring board An optical wiring board characterized in that the position of a solder connecting metal film formed on an optical wiring board is set so that the positional relationship between the solder connecting metal film and the solder connection metal film corresponds.
JP2003144012A 2003-05-21 2003-05-21 Structure and method for optical coupling, optical coupling element, and optical distribution substrate Withdrawn JP2004347811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144012A JP2004347811A (en) 2003-05-21 2003-05-21 Structure and method for optical coupling, optical coupling element, and optical distribution substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144012A JP2004347811A (en) 2003-05-21 2003-05-21 Structure and method for optical coupling, optical coupling element, and optical distribution substrate

Publications (1)

Publication Number Publication Date
JP2004347811A true JP2004347811A (en) 2004-12-09

Family

ID=33531619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144012A Withdrawn JP2004347811A (en) 2003-05-21 2003-05-21 Structure and method for optical coupling, optical coupling element, and optical distribution substrate

Country Status (1)

Country Link
JP (1) JP2004347811A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086210A (en) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd Method of manufacturing photoelectric compound substrate
US7989148B2 (en) 2007-10-19 2011-08-02 Panasonic Electric Works Co., Ltd. Method for forming photoelectric composite board
WO2018169899A1 (en) * 2017-03-16 2018-09-20 Corning Research & Development Corporation Detachable optical connectors for optical chips and methods of fabricating the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007086210A (en) * 2005-09-20 2007-04-05 Matsushita Electric Works Ltd Method of manufacturing photoelectric compound substrate
JP4742771B2 (en) * 2005-09-20 2011-08-10 パナソニック電工株式会社 Method for manufacturing photoelectric composite substrate
US7989148B2 (en) 2007-10-19 2011-08-02 Panasonic Electric Works Co., Ltd. Method for forming photoelectric composite board
WO2018169899A1 (en) * 2017-03-16 2018-09-20 Corning Research & Development Corporation Detachable optical connectors for optical chips and methods of fabricating the same
US10782474B2 (en) 2017-03-16 2020-09-22 Corning Research & Development Corporation Detachable optical connectors for optical chips comprising a connector support and methods of fabricating the same

Similar Documents

Publication Publication Date Title
US6915049B2 (en) Optical module and method of manufacturing the same, and optical transmission device
US7366380B1 (en) PLC for connecting optical fibers to optical or optoelectronic devices
US7333683B2 (en) Structure and method for mounting LSI package onto photoelectric wiring board, information processing apparatus, optical interface, and photoelectric wiring board
US20040202477A1 (en) Optical module and manufacturing method of the same, optical communication device, opto-electrical hybrid integrated circuit, circuit board, and electronic apparatus
US9201203B2 (en) Photoelectric composite substrate and method of manufacturing the same
US9651748B2 (en) Optical module
JP2008040318A (en) Manufacturing method of multi-channel optical module
JP2004518156A (en) Transparent substrate and hinged optical assembly
KR20020038594A (en) Photoelectric wiring board, packaging board, and photoelectric wiring board producing method
KR20120061788A (en) Optoelectric complex wiring module and manufacturing method thereof
JP2015082078A (en) Optical connector, electronic apparatus using the same, and mounting method of optical connector
US20090148096A1 (en) Optical interconnection device
WO2019239839A1 (en) Optical fiber connection component and optical device manufacturing method
US20170082810A1 (en) Optical connector and method for producing optical connector
JP4514709B2 (en) Printed wiring board, manufacturing method thereof, lead frame package, and optical module
US8469606B2 (en) Optoelectronic interconnection system
JP2004271648A (en) Optical communication module, optical communication apparatus, and its manufacturing method
JPH06308519A (en) Flexible electrooptical hybrid wiring board
US6860650B2 (en) Assembly for aligning an optical array with optical fibers
US8888381B2 (en) Optical module base and optical module
JP2006047682A (en) Substrate and substrate for interconnecting optical element
JP2004347811A (en) Structure and method for optical coupling, optical coupling element, and optical distribution substrate
JP2003131080A (en) Optical module, method for manufacturing the same, and device for transmitting light
JP4739987B2 (en) Optical fiber connection structure and optical fiber connection method
JPH0411206A (en) Photoelectronic integrated device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060801