JP2004347479A - Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same - Google Patents

Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same Download PDF

Info

Publication number
JP2004347479A
JP2004347479A JP2003145401A JP2003145401A JP2004347479A JP 2004347479 A JP2004347479 A JP 2004347479A JP 2003145401 A JP2003145401 A JP 2003145401A JP 2003145401 A JP2003145401 A JP 2003145401A JP 2004347479 A JP2004347479 A JP 2004347479A
Authority
JP
Japan
Prior art keywords
sample
absorbance
measured
light
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003145401A
Other languages
Japanese (ja)
Inventor
Tetsuya Ishii
徹哉 石井
Yoichi Sato
洋一 佐藤
Hiroshi Hanya
弘嗣 判谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003145401A priority Critical patent/JP2004347479A/en
Publication of JP2004347479A publication Critical patent/JP2004347479A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorbance measuring instrument capable of detecting an absorbance of a measured sample with high sensitivity. <P>SOLUTION: In this absorbance measuring method, an absorbance distribution 8 wherein the absorbance varied continuously between a band of a relatively high absorbance and a band of a low absorbance is formed to generate lens action based on diffraction of light, a photodetector 4 is provided in an image-focusing position of diffracted light of the light emitted from a light source 1 toward a sample plate 3 to measure the absorbance. In this absorbance measuring instrument, the ring-like absorbance distribution 8 is formed by providing a concentric-circular top part and bottom part, by reducing a ridge height in accompaniment to separation of a cross-sectional shape to get distant radially from the center in order to dissipate secondary or more diffraction light, and by narrowing a pitch interval of the top part to converge the diffraction light in one point, so as to overlap the measured sample 5 and a standard sample 6 via a partitioning film 7, an image-focusing lens 2 is provided between the light source 1 and the sample plate 3, and the light source 1 and the photodetector 4 are provided coaxially on an optical axis. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、吸光度測定方法及び吸光度測定装置及びこれに用いる透過部材及びこれを用いた血液検査装置及び水質土壌大気分析装置に関し、ホログラフィーにも応用できるものである。
【0002】
【従来の技術】
従来から、吸光度の異なる2種類の物質からなる回折格子領域をスライドガラス等の透明プレートに形成し、光を吸収する部分と光を吸収しない部分との光強度差に基づく光の回折現象を利用して吸光度を測定する吸光度測定方法が知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2000−19119号公報
【0004】
【発明が解決しようとする課題】
しかしながら、この従来の吸光度測定方法は、被測定用サンプルと標準サンプルとにより2値の透過領域と遮光領域とからなる回折格子領域を交互に形成して光を回折させて吸光度を測定するものであるので、二次以上の高次の回折波が生じ、受光素子上での一次回折光の強度が減少するという不都合がある。
【0005】
また、回折格子領域を透過することによって形成される各次数の回折光がそれぞれ平行光束となるので、一次回折光を検出するためには、0次回折光に対して受光素子をずらして配置しなければならず、吸光度測定装置が大型となるという不都合もある。
【0006】
更に、回折格子領域の間隔を小さくしなければ、回折現象を得ることができず、サンプルプレートに超微細加工が必要でサンプルプレートが高価になるという不都合もある。
【0007】
また、被測定用サンプルと標準サンプルとで吸光度の相違がないときでも、回折格子領域の存在に基づく領域境界面での散乱により回折光が生じる。
【0008】
加えて、被測定用サンプルを通過する光の速度と標準サンプルを通過する光の速度とが異なることになるので、光の位相の相異に起因する回折も生じる。
【0009】
本発明は、上記の事情に鑑みて為されたもので、被測定用サンプルの吸光度をより一層高感度に検出できる吸光度測定方法及びこれに用いる吸光度測定装置及びこれに用いる透過部材及びこれを用いた血液検査装置及び水質土壌大気分析装置を提供することにある。
【0010】
【課題を解決するための手段】
請求項1に記載の吸光度測定方法は、吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有する二次元的に広がったプレート様態の被測定用サンプルに対してコヒーレントな光源からの照射光を概略垂直方向から入射させ、前記プレート様態の被測定用サンプルへの前記照射光の入射に基づき生ずる回折光の結像位置に受光素子を設けて、前記被測定用サンプルの吸光度を測定することを特徴とする。
【0011】
被測定用サンプルは、気体、液体、ゲル状体、固体のいずれであっても良い。
【0012】
請求項2に記載の吸光度測定方法は、サンプルプレートに被測定用サンプルを設置する際に該被測定用サンプルの吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有するようにして、かつ、前記被測定用サンプルを標準サンプルに置換したときに前記サンプルプレートの面内で吸光度分布を持たないようにして、前記被測定用サンプルに前記標準サンプルを重ねて設置し、前記サンプルプレートに対してコヒーレントな光源からの照射光を概略垂直方向から入射させ、前記サンプルプレートへの前記照射光の入射に基づき生ずる回折光の結像位置に受光素子を設けて、前記被測定用サンプルの単位長さ当たりの吸光度を測定することを特徴とする。
【0013】
請求項3に記載の吸光度測定方法は、被測定用サンプルが流動性を有する場合、被測定用サンプルが流れ落ちないように、前記被測定用サンプルが前記照射光を実質的に透過する材料で固定されていることを特徴とする。
【0014】
請求項4に記載の吸光度測定方法は、前記標準サンプルが透過部材からなることを特徴とする。
【0015】
請求項5に記載の吸光度測定方法は、前記被測定用サンプル及び/又は前記標準サンプルの片側或いは両側に、前記吸光度分布を固定するために、前記照射光を実質的に透過させるフィルムを設けてなることを特徴とする。
【0016】
請求項6に記載の吸光度測定方法は、前記透過部材が、2次以上の回折光を消失させるために断面形状が中心から半径方向に遠ざかるに伴って山の高さが低くなるように、同心円状の頂部と底部とを有し、かつ、回折光を1点に収束させるために前記頂点部のピッチ間隔が狭くなりしかも前記被測定用サンプルと前記標準用サンプルとを前記厚さ方向と直交する方向から仕切ることにより前記リング状の吸光度分布を形成することを特徴とする。
【0017】
請求項7に記載の吸光度測定方法は、前記透過部材が、略平行な略等ピッチ間隔で頂部と底部とを有しかつ2次以上の回折光を消失させるために前記頂部の延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブからなりしかも前記被測定用サンプルと前記標準用サンプルとを前記厚さ方向と直交する方向から仕切ることにより波状の吸光度分布を形成することを特徴とする。
【0018】
請求項8に記載の吸光度測定方法は、前記サンプルプレートが液体を入れるサンプル容器であり、前記被測定用サンプルと前記標準用サンプルとが共に液体であり、前記サンプル容器の内部に前記被測定用サンプルの液体と前記標準サンプルの液体とのいずれか一方を先に入れ、後から他方を前記サンプル容器の内部に注入して後から注入された液体の拡散を利用して、前記吸光度分布を形成することを特徴とする。
【0019】
請求項9に記載の吸光度測定装置は、サンプルプレートに被測定用サンプルを設置する際に該被測定用サンプルの吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有するようにして、かつ、前記被測定用サンプルを標準サンプルに置換したときに前記サンプルプレートの面内で吸光度分布を持たないようにして、前記被測定用サンプルに前記標準サンプルを重ねて設置する手段と、前記サンプルプレートに対して照射光を概略垂直方向から入射させるコヒーレントな光源と、前記サンプルプレートへの前記照射光の入射に基づき生ずる回折光の結像位置に設けられた受光素子とを備え、前記被測定用サンプルの単位長さ当たりの吸光度を測定することを特徴とする。
【0020】
請求項10に記載の吸光度測定装置は、前記標準サンプルが透過部材からなることを特徴とする。
【0021】
請求項11に記載の吸光度測定装置は、光の回折に基づくレンズ作用を生じさせるためにサンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きい帯域と吸光度が小さい帯域との間で吸光度が連続して変化する吸光度分布を形成し、コヒーレントな光源から前記サンプルプレートに向けて照射された照射光による回折光の結像位置に受光素子を設けて、前記被測定用サンプルの単位長さ当たりの吸光度を測定する吸光度測定方法に用いられ、同心円状の頂部と底部とを有しかつ二次以上の回折光を消失させるために断面形状が中心から半径方向に遠ざかるに伴って山の高さが低くなると共に回折光を1点に収束させるために前記頂部のピッチ間隔が狭くなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切る薄い透明の仕切り用フィルムが前記サンプルプレートに設けられ、前記被測定用サンプルと前記標準用サンプルとが前記仕切り用フィルムを介して重ねられることによりリング状の吸光度分布が形成され、前記光源と前記サンプルプレートとの間又は前記受光素子と前記サンプルプレートとの間に結像レンズが設けられ、前記光源と前記受光素子とが前記光軸上に同軸に設けられていることを特徴とする。
【0022】
請求項12に記載の吸光度測定装置は、前記サンプルプレートが液体を入れるサンプル容器であり、前記被測定用サンプルと前記標準用サンプルとが両方とも液体であることを特徴とする。
【0023】
請求項13に記載の吸光度測定装置は、前記サンプルプレートを透過することにより生じる一次回折光の結像位置と前記結像レンズによる零次の回折光の結像位置とが光軸方向に異なることを特徴とする。
【0024】
請求項14に記載の吸光度測定装置は、前記結像レンズによる零次の回折光の結像位置に前記零次の回折光を遮光する遮光板が設けられていることを特徴とする。
【0025】
請求項15に記載の吸光度測定装置は、光の回折に基づくレンズ作用を生じさせるためにサンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きい帯域と吸光度が小さい帯域との間で吸光度が連続して変化する吸光度分布を形成し、コヒーレントな光源から前記サンプルプレートに向けて照射された照射光による回折光の結像位置に受光素子を設けて、前記被測定用サンプルの単位長さ当たりの吸光度を測定する吸光度測定方法に用いられ、互いに略平行な略等ピッチ間隔の頂部と底部とを有しかつ二次以上の回折光を消失させるために前記頂部の延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブからなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切る薄い透明の仕切り用フィルムが前記サンプルプレートに設けられ、前記被測定用サンプルと前記標準用サンプルとが前記仕切り用フィルムを介して重ねられることにより波状の吸光度分布が形成され、前記光源と前記サンプルプレートとの間に結像レンズが設けられ、前記光源が前記結像レンズの光軸に対してオフセットして設けられ、前記受光素子は前記結像レンズの光軸上に設けられ、前記サンプルプレートを透過することにより生じる一次回折光の結像位置と前記結像レンズによる零次の回折光の結像位置とが光軸方向に対して前記結像レンズから同じ距離にあり、かつ、前記結像レンズによる零次の回折光の結像位置がオフセットされていることを特徴とする。
【0026】
請求項16に記載の血液検査装置は、請求項11ないし請求項15のいずれか1項に記載の吸光度測定装置を用いた血液検査装置であって、前記被測定用サンプルが血液、血清、血漿と試薬との混合液体であることを特徴とする。
【0027】
請求項17に記載の水質土壌大気分析装置は、請求項11ないし請求項15のいずれか1項に記載の吸光度測定装置を用いた水質土壌大気分析装置であって、前記被測定用サンプルが試薬との混合液体であることを特徴とする。
【0028】
請求項18に記載の仕切り用フィルムは、サンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きいリング状の帯域と吸光度が相対的に小さいリング状の帯域との間で吸光度が連続して変化する吸光度分布を形成して光の回折現象を生じさせるために用いられ、同心円状の頂部と底部とを有しかつ二次以上の回折光を消失させるために断面形状が中心から半径方向に遠ざかるに伴って山の高さが低くなると共に前記頂部のピッチ間隔が狭くなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切り薄くて透明である。
【0029】
請求項19に記載の仕切り用フィルムは、サンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きい波状の帯域と吸光度が相対的に小さい波状の帯域との間で吸光度が連続して変化する吸光度分布を形成して光の回折現象を生じさせるために用いられ、互いに略平行な略等ピッチ間隔の頂部と底部とを有しかつ二次以上の回折光を消失させるために前記頂部の延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブからなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切り薄くて透明である。
【0030】
なお、実質的に透過とは、光学的処理又は電子的処理によりサンプルの測定に影響がでないような程度の透過性を有することをいい、透過部材は仕切り用フィルムと透過部材との両部材により構成されていても良い。
【0031】
受光素子、コヒーレント光源は、それぞれ、回折光の集束を助けるために、位置調整機能及び補正するための集束度合いの検出手段を備えるのが好ましい。
【0032】
【発明の実施の形態】
【0033】
【発明の実施の形態1】
図1は本発明の吸光度測定方法に用いる吸光度測定装置の光学系を示す図であって、この図1において、1は光源、2は結像レンズ、3はサンプルプレート、4は受光素子である。
【0034】
結像レンズ2は光源1とサンプルプレート3との間に位置し、光源1は結像レンズ2の光軸O上に配設されている。受光素子4には例えばCCDが用いられ、受光素子4の受光中心も光軸O上に位置されている。
【0035】
サンプルプレート3は、ここでは、透明のサンプル容器であり、被測定用サンプル液5と標準サンプル液6とが入れられる。標準サンプル液6は例えば純水であり、被測定用サンプル液5は例えば血液と試薬との混合物である。
【0036】
サンプルプレート3の内部には透明の仕切り用フィルム7が設けられている。この仕切り用フィルム7は図2(A)、(B)に拡大して示すように吸光度が相対的に大きいリング状帯域8aと吸光度が相対的に小さいリング状帯域8bとを形成すると共に、リング状帯域8aとリング状帯域8bとの間でサンプルプレート3の半径方向に吸光度が連続して変化するリング状吸光度分布8を形成するのに用いられ、このリング状の吸光度分布8により光回折によるレンズ作用が生じる。
【0037】
その仕切り用フィルム7は同心円状の頂部7aと同心円状の底部7bとを有し、二次以上の回折光を消失させるために中心から半径方向に遠ざかるに伴って頂部の高さが低くなると共に、回折光を位置Q0に集束させるために頂部7aのピッチ間隔が狭くなる形状を呈する。この仕切り用フィルム7は、被測定用サンプル液5と標準サンプル液6とをサンプルプレート3の厚さ方向と直交する方向から仕切る役割を果たす。その光の波長λと頂部7aのピッチとの間には所定の関係があり、波長λを小さくすると、頂部7aのピッチも小さくなるが、結像レンズ2を用いると頂部7aのピッチを結像レンズ2を光路中に設けない場合に較べて頂部7aのピッチを大きくできる。
【0038】
光源1は例えば結像レンズ2の焦点距離fの2倍の位置に配設され、光源1からの照明光束Pはサンプルプレート3が受光素子4と結像レンズ3との間に配設されていないと仮定したときに結像レンズ2の焦点距離fの2倍の結像位置Q0に収束されて結像される。
【0039】
被測定用サンプル液5と標準サンプル液6とは仕切り用フィルム7を介して重ねられ、光源1からの照明光束Pは、結像レンズ3により収束光とされてサンプルプレート3に導かれ、サンプルプレート3を通過する。
【0040】
その照明光Pは、サンプルプレート3を通過する際に、リング状の帯域8aを通過する際の吸光度とリング状の帯域8bを通過する際の吸光度との相異により回折される。
【0041】
その仕切り用透明フィルム7は、ここでは、その一次回折光P1が零次回折光P0の結像位置Q0とは光軸Oの方向に結像レンズ3から遠い位置Q1に結像されるように形成されている。
【0042】
仕切り用透明フィルム7は、サンプルプレート3に仕切り用透明フィルム7を介してその両側に標準サンプル液を重ねて入れた場合に、屈折の影響に基づく回折現象が生じない程度に十分に薄いものとされている。
【0043】
例えば、仕切り用透明フィルム7は、結像レンズ3から結像位置Q0までの距離2fを45mm、結像レンズ3から結像位置Q1までの距離を50mmとしたとき、頂部8aから頂部8aまでの最大ピッチを100μm程度とすることができ、暫時このピッチの間隔が狭まる形状に形成される。
【0044】
受光素子4は結像位置Q1に配設され、零次回折光P0は結像位置Q1において拡散され、一次回折光P1が受光素子4に結像されるので、受光素子4は零次回折光P0による影響を極力避けつつ一次回折光P1の検出出力を得ることができ、従って、被測定用サンプル5の吸光度の測定をより一層高感度に行うことができる。その受光素子4の検出出力は、図示を略す処理回路に入力され、被測定用サンプル5による吸光の有無が判定される。
【0045】
この場合に、図3に示すように、零次回折光P0の結像位置Q0に遮光部材8を設ければ、零次回折光P0が受光素子4に到達するのを阻止でき、より一層吸光度の測定を高感度に行うことができる。なお、ここでは、吸光度とは、モル吸光係数と濃度と光路長との積をいう。
【0046】
サンプルプレート3に入れられる被測定用サンプル5は、微量でかつ肉眼では標準サンプル6と区別がつかない程度のものであるが、本発明によれば、零次回折光P0、二次以上の回折光の影響を除去して、一次回折光P1のみを検出することにしているので、被測定用サンプル5による微量な吸収を検出することができる。
【0047】
また、仕切り用透明フィルム7を介して標準サンプル6を重ねて設けた場合には、仕切り用透明フィルム7が屈折による影響を無視できる程度に薄いのでかつリング状の吸光度分布8がなくなるので、仕切り用フィルム7に基づく回折現象の発生を防止できる。
【0048】
また、照明光は標準サンプル6と被測定用サンプル5との双方を連続して透過するので、光の速度による位相差の発生を防止でき、位相差に起因する回折現象の発生も防止できる。
【0049】
更に、サンプルプレート3に被測定用サンプル5を設置する際に被測定用サンプル5の吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有するようにして、かつ、被測定用サンプル5を標準サンプル6に置換したときにサンプルプレート3の面内で吸光度分布を持たないようにして、被測定用サンプル6に標準サンプル5を重ねて設置し、サンプルプレート3に対して光源1からの照射光を概略垂直方向から入射させ、被測定用サンプル6の単位長さ当たりの吸光度を測定するようにしても良い。
【0050】
【発明の実施の形態2】
図4は本発明に係わる吸光度測定方法に用いる吸光度測定装置の他の光学系を示す図であって、ここでは、光源1は図4(A)に示すように結像レンズ3の光軸Oからオフセットされた位置でかつ結像レンズL1の中心から距離L1の位置に配設され、零次回折光P0は結像レンズL1の中心から距離L2の箇所でかつ光軸Oから距離L3だけオフセットされた結像位置Q3に結像されるものとなっている。
【0051】
受光素子4の中心は結像レンズ3の光軸O上で結像レンズ3の中心から距離L2の結像位置Q1に配置され、サンプルプレート3の内部には、図4(B)に示すように、二次以上の回折光を消失させるために、頂部9aと底部9bとが互いに平行かつ等ピッチでしかも頂部9aの延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブ状の透明な薄い仕切り用フィルム9が配設されている。
【0052】
そのサンプルプレート3内に標準サンプルと被測定用サンプルとを仕切用フィルム9を介して重ねると、吸光度が相対的に大きい波状の帯域10aと小さい波状の帯域10bとの間で吸光度が連続的に変化する吸光度分布10が形成される。
【0053】
この仕切り用透明フィルム9を用いて光源1から照明光Pをサンプルプレート3に向けて照射すると、零次回折光P0と一次回折光P1とは結像レンズ2から光軸方向に同じ距離L2の箇所に形成されるが、零次回折光P0の結像位置Q3は光軸Oからオフセットされ、一次回折光P1の結像位置Q1は光軸O上にあるので、零次回折光P0による結像の影響を避けることができ、被測定用サンプル5の吸光度を高感度に検出できる。
【0054】
なお、この発明の実施の形態では、頂部9aと底部9bとが平行かつ等ピッチとして説明したが、概略平行であれば良い。
【0055】
【発明の実施の形態3】
発明の実施の形態1、2では、サンプルプレート3に仕切り用透明フィルム9を設けて、吸光度分布8、10を形成することにしたが、図5(A)、(B)に示すように、標準サンプル6を先にサンプルプレート3に入れておき、細い透明導管11を介して後から被測定用サンプル5をサンプルプレート3の内部に注入し、被測定用サンプル5の標準サンプル6への拡散を利用して吸光度分布8を形成するようにしても良い。この方法によれば、仕切り用フィルム7、9を用いることなく吸光度分布8を形成することができる。
【0056】
なお、被測定用サンプル5を先にサンプルプレート3に入れておき、後から標準サンプル6をサンプルプレート3の内部に注入して、標準サンプル6の被測定用サンプル5の拡散を利用して吸光度分布8を形成するようにしてもよい。
【0057】
この図5(A)、(B)に示す例では、リング状の吸光度分布8を形成する方法について説明したが、波状の吸光度分布10を同様の方法で作成できるものである。
【0058】
以上、発明の実施の形態では、被測定用サンプル5を液体として説明したが、これに限るものではなく、被測定用サンプル5は、吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有するプレート様態の例えば寒天状のものであっても良く、被測定用サンプル5に対して光源1からの照射光を概略垂直方向から入射させ、プレート様態の被測定用サンプル5への照射光の入射に基づき生ずる回折光の結像位置に受光素子を設けて、被測定用サンプル5の吸光度を測定する構成としても良い。
【0059】
サンプルプレート、フィルム等は、ガラスやプラスチック等の透明材料、透過部材を用いることができる。
【0060】
また、そのプレート様態の被測定用サンプル5を実質的に照射光を透過する材料に固定して測定することもできる。例えば、液状の未硬化アクリルモノマーに、被測定用サンプルを分散させ、硬化剤を入れて固定する等の方法を採用することができる。
【0061】
更に、実質的に照射光を透過する材料そのものを受け皿のようなものとして、被測定用サンプルをこれに固定したときに、吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を被測定用サンプルに与えるために、その材料の面形状を凹凸とすることもできる。
【0062】
加えて、本発明に係わる吸光度測定装置を薬物、病原菌、疾患原因物質等の血液検査に用いる例について説明したが、本発明は、カドミニウム、鉛等に試薬を混合して重金属の分析や、病原菌、食中毒原因菌、塩化水素、トリクロロエチレン、ダイオキシン、四塩化炭素、フッ素化合物等その他の水質汚染物質、土壌汚染物質、大気汚染物質等の水質土壌大気の分析に用いることができる。
【0063】
【発明の効果】
本発明によれば、被測定用サンプルの吸光度をより一層高感度に検出できるという効果を奏する。
【0064】
特に、本発明によれば、零次の回折光による影響、二次以上の高次の回折光の影響を避けて被測定用サンプルの吸光度を検出することができ、検出精度が向上する。
【図面の簡単な説明】
【図1】本発明に係わる吸光度測定装置の一実施の形態を示す光学図である。
【図2】図1に示すサンプルプレートを示す図であって、(A)はその平面図、(B)はその断面図である。
【図3】図1に示す吸光度測定装置の変形例を示す光学図である。
【図4】本発明に係わる吸光度測定装置の他の実施の形態を示す図であって、(A)はその光学図、(B)は(A)に示すサンプルプレートを示す平面図である。
【図5】本発明に係わる吸光度測定装置に用いるサンプルプレートを示す図であって、(A)はその平面図、(B)はその断面図である。
【符号の説明】
1…光源
2…結像レンズ
3…サンプルプレート
4…受光素子
5…被測定用サンプル
6…標準用サンプル6
7…仕切り用フィルム
8…吸光度分布8
Q1…結像位置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an absorbance measuring method and an absorbance measuring device, a transmission member used therefor, a blood test device and a water quality soil air analyzer using the same, and can be applied to holography.
[0002]
[Prior art]
Conventionally, a diffraction grating region composed of two types of substances having different absorbances is formed on a transparent plate such as a slide glass, and a light diffraction phenomenon based on a difference in light intensity between a portion absorbing light and a portion not absorbing light is used. An absorbance measurement method for measuring absorbance is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-19119 A
[Problems to be solved by the invention]
However, this conventional absorbance measurement method measures the absorbance by diffracting light by alternately forming a diffraction grating region consisting of a binary transmission region and a light-shielding region using a sample to be measured and a standard sample. As a result, a second or higher order diffracted wave is generated, and the intensity of the first order diffracted light on the light receiving element is disadvantageously reduced.
[0005]
In addition, since the diffracted light of each order formed by passing through the diffraction grating region becomes a parallel light flux, the light receiving element must be shifted from the 0th-order diffracted light in order to detect the first-order diffracted light. In addition, there is a disadvantage that the absorbance measuring device becomes large.
[0006]
Further, unless the interval between the diffraction grating regions is reduced, the diffraction phenomenon cannot be obtained, and there is also a disadvantage that the sample plate requires ultra-fine processing and the sample plate becomes expensive.
[0007]
Further, even when there is no difference in absorbance between the sample to be measured and the standard sample, diffracted light is generated due to scattering at the region boundary based on the existence of the diffraction grating region.
[0008]
In addition, since the speed of light passing through the sample to be measured is different from the speed of light passing through the standard sample, diffraction due to a difference in the phase of light also occurs.
[0009]
The present invention has been made in view of the above circumstances, an absorbance measurement method capable of detecting the absorbance of a sample to be measured with even higher sensitivity, an absorbance measurement device used therefor, a transmission member used therefor, and a To provide a blood test apparatus and a water quality soil air analysis apparatus.
[0010]
[Means for Solving the Problems]
The method for measuring absorbance according to claim 1 is for a sample to be measured in a two-dimensionally spread plate state having an absorbance distribution that continuously changes between a relatively large band and a relatively small band. Irradiation light from a coherent light source is incident from a substantially vertical direction, and a light receiving element is provided at an imaging position of diffracted light generated based on the incidence of the irradiation light on the sample to be measured in the plate form, and It is characterized by measuring the absorbance of the sample.
[0011]
The sample to be measured may be any of a gas, a liquid, a gel, and a solid.
[0012]
The method for measuring absorbance according to claim 2, wherein the absorbance distribution of the sample to be measured continuously changes between a relatively large band and a relatively small band when the sample to be measured is placed on the sample plate. And when the sample to be measured is replaced with a standard sample, the standard sample is superimposed on the sample to be measured so as not to have an absorbance distribution in the plane of the sample plate. Then, the irradiation light from a coherent light source is incident on the sample plate from a substantially vertical direction, and a light receiving element is provided at an imaging position of diffracted light generated based on the incidence of the irradiation light on the sample plate, It is characterized in that the absorbance per unit length of the sample to be measured is measured.
[0013]
The method for measuring absorbance according to claim 3, wherein when the sample to be measured has fluidity, the sample to be measured is fixed with a material that substantially transmits the irradiation light so that the sample to be measured does not flow down. It is characterized by having been done.
[0014]
According to a fourth aspect of the present invention, in the method for measuring absorbance according to the first aspect, the standard sample includes a transmission member.
[0015]
The absorbance measurement method according to claim 5, wherein a film that substantially transmits the irradiation light is provided on one or both sides of the sample to be measured and / or the standard sample to fix the absorbance distribution. It is characterized by becoming.
[0016]
The absorbance measuring method according to claim 6, wherein the transmitting member has concentric circles so that the height of the peak decreases as the cross-sectional shape moves away from the center in the radial direction to eliminate second-order or higher order diffracted light. In order to converge the diffracted light to one point, the pitch interval between the apexes is reduced, and the sample to be measured and the standard sample are orthogonal to the thickness direction. The ring-shaped absorbance distribution is formed by partitioning from the direction in which the light is absorbed.
[0017]
The absorbance measuring method according to claim 7, wherein the transmitting member has a top and a bottom at substantially parallel and substantially equal pitch intervals, and is orthogonal to a direction in which the top extends in order to eliminate second-order or higher order diffracted light. A cross-sectional shape when cross-sectioned in a plane to be formed is formed of a pseudo sine curve, and furthermore, a wave-like absorbance distribution is formed by partitioning the sample to be measured and the standard sample from a direction perpendicular to the thickness direction. Features.
[0018]
9. The absorbance measurement method according to claim 8, wherein the sample plate is a sample container for containing a liquid, the sample for measurement and the standard sample are both liquids, and the sample for measurement is provided inside the sample container. One of the sample liquid and the standard sample liquid is put first, and the other is injected into the inside of the sample container later, and the diffusion of the injected liquid is used to form the absorbance distribution. It is characterized by doing.
[0019]
The absorbance measuring device according to claim 9, wherein the absorbance distribution of the sample to be measured continuously changes between a relatively large band and a relatively small band when the sample to be measured is placed on the sample plate. And when the sample to be measured is replaced with a standard sample, the standard sample is superimposed on the sample to be measured so as not to have an absorbance distribution in the plane of the sample plate. Means, a coherent light source for irradiating the sample plate with irradiation light from a substantially vertical direction, and a light-receiving element provided at an imaging position of diffracted light generated based on the incidence of the irradiation light on the sample plate. And measuring the absorbance per unit length of the sample to be measured.
[0020]
The absorbance measuring device according to claim 10 is characterized in that the standard sample is formed of a transmission member.
[0021]
The absorbance measurement device according to claim 11, wherein a sample to be measured and a standard sample are provided on a sample plate in order to cause a lens action based on light diffraction, and a band having a relatively large absorbance and an absorbance are provided. A light-receiving element is provided at an image forming position of diffracted light by irradiation light irradiated from the coherent light source toward the sample plate, forming an absorbance distribution in which the absorbance continuously changes with a small band. Used in the absorbance measurement method to measure the absorbance per unit length of the measurement sample, has a concentric top and bottom, and the cross-sectional shape from the center in the radial direction from the center to eliminate second-order or higher diffracted light As the distance increases, the height of the peak decreases, and the pitch interval of the apex becomes narrow in order to converge the diffracted light to one point. In addition, the sample to be measured and the standard sample A thin transparent partitioning film for partitioning the pull from a direction perpendicular to the thickness direction of the sample plate is provided on the sample plate, and the sample to be measured and the standard sample overlap with each other via the partitioning film. By forming a ring-shaped absorbance distribution, an imaging lens is provided between the light source and the sample plate or between the light receiving element and the sample plate, and the light source and the light receiving element It is characterized by being provided coaxially on a shaft.
[0022]
According to a twelfth aspect of the present invention, the sample plate is a sample container for storing a liquid, and both the sample to be measured and the standard sample are liquid.
[0023]
14. The absorbance measuring device according to claim 13, wherein an imaging position of the first-order diffracted light generated by transmitting through the sample plate is different from an imaging position of the zero-order diffracted light by the imaging lens in the optical axis direction. It is characterized by.
[0024]
An absorbance measuring device according to a fourteenth aspect is characterized in that a light shielding plate that shields the zero-order diffracted light is provided at an imaging position of the zero-order diffracted light by the imaging lens.
[0025]
The absorbance measuring device according to claim 15, wherein a sample to be measured and a standard sample are provided on a sample plate in order to cause a lens action based on light diffraction, and a band having a relatively large absorbance and an absorbance are provided. A light-receiving element is provided at an image forming position of diffracted light by irradiation light irradiated from the coherent light source toward the sample plate, forming an absorbance distribution in which the absorbance continuously changes with a small band. Used in an absorbance measurement method for measuring the absorbance per unit length of the measurement sample, having a top and a bottom at substantially equal pitch intervals that are substantially parallel to each other, and the top to eliminate secondary or higher order diffracted light. The cross-sectional shape when cross-sectioned in a plane perpendicular to the direction in which the sample extends is a pseudo sine curve, and the sample to be measured and the standard sample are A thin transparent partitioning film for partitioning from a direction perpendicular to the thickness direction of the sheet is provided on the sample plate, and the sample to be measured and the standard sample are overlapped via the partitioning film to form a wavy shape. Is formed, an imaging lens is provided between the light source and the sample plate, the light source is provided offset with respect to the optical axis of the imaging lens, and the light receiving element The imaging position of the first-order diffracted light, which is provided on the optical axis of the lens and is transmitted by the sample plate, and the imaging position of the zero-order diffracted light by the imaging lens are formed in the optical axis direction. The imaging lens is at the same distance from the imaging lens, and the imaging position of the zero-order diffracted light by the imaging lens is offset.
[0026]
A blood test apparatus according to claim 16 is a blood test apparatus using the absorbance measurement apparatus according to any one of claims 11 to 15, wherein the sample to be measured is blood, serum, or plasma. And a liquid mixture of the reagent and the reagent.
[0027]
A water soil air analyzer according to claim 17 is a water soil air analyzer using the absorbance measurement device according to any one of claims 11 to 15, wherein the sample to be measured is a reagent. And a liquid mixture of
[0028]
The partitioning film according to claim 18, wherein the sample to be measured and the standard sample are provided on the sample plate in an overlapping manner, and a ring-shaped band having a relatively large absorbance and a ring-shaped band having a relatively small absorbance. It is used to form an absorbance distribution in which the absorbance changes continuously between light and to cause a light diffraction phenomenon, and has concentric top and bottom portions and to eliminate second-order or higher diffracted light. As the cross-sectional shape moves away from the center in the radial direction, the height of the peak decreases and the pitch interval of the tops decreases, and the sample to be measured and the standard sample are orthogonal to the thickness direction of the sample plate. The partition is thin and transparent from the direction of the movement.
[0029]
20. The partitioning film according to claim 19, wherein the sample to be measured and the standard sample are provided on the sample plate in an overlapping manner, so that a wavy band having a relatively large absorbance and a wavy band having a relatively small absorbance are provided. It is used to form an absorbance distribution in which the absorbance continuously changes to cause a light diffraction phenomenon, has a top and a bottom at substantially equal pitch intervals that are substantially parallel to each other, and diffracts second-order or higher diffracted light. The cross-sectional shape when cross-sectioned in a plane perpendicular to the direction in which the apex extends to make it disappear is composed of a pseudo sine curve, and the measured sample and the standard sample are orthogonal to the thickness direction of the sample plate. The partition is thin and transparent.
[0030]
In addition, substantially transmission means having a degree of transparency that does not affect the measurement of the sample by optical processing or electronic processing, and the transmission member is formed by both the partition film and the transmission member. It may be configured.
[0031]
It is preferable that each of the light receiving element and the coherent light source includes a position adjustment function and a convergence detecting unit for correcting the degree of convergence in order to assist convergence of the diffracted light.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
[0033]
Embodiment 1 of the present invention
FIG. 1 is a view showing an optical system of an absorbance measuring device used in the absorbance measuring method of the present invention. In FIG. 1, 1 is a light source, 2 is an imaging lens, 3 is a sample plate, and 4 is a light receiving element. .
[0034]
The imaging lens 2 is located between the light source 1 and the sample plate 3, and the light source 1 is disposed on the optical axis O of the imaging lens 2. For example, a CCD is used as the light receiving element 4, and the light receiving center of the light receiving element 4 is also located on the optical axis O.
[0035]
Here, the sample plate 3 is a transparent sample container in which the sample liquid 5 to be measured and the standard sample liquid 6 are placed. The standard sample liquid 6 is, for example, pure water, and the measured sample liquid 5 is, for example, a mixture of blood and a reagent.
[0036]
A transparent partitioning film 7 is provided inside the sample plate 3. The partitioning film 7 forms a ring-shaped zone 8a having a relatively large absorbance and a ring-shaped zone 8b having a relatively small absorbance as shown in an enlarged manner in FIGS. It is used to form a ring-shaped absorbance distribution 8 in which the absorbance continuously changes in the radial direction of the sample plate 3 between the ring-shaped band 8a and the ring-shaped band 8b. Lens action occurs.
[0037]
The partitioning film 7 has a concentric top portion 7a and a concentric bottom portion 7b, and the height of the top portion decreases with increasing distance from the center in the radial direction in order to eliminate second-order or higher diffracted light. In order to focus the diffracted light to the position Q0, the pitch between the tops 7a is narrowed. The partitioning film 7 serves to partition the sample liquid 5 to be measured and the standard sample liquid 6 from a direction perpendicular to the thickness direction of the sample plate 3. There is a predetermined relationship between the wavelength [lambda] of the light and the pitch of the apex 7a. When the wavelength [lambda] is reduced, the pitch of the apex 7a is reduced, but when the imaging lens 2 is used, the pitch of the apex 7a is imaged. The pitch of the top 7a can be made larger than when the lens 2 is not provided in the optical path.
[0038]
The light source 1 is disposed, for example, at a position twice as long as the focal length f of the imaging lens 2, and the illumination light flux P from the light source 1 is disposed on the sample plate 3 between the light receiving element 4 and the imaging lens 3. When it is assumed that there is no image, the image is converged to an image forming position Q0 twice as long as the focal length f of the image forming lens 2 to form an image.
[0039]
The sample liquid 5 to be measured and the standard sample liquid 6 are overlapped via the partitioning film 7, and the illumination light flux P from the light source 1 is converged by the imaging lens 3 and guided to the sample plate 3. Pass through plate 3.
[0040]
When passing through the sample plate 3, the illumination light P is diffracted due to the difference between the absorbance when passing through the ring-shaped band 8a and the absorbance when passing through the ring-shaped band 8b.
[0041]
Here, the partitioning transparent film 7 is formed such that the first-order diffracted light P1 is imaged at a position Q1 far from the imaging lens 3 in the direction of the optical axis O with respect to the imaging position Q0 of the zero-order diffracted light P0. Have been.
[0042]
The transparent film for partition 7 is sufficiently thin so as not to cause a diffraction phenomenon based on the effect of refraction when the standard sample solution is placed on both sides of the sample plate 3 with the transparent film for partition 7 interposed therebetween. Have been.
[0043]
For example, when the distance 2f from the imaging lens 3 to the imaging position Q0 is 45 mm, and the distance from the imaging lens 3 to the imaging position Q1 is 50 mm, the partitioning transparent film 7 has a top 8a to a top 8a. The maximum pitch can be set to about 100 μm, and the pitch is temporarily formed to be narrower.
[0044]
The light receiving element 4 is disposed at the image forming position Q1, the zero-order diffracted light P0 is diffused at the image forming position Q1, and the first-order diffracted light P1 is formed on the light receiving element 4, so that the light receiving element 4 is formed by the zero-order diffracted light P0. The detection output of the first-order diffracted light P1 can be obtained while avoiding the influence as much as possible, so that the absorbance of the sample 5 to be measured can be measured with higher sensitivity. The detection output of the light receiving element 4 is input to a processing circuit (not shown), and the presence or absence of light absorption by the sample 5 to be measured is determined.
[0045]
In this case, as shown in FIG. 3, if the light shielding member 8 is provided at the image forming position Q0 of the zero-order diffracted light P0, the zero-order diffracted light P0 can be prevented from reaching the light receiving element 4, and the absorbance can be further measured. Can be performed with high sensitivity. Here, the absorbance refers to the product of the molar extinction coefficient, the concentration, and the optical path length.
[0046]
The sample 5 to be measured placed in the sample plate 3 is a very small amount and is indistinguishable from the standard sample 6 with the naked eye. However, according to the present invention, the zero-order diffracted light P0, the second-order or higher diffracted light Is removed and only the first-order diffracted light P1 is detected, so that a very small amount of absorption by the sample 5 to be measured can be detected.
[0047]
In the case where the standard sample 6 is provided in an overlapping manner via the transparent film 7 for partitioning, the transparent film 7 for partitioning is so thin that the influence of refraction can be ignored and the ring-shaped absorbance distribution 8 disappears. Of the diffraction phenomenon based on the film 7 for use can be prevented.
[0048]
In addition, since the illumination light continuously passes through both the standard sample 6 and the sample 5 to be measured, it is possible to prevent the occurrence of a phase difference due to the speed of the light, and the occurrence of a diffraction phenomenon due to the phase difference.
[0049]
Further, when the sample 5 to be measured is placed on the sample plate 3, the sample 5 to be measured has an absorbance distribution that continuously changes between a relatively large band and a small band, and When the sample 5 to be measured is replaced with the standard sample 6, the standard sample 5 is placed on the sample 6 to be measured so as not to have an absorbance distribution in the plane of the sample plate 3. On the other hand, the irradiation light from the light source 1 may be made to enter from a substantially vertical direction, and the absorbance per unit length of the sample 6 to be measured may be measured.
[0050]
Embodiment 2 of the present invention
FIG. 4 is a diagram showing another optical system of the absorbance measuring device used in the absorbance measuring method according to the present invention. Here, the light source 1 is an optical axis O of the imaging lens 3 as shown in FIG. And the zero-order diffracted light P0 is located at a distance L2 from the center of the imaging lens L1 and offset by a distance L3 from the optical axis O. The image is formed at the image forming position Q3.
[0051]
The center of the light receiving element 4 is arranged on the optical axis O of the imaging lens 3 at an imaging position Q1 at a distance L2 from the center of the imaging lens 3, and inside the sample plate 3, as shown in FIG. In order to eliminate diffracted light of second or higher order, the cross-sectional shape when the top 9a and the bottom 9b are parallel to each other and at equal pitch and in a plane perpendicular to the direction in which the top 9a extends is pseudo-sine curve. The transparent thin partitioning film 9 is disposed.
[0052]
When the standard sample and the sample to be measured are overlaid on the sample plate 3 via the partitioning film 9, the absorbance is continuously changed between the wavy band 10a having a relatively large absorbance and the small wavy band 10b having a relatively large absorbance. A changing absorbance distribution 10 is formed.
[0053]
When illumination light P is irradiated from the light source 1 toward the sample plate 3 using the transparent film 9 for partitioning, the zero-order diffracted light P0 and the first-order diffracted light P1 are located at the same distance L2 from the imaging lens 2 in the optical axis direction. However, the imaging position Q3 of the zero-order diffracted light P0 is offset from the optical axis O, and the imaging position Q1 of the first-order diffracted light P1 is on the optical axis O. Can be avoided, and the absorbance of the sample 5 to be measured can be detected with high sensitivity.
[0054]
In the embodiment of the present invention, the top portion 9a and the bottom portion 9b have been described as being parallel and at equal pitches.
[0055]
Third Embodiment of the Invention
In Embodiments 1 and 2 of the present invention, the transparent film 9 for partition is provided on the sample plate 3 to form the absorbance distributions 8 and 10, but as shown in FIGS. 5A and 5B, The standard sample 6 is put in the sample plate 3 first, and the sample 5 to be measured is injected into the sample plate 3 through the thin transparent conduit 11 later, and the sample 5 to be measured is diffused into the standard sample 6. May be used to form the absorbance distribution 8. According to this method, the absorbance distribution 8 can be formed without using the partitioning films 7 and 9.
[0056]
The sample 5 to be measured is put in the sample plate 3 first, the standard sample 6 is injected into the sample plate 3 later, and the absorbance is measured using the diffusion of the sample 5 to be measured. The distribution 8 may be formed.
[0057]
In the example shown in FIGS. 5A and 5B, the method of forming the ring-shaped absorbance distribution 8 has been described, but the wavy absorbance distribution 10 can be created by the same method.
[0058]
As described above, in the embodiment of the present invention, the measurement target sample 5 is described as a liquid. However, the present invention is not limited to this, and the measurement target sample 5 is continuous between a band where the absorbance is relatively large and a band where the absorbance is relatively small. For example, an agar-shaped plate having an absorbance distribution that changes gradually may be used. Irradiation light from the light source 1 is incident on the sample 5 to be measured in a substantially vertical direction. A configuration may be adopted in which a light receiving element is provided at an image forming position of the diffracted light generated based on the incidence of the irradiation light on the sample 5 to measure the absorbance of the sample 5 to be measured.
[0059]
For a sample plate, a film, or the like, a transparent material such as glass or plastic or a transparent member can be used.
[0060]
In addition, the measurement can be performed by fixing the sample to be measured 5 in the plate form to a material that substantially transmits the irradiation light. For example, a method in which a sample to be measured is dispersed in a liquid uncured acrylic monomer, and a curing agent is added and fixed can be employed.
[0061]
Furthermore, when the sample to be measured is fixed to the material to be transmitted, which substantially transmits the irradiation light, as a receiver, the absorbance continuously changes between a relatively large band and a relatively small band. In order to give the measured absorbance distribution to the sample to be measured, the surface shape of the material may be uneven.
[0062]
In addition, the example in which the absorbance measuring device according to the present invention is used for blood tests for drugs, pathogenic bacteria, disease-causing substances, etc., has been described.However, the present invention relates to the analysis of heavy metals by mixing reagents with cadmium, lead, etc. It can be used for the analysis of water soil air such as food poisoning bacteria, hydrogen chloride, trichloroethylene, dioxin, carbon tetrachloride, fluorine compounds and other water pollutants, soil pollutants, air pollutants and the like.
[0063]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, there exists an effect that the light absorbency of a sample for a measurement can be detected with still higher sensitivity.
[0064]
In particular, according to the present invention, the absorbance of the sample to be measured can be detected while avoiding the influence of zero-order diffracted light and the influence of second-order or higher-order diffracted light, and the detection accuracy is improved.
[Brief description of the drawings]
FIG. 1 is an optical diagram showing an embodiment of an absorbance measuring device according to the present invention.
FIGS. 2A and 2B are views showing the sample plate shown in FIG. 1, wherein FIG. 2A is a plan view and FIG.
FIG. 3 is an optical diagram showing a modification of the absorbance measuring device shown in FIG.
FIG. 4 is a diagram showing another embodiment of the absorbance measuring device according to the present invention, wherein (A) is an optical diagram thereof, and (B) is a plan view showing the sample plate shown in (A).
FIGS. 5A and 5B are views showing a sample plate used in the absorbance measuring device according to the present invention, wherein FIG. 5A is a plan view and FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Imaging lens 3 ... Sample plate 4 ... Light receiving element 5 ... Sample to be measured 6 ... Sample 6 for standard
7 ... partitioning film 8 ... absorbance distribution 8
Q1: Image formation position

Claims (19)

吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有する二次元的に広がったプレート様態の被測定用サンプルに対してコヒーレントな光源からの照射光を概略垂直方向から入射させ、前記プレート様態の被測定用サンプルへの前記照射光の入射に基づき生ずる回折光の結像位置に受光素子を設けて、前記被測定用サンプルの吸光度を測定することを特徴とする吸光度測定方法。The irradiation light from a coherent light source is applied to the sample to be measured in a two-dimensionally spread plate form having a continuously changing absorbance distribution between a band having a relatively large absorbance and a band having a relatively small absorbance. And a light receiving element is provided at an imaging position of diffracted light generated based on the incidence of the irradiation light on the sample to be measured in the plate form, and the absorbance of the sample to be measured is measured. Absorbance measurement method. サンプルプレートに被測定用サンプルを設置する際に該被測定用サンプルの吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有するようにして、かつ、前記被測定用サンプルを標準サンプルに置換したときに前記サンプルプレートの面内で吸光度分布を持たないようにして、前記被測定用サンプルに前記標準サンプルを重ねて設置し、前記サンプルプレートに対してコヒーレントな光源からの照射光を概略垂直方向から入射させ、前記サンプルプレートへの前記照射光の入射に基づき生ずる回折光の結像位置に受光素子を設けて、前記被測定用サンプルの単位長さ当たりの吸光度を測定することを特徴とする吸光度測定方法。When the sample to be measured is placed on the sample plate, the absorbance of the sample to be measured has an absorbance distribution that continuously changes between a relatively large band and a small band, and the measured When the sample for measurement is replaced with a standard sample, the standard sample is placed on the sample to be measured so as not to have an absorbance distribution in the plane of the sample plate, and a coherent light source for the sample plate is placed. From a substantially vertical direction, and a light receiving element is provided at an imaging position of diffracted light generated based on the incidence of the irradiation light on the sample plate, and the absorbance per unit length of the sample to be measured A method for measuring absorbance, characterized by measuring 前記被測定用サンプルが前記照射光を実質的に透過する材料で固定されていることを特徴とする請求項1又は請求項2に記載の吸光度測定方法。3. The method according to claim 1, wherein the sample to be measured is fixed with a material that substantially transmits the irradiation light. 前記標準サンプルが透過部材からなる請求項2に記載の吸光度測定方法。The method for measuring absorbance according to claim 2, wherein the standard sample comprises a transmission member. 前記被測定用サンプル及び/又は前記標準サンプルの片側或いは両側に、前記吸光度分布を固定するために、前記照射光を実質的に透過させるフィルムを設けてなることを特徴とする請求項2に記載の吸光度測定方法。The film for substantially transmitting the irradiation light is provided on one or both sides of the sample to be measured and / or the standard sample in order to fix the absorbance distribution. Absorbance measurement method. 前記透過部材が、2次以上の回折光を消失させるために断面形状が中心から半径方向に遠ざかるに伴って山の高さが低くなるように、同心円状の頂部と底部とを有し、かつ、回折光を1点に収束させるために前記頂点部のピッチ間隔が狭くなりしかも前記被測定用サンプルと前記標準用サンプルとを前記厚さ方向と直交する方向から仕切ることにより前記リング状の吸光度分布を形成することを特徴とする請求項4又は請求項5に記載の吸光度測定方法。The transmitting member has concentric tops and bottoms so that the height of the hills decreases as the cross-sectional shape moves away from the center in the radial direction to eliminate second-order or higher diffracted light, and In order to converge the diffracted light to one point, the pitch interval between the apexes is reduced and the ring-shaped absorbance is obtained by separating the sample to be measured and the standard sample from a direction perpendicular to the thickness direction. The method for measuring absorbance according to claim 4, wherein a distribution is formed. 前記透過部材が、略平行な略等ピッチ間隔で頂部と底部とを有しかつ2次以上の回折光を消失させるために前記頂部の延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブからなりしかも前記被測定用サンプルと前記標準用サンプルとを前記厚さ方向と直交する方向から仕切ることにより波状の吸光度分布を形成することを特徴とする請求項4ないし請求項6のいずれか1項に記載の吸光度測定方法。The transmission member has a top and a bottom at substantially equal pitch intervals that are substantially parallel, and has a cross-sectional shape when cross-sectioned in a plane perpendicular to the direction in which the top extends in order to eliminate second-order or higher diffracted light. 7. A wave-like absorbance distribution formed by separating a sample to be measured and a standard sample from a direction orthogonal to the thickness direction, which is composed of a pseudo sine curve. The method for measuring absorbance according to claim 1. 前記サンプルプレートが液体を入れるサンプル容器であり、前記被測定用サンプルと前記標準用サンプルとが共に液体であり、前記サンプル容器の内部に前記被測定用サンプルの液体と前記標準サンプルの液体とのいずれか一方を先に入れ、後から他方を前記サンプル容器の内部に注入して後から注入された液体の拡散を利用して、前記吸光度分布を形成することを特徴とする請求項2に記載の吸光度測定方法。The sample plate is a sample container for containing a liquid, the sample to be measured and the standard sample are both liquid, and the liquid of the sample to be measured and the liquid of the standard sample are inside the sample container. 3. The absorbance distribution according to claim 2, wherein one of the two is put first, and the other is put into the inside of the sample container later, and the absorption distribution is formed by utilizing the diffusion of the liquid injected later. Absorbance measurement method. サンプルプレートに被測定用サンプルを設置する際に該被測定用サンプルの吸光度が相対的に大きい帯域と小さい帯域との間で連続的に変化する吸光度分布を有するようにして、かつ、前記被測定用サンプルを標準サンプルに置換したときに前記サンプルプレートの面内で吸光度分布を持たないようにして、前記被測定用サンプルに前記標準サンプルを重ねて設置する手段と、前記サンプルプレートに対して照射光を概略垂直方向から入射させるコヒーレントな光源と、前記サンプルプレートへの前記照射光の入射に基づき生ずる回折光の結像位置に設けられた受光素子とを備え、前記被測定用サンプルの単位長さ当たりの吸光度を測定することを特徴とする吸光度測定装置。When the sample to be measured is placed on the sample plate, the absorbance of the sample to be measured has an absorbance distribution that continuously changes between a relatively large band and a small band, and the measured Means for disposing an absorbance distribution in the plane of the sample plate when the sample for use is replaced with a standard sample, laying the standard sample on the sample for measurement, and irradiating the sample plate A coherent light source that causes light to be incident from a substantially vertical direction, and a light receiving element provided at an imaging position of diffracted light generated based on the incidence of the irradiation light on the sample plate, and a unit length of the sample to be measured. An absorbance measuring device characterized by measuring the absorbance per contact. 前記標準サンプルが透過部材からなる請求項9に記載の吸光度測定装置。The absorbance measurement device according to claim 9, wherein the standard sample is formed of a transmission member. 光の回折に基づくレンズ作用を生じさせるためにサンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きい帯域と吸光度が小さい帯域との間で吸光度が連続して変化する吸光度分布を形成し、コヒーレントな光源から前記サンプルプレートに向けて照射された照射光による回折光の結像位置に受光素子を設けて、前記被測定用サンプルの単位長さ当たりの吸光度を測定する吸光度測定方法に用いられ、同心円状の頂部と底部とを有しかつ二次以上の回折光を消失させるために断面形状が中心から半径方向に遠ざかるに伴って山の高さが低くなると共に回折光を1点に収束させるために前記頂部のピッチ間隔が狭くなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切る薄い透明の仕切り用フィルムが前記サンプルプレートに設けられ、前記被測定用サンプルと前記標準用サンプルとが前記仕切り用フィルムを介して重ねられることによりリング状の吸光度分布が形成され、前記光源と前記サンプルプレートとの間又は前記受光素子と前記サンプルプレートとの間に結像レンズが設けられ、前記光源と前記受光素子とが前記光軸上に同軸に設けられていることを特徴とする吸光度測定装置。The sample to be measured and the standard sample are superimposed on the sample plate to generate a lens action based on light diffraction, and the absorbance is continuously changed between a relatively large absorbance band and a small absorbance band. Forming a changing absorbance distribution, providing a light receiving element at the image forming position of the diffracted light by the irradiation light emitted from the coherent light source toward the sample plate, the absorbance per unit length of the sample to be measured Used in the absorbance measurement method to measure, has a concentric top and bottom, and the height of the peak decreases as the cross-sectional shape moves away from the center in the radial direction to eliminate secondary and higher order diffracted light At the same time, in order to converge the diffracted light to one point, the pitch interval of the apex becomes narrow, and the sample to be measured and the standard sample are separated by the thickness of the sample plate. A thin transparent partition film for partitioning from a direction perpendicular to the direction is provided on the sample plate, and the measured sample and the standard sample are overlapped via the partition film to form a ring-shaped absorbance distribution. An imaging lens is formed and provided between the light source and the sample plate or between the light receiving element and the sample plate, and the light source and the light receiving element are provided coaxially on the optical axis. An absorbance measuring device, characterized in that: 前記サンプルプレートが液体を入れるサンプル容器であり、前記被測定用サンプルと前記標準用サンプルとが両方とも液体であることを特徴とする請求項11に記載の吸光度測定装置。The absorbance measurement device according to claim 11, wherein the sample plate is a sample container for storing a liquid, and both the sample to be measured and the standard sample are liquids. 前記サンプルプレートを透過することにより生じる一次回折光の結像位置と前記結像レンズによる零次の回折光の結像位置とが光軸方向に異なることを特徴とする請求項11又は請求項12に記載の吸光度測定装置。13. An image forming position of a first-order diffracted light generated by transmitting through the sample plate and an image forming position of a zero-order diffracted light by the image forming lens are different in an optical axis direction. Absorbance measuring device according to 1. 前記結像レンズによる零次の回折光の結像位置に前記零次の回折光を遮光する遮光板が設けられていることを特徴とする請求項13に記載の吸光度測定装置。14. The absorbance measuring device according to claim 13, wherein a light-shielding plate for blocking the zero-order diffracted light is provided at an image forming position of the zero-order diffracted light by the imaging lens. 光の回折に基づくレンズ作用を生じさせるためにサンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きい帯域と吸光度が小さい帯域との間で吸光度が連続して変化する吸光度分布を形成し、コヒーレントな光源から前記サンプルプレートに向けて照射された照射光による回折光の結像位置に受光素子を設けて、前記被測定用サンプルの単位長さ当たりの吸光度を測定する吸光度測定方法に用いられ、互いに略平行な略等ピッチ間隔の頂部と底部とを有しかつ二次以上の回折光を消失させるために前記頂部の延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブからなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切る薄い透明の仕切り用フィルムが前記サンプルプレートに設けられ、前記被測定用サンプルと前記標準用サンプルとが前記仕切り用フィルムを介して重ねられることにより波状の吸光度分布が形成され、前記光源と前記サンプルプレートとの間に結像レンズが設けられ、前記光源が前記結像レンズの光軸に対してオフセットして設けられ、前記受光素子は前記結像レンズの光軸上に設けられ、前記サンプルプレートを透過することにより生じる一次回折光の結像位置と前記結像レンズによる零次の回折光の結像位置とが光軸方向に対して前記結像レンズから同じ距離にあり、かつ、前記結像レンズによる零次の回折光の結像位置がオフセットされていることを特徴とする吸光度測定装置。The sample to be measured and the standard sample are superimposed on the sample plate to generate a lens action based on light diffraction, and the absorbance is continuously changed between a band having a relatively large absorbance and a band having a small absorbance. Forming a changing absorbance distribution, providing a light receiving element at the imaging position of the diffracted light by the irradiation light irradiated from the coherent light source toward the sample plate, the absorbance per unit length of the sample for measurement Used in the absorbance measurement method to be measured, has a top and a bottom at substantially equal pitch intervals substantially parallel to each other and has a cross section in a plane perpendicular to the direction in which the top extends to eliminate diffracted light of second order or higher. The cross-sectional shape at this time consists of a pseudo sine curve, and the sample to be measured and the standard sample are specified in a direction perpendicular to the thickness direction of the sample plate. A thin transparent partitioning film is provided on the sample plate, and the sample to be measured and the standard sample are overlapped via the partitioning film to form a wavy absorbance distribution. An imaging lens is provided between the sample plate and the sample plate; the light source is provided offset with respect to an optical axis of the imaging lens; the light receiving element is provided on an optical axis of the imaging lens; The imaging position of the first-order diffracted light generated by transmission through the plate and the imaging position of the zero-order diffracted light by the imaging lens are at the same distance from the imaging lens with respect to the optical axis direction, and An absorbance measuring device, wherein the imaging position of the zero-order diffracted light by the imaging lens is offset. 請求項11ないし請求項15のいずれか1項に記載の吸光度測定装置を用いた血液検査装置であって、前記被測定用サンプルが血液、血清、血漿と試薬との混合液体であることを特徴とする血液検査装置。A blood test apparatus using the absorbance measurement device according to any one of claims 11 to 15, wherein the sample to be measured is a mixed liquid of blood, serum, plasma and a reagent. Blood test equipment. 請求項11ないし請求項15のいずれか1項に記載の吸光度測定装置を用いた水質土壌大気分析装置であって、前記被測定用サンプルが試薬との混合液体であることを特徴とする水質土壌大気分析装置。A water soil air analyzer using the absorbance measuring device according to any one of claims 11 to 15, wherein the sample to be measured is a liquid mixture with a reagent. Atmospheric analyzer. サンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きいリング状の帯域と吸光度が相対的に小さいリング状の帯域との間で吸光度が連続して変化する吸光度分布を形成して光の回折現象を生じさせるために用いられ、同心円状の頂部と底部とを有しかつ二次以上の回折光を消失させるために断面形状が中心から半径方向に遠ざかるに伴って山の高さが低くなると共に前記頂部のピッチ間隔が狭くなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切る薄い透明の仕切り用フィルム。Absorbance where absorbance changes continuously between a ring-shaped band with relatively large absorbance and a ring-shaped band with relatively small absorbance by stacking the sample to be measured and the sample for standard on the sample plate It is used to form a distribution and cause light diffraction phenomenon, has concentric top and bottom parts, and as the cross-sectional shape moves away from the center in the radial direction to eliminate diffracted light of second and higher order A thin transparent partitioning film that reduces the height of the peaks and narrows the pitch interval between the tops, and separates the sample to be measured and the standard sample from a direction perpendicular to the thickness direction of the sample plate. サンプルプレートに被測定用サンプルと標準用サンプルとを重ねて設けて吸光度が相対的に大きい波状の帯域と吸光度が相対的に小さい波状の帯域との間で吸光度が連続して変化する吸光度分布を形成して光の回折現象を生じさせるために用いられ、互いに略平行な略等ピッチ間隔の頂部と底部とを有しかつ二次以上の回折光を消失させるために前記頂部の延びる方向と直交する面内で断面したときの断面形状が疑似サインカーブからなりしかも前記被測定用サンプルと前記標準用サンプルとを前記サンプルプレートの厚さ方向と直交する方向から仕切る薄い透明の仕切り用フィルム。The sample to be measured and the standard sample are superimposed on the sample plate, and the absorbance distribution in which the absorbance continuously changes between a wavy band having a relatively large absorbance and a wavy band having a relatively small absorbance is obtained. It is used to form a light diffraction phenomenon, has a top and a bottom at substantially equal pitch intervals that are substantially parallel to each other, and is orthogonal to the direction in which the top extends in order to eliminate second-order or higher diffracted light. A thin transparent partitioning film having a pseudo-sine curve in cross section when cut in a plane to be measured, and separating the sample to be measured and the standard sample from a direction orthogonal to a thickness direction of the sample plate.
JP2003145401A 2003-05-22 2003-05-22 Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same Pending JP2004347479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003145401A JP2004347479A (en) 2003-05-22 2003-05-22 Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003145401A JP2004347479A (en) 2003-05-22 2003-05-22 Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same

Publications (1)

Publication Number Publication Date
JP2004347479A true JP2004347479A (en) 2004-12-09

Family

ID=33532590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003145401A Pending JP2004347479A (en) 2003-05-22 2003-05-22 Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same

Country Status (1)

Country Link
JP (1) JP2004347479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247421A (en) * 2017-09-29 2020-06-05 株式会社日立高新技术 Analysis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111247421A (en) * 2017-09-29 2020-06-05 株式会社日立高新技术 Analysis device
CN111247421B (en) * 2017-09-29 2024-01-30 株式会社日立高新技术 Analysis device

Similar Documents

Publication Publication Date Title
EP0899548B1 (en) Cross-correlation method and apparatus for suppressing the effects of multiple scattering
US20130344623A1 (en) Non-scanning spr system
US7342662B2 (en) Sample analyzer
JPWO2008093729A1 (en) Measuring apparatus and measuring method
JPH11502302A (en) Imaging method and apparatus using penetrating radiation to obtain a projection of an object
JPWO2013129519A1 (en) Spectral characteristic measuring apparatus and spectral characteristic measuring method
US5500536A (en) Spectrofluorometer
JPH0843292A (en) Detector for measuring luminous intensity of scattered lightwith thin film of colloid-state medium
JP2004347479A (en) Absorbance measuring method and instrument, transmission member used therefor, blood examination device using the same, and water quality, soil and atmospheric air analyzer using the same
JP3151036B2 (en) Method and apparatus for detecting submicron particles
JP2007127449A (en) Measuring container
JP3447478B2 (en) Trace oil detector
JPH0277636A (en) Particle measuring device
JP2779824B2 (en) Immunological agglutination detector
US20090027663A1 (en) Method of detecting sources of coherent radiation and a device utilising the method
US9719919B2 (en) Method for measuring refractive index, and refractometer
JP2005147891A (en) Surface plasmon resonance sensor
JP2000266661A (en) Flow cell and particle-measuring apparatus using the same
JP2005049109A (en) Chemical analysis equipment
KR20190111717A (en) Optical module for optical height measurement
WO2024062833A1 (en) Fluorescence analysis cell, fluorescence analysis device, fluorescence analysis method, and method for manufacturing cell to be subjected to analysis
WO2018003045A1 (en) Beam splitter with aperture function, and detector provided with said beam splitter
JPS6314295B2 (en)
JPS61186835A (en) Flow type particle analyzing instrument
JP7187874B2 (en) light scattering detector