JP2004347412A - Spectrometric device for gel-like sample - Google Patents

Spectrometric device for gel-like sample Download PDF

Info

Publication number
JP2004347412A
JP2004347412A JP2003143476A JP2003143476A JP2004347412A JP 2004347412 A JP2004347412 A JP 2004347412A JP 2003143476 A JP2003143476 A JP 2003143476A JP 2003143476 A JP2003143476 A JP 2003143476A JP 2004347412 A JP2004347412 A JP 2004347412A
Authority
JP
Japan
Prior art keywords
light
sample
optical path
spectrometer
path changing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143476A
Other languages
Japanese (ja)
Other versions
JP3940376B2 (en
Inventor
Reiko Kuroda
玲子 黒田
Hiroshi Masago
央 真砂
Hiroshi Hayakawa
広志 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Japan Science and Technology Agency
Original Assignee
Jasco Corp
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp, Japan Science and Technology Agency filed Critical Jasco Corp
Priority to JP2003143476A priority Critical patent/JP3940376B2/en
Priority to PCT/JP2004/002527 priority patent/WO2004104563A1/en
Publication of JP2004347412A publication Critical patent/JP2004347412A/en
Application granted granted Critical
Publication of JP3940376B2 publication Critical patent/JP3940376B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spectrometric device capable of performing accurate spectrometry even to a self-organizing sample, a gel like sample or the like. <P>SOLUTION: This spectrometric device 10 is equipped with a light irradiation part 12 for emitting monochromatic light having a wavelength selected from a plurality of wavelengths in order to perform wavelength scanning, an optical path changing part 16 for changing the course of light emitted from the light irradiation part 12, a polarized light modulation part 14 for modulating periodically the polarization state of the light whose course is changed by the optical path changing part 16, a rotating sample stand 18 rotatable on a horizontal plane around the optical axis as the center axis, and a photodetector 22 for detecting transmitted light transmitted through the sample 24 on the rotating sample stand 18. The device is characterized by irradiating light in the horizontal direction by the light irradiation part 12, changing the traveling direction of light, which is the light directed in the horizontal direction, in the vertical direction by the optical path changing part 14, and irradiating the sample installed horizontally on the rotating sample stand 18 with the light from the vertical direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は分光測定装置、特にその試料保持機構の改良に関する。
【0002】
【従来の技術】
物質の旋光性、偏光二色性、複屈折性などのスペクトルを測定することは、その物質の光学的特性及びその他の情報を調べる上で重要である。特に自己組織化する試料において、分子レベルでの配列、配向を調べる上で重要な測定である。このような円二色性等を測定する分光測定装置には、例えば特許文献1〜4に記されたようなものがある。
【0003】
【特許文献1】
特開2001−337035号公報
【特許文献2】
特開2001−311683号公報
【特許文献3】
特開2001−311684号公報
【特許文献4】
特開2002−313024号公報
【0004】
【発明が解決しようとする課題】
ところが試料がゲル状のものである場合、円偏光二色性または旋光分散に測定誤差を与えてしまうことがあった。特に近年重要さを増してきた自己組織化する試料に対する測定の試みや、ゲル内の分子レベルの配向や配列の観測等ではこの測定誤差の問題は深刻であった。
本発明は上記課題に鑑みなされたものであり、その目的は自己組織化する試料、ゲル状の試料等に対しても正確な分光測定が可能な分光測定装置を提供することにある。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の分光測定装置は、波長走査を行うため複数の波長の中から選択した波長を持つ単色光を出射する光照射部と、前記光照射部から出射された光の進路を変更する光路変更部と、該光路変更部によって進路を変更された光の偏光状態を周期的に変調させるための偏光変調部と、光軸を中心軸として水平面内で回転可能な回転試料台と、該回転試料台上の試料を透過した透過光を検出する光検出器と、を備える。そして、前記光照射部から水平方向に光が照射され、該水平方向に向かう光は前記光路変更部により鉛直方向に光の進行方向を変更され、前記回転試料台上に水平に設置された試料に鉛直方向から光を照射することを特徴とする。
【0006】
上記の分光測定装置において、前記光路変更部は全反射プリズムまたはミラーにより構成され、水平方向に進む光を該全反射プリズム又はミラーで反射し進行方向を鉛直方向に変更することが好適である。
また、上記の分光測定装置において、該偏光状態が変調された光を試料に照射し、試料からの透過光を測定することで、試料の円偏光二色性または旋光分散または直線二色性または直線複屈折が好適に測定できる。
【0007】
【発明の実施の形態】
上記したように試料がゲル状のもの等である場合、円偏光二色性または旋光分散に測定誤差が生じることがあった。本発明者らは、測定誤差の発生原因が重力によって引き起こされる鉛直方向の密度勾配や厚さの勾配の発生に起因すると考えた。つまり、試料固有の旋光分散等だけでなく、上記の密度勾配や厚さの勾配によって生じる直線二色性や直線複屈折等の信号が発生し、この信号が測定誤差の要因となってしまうのである。
【0008】
従来の分光測定装置ではスペースの関係から、水平方向に光束を照射する構成をとっており、必然的に試料は垂直に置かれて測定するようになっていた。このため、試料を水平に透過した光を測定することになり、上記のような重力場の影響を受けるのである。特にβ−アミロイドやBSAなどの蛋白質は凝集しやすく重力の影響を受けやすい。
以上の考察から、実際に本発明者らは、試料を水平に保持したまま測定を行うことのできる分光測定装置を開発し、その装置によって測定を行うことで正確な測定を行えることを確認した。以下では、試料を水平に保持する機構を備えた本発明の分光測定装置の説明を行う。
【0009】
図1は本発明の分光測定装置の概略構成図である。図1の分光測定装置10は、光照射部12(光源26、分光器28)と、光路変更部(全反射プリズム16)と、偏光変調部14(偏光子30、光弾性変調子(PEM)32)と、回転試料台18と、検光子20と、光検出器22と、を備える。
ここで、光照射部12は、波長走査を行うため、光源26と分光器28とで構成されている。光源26から出射された光は、分光器28によって所定の波長の単色光にされる。また、光路変更部としては、全反射プリズム16を用いており、光の進行方向を水平方向から鉛直方向に変更する。
【0010】
偏光変調部14は、本実施形態では偏光子30とPEM32を用いた。光照射部12からの光は、偏光子30によってPEM32の軸方位に対して所定の角度方向(例えば45°)に偏光した直線偏光にされる。この直線偏光をPEM32に通すことで、二つの偏光成分間(互いに垂直な偏光成分間)に位相差を与え、光の偏光状態を変調する。また、PEM32には所定の周波数の電圧が加えられ、この周波数に従い上記の位相差が変調され、所定の変調周波数を持った偏光状態が変調された光となる。
【0011】
試料24を設置するための回転試料台18の中央部には、厚さ方向に貫通する貫通孔38が設けられている。試料24からの通過光は、この貫通孔38を通過して検光子20へと向かう。回転試料台18は、また貫通孔38の中心軸を中心に水平面内で回転可能な構成となっている。例えばステッピングモーター等の回転角度を制御可能なモータによって、任意の角度で回転し停止するように構成すればよい。この構成の結果、試料24を任意の配位角度で設置して測定を行うことができる。
【0012】
検光子20も回転可能な構成となっており、その配位軸を変更することができる。また、検光子20は光路上から離脱/挿入が可能なように移動が可能な構成となっている。つまり、試料からの透過光は、検光子20を通して検出することも通さずに検出することも可能であり、試料の測定したい性質に応じて選べばよい。
光検出器22としては、例えば光電子増倍管を用いればよい。光検出器22によって、試料24からの通過光を検出する。
また、測定手段36としての光照射部12、光検出器22は、いずれも通常の分光測定装置と同様な水平な配置構成となっている。つまり本発明では、光路変更部を設けることで、水平方向に出射される光を鉛直方向へ変更し、鉛直方向からの試料の観察を可能にしたのである。
【0013】
次に本発明の分光測定装置の作用を説明する。光源26から出た光は、前述のように分光器28を通ることで単色光とされる。この単色光は水平方向に出射され、全反射プリズム16にて全反射され水平方向から鉛直方向へと進路が変更される。この鉛直方向へと向かう光は偏光子30、PEM32によって偏光状態が変調された光となる。該偏光状態が変調された光は回転試料台18上の試料24に照射され、試料24からの透過光は回転試料台18の貫通孔38を通り、検光子20へ向かう。検光子20を通った光は、ミラー、光ファイバ等により光検出器22へ送られ、検出される。
【0014】
光検出器22からの検出信号は信号処理装置(図示せず)によって信号処理される。検出信号のうち、偏光の変調周波数と同一の周波数成分、その二倍の高周波成分等に基づき、試料の各種光学的情報(円二色性、施光分散、直線二色性、直線複屈折)が求められる。また分光器からの単色光の波長を変更して測定を行うことで上記の光学的情報のスペクトルが得られる。これらの測定の具体的な手順は従来と同様に行えばよい(詳細は例えば特許文献1〜4を参照)。
【0015】
上述したように、従来の分光測定装置では、分光器等のスペースの都合上等から、光は水平方向に照射する構成をとっていた。しかしながら、本発明では、光源、分光器、光検出器等の配置は従来と同様であるが、さらに光路変更部を設けることで水平方向の光を鉛直方向へ曲げるといった構成にした。その結果、試料を水平に保持することが可能となり、鉛直方向から試料を測定することが可能となる。つまり、本発明の分光測定装置によれば、重力場による影響を受けやすい試料、例えば、ゲル状の試料、β−アミロイドやBSA等の蛋白質等に対して、正確な分光測定が行うことが可能である。
【0016】
また、偏光変調部14、全反射プリズム16、回転試料台18、検光子20は、試料室34内に設置されている。この試料室34は独立した構成となっているため、通常の分光測定装置(ここでは測定手段36に対応)にオプションとして装着して使用することが可能となっている。
また、光路変更部としては、本実施形態で用いた全反射プリズムだけでなく、ミラーや光ファイバを用いて光路を変更してもよい。
また、偏光変調部としてファラデーセルを用い、直線偏光の偏光面を周期的に変調させ、光学零位法によって試料の旋光度を測定するような構成も可能である。
【0017】
図2は本発明に係る分光測定装置の他の実施形態例である。図1と対応する部分には符号100を加え説明を省略する。
図2の分光測定装置110では、偏光変調部114のうち偏光子130を測定手段136の所に設置し、PEM132を試料室134内に設置した。この場合でも光の偏光変調は、鉛直方向に曲げた後に行っていることになる。つまり、偏光子130を光路変更部(全反射プリズム116)の前に設置し、PEM132を光路変更部の後に設置するような構成でもかまわない。また、測定の手順等は図1のものと同様に行えばよい。
【0018】
【発明の効果】
本発明の分光測定装置によれば、水平方向の光を鉛直方向に曲げるための光路変更部を設けたことで試料を水平に保持することができ、重力場の影響を大きく受ける試料に対しても、正確な測定を行うことが可能になった。
【図面の簡単な説明】
【図1】本発明の分光測定装置の概略構成図。
【図2】本発明の分光測定装置の一実施形態。
【符号の説明】
10 分光測定装置
12 光照射部
14 偏光変調部
16 全反射プリズム
18 回転試料台
20 検光子
22 光検出部
24 試料
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a spectrometer and, more particularly, to an improvement in a sample holding mechanism.
[0002]
[Prior art]
Measuring spectra such as optical rotation, dichroism, and birefringence of a substance is important for examining the optical properties and other information of the substance. In particular, this is an important measurement for examining the arrangement and orientation at the molecular level in a self-assembled sample. Examples of such spectrometers for measuring circular dichroism and the like include those described in Patent Documents 1 to 4.
[0003]
[Patent Document 1]
JP 2001-337035 A [Patent Document 2]
JP 2001-31683 A [Patent Document 3]
JP 2001-31684 A [Patent Document 4]
Japanese Patent Application Laid-Open No. 2002-313024
[Problems to be solved by the invention]
However, when the sample is in a gel state, a measurement error may be given to circular dichroism or optical rotation dispersion. In particular, the problem of the measurement error has been serious in an attempt to measure a self-assembled sample, which has been increasing in importance in recent years, and in observing a molecular level orientation and arrangement in a gel.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a spectrometer capable of performing accurate spectrometry even on a self-organizing sample, a gel sample, and the like.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a spectrometer of the present invention includes a light irradiation unit that emits monochromatic light having a wavelength selected from a plurality of wavelengths for performing wavelength scanning, and a light emitted from the light irradiation unit. An optical path changing unit for changing the path of light, a polarization modulator for periodically modulating the polarization state of light whose path has been changed by the optical path changing unit, and a rotation rotatable in a horizontal plane with the optical axis as a central axis. A sample stage; and a photodetector for detecting transmitted light transmitted through the sample on the rotating sample stage. Then, the light is irradiated in the horizontal direction from the light irradiation unit, and the light traveling in the horizontal direction is changed in the traveling direction of the light in the vertical direction by the optical path changing unit, and the sample is set horizontally on the rotating sample stage. Irradiating light from a vertical direction.
[0006]
In the above-described spectrometer, it is preferable that the optical path changing unit is configured by a total reflection prism or a mirror, and reflects the light traveling in the horizontal direction by the total reflection prism or the mirror to change the traveling direction to the vertical direction.
Further, in the above-described spectrometer, the sample is irradiated with the light whose polarization state is modulated, and the transmitted light from the sample is measured, whereby circular dichroism or optical rotation dispersion or linear dichroism of the sample is measured. Linear birefringence can be suitably measured.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
As described above, when the sample is a gel or the like, a measurement error may occur in circular dichroism or optical rotation dispersion. The present inventors have considered that the cause of the measurement error is caused by the occurrence of a vertical density gradient or a thickness gradient caused by gravity. In other words, signals such as linear dichroism and linear birefringence caused by the density gradient and the thickness gradient described above are generated in addition to the sample-specific optical rotatory dispersion and the like, and this signal causes a measurement error. is there.
[0008]
A conventional spectrometer has a configuration in which a light beam is irradiated in the horizontal direction due to space limitations, and the sample is inevitably placed vertically for measurement. Therefore, the light transmitted horizontally through the sample is measured, and is affected by the gravitational field as described above. In particular, proteins such as β-amyloid and BSA are easily aggregated and easily affected by gravity.
From the above considerations, the present inventors have actually developed a spectrometer capable of performing measurement while holding the sample horizontally, and confirmed that accurate measurement can be performed by performing measurement with the device. . Hereinafter, a spectrometer of the present invention including a mechanism for holding a sample horizontally will be described.
[0009]
FIG. 1 is a schematic configuration diagram of the spectrometer of the present invention. 1 includes a light irradiation unit 12 (light source 26, spectroscope 28), an optical path changing unit (total reflection prism 16), and a polarization modulation unit 14 (polarizer 30, photoelastic modulator (PEM)). 32), a rotating sample stage 18, an analyzer 20, and a photodetector 22.
Here, the light irradiation unit 12 includes a light source 26 and a spectroscope 28 for performing wavelength scanning. The light emitted from the light source 26 is converted into monochromatic light having a predetermined wavelength by the spectroscope 28. The optical path changing unit uses the total reflection prism 16 to change the traveling direction of light from the horizontal direction to the vertical direction.
[0010]
In this embodiment, the polarization modulator 14 uses the polarizer 30 and the PEM 32. The light from the light irradiating unit 12 is linearly polarized by the polarizer 30 in a predetermined angle direction (for example, 45 °) with respect to the axis direction of the PEM 32. By passing this linearly polarized light through the PEM 32, a phase difference is given between the two polarized light components (between mutually perpendicular polarized light components), and the polarization state of light is modulated. Further, a voltage having a predetermined frequency is applied to the PEM 32, and the above-described phase difference is modulated according to the frequency, and the polarization state having the predetermined modulation frequency is modulated.
[0011]
At the center of the rotating sample stage 18 for mounting the sample 24, a through-hole 38 is provided that penetrates in the thickness direction. Light passing from the sample 24 passes through the through hole 38 and travels toward the analyzer 20. The rotating sample stage 18 is configured to be rotatable in a horizontal plane about a central axis of the through hole 38. For example, a motor that can control the rotation angle such as a stepping motor may be configured to rotate at an arbitrary angle and stop. As a result of this configuration, measurement can be performed with the sample 24 placed at an arbitrary coordination angle.
[0012]
The analyzer 20 is also configured to be rotatable, and its coordination axis can be changed. Further, the analyzer 20 is configured to be movable so as to be detachable / insertable from the optical path. That is, the transmitted light from the sample can be detected through or not through the analyzer 20, and may be selected according to the property of the sample to be measured.
As the photodetector 22, for example, a photomultiplier tube may be used. The light detector 22 detects passing light from the sample 24.
The light irradiating section 12 and the photodetector 22 as the measuring means 36 have a horizontal arrangement similar to that of a normal spectrometer. That is, in the present invention, by providing the optical path changing unit, the light emitted in the horizontal direction is changed to the vertical direction, and the observation of the sample from the vertical direction is enabled.
[0013]
Next, the operation of the spectrometer of the present invention will be described. The light emitted from the light source 26 passes through the spectroscope 28 as described above and is converted into monochromatic light. This monochromatic light is emitted in the horizontal direction, is totally reflected by the total reflection prism 16, and the course is changed from the horizontal direction to the vertical direction. The light traveling in the vertical direction is light whose polarization state is modulated by the polarizer 30 and the PEM 32. The light whose polarization state has been modulated is applied to the sample 24 on the rotating sample stage 18, and the transmitted light from the sample 24 passes through the through hole 38 of the rotating sample stage 18 toward the analyzer 20. The light that has passed through the analyzer 20 is sent to a photodetector 22 by a mirror, an optical fiber, or the like, and is detected.
[0014]
The detection signal from the photodetector 22 is subjected to signal processing by a signal processing device (not shown). Various optical information of the sample (circular dichroism, light dispersion, linear dichroism, linear birefringence) based on the same frequency component as the polarization modulation frequency and twice the high frequency component of the detection signal Is required. The spectrum of the optical information can be obtained by changing the wavelength of the monochromatic light from the spectroscope and performing the measurement. The specific procedure of these measurements may be performed in the same manner as in the related art (for details, see, for example, Patent Documents 1 to 4).
[0015]
As described above, the conventional spectrometer has a configuration in which light is irradiated in the horizontal direction due to the space of a spectroscope or the like. However, in the present invention, the arrangement of the light source, the spectroscope, the photodetector, and the like is the same as that of the related art. As a result, the sample can be held horizontally, and the sample can be measured from the vertical direction. That is, according to the spectrometer of the present invention, accurate spectrometry can be performed on a sample that is easily affected by a gravitational field, for example, a gel sample, a protein such as β-amyloid or BSA, or the like. It is.
[0016]
The polarization modulator 14, the total reflection prism 16, the rotating sample table 18, and the analyzer 20 are installed in a sample chamber 34. Since the sample chamber 34 has an independent configuration, the sample chamber 34 can be mounted as an option on a normal spectrometer (corresponding to the measuring means 36) and used.
The optical path changing unit may change the optical path using not only the total reflection prism used in the present embodiment but also a mirror or an optical fiber.
It is also possible to use a Faraday cell as the polarization modulator, periodically modulate the plane of polarization of linearly polarized light, and measure the optical rotation of the sample by the optical null method.
[0017]
FIG. 2 shows another embodiment of the spectrometer according to the present invention. The parts corresponding to those in FIG.
In the spectrometer 110 of FIG. 2, the polarizer 130 of the polarization modulator 114 is installed at the measurement unit 136, and the PEM 132 is installed in the sample chamber 134. Even in this case, the polarization modulation of light is performed after bending in the vertical direction. That is, the polarizer 130 may be installed before the optical path changing unit (total reflection prism 116), and the PEM 132 may be installed after the optical path changing unit. The measurement procedure and the like may be performed in the same manner as in FIG.
[0018]
【The invention's effect】
According to the spectrometer of the present invention, the sample can be held horizontally by providing the optical path changing unit for bending the light in the horizontal direction in the vertical direction, and the sample is greatly affected by the gravitational field. In addition, accurate measurements can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a spectrometer of the present invention.
FIG. 2 shows an embodiment of the spectrometer of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Spectrometer 12 Light irradiation part 14 Polarization modulation part 16 Total reflection prism 18 Rotating sample stand 20 Analyzer 22 Light detection part 24 Sample

Claims (3)

波長走査を行うため複数の波長の中から選択した波長を持つ単色光を出射する光照射部と、
前記光照射部から出射された光の進路を変更する光路変更部と、
該光路変更部によって進路を変更された光の偏光状態を周期的に変調させるための偏光変調部と、
光軸を中心軸として水平面内で回転可能な回転試料台と、
該回転試料台上の試料を透過した透過光を検出する光検出器と、
を備え、前記光照射部から水平方向に光が照射され、該水平方向に向かう光は前記光路変更部により鉛直方向に光の進行方向を変更され、前記回転試料台上に水平に設置された試料に鉛直方向から光を照射することを特徴とする分光測定装置。
A light irradiation unit that emits monochromatic light having a wavelength selected from a plurality of wavelengths to perform wavelength scanning,
An optical path changing unit that changes a path of light emitted from the light irradiation unit,
A polarization modulator for periodically modulating the polarization state of light whose path has been changed by the optical path changing unit,
A rotating sample stage rotatable in a horizontal plane around the optical axis,
A light detector for detecting transmitted light transmitted through the sample on the rotating sample stage;
Light is irradiated in the horizontal direction from the light irradiation unit, the light traveling in the horizontal direction is changed the traveling direction of the light in the vertical direction by the optical path changing unit, was installed horizontally on the rotating sample stage A spectrometer for irradiating a sample with light in a vertical direction.
請求項1の分光測定装置において、
前記光路変更部は全反射プリズムまたはミラーにより構成され、水平方向に進む光を該全反射プリズム又はミラーで反射し進行方向を鉛直方向に変更することを特徴とする分光測定装置。
The spectrometer according to claim 1,
The spectrometer is characterized in that the optical path changing unit is constituted by a total reflection prism or a mirror, and reflects light traveling in a horizontal direction by the total reflection prism or a mirror to change the traveling direction to a vertical direction.
請求項1または2の分光測定装置において、
該偏光状態が変調された光を試料に照射し、試料からの透過光を測定することで、試料の円偏光二色性または旋光分散または直線二色性または直線複屈折を測定することを特徴とする分光測定装置。
The spectrometer according to claim 1 or 2,
By irradiating the sample with the light whose polarization state is modulated, and measuring the transmitted light from the sample, the circular dichroism or optical rotation dispersion or the linear dichroism or the linear birefringence of the sample is measured. Spectrometer.
JP2003143476A 2003-05-21 2003-05-21 Spectrometer for gel sample Expired - Fee Related JP3940376B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003143476A JP3940376B2 (en) 2003-05-21 2003-05-21 Spectrometer for gel sample
PCT/JP2004/002527 WO2004104563A1 (en) 2003-05-21 2004-03-02 Spectrometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143476A JP3940376B2 (en) 2003-05-21 2003-05-21 Spectrometer for gel sample

Publications (2)

Publication Number Publication Date
JP2004347412A true JP2004347412A (en) 2004-12-09
JP3940376B2 JP3940376B2 (en) 2007-07-04

Family

ID=33475123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143476A Expired - Fee Related JP3940376B2 (en) 2003-05-21 2003-05-21 Spectrometer for gel sample

Country Status (2)

Country Link
JP (1) JP3940376B2 (en)
WO (1) WO2004104563A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390653A1 (en) * 2010-05-27 2011-11-30 Jasco Corporation Circular dichroism spectrophotometric method and circular dichroism spectrophotometry apparatus using ATR method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ304375B6 (en) * 2012-08-02 2014-04-02 Fyzikální ústav AV ČR, v.v.i. Dispersion modulation unit
CN103674670B (en) * 2013-10-31 2016-09-14 奇瑞汽车股份有限公司 The sample center positioning device of a kind of spark direct-reading spectrometer and sample positioning method thereof
CN104089906A (en) * 2014-03-31 2014-10-08 浙江工商大学 Pseudosciaena crocea freshness detection device and detection method
CN104089908A (en) * 2014-03-31 2014-10-08 浙江工商大学 Chicken freshness detection device and detection method
JP2016053478A (en) 2014-09-02 2016-04-14 株式会社東芝 Phase separation observation method, phase separation observation apparatus, and annealing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57163846A (en) * 1981-04-02 1982-10-08 Olympus Optical Co Ltd Apparatus for colorimetry of electrophoresis equipment
JP3554374B2 (en) * 1994-09-16 2004-08-18 日本分光株式会社 Polarimeter
JPH10153500A (en) * 1996-11-26 1998-06-09 Nikon Corp Method and device for measuring photoelastic constant
JP2000321185A (en) * 1999-04-22 2000-11-24 Robert D Herpst Method for forming film from liquid sample, its device, and method for analyzing sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390653A1 (en) * 2010-05-27 2011-11-30 Jasco Corporation Circular dichroism spectrophotometric method and circular dichroism spectrophotometry apparatus using ATR method

Also Published As

Publication number Publication date
WO2004104563A1 (en) 2004-12-02
JP3940376B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
KR100917912B1 (en) Single-Polarizer Focused-Beam Ellipsometer
JP4629869B2 (en) Birefringence characteristic measuring method and apparatus
JP6145090B2 (en) Method and apparatus for vacuum ultraviolet (VUV) or shorter wavelength circular dichroism spectroscopy
WO2009123307A1 (en) Method for measuring circular dichroism spectra and measurement device
US6268914B1 (en) Calibration Process For Birefringence Measurement System
JP2014522986A5 (en)
JP4249608B2 (en) Birefringence measurement at deep ultraviolet wavelength
US7586606B2 (en) Near-field polarized-light measurement apparatus
US11933718B2 (en) Circular birefringence identification of materials
AU2015327741B2 (en) Cavity enhanced spectroscopy using off-axis paths
US20110149281A1 (en) Rotaryfrog systems and methods
WO2000058712A1 (en) Isopotomer absorption spectral analyzer and its method
JP3562768B2 (en) Circularly polarized dichroism, method for measuring optical rotation and absorption spectrum and dichrograph for measurement
JP2007514164A (en) System and method for measuring birefringence in optical materials
JPH11211654A (en) Polarization analysis device
JP3940376B2 (en) Spectrometer for gel sample
KR100380766B1 (en) Method for evaluating displaying element of liquid crystal, information storage medium for storing computer program representative of the method and evaluating system using the same
CN216771491U (en) Polarization resolution second harmonic testing device
JP6013102B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP6239335B2 (en) Circular dichroism measuring method and circular dichroic measuring device
Kirchner et al. All-reflective UV-VIS-NIR transmission and fluorescence spectrometer for μm-sized samples
JP2004340833A (en) Optical measuring device
JP2713190B2 (en) Optical property measuring device
JP5905318B2 (en) Circular polarized light source system and circular dichroism measurement system
JP4163104B2 (en) Polarization state conversion in optically active spectroscopy

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3940376

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees