JP2004347368A - Radiation monitor - Google Patents

Radiation monitor Download PDF

Info

Publication number
JP2004347368A
JP2004347368A JP2003142353A JP2003142353A JP2004347368A JP 2004347368 A JP2004347368 A JP 2004347368A JP 2003142353 A JP2003142353 A JP 2003142353A JP 2003142353 A JP2003142353 A JP 2003142353A JP 2004347368 A JP2004347368 A JP 2004347368A
Authority
JP
Japan
Prior art keywords
preamplifier
radiation
voltage pulse
pulse
temperature coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003142353A
Other languages
Japanese (ja)
Other versions
JP2004347368A5 (en
JP4540301B2 (en
Inventor
Kenichi Mogi
健一 茂木
Shoichi Nakanishi
正一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003142353A priority Critical patent/JP4540301B2/en
Publication of JP2004347368A publication Critical patent/JP2004347368A/en
Publication of JP2004347368A5 publication Critical patent/JP2004347368A5/ja
Application granted granted Critical
Publication of JP4540301B2 publication Critical patent/JP4540301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Amplifiers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation monitor capable of inexpensively and effectively compensating the temperature of a radiation detector. <P>SOLUTION: The radiation monitor is provided with the radiation detector 1 for detecting the radiation of an object to be measured and converting it into a current pulse corresponding to a detected quantity; a preamplifier 2 for converting a current pulse of the radiation detector 1 into a voltage pulse; and a main amplifier 3 for amplifying a voltage pulse of the preamplifier 2, cutting a high-frequency noise component by a filter, and inputting it to a rate meter. The preamplifier 2 is provided with a negative feedback resistor 24 having a positive temperature coefficient, and a negative temperature coefficient which appears in a peak value of an output voltage pulse of the main amplifier 3 is compensated on the basis of the temperature characteristics of the radiation detector 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、原子力発電所、病院、研究所等で使用される放射線モニタ、特に放射線検出器に温度補償を施した放射線モニタに関するものである。
【0002】
【従来の技術】
放射線を検出する放射線検出器は、その種類により固有の温度特性を有している。従って、放射線を安定した精度で測定するためには、放射線検出器の温度特性に対して温度補償を施す必要があり、種々の方法が考えられ実用化されている。
そのうちの1つとして、放射線検出器の出力電流パルスを電圧パルスに変換するために使用される前置増幅器に温度補償機能を持たせた方法が安価で効果が大きいことから広く用いられている。その具体的手段としては、前置増幅器の負帰還容量に負の温度特性を持たせて放射線検出器の温度特性を補償するようにしていた。(例えば特許文献1参照)。
【0003】
【特許文献1】
特公平4−12048号公報(p1左欄8行−右欄16行、第1図)
【0004】
【発明が解決しようとする課題】
従来の放射線モニタは以上のように構成され、放射線検出器の温度特性により前置増幅器の出力電圧パルスの波高値に現れる負の温度係数を前置増幅器に設けた負の温度係数の負帰還容量で補償するものであるため、前置増幅器の出力電圧パルスの波高値は補償することができるが、その結果としてパルス幅に負の温度係数が現れ、前置増幅器の出力電圧パルスを増幅するために設けられる主増幅器のゲイン−周波数特性により補償が目減りするという問題点があった。
この発明は、上記のような問題点を解決するためになされたものであり、安価で効果的に放射線検出器の温度補償を行なうことができる放射線モニタを提供することを目的とする。
【0005】
【課題を解決するための手段】
この発明に係る放射線モニタは、測定対象の放射線を検出し、検出量に対応した電流パルスに変換する放射線検出器、上記放射線検出器の電流パルスを電圧パルスに変換する前置増幅器及び上記前置増幅器の電圧パルスを増幅すると共に、高周波ノイズ成分をフィルタカットしてレートメータに入力する主増幅器を備えた放射線モニタにおいて、上記前置増幅器に正の温度係数の負帰還抵抗を設け、上記放射線検出器の温度特性にもとづいて上記主増幅器の出力電圧パルスの波高値に現れる負の温度係数を補償するようにしたものである。
【0006】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態1を図にもとづいて説明する。図1は、実施の形態1による放射線モニタの構成を示すブロック図である。この図に示すように、この実施の形態の放射線モニタは、測定対象の放射線を検出し、検出量に対応した電流パルスに変換する放射線検出器1と、放射線検出器1の出力電流パルスを電圧パルスに変換する前置増幅器2と、前置増幅器2の出力電圧パルスを増幅すると共に、高周波ノイズ成分をフィルタカットする主増幅器3と、主増幅器3の出力である増幅された電圧パルスの波高を弁別し、所定レベル未満のパルスをノイズとして除去すると共に、所定レベル以上のパルスを放射線による信号としてデジタルパルスを出力する波高弁別器4と、波高弁別器4の出力デジタルパルスにもとづいて放射線を測定するレートメータ5とから構成されている。
【0007】
また、前置増幅器2は更に、入力端子21と、アンプ22と、負帰還容量23と、負帰還抵抗24と、出力端子25とから構成されている。
アンプ22は入力抵抗が大きいため、入力端子21から入力された放射線検出器1の出力電流パルスが負帰還容量23で電荷積分され、電圧に変換されて波高値を形成する。負帰還容量23の容量値をCとし、負帰還抵抗24の抵抗値をRとすると、上記波高値が時定数CRで減衰する電圧パルスとして出力端子25から出力される。
【0008】
図2は、実施の形態1の前置増幅器2における負帰還抵抗24の抵抗値Rの温度係数を示す図である。図中にaで示すように、抵抗値Rは正の温度係数を持つようにされている。また、図3は、実施の形態1の主増幅器3のゲイン−周波数特性を示す図である。この特性は、増幅された電圧パルスに重畳されている高周波ノイズを除去する高周波阻止特性のため、高周波領域ではbで示すように、ゲインが低下する特性を持っている。即ち、入力パルスのパルス幅が広くなって周波数が低下するとゲインが大きくなり、バルス幅が狭くなって周波数が高くなるとゲインが小さくなるように動作する。
【0009】
図4は、放射線検出器1の温度特性に対する補償動作を示す図であり、(A)は前置増幅器2の出力電圧パルスを示し、(B)は主増幅器3の出力電圧パルスを示す。この図において、dは基準温度時における前置増幅器2の出力電圧パルスの波高値であり、tsは基準温度時における前置増幅器2の出力電圧パルスのパルス幅である。また、eは同じく低温時における波高値、tは低温時におけるパルス幅、fは同じく高温時における波高値、tは高温時におけるパルス幅であり、Lは上述した波高値弁別用の所定レベルである。また、gは上記各波高値d〜fを主増幅器3に入力した時の主増幅器3の出力である増幅された電圧パルスである。放射線検出器1の出力電流パルスの電荷量、即ち前置増幅器2の入力電荷量Qと容量値Cと前置増幅器2のゲインGとの関係は、
G=Q/C
となる。
【0010】
放射線検出器1の出力電流パルスの電荷量Qは負の温度係数を有するため、結果として前置増幅器2の出力電圧パルスの波高値は負の温度特性を持っている。一方、前置増幅器2の負帰還抵抗の抵抗値Rは上述のように、正の温度特性を有しているため、パルス幅は正の温度特性となり、主増幅器3のゲイン−周波数特性と組み合わせた総合特性は放射線検出器1の温度係数を補償するように動作するものである。なお、上述した実施の形態1のように、負の温度係数を持つ放射線検出器としては、プラスチックシンチレーション検出器やPIN型Si半導体検出器等がある。
【0011】
実施の形態2.
次に、この発明の実施の形態2を図にもとづいて説明する。図5は、実施の形態2における前置増幅器2の負帰還容量23の容量値Cの温度係数を示す図である。図中にhで示すように、容量値Cは負の温度係数を持つようにされている。図6は、実施の形態2における前置増幅器2の出力電圧パルスの波高値及び前置増幅器2のゲインを示す図である。この図において、iは負帰還容量23の容量値Cの温度係数がゼロの時の波高値、jは容量値Cの温度係数が負の時の前置増幅器2のゲイン、kは負帰還容量23の容量値Cの温度係数が負の時の波高値をそれぞれ示している。前置増幅器2の入力の電荷Qと容量値Cと前置増幅器2のゲインGの関係は、上述のように、G=Q/Cであるから、前置増幅器2は放射線検出器1の負の温度係数でQが低下した分を容量値Cの負の温度特性で補償するように動作し、その結果、前置増幅器2の出力電圧パルスの波高値はkで示すように安定化されることになる。
【0012】
図7は、実施の形態2における放射線検出器1の温度特性に対する補償動作を示す図であり、(A)は前置増幅器2の出力電圧パルスを示し、(B)は主増幅器3の出力電圧パルスを示す。この図において、mは基準温度時における前置増幅器2の出力電圧パルスの波高値であり、tsは基準温度時における前置増幅器2の出力電圧パルスのパルス幅である。また、nは同じく低温時における波高値、tは低温時におけるパルス幅、pは同じく高温時における波高値、tは高温時におけるパルス幅であり、Lは上述した波高値弁別用の所定レベルである。
また、qは上記各波高値m〜pを主増幅器3に入力した時の主増幅器3の出力である増幅された電圧パルスである。
【0013】
これから分かるように、前置増幅器2の出力の波高値を安定化するために容量値Cを負の温度係数とすると時定数CRが負の温度係数となりパルス幅が負の温度係数を持つようになるため、主増幅器3の出力である増幅された電圧パルスの波高値は負の温度係数になってしまう。容量値Cの温度係数に対して負帰還抵抗24の抵抗値Rの温度係数について、絶対値が等しくかつ極性が逆になるように、即ち、抵抗値Rを正の温度係数とすることにより、主増幅器3の出力である増幅された電圧パルスの波高値とパルス幅の両方を安定化することができる。
【0014】
実施の形態3.
次に、この発明の実施の形態3を図にもとづいて説明する。図8は、実施の形態3における前置増幅器2の負帰還容量23の温度特性を示す図である。
図8のrで示すような凸型の容量のものとしては、セラミックコンデンサが知られている。図9は、上述のような特性の負帰還容量を使用した場合の前置増幅器による温度補償動作を示す図である。
放射線検出器の中でもNal(Tl) シンチレーション検出器やCsl(Eu) シンチレーション検出器等を使用した場合には、上記前置増幅器の出力電圧パルスの波高値が所定の温度で極大値となり、特性曲線が図9においてsで示すように、凸型となる温度特性を示すことが知られている。また、sは負帰還抵抗24の抵抗値Rの温度係数がゼロの時の前置増幅器2の出力電圧パルスの波高値、uは前置増幅器2の電流−電圧変換ゲイン、vは主増幅器3の出力電圧パルスの波高値をそれぞれ示している。
このように、前置増幅器2の負帰還容量23の容量値Cが所定の温度で極大値となり、特性曲線が図8に示すように、凸型となる温度係数を持たせることにより、前置増幅器2の出力電圧パルスに現れる負の温度係数を補償することができる。
【0015】
【発明の効果】
この発明に係る放射線モニタは、測定対象の放射線を検出し、検出量に対応した電流パルスに変換する放射線検出器、上記放射線検出器の電流パルスを電圧パルスに変換する前置増幅器及び上記前置増幅器の電圧パルスを増幅すると共に、高周波ノイズ成分をフィルタカットしてレートメータに入力する主増幅器を備えた放射線モニタにおいて、上記前置増幅器に正の温度係数の負帰還抵抗を設け、上記放射線検出器の温度特性にもとづいて上記主増幅器の出力電圧パルスの波高値に現れる負の温度係数を補償するようにしたものであるため、安価で高精度な放射線モニタを得ることができる。
また、主増幅器の周波数特性に影響されることなく機器を組み合わせることができる。更に、所定の温度で前置増幅器の出力電圧パルスの波高値が極大値となるような温度係数を有する放射線検出器に対して前置増幅器の負帰還容量が所定の温度で極大値となる温度係数を有するようにしたことにより、低温度領域に亘って高精度を維持することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1による放射線モニタの構成を示すブロック図である。
【図2】実施の形態1の前置増幅器における負帰還抵抗の抵抗値Rの温度係数を示す図である。
【図3】実施の形態1の主増幅器のゲイン−周波数特性を示す図である。
【図4】実施の形態1における放射線検出器の温度特性に対する補償動作を示す図である。
【図5】この発明の実施の形態2における前置増幅器の負帰還容量の容量値Cの温度係数を示す図である。
【図6】実施の形態2における前置増幅器の出力電圧パルスの波高値及び前置増幅器のゲインを示す図である。
【図7】実施の形態2における放射線検出器の温度特性に対する補償動作を示す図である。
【図8】この発明の実施の形態3における負帰還容量の温度特性を示す図である。
【図9】実施の形態3における放射線検出器の温度特性に対する補償動作を示す図である。
【符号の説明】
1 放射線検出器、 2 前置増幅器、 3 主増幅器、
4 波高弁別器、 5 レートメータ、 21 入力端子、
22 アンプ、 23 負帰還容量、 24 負帰還抵抗、
25 出力端子。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a radiation monitor used in a nuclear power plant, a hospital, a research laboratory, and the like, and more particularly to a radiation monitor in which a radiation detector is subjected to temperature compensation.
[0002]
[Prior art]
A radiation detector that detects radiation has a unique temperature characteristic depending on the type. Therefore, in order to measure radiation with stable accuracy, it is necessary to perform temperature compensation on the temperature characteristics of the radiation detector, and various methods have been considered and put to practical use.
As one of them, a method in which a preamplifier used for converting an output current pulse of a radiation detector into a voltage pulse is provided with a temperature compensation function is widely used because it is inexpensive and effective. As a specific means, the negative feedback capacitance of the preamplifier has a negative temperature characteristic to compensate for the temperature characteristic of the radiation detector. (See, for example, Patent Document 1).
[0003]
[Patent Document 1]
Japanese Patent Publication No. 4-12048 (p1 left column 8 lines-right column 16 lines, FIG. 1)
[0004]
[Problems to be solved by the invention]
The conventional radiation monitor is configured as described above, and the negative feedback coefficient of the negative temperature coefficient provided in the preamplifier has a negative temperature coefficient appearing in the peak value of the output voltage pulse of the preamplifier due to the temperature characteristics of the radiation detector. Therefore, the peak value of the output voltage pulse of the preamplifier can be compensated, but as a result, a negative temperature coefficient appears in the pulse width, and the output voltage pulse of the preamplifier is amplified. However, there is a problem that the compensation is reduced due to the gain-frequency characteristic of the main amplifier provided in the above.
The present invention has been made to solve the above problems, and has as its object to provide a radiation monitor capable of inexpensively and effectively performing temperature compensation of a radiation detector.
[0005]
[Means for Solving the Problems]
A radiation monitor according to the present invention includes a radiation detector that detects radiation to be measured and converts the radiation into a current pulse corresponding to a detected amount, a preamplifier that converts a current pulse of the radiation detector into a voltage pulse, and the preamplifier. In a radiation monitor including a main amplifier for amplifying a voltage pulse of an amplifier and filtering a high-frequency noise component to input to a rate meter, a negative feedback resistor having a positive temperature coefficient is provided in the preamplifier, and the radiation detection is performed. A negative temperature coefficient appearing in the peak value of the output voltage pulse of the main amplifier is compensated based on the temperature characteristic of the device.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of the radiation monitor according to the first embodiment. As shown in this figure, a radiation monitor of this embodiment detects a radiation to be measured, converts the radiation into a current pulse corresponding to the detected amount, and outputs an output current pulse of the radiation detector 1 as a voltage. A preamplifier 2 for converting the output voltage into a pulse, a main amplifier 3 for amplifying an output voltage pulse of the preamplifier 2 and filtering out a high-frequency noise component, and a wave height of the amplified voltage pulse output from the main amplifier 3 A pulse height discriminator 4 that discriminates and removes a pulse lower than a predetermined level as noise and outputs a digital pulse as a signal of radiation of a pulse higher than a predetermined level, and measures the radiation based on a digital pulse output from the pulse height discriminator 4. And a rate meter 5.
[0007]
The preamplifier 2 further includes an input terminal 21, an amplifier 22, a negative feedback capacitor 23, a negative feedback resistor 24, and an output terminal 25.
Since the amplifier 22 has a large input resistance, the output current pulse of the radiation detector 1 input from the input terminal 21 is charge-integrated by the negative feedback capacitor 23 and converted into a voltage to form a peak value. Assuming that the capacitance value of the negative feedback capacitor 23 is C and the resistance value of the negative feedback resistor 24 is R, the peak value is output from the output terminal 25 as a voltage pulse attenuated by the time constant CR.
[0008]
FIG. 2 is a diagram illustrating a temperature coefficient of the resistance value R of the negative feedback resistor 24 in the preamplifier 2 according to the first embodiment. As shown by a in the figure, the resistance value R has a positive temperature coefficient. FIG. 3 is a diagram illustrating gain-frequency characteristics of the main amplifier 3 according to the first embodiment. This characteristic is a high-frequency rejection characteristic for removing high-frequency noise superimposed on the amplified voltage pulse, and thus has a characteristic that the gain decreases in the high-frequency region as shown by b. That is, the gain is increased when the pulse width of the input pulse is widened and the frequency is lowered, and the gain is reduced when the pulse width is narrowed and the frequency is high.
[0009]
4A and 4B are diagrams showing a compensation operation for the temperature characteristic of the radiation detector 1, wherein FIG. 4A shows an output voltage pulse of the preamplifier 2, and FIG. 4B shows an output voltage pulse of the main amplifier 3. In this figure, d is the peak value of the output voltage pulse of the preamplifier 2 at the reference temperature, and ts is the pulse width of the output voltage pulse of the preamplifier 2 at the reference temperature. Moreover, e is also a peak value at a low temperature, t L is the pulse width at a low temperature, f is also a peak value at high temperatures, the t H is the pulse width at high temperature, L is predetermined for a peak value discriminator described above Level. Further, g is an amplified voltage pulse which is an output of the main amplifier 3 when each of the peak values d to f is input to the main amplifier 3. The charge amount of the output current pulse of the radiation detector 1, that is, the relationship between the input charge amount Q and the capacitance value C of the preamplifier 2 and the gain G of the preamplifier 2 is as follows.
G = Q / C
It becomes.
[0010]
Since the charge amount Q of the output current pulse of the radiation detector 1 has a negative temperature coefficient, as a result, the peak value of the output voltage pulse of the preamplifier 2 has a negative temperature characteristic. On the other hand, since the resistance value R of the negative feedback resistor of the preamplifier 2 has a positive temperature characteristic as described above, the pulse width becomes a positive temperature characteristic and is combined with the gain-frequency characteristic of the main amplifier 3. The overall characteristics operate so as to compensate for the temperature coefficient of the radiation detector 1. Note that, as in the first embodiment, examples of the radiation detector having a negative temperature coefficient include a plastic scintillation detector and a PIN-type Si semiconductor detector.
[0011]
Embodiment 2 FIG.
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 5 is a diagram illustrating a temperature coefficient of the capacitance value C of the negative feedback capacitor 23 of the preamplifier 2 according to the second embodiment. As shown by h in the figure, the capacitance value C has a negative temperature coefficient. FIG. 6 is a diagram illustrating the peak value of the output voltage pulse of the preamplifier 2 and the gain of the preamplifier 2 according to the second embodiment. In this figure, i is the peak value when the temperature coefficient of the capacitance value C of the negative feedback capacitor 23 is zero, j is the gain of the preamplifier 2 when the temperature coefficient of the capacitance value C is negative, and k is the negative feedback capacitance. 23 shows the peak value when the temperature coefficient of the capacitance value C of 23 is negative. As described above, the relationship between the charge Q at the input of the preamplifier 2, the capacitance value C, and the gain G of the preamplifier 2 is G = Q / C. Is operated so as to compensate for the decrease in Q by the temperature coefficient of the above with the negative temperature characteristic of the capacitance value C. As a result, the peak value of the output voltage pulse of the preamplifier 2 is stabilized as indicated by k. Will be.
[0012]
7A and 7B are diagrams showing a compensation operation for the temperature characteristic of the radiation detector 1 according to the second embodiment, wherein FIG. 7A shows an output voltage pulse of the preamplifier 2 and FIG. Indicates a pulse. In this figure, m is the peak value of the output voltage pulse of the preamplifier 2 at the reference temperature, and ts is the pulse width of the output voltage pulse of the preamplifier 2 at the reference temperature. Also, n is the peak value at low temperature, t L is the pulse width at low temperature, p is the peak value at high temperature, t H is the pulse width at high temperature, and L is the predetermined value for discriminating the peak value described above. Level.
In addition, q is an amplified voltage pulse which is an output of the main amplifier 3 when each of the peak values m to p is input to the main amplifier 3.
[0013]
As can be seen, if the capacitance value C is set to a negative temperature coefficient in order to stabilize the peak value of the output of the preamplifier 2, the time constant CR becomes a negative temperature coefficient and the pulse width has a negative temperature coefficient. Therefore, the peak value of the amplified voltage pulse output from the main amplifier 3 has a negative temperature coefficient. With respect to the temperature coefficient of the resistance value R of the negative feedback resistor 24 with respect to the temperature coefficient of the capacitance value C, the absolute value is equal and the polarity is reversed, that is, by making the resistance value R a positive temperature coefficient, Both the peak value and the pulse width of the amplified voltage pulse output from the main amplifier 3 can be stabilized.
[0014]
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a diagram illustrating temperature characteristics of the negative feedback capacitor 23 of the preamplifier 2 according to the third embodiment.
As a capacitor having a convex capacity as shown by r in FIG. 8, a ceramic capacitor is known. FIG. 9 is a diagram showing a temperature compensation operation by a preamplifier when a negative feedback capacitor having the above-described characteristics is used.
When a Nal (Tl) scintillation detector or a Csl (Eu) scintillation detector is used among the radiation detectors, the peak value of the output voltage pulse of the preamplifier reaches a maximum value at a predetermined temperature, and the characteristic curve Is known to exhibit a convex temperature characteristic as shown by s in FIG. Further, s is the peak value of the output voltage pulse of the preamplifier 2 when the temperature coefficient of the resistance value R of the negative feedback resistor 24 is zero, u is the current-voltage conversion gain of the preamplifier 2, and v is the main amplifier 3 Respectively show the peak values of the output voltage pulses.
In this way, the capacitance value C of the negative feedback capacitor 23 of the preamplifier 2 becomes a maximum value at a predetermined temperature, and the characteristic curve has a convex temperature coefficient as shown in FIG. The negative temperature coefficient appearing in the output voltage pulse of the amplifier 2 can be compensated.
[0015]
【The invention's effect】
A radiation monitor according to the present invention includes a radiation detector that detects radiation to be measured and converts the radiation into a current pulse corresponding to a detected amount, a preamplifier that converts a current pulse of the radiation detector into a voltage pulse, and the preamplifier. In a radiation monitor including a main amplifier for amplifying a voltage pulse of an amplifier and filtering a high-frequency noise component to input to a rate meter, a negative feedback resistor having a positive temperature coefficient is provided in the preamplifier, and the radiation detection is performed. Since the negative temperature coefficient appearing in the peak value of the output voltage pulse of the main amplifier is compensated based on the temperature characteristic of the detector, an inexpensive and highly accurate radiation monitor can be obtained.
Further, devices can be combined without being affected by the frequency characteristics of the main amplifier. Furthermore, for a radiation detector having a temperature coefficient such that the peak value of the output voltage pulse of the preamplifier becomes a maximum value at a predetermined temperature, the temperature at which the negative feedback capacity of the preamplifier reaches a maximum value at a predetermined temperature is obtained. By having the coefficient, high accuracy can be maintained over the low temperature region.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a radiation monitor according to Embodiment 1 of the present invention.
FIG. 2 is a diagram illustrating a temperature coefficient of a resistance value R of a negative feedback resistor in the preamplifier according to the first embodiment;
FIG. 3 is a diagram illustrating gain-frequency characteristics of the main amplifier according to the first embodiment;
FIG. 4 is a diagram showing a compensation operation for temperature characteristics of the radiation detector according to the first embodiment.
FIG. 5 is a diagram showing a temperature coefficient of a capacitance value C of a negative feedback capacitance of a preamplifier according to a second embodiment of the present invention.
FIG. 6 is a diagram illustrating a peak value of an output voltage pulse of a preamplifier and a gain of the preamplifier according to the second embodiment.
FIG. 7 is a diagram showing a compensation operation for temperature characteristics of the radiation detector according to the second embodiment.
FIG. 8 is a diagram showing temperature characteristics of a negative feedback capacitance according to the third embodiment of the present invention.
FIG. 9 is a diagram showing a compensation operation for temperature characteristics of the radiation detector according to the third embodiment.
[Explanation of symbols]
1 radiation detector, 2 preamplifier, 3 main amplifier,
4 wave height discriminator, 5 rate meter, 21 input terminals,
22 amplifier, 23 negative feedback capacitance, 24 negative feedback resistance,
25 Output terminal.

Claims (3)

測定対象の放射線を検出し、検出量に対応した電流パルスに変換する放射線検出器、上記放射線検出器の電流パルスを電圧パルスに変換する前置増幅器及び上記前置増幅器の電圧パルスを増幅すると共に、高周波ノイズ成分をフィルタカットしてレートメータに入力する主増幅器を備えた放射線モニタにおいて、上記前置増幅器に正の温度係数の負帰還抵抗を設け、上記放射線検出器の温度特性にもとづいて上記主増幅器の出力電圧パルスの波高値に現れる負の温度係数を補償するようにしたことを特徴とする放射線モニタ。A radiation detector that detects radiation to be measured and converts it into a current pulse corresponding to the detected amount, a preamplifier that converts the current pulse of the radiation detector into a voltage pulse, and amplifies the voltage pulse of the preamplifier. In a radiation monitor including a main amplifier that filters out high-frequency noise components and inputs the same to a rate meter, a negative feedback resistor having a positive temperature coefficient is provided in the preamplifier, and A radiation monitor wherein a negative temperature coefficient appearing in a peak value of an output voltage pulse of a main amplifier is compensated. 測定対象の放射線を検出し、検出量に対応した電流パルスに変換する放射線検出器、上記放射線検出器の電流パルスを電圧パルスに変換する前置増幅器及び上記前置増幅器の電圧パルスを増幅すると共に、高周波ノイズ成分をフィルタカットしてレートメータに入力する主増幅器を備えた放射線モニタにおいて、上記前置増幅器に正の温度係数の負帰還抵抗と、負の温度係数の負帰還容量とを設け、上記放射線検出器の温度特性にもとづいて上記前置増幅器の出力電圧パルスの波高値に現れる負の温度係数を補償すると共に、波高値の補償の結果発生するパルス幅の負の温度特性も補償するようにし、上記主増幅器の出力電圧パルスの波高値とパルス幅の両方を安定化したことを特徴とする放射線モニタ。A radiation detector that detects radiation to be measured and converts it into a current pulse corresponding to the detected amount, a preamplifier that converts the current pulse of the radiation detector into a voltage pulse, and amplifies the voltage pulse of the preamplifier. In a radiation monitor including a main amplifier that filters a high-frequency noise component and inputs the filtered signal to a rate meter, the preamplifier is provided with a negative feedback resistor having a positive temperature coefficient and a negative feedback capacitance having a negative temperature coefficient, A negative temperature coefficient appearing in the peak value of the output voltage pulse of the preamplifier is compensated based on a temperature characteristic of the radiation detector, and a negative temperature characteristic of a pulse width generated as a result of the peak value compensation is also compensated. A radiation monitor characterized in that both the peak value and the pulse width of the output voltage pulse of the main amplifier are stabilized. 測定対象の放射線を検出し、検出量に対応した電流パルスに変換する放射線検出器、上記放射線検出器の電流パルスを電圧パルスに変換する前置増幅器及び上記前置増幅器の電圧パルスを増幅すると共に、高周波ノイズ成分をフィルタカットしてレートメータに入力する主増幅器を備え、上記放射線検出器は、所定の温度で上記前置増幅器の電圧パルスの波高値が極大値となるような温度係数を有する放射線モニタにおいて、上記前置増幅器の負帰還容量が所定の温度で極大値となる温度係数を有するようにすることにより、上記前置増幅器の出力電圧パルスに現れる温度係数を補償するようにしたことを特徴とする放射線モニタ。A radiation detector that detects radiation to be measured and converts it into a current pulse corresponding to the detected amount, a preamplifier that converts the current pulse of the radiation detector into a voltage pulse, and amplifies the voltage pulse of the preamplifier. The radiation detector has a temperature coefficient such that the peak value of the voltage pulse of the preamplifier becomes a maximum value at a predetermined temperature at a predetermined temperature. In the radiation monitor, the temperature coefficient appearing in the output voltage pulse of the preamplifier is compensated for by making the negative feedback capacity of the preamplifier have a temperature coefficient that becomes a maximum value at a predetermined temperature. A radiation monitor characterized by the following.
JP2003142353A 2003-05-20 2003-05-20 Radiation monitor Expired - Lifetime JP4540301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142353A JP4540301B2 (en) 2003-05-20 2003-05-20 Radiation monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142353A JP4540301B2 (en) 2003-05-20 2003-05-20 Radiation monitor

Publications (3)

Publication Number Publication Date
JP2004347368A true JP2004347368A (en) 2004-12-09
JP2004347368A5 JP2004347368A5 (en) 2006-07-06
JP4540301B2 JP4540301B2 (en) 2010-09-08

Family

ID=33530470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142353A Expired - Lifetime JP4540301B2 (en) 2003-05-20 2003-05-20 Radiation monitor

Country Status (1)

Country Link
JP (1) JP4540301B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088584A (en) * 2007-09-27 2009-04-23 Tdk Corp Amplifier circuit and optical pickup having the same
JP2009180660A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Radiation monitor
JP2013015439A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Radiation monitor
JP2014211380A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Dose rate measurement device
CN105487437A (en) * 2015-11-25 2016-04-13 上海工程技术大学 Master control system for micro displacement test data acquisition system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104833297A (en) * 2015-05-26 2015-08-12 上海工程技术大学 Signal processing unit for multichannel micro-strain data acquisition system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184565A (en) * 1982-04-21 1983-10-28 Horiba Ltd Radiation detector
JPS58223775A (en) * 1982-06-23 1983-12-26 Japan Atom Energy Res Inst Temperature dependency compensating circuit of scintillation detector
JPS60134319U (en) * 1984-02-16 1985-09-06 セイコーインスツルメンツ株式会社 Amplifier
JPS6163181U (en) * 1985-10-09 1986-04-28
JPS6191586A (en) * 1984-10-12 1986-05-09 Nippon Atom Ind Group Co Ltd Dose measuring apparatus
JPS6395376A (en) * 1986-10-09 1988-04-26 Aloka Co Ltd Radiation detector
JPH0238920A (en) * 1988-07-29 1990-02-08 Nec Corp Temperature compensated type amplifying circuit
JPH06138236A (en) * 1992-10-27 1994-05-20 Toshiba Glass Co Ltd Glass dosimeter
JPH0972755A (en) * 1995-09-05 1997-03-18 Fuji Electric Co Ltd Circuit for compensating temperature dependency of signal value
JP2000206255A (en) * 1999-01-07 2000-07-28 Toshiba Iyo System Engineering Kk X-ray detector
JP2001177063A (en) * 1999-12-16 2001-06-29 Mitsumi Electric Co Ltd Semiconductor device, and amplifying circuit, and active filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58188910A (en) * 1982-04-27 1983-11-04 Mitsubishi Electric Corp Charge amplifier

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184565A (en) * 1982-04-21 1983-10-28 Horiba Ltd Radiation detector
JPS58223775A (en) * 1982-06-23 1983-12-26 Japan Atom Energy Res Inst Temperature dependency compensating circuit of scintillation detector
JPS60134319U (en) * 1984-02-16 1985-09-06 セイコーインスツルメンツ株式会社 Amplifier
JPS6191586A (en) * 1984-10-12 1986-05-09 Nippon Atom Ind Group Co Ltd Dose measuring apparatus
JPS6163181U (en) * 1985-10-09 1986-04-28
JPS6395376A (en) * 1986-10-09 1988-04-26 Aloka Co Ltd Radiation detector
JPH0238920A (en) * 1988-07-29 1990-02-08 Nec Corp Temperature compensated type amplifying circuit
JPH06138236A (en) * 1992-10-27 1994-05-20 Toshiba Glass Co Ltd Glass dosimeter
JPH0972755A (en) * 1995-09-05 1997-03-18 Fuji Electric Co Ltd Circuit for compensating temperature dependency of signal value
JP2000206255A (en) * 1999-01-07 2000-07-28 Toshiba Iyo System Engineering Kk X-ray detector
JP2001177063A (en) * 1999-12-16 2001-06-29 Mitsumi Electric Co Ltd Semiconductor device, and amplifying circuit, and active filter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088584A (en) * 2007-09-27 2009-04-23 Tdk Corp Amplifier circuit and optical pickup having the same
JP2009180660A (en) * 2008-01-31 2009-08-13 Mitsubishi Electric Corp Radiation monitor
JP2013015439A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Radiation monitor
JP2014211380A (en) * 2013-04-19 2014-11-13 三菱電機株式会社 Dose rate measurement device
CN105487437A (en) * 2015-11-25 2016-04-13 上海工程技术大学 Master control system for micro displacement test data acquisition system

Also Published As

Publication number Publication date
JP4540301B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
KR102082108B1 (en) Devices, systems, and methods for measuring the internal impedance of a test battery using frequency response
KR101056003B1 (en) Extended Range RMS-DC Converters
KR20120065369A (en) Sensor device
CN104748844A (en) Signal processing system for four-quadrant photoelectric detector
US7292021B2 (en) Anomaly detector for vibratory angular rate sensor
US9134191B2 (en) Resistive device comprising a silicon-nanowire-comprising strain gauge and method for optimizing the electrical consumption of such a device
JP6218941B2 (en) Radiation measurement equipment
JP4540301B2 (en) Radiation monitor
CN112683398B (en) Solid laser power measurement calibration method and device
US20070069822A1 (en) Device for measuring very short current pulses
EP2189816B1 (en) Charge pulse detecting circuit
JP6372780B2 (en) Infrared detector
CN109307883B (en) Low-frequency temperature compensation regulating circuit of detector
CN114244363A (en) Microcurrent IV conversion device and method
Meyer et al. Effect of 1/f noise in integrating sensors and detectors
US6803773B1 (en) Method and circuit for detecting a change in inductance
JP5570475B2 (en) Radiation monitor
CN218301360U (en) Signal amplification circuit for gas detector and gas detector
US20030116696A1 (en) DC bias control circuit, optical receiver, and DC bias control method
Jagdish et al. A preamplifier-shaper-stretcher integrated circuit system for use with Germanium strip detectors
CN213417822U (en) Flow signal processing system of grouting machine
CN215263698U (en) Pican-level weak current detection circuit
CN218545572U (en) Temperature drift compensation circuit for inductive displacement sensor probe
JP4131912B2 (en) Radiation measurement equipment
JP2693203B2 (en) Semiconductor radiation measuring device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060516

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100622

R151 Written notification of patent or utility model registration

Ref document number: 4540301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term