JPH0972755A - Circuit for compensating temperature dependency of signal value - Google Patents

Circuit for compensating temperature dependency of signal value

Info

Publication number
JPH0972755A
JPH0972755A JP7227603A JP22760395A JPH0972755A JP H0972755 A JPH0972755 A JP H0972755A JP 7227603 A JP7227603 A JP 7227603A JP 22760395 A JP22760395 A JP 22760395A JP H0972755 A JPH0972755 A JP H0972755A
Authority
JP
Japan
Prior art keywords
input
resistance
signal
circuit
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7227603A
Other languages
Japanese (ja)
Inventor
Kenji Nakagome
謙司 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP7227603A priority Critical patent/JPH0972755A/en
Publication of JPH0972755A publication Critical patent/JPH0972755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Amplifiers (AREA)

Abstract

PROBLEM TO BE SOLVED: To compensate for the temperature dependency in the value of analog signal, e.g. a detection signal of sensor, accurately through simple circuitry. SOLUTION: A proportional amplifier circuit comprises an operational amplifier 10 receiving an input signal Si, to be compensated for the temperature dependency, through an input resistor 20 with a feedback resistor 30 being connected between the input and output thereof. A compensation resistor 32 having specified temperature dependency is built in at least one of the input resistor 20 or feedback resistor 30, e.g. the feedback resistor 30. According to the circuitry, the amplification factor of proportional amplification circuit is provided with temperature dependency and the temperature dependency in the value Vi of input signal Si is compensated or canceled accurately by the temperature dependency in the amplification factor of proportional amplification circuit being set by the resistance of compensation resistor 32. Consequently, an output signal So having a temperature independent value Vo can be taken out on the output side.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はセンサ等によるアナログ
な信号値がもつ温度依存性を補償するために集積回路装
置に組み込むに適する温度依存性補償回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a temperature dependency compensating circuit suitable for incorporation in an integrated circuit device for compensating the temperature dependency of an analog signal value from a sensor or the like.

【0002】[0002]

【従来の技術】種々な電子回路ではセンサによる検出信
号等を外部から受けてそのアナログな信号値に応じて所
定の動作等を行なうことが多いが、アナログ信号の場合
はその信号値にはほぼ例外なく温度依存性があるので、
制御動作等の基準として用いる前にそれをできるだけ正
確に補償しておく必要があり、このため本発明が対象と
する温度依存性補償回路が用いられる。
2. Description of the Related Art In various electronic circuits, a detection signal from a sensor or the like is received from the outside and a predetermined operation or the like is performed in accordance with an analog signal value thereof. Since there is no exception depending on temperature,
It is necessary to compensate it as accurately as possible before using it as a reference for control operation or the like, and for this reason, the temperature dependence compensation circuit targeted by the present invention is used.

【0003】この温度依存性の補償には所定の温度依存
性をもつ定電流や定電圧を利用するのが従来から通例に
なっており、例えば集積回路装置では周知のバンドギャ
ップ回路を用いて正や負の正確な温度依存性をもつ定電
流や定電圧を作り、これらをセンサの検出信号等と回路
的に重畳させることによりその信号値の温度依存性を補
償ないしは相殺するのがふつうである。
To compensate for this temperature dependence, it has been customary to use a constant current or a constant voltage having a predetermined temperature dependence. For example, in an integrated circuit device, a well-known bandgap circuit is used to make a positive correction. It is customary to compensate or cancel the temperature dependence of the signal value by creating a constant current or constant voltage with negative or accurate temperature dependence and superimposing these with the detection signal of the sensor in a circuit. .

【0004】[0004]

【発明が解決しようとする課題】しかし、このような従
来の温度依存性補償回路には定電流回路や定電圧回路を
組み込む必要があり、それぞれかなり複雑な回路構成に
なるだけでなく、補償を要する信号ごとに定電流や定電
圧の温度依存性を正確に適合させる必要がある。このた
め、温度依存性の補償が必要な入力信号数がとくに多い
集積回路装置では定電流回路や定電圧回路のためにかな
りのチップ面積が消費されてしまい、かつ入力信号ごと
にそれらに賦与すべき温度依存性の設定ないし調整に非
常に手間が掛かる問題がある。
However, it is necessary to incorporate a constant current circuit and a constant voltage circuit in such a conventional temperature dependence compensating circuit, and not only each has a considerably complicated circuit configuration, but also compensation is required. It is necessary to accurately adapt the temperature dependence of constant current and constant voltage for each required signal. Therefore, in an integrated circuit device in which the number of input signals for which temperature dependence needs to be compensated is particularly large, a considerable amount of chip area is consumed due to the constant current circuit or constant voltage circuit, and each input signal is allocated to them. There is a problem that it takes a lot of time to set or adjust the temperature dependency.

【0005】かかる事情から、本発明の目的は定電流回
路や定電圧回路を利用することなく簡単な回路構成で入
力信号のアナログ信号値がもつ温度依存性を補償できる
温度依存性補償回路を提供することにある。
Under these circumstances, an object of the present invention is to provide a temperature dependence compensating circuit capable of compensating for the temperature dependence of an analog signal value of an input signal with a simple circuit configuration without using a constant current circuit or a constant voltage circuit. To do.

【0006】[0006]

【課題を解決するための手段】本発明の温度依存性補償
回路によれば、信号値の温度依存性を補償すべき入力信
号を比例増幅回路に入力抵抗を介して与え、その入力側
と出力側との間に帰還抵抗を接続し、入力抵抗と帰還抵
抗の少なくともいずれかの一部に抵抗値が温度依存性を
もつ補償抵抗を組み込んで比例増幅回路の増幅率に所定
の温度依存性をもたせ、比例増幅回路の出力側から入力
信号の信号値の温度依存性が補償された出力信号を取り
出すことにより上述の目的を達成する。
According to the temperature dependence compensating circuit of the present invention, an input signal to be compensated for the temperature dependence of a signal value is given to a proportional amplification circuit through an input resistor, and its input side and output are provided. A feedback resistor is connected between the input side and the feedback side, and a compensating resistor whose resistance value depends on temperature is incorporated in at least part of the input resistance and feedback resistance to make the amplification factor of the proportional amplification circuit have a predetermined temperature dependence. In addition, the above-mentioned object is achieved by taking out the output signal in which the temperature dependence of the signal value of the input signal is compensated from the output side of the proportional amplification circuit.

【0007】なお、上記の補償抵抗を除いた入力抵抗と
帰還抵抗には抵抗値の温度依存性がごく少ないか同じも
のを用い、補償抵抗には抵抗値の温度依存性がそれと異
なるものを用いるのが有利である。比例増幅回路として
は通例のように演算増幅器を用いて入力信号を受けるそ
の一方の入力側に入力抵抗と帰還抵抗を接続し、その他
方の入力側には所定値の基準電圧を与えるのがよい。ま
た、これに入力信号を電圧信号の形で与えて出力信号も
電圧信号の形で取り出すのがよい。
It should be noted that the input resistance and the feedback resistance excluding the above-mentioned compensating resistors are the ones having very little or the same temperature dependency of the resistance value, and the compensation resistors having the different temperature dependency of the resistance value are used. Is advantageous. As a proportional amplification circuit, it is preferable to connect an input resistance and a feedback resistance to one input side that receives an input signal using an operational amplifier as usual and to give a reference voltage of a predetermined value to the other input side. . Further, it is preferable that the input signal is given to this in the form of a voltage signal and the output signal is also taken out in the form of a voltage signal.

【0008】補償抵抗としては温度依存性が正な抵抗,
集積回路装置の場合はいわゆる拡散抵抗を用いるのが便
利であり、入力信号の信号値が負の温度依存性をもつ場
合は補償抵抗を帰還抵抗に組み込んで比例増幅回路の増
幅率の正の温度依存性によりそれを補償し、入力信号の
信号値が正の温度依存性をもつ場合は補償抵抗を入力抵
抗に組み込んで比例増幅回路の増幅率の負の温度依存性
によりそれを補償するのが有利である。なお、上記の拡
散抵抗の温度依存性は半導体表面から拡散する抵抗層の
不純物濃度や不純物の種類により広範囲に調整できる。
As the compensation resistance, a resistance having a positive temperature dependence,
In the case of an integrated circuit device, it is convenient to use a so-called diffusion resistance. When the signal value of the input signal has a negative temperature dependence, a compensation resistance is incorporated in the feedback resistance to increase the positive temperature of the amplification factor of the proportional amplification circuit. When the signal value of the input signal has a positive temperature dependency, it is compensated by the dependency, and a compensation resistor is incorporated in the input resistor to compensate it by the negative temperature dependency of the amplification factor of the proportional amplification circuit. It is advantageous. The temperature dependence of the diffusion resistance can be adjusted over a wide range by the impurity concentration of the resistance layer diffusing from the semiconductor surface and the type of impurities.

【0009】[0009]

【作用】本発明は、集積回路装置等の電子回路が受ける
入力信号は増幅により信号値のレベルを揃えるのが望ま
しく,その際の増幅率に適宜な温度依存性をもたせれば
ごく簡単な回路構成で入力信号の信号値の温度依存性を
補償できる点に着目したものであり、前項の構成にいう
ようにこの増幅のため入力抵抗と入出力間に帰還抵抗を
備える比例増幅回路を用い、入力抵抗と帰還抵抗の少な
くともいずれかの一部に抵抗値が温度依存性をもつ補償
抵抗を組み込んで比例増幅回路の増幅率に入力信号の信
号値の温度依存性を正確に補償できる温度依存性をもた
せるようにしたものである。従って、本発明回路では入
力信号の信号値を増幅により所望のレベルに揃えると同
時にその温度依存性を正確に補償できる。
According to the present invention, it is desirable that an input signal received by an electronic circuit such as an integrated circuit device is made uniform in signal value level by amplification, and if the amplification factor at that time has an appropriate temperature dependency, a very simple circuit is provided. Focusing on the fact that the temperature dependency of the signal value of the input signal can be compensated for in the configuration, a proportional amplification circuit having a feedback resistor between the input resistance and the input / output is used for this amplification as described in the configuration in the previous section. Temperature dependence that can compensate the temperature dependence of the signal value of the input signal to the amplification factor of the proportional amplification circuit by incorporating a compensation resistance whose resistance value depends on the temperature in at least one of the input resistance and feedback resistance. It is intended to have. Therefore, in the circuit of the present invention, the signal value of the input signal can be adjusted to a desired level by amplification, and at the same time, its temperature dependence can be accurately compensated.

【0010】[0010]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。図1は補償抵抗を帰還抵抗に組み込む実施例
の回路図、図2は補償抵抗を入力抵抗に組み込む実施例
の回路図であり、図1と図2の実施例は入力信号の信号
値がそれぞれ負と正の温度依存性をもつ場合に適する。
これらの実施例では比例増幅のために演算増幅器を用
い, 抵抗類には拡散抵抗を集積回路装置に作り込むもの
とする。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram of an embodiment in which a compensation resistor is incorporated in a feedback resistor, and FIG. 2 is a circuit diagram of an embodiment in which a compensation resistor is incorporated in an input resistor. In the embodiments of FIGS. 1 and 2, the signal values of input signals are respectively Suitable for negative and positive temperature dependence.
In these embodiments, an operational amplifier is used for proportional amplification, and diffused resistors are incorporated in the integrated circuit device as resistors.

【0011】図1に示すように実施例では比例増幅に2
入力の演算増幅器10を用いるので、通例のようにその反
転入力に入力信号Siを入力抵抗20を介して与え, その非
反転入力に所定値の基準電圧Vrを与え, かつ演算増幅器
10の反転入力と出力との間に帰還抵抗30を接続して出力
側から出力信号Soを取り出す。周知のようにこの比例増
幅回路は電圧増幅形であり、入力信号Siと出力信号Soの
信号値である電圧値をそれぞれViとVoとする。なお、入
力信号Siの電圧値Voは例えば−3x10-4/度の負の温度
依存性をもっており、その温度係数をαで表すこととす
る。
In the embodiment as shown in FIG.
Since the input operational amplifier 10 is used, as usual, the input signal Si is applied to its inverting input through the input resistor 20, the reference voltage Vr of a predetermined value is applied to its non-inverting input, and the operational amplifier is
A feedback resistor 30 is connected between the inverting input of 10 and the output to take out the output signal So from the output side. As is well known, this proportional amplification circuit is a voltage amplification type, and the voltage values that are the signal values of the input signal Si and the output signal So are Vi and Vo, respectively. The voltage value Vo of the input signal Si has a negative temperature dependency of, for example, −3 × 10 −4 / degree, and its temperature coefficient is represented by α.

【0012】この比例増幅回路の増幅率ないしゲインを
Gとするとよく知られているように出力信号Soの電圧値
VoはVo=Vr+G (Vi−Vr) で表され、かつ入力抵抗20と
帰還抵抗30の抵抗値をそれぞれRiとRfとすると、 (1) G=Rf/Ri が成立する。集積回路装置に組み込む場合にはこの増幅
率Gが例えば数倍になるようにRiを数kΩ, Rfを十数k
Ωにそれぞれ設定するのがよい。
As is well known when the amplification factor or gain of this proportional amplification circuit is G, the voltage value of the output signal So is
Vo is represented by Vo = Vr + G (Vi-Vr), and if the resistance values of the input resistance 20 and the feedback resistance 30 are Ri and Rf, respectively, (1) G = Rf / Ri is established. When it is incorporated in an integrated circuit device, Ri is several kΩ and Rf is ten and several k so that the amplification factor G becomes several times, for example.
It is better to set each to Ω.

【0013】図1の実施例では帰還抵抗30の方に所定の
温度依存性をもつ補償抵抗32を組み込むことにより、比
例増幅回路の前述の増幅率Gに入力信号Siの電圧値Viの
温度依存性をちょうど補償できる温度依存性をもたせ
る。この補償を正確にするにはまず入力抵抗20および帰
還抵抗30内の補償抵抗32を除いた帰還抵抗部分31に同じ
温度依存性をもたせておくのが有利であり、例えばこれ
らをp形のボロンを同時拡散した 130Ω程度のシート抵
抗の拡散抵抗として温度係数βを+1x10-3/度程度に
揃えるのがよい。一方、補償抵抗32には不純物の濃度な
いし種類が異なるシート抵抗が例えば3kΩの拡散抵抗を
用い、その温度係数γを望ましくは上述の数倍以上の例
えば+7x10-3/度に設定するのがよい。
In the embodiment shown in FIG. 1, the feedback resistor 30 is provided with a compensating resistor 32 having a predetermined temperature dependence, so that the above-mentioned amplification factor G of the proportional amplification circuit depends on the temperature Vi of the voltage value Vi of the input signal Si. It has a temperature dependence that can exactly compensate for the sex. In order to make this compensation accurate, it is advantageous to make the feedback resistance portion 31 in the input resistance 20 and the feedback resistance 30 excluding the compensation resistance 32 have the same temperature dependence. As a diffusion resistance of a sheet resistance of about 130Ω that is simultaneously diffused, the temperature coefficient β should be set to about + 1 × 10 -3 / degree. On the other hand, as the compensation resistor 32, a diffusion resistor having a sheet resistance different in impurity concentration or type, for example, 3 kΩ is used, and its temperature coefficient γ is preferably set to several times or more, for example, + 7 × 10 −3 / degree. .

【0014】以上のように構成された図1の実施例にお
いて、補償抵抗32の抵抗値の適切な設定により入力信号
Siの電圧値Viがもつ温度依存性を補償でき、この際の正
確な補償のための抵抗値は厳密な方程式により決定すべ
きであるが、煩雑になるのでここでは近似計算によるこ
ととする。いま、補償抵抗32の抵抗値の帰還抵抗30の全
抵抗Rfに対する比率をk (ただし, k=0〜1) で便宜
上表すこととすると、補償抵抗32の抵抗値を kRf,帰還
抵抗30の残部である帰還抵抗部分31の抵抗値を(1-k)Rf
でそれぞれ表すことができる。
In the embodiment of FIG. 1 configured as described above, the input signal is adjusted by appropriately setting the resistance value of the compensation resistor 32.
The temperature dependence of the Si voltage value Vi can be compensated, and the resistance value for accurate compensation at this time should be determined by a strict equation, but since it becomes complicated, it is assumed here by approximate calculation. Assuming that the ratio of the resistance value of the compensation resistor 32 to the total resistance Rf of the feedback resistor 30 is represented by k (where k = 0 to 1) for convenience, the resistance value of the compensation resistor 32 is kRf and the remainder of the feedback resistor 30. The resistance value of the feedback resistor part 31 is (1-k) Rf
Can be represented by

【0015】さらに温度上昇をdTとすると前述の温度係
数によって入力信号Siの電圧値ViはVi(1+αdT) に変わ
るが、同時に入力抵抗20の抵抗値Riが Ri(1+βdT) に,
帰還抵抗部分31の抵抗値(1-k)Rf が(1-k)Rf(1+βdT)
に, 補償抵抗32の抵抗値 kRfがkRf(1+γdT) にそれぞれ
変化するから、 (1)の増幅率Gの式にこれらの変化後の
抵抗値を入れて一次近似をとると、温度上昇時の増幅率
をGT として、 (2) GT /G=1+k(γ−β) dT が成立する。これは増幅率Gがもつ温度依存性を示す式
であり、本発明では入力信号Siの電圧値Viの温度依存性
をこの増幅率Gの温度依存性により補償するのであるか
ら、次式が成立する。
Further, if the temperature rise is dT, the voltage value Vi of the input signal Si changes to Vi (1 + αdT) due to the above-mentioned temperature coefficient, but at the same time, the resistance value Ri of the input resistor 20 becomes Ri (1 + βdT),
The resistance value (1-k) Rf of the feedback resistor part 31 is (1-k) Rf (1 + βdT)
Since the resistance value kRf of the compensating resistor 32 changes to kRf (1 + γdT) respectively, if the resistance values after these changes are added to the formula of the amplification factor G in (1) and the first-order approximation is taken, the temperature rise (2) G T / G = 1 + k (γ−β) dT is established, where the amplification factor at time is G T. This is an expression showing the temperature dependence of the amplification factor G. In the present invention, the temperature dependence of the voltage value Vi of the input signal Si is compensated by the temperature dependence of the amplification factor G, and therefore the following formula is established. To do.

【0016】−α=k(γ−β) これから補償抵抗32の抵抗値の正の温度係数γが入力抵
抗20や帰還抵抗部分31の抵抗値の温度係数βより大きい
場合は入力信号Siの電圧値Viの負な温度係数αを補償で
きることがわかる。このために必要な補償抵抗32の抵抗
値は、 (3) k=−α/(γ−β) の式により決定できる。なお、前述のようにα=−3x
10-4, β=+1x10-3,γ=+7x10-3である場合はk
=0.05になり、つまり補償抵抗32の抵抗値 kRfを帰還抵
抗30の全抵抗値Rfの5%に設定すればよいことになる。
-Α = k (γ-β) If the positive temperature coefficient γ of the resistance value of the compensation resistor 32 is larger than the temperature coefficient β of the resistance value of the input resistor 20 or the feedback resistor portion 31, the voltage of the input signal Si is It can be seen that the negative temperature coefficient α of the value Vi can be compensated. The resistance value of the compensation resistor 32 required for this purpose can be determined by the equation (3) k = -α / (γ-β). As described above, α = −3x
10 -4, β = + 1x10 -3 , when a gamma = + 7x10 -3 is k
= 0.05, that is, the resistance value kRf of the compensation resistor 32 should be set to 5% of the total resistance value Rf of the feedback resistor 30.

【0017】次の図2に示す実施例では入力抵抗20の方
に補償抵抗22を組み込むことにより入力信号Siの電圧値
Viの温度依存性を補償する。この実施例でも入力抵抗20
内の残りの入力抵抗部分21と帰還抵抗30とに抵抗値の温
度係数βが同じものを用い、補償抵抗21に抵抗値の正の
温度係数γがそれより大きいものを用いるとすると、補
償抵抗22の抵抗値の入力抵抗20の全抵抗Riに対する比率
をkとして前実施例と同様にして温度上昇時の増幅率G
T は近似的に、 (4) GT /G=1−k(γ−β) dT で表わされ、入力信号Siの電圧値Viの温度依存性をこの
増幅率Gの温度依存性により補償するのであるから、α
=k(γ−β) が成立する。これから、この図2の実施例
において温度補償に必要な補償抵抗32の抵抗値は、 (5) k=α/(γ−β) によって決定できることになる。
In the next embodiment shown in FIG. 2, the voltage value of the input signal Si is set by incorporating the compensation resistor 22 into the input resistor 20.
Compensate the temperature dependence of Vi. Also in this embodiment, the input resistance 20
If the same temperature coefficient β of resistance value is used for the remaining input resistance portion 21 and feedback resistance 30 in the above and the positive temperature coefficient γ of resistance value is larger than that for the compensation resistance 21, Assuming that the ratio of the resistance value of 22 to the total resistance Ri of the input resistance 20 is k, the amplification factor G at the time of temperature rise is the same as in the previous embodiment.
T is approximately represented by (4) G T / G = 1-k (γ-β) dT, and the temperature dependence of the voltage value Vi of the input signal Si is compensated by the temperature dependence of the amplification factor G. Therefore, α
= K (γ−β) holds. From this, the resistance value of the compensation resistor 32 necessary for temperature compensation in the embodiment of FIG. 2 can be determined by (5) k = α / (γ−β).

【0018】以上からわかるように、この図2の実施例
では補償抵抗22の抵抗値の正の温度係数γを入力抵抗部
分21や帰還抵抗30の抵抗値の温度係数βより大きく設定
した場合、入力信号Siの電圧値Viの図1の実施例とは逆
な正の温度係数αを補償することができる。温度係数α
とβとγが前述のような値である場合に補償抵抗22の抵
抗値 kRiを入力抵抗20の全抵抗値Riの5%に設定すれば
よい点は前の実施例と同じである。
As can be seen from the above, in the embodiment of FIG. 2, when the positive temperature coefficient γ of the resistance value of the compensation resistor 22 is set to be larger than the temperature coefficient β of the resistance value of the input resistance portion 21 and the feedback resistor 30, It is possible to compensate the positive temperature coefficient α of the voltage value Vi of the input signal Si, which is the reverse of the embodiment shown in FIG. Temperature coefficient α
Similar to the previous embodiment, the resistance value kRi of the compensation resistor 22 may be set to 5% of the total resistance value Ri of the input resistor 20 when β and γ are the above values.

【0019】本発明は以上説明した実施例に限らず種々
な態様で実施をすることができる。例えば、実施例では
補償抵抗22や32が正の温度係数γをもつとしたが、逆に
負の温度係数をもたせることによって図1の回路例では
入力信号Siの電圧値Viがもつ正な温度依存性を, 図2の
回路例では負な温度依存性をそれぞれ補償することがで
きる。集積回路装置の場合はこれら補償抵抗22や32とし
て例えばn形の多結晶シリコン抵抗を用いることができ
る。
The present invention is not limited to the embodiments described above, and can be implemented in various modes. For example, although the compensation resistors 22 and 32 have the positive temperature coefficient γ in the embodiment, on the contrary, by giving the negative temperature coefficient to the positive temperature coefficient Vi of the voltage value Vi of the input signal Si in the circuit example of FIG. The dependency, in the circuit example of FIG. 2, can be compensated for the negative temperature dependency. In the case of an integrated circuit device, for example, n-type polycrystalline silicon resistors can be used as the compensation resistors 22 and 32.

【0020】さらに、前述の数値例では補償抵抗22や32
の温度係数γがその他の抵抗の温度係数βの数倍以上も
大きいため入力抵抗20や帰還抵抗30の全抵抗値に対する
補償抵抗22や32の抵抗値の比率kが小さくて済んだが、
温度係数γとβの差が小さくかつ入力信号Siの電圧値Vi
の温度係数αが大きくて (3)や(5) 式による比率kが1
を越えてしまう場合は、補償抵抗22と32に温度係数の正
負が逆なものを用いて入力抵抗20と帰還抵抗30にそれぞ
れ組み込むことができる。この場合の補償抵抗22と32の
抵抗値の温度係数をγi とγf としこれらの入力抵抗20
と帰還抵抗30の全抵抗値に対する比率を同じkとする
と、温度係数βとはほぼ無関係に、 (6) k=α/ (γi −γf ) により比率kを決定することができる。
Further, in the above-mentioned numerical example, the compensation resistors 22 and 32 are
Since the temperature coefficient γ of is larger than the temperature coefficient β of other resistors by several times or more, the ratio k of the resistance values of the compensating resistors 22 and 32 to the total resistance values of the input resistor 20 and the feedback resistor 30 can be small.
The difference between the temperature coefficients γ and β is small and the voltage value Vi of the input signal Si is
Has a large temperature coefficient α and the ratio k according to Eqs. (3) and (5) is 1
In the case of exceeding, the compensation resistors 22 and 32 can be incorporated in the input resistor 20 and the feedback resistor 30, respectively, by using those having positive and negative temperature coefficients. In this case, the temperature coefficients of the resistance values of the compensating resistors 22 and 32 are γ i and γ f , respectively.
If the ratio of the feedback resistance 30 and the total resistance of the feedback resistor 30 is k, the ratio k can be determined by (6) k = α / (γ i −γ f ) regardless of the temperature coefficient β.

【0021】[0021]

【発明の効果】以上説明したとおり本発明の温度依存性
補償回路では、信号値が温度依存性をもつ入力信号を入
力抵抗を介して受け, 入出力間に帰還抵抗を接続した比
例増幅回路を利用し、入力抵抗と帰還抵抗の少なくとも
いずれかの一部に抵抗値が温度依存性をもつ補償抵抗を
組み込んで比例増幅回路の増幅率に所定の温度依存性を
与え、それにより入力信号の信号値の温度依存性を補償
した出力信号を比例増幅回路から取り出すことによって
次の効果が得られる。
As described above, in the temperature dependence compensation circuit of the present invention, a proportional amplification circuit in which an input signal whose signal value has temperature dependence is received via an input resistance and a feedback resistance is connected between the input and output is provided. Incorporating a compensating resistor whose resistance value has temperature dependence in at least one of the input resistance and feedback resistance to give a predetermined temperature dependence to the amplification factor of the proportional amplification circuit. The following effects can be obtained by taking out the output signal in which the temperature dependence of the value is compensated from the proportional amplification circuit.

【0022】(a) 補償抵抗の抵抗値をその温度係数と入
力信号の信号値がもつ温度係数とに応じてごく簡単に設
定するだけで比例増幅回路の増幅率にもたせる温度依存
性を設定し、それにより入力信号の温度依存性を正確に
補償して出力信号を全く温度依存性がない信号値で取り
出すことができる。 (b) 入力信号の信号値を所定レベルに揃えるためふつう
必要になる増幅回路を利用して入力信号の信号値がもつ
温度依存性を補償するので、従来技術のように定電流回
路や定電圧回路を追加する必要がなくなり、ごく簡単な
回路構成で入力信号の信号値を温度補償することができ
る。
(A) By setting the resistance value of the compensation resistor according to its temperature coefficient and the temperature coefficient of the signal value of the input signal very simply, the temperature dependence to be given to the amplification factor of the proportional amplification circuit is set. As a result, the temperature dependence of the input signal can be accurately compensated, and the output signal can be extracted with a signal value having no temperature dependence. (b) Since the temperature dependence of the signal value of the input signal is compensated for by using the amplifier circuit that is usually required to adjust the signal value of the input signal to a predetermined level, the constant current circuit or constant voltage circuit as in the conventional technology is used. It is not necessary to add a circuit, and the signal value of the input signal can be temperature-compensated with a very simple circuit configuration.

【0023】(c) 温度補償に比例増幅回路を用いるの
で、入力信号の信号値の温度依存性を補償すると同時に
それを正確に比例増幅した出力信号を取り出すことがで
きる。しかも、前述の (3)式や (5)式や (6)式からわか
るように温度補償に入力抵抗や帰還抵抗の抵抗値はとく
に関係しないので、補償条件とは独立に比例増幅回路の
増幅率を設定することができる。
(C) Since the proportional amplification circuit is used for temperature compensation, the temperature dependence of the signal value of the input signal can be compensated, and at the same time, the output signal obtained by accurately proportionally amplifying it can be taken out. Moreover, as can be seen from equations (3), (5), and (6) above, the resistance values of the input resistance and feedback resistance are not particularly related to temperature compensation, so amplification of the proportional amplification circuit is independent of the compensation conditions. You can set the rate.

【0024】なお、補償抵抗を除く入力抵抗と帰還抵抗
に抵抗値の温度依存性が同じものを用い、補償抵抗には
抵抗値の温度依存性がそれらと異なるものを用いる本発
明の実施態様は、補償抵抗にもたせる抵抗値をごく簡単
に設定できる利点を有する。また、比例増幅回路に演算
増幅器を用いて入力信号を受けるその一方の入力側に入
力抵抗と帰還抵抗を接続し、他方の入力側に所定値の基
準電圧を賦与する実施態様は、比例増幅回路の出力信号
の信号値レベルをそれを受ける回路による信号処理に便
利なように基準電圧値によって自由に選択できる利点が
ある。
It should be noted that the embodiment of the present invention in which the input resistance and the feedback resistance other than the compensation resistance have the same temperature dependence of the resistance value and the compensation resistance whose resistance value has a different temperature dependence is used. The advantage is that the resistance value given to the compensation resistor can be set very easily. Further, an embodiment in which an input amplifier and a feedback resistor are connected to one input side of the proportional amplification circuit that receives an input signal using an operational amplifier and a reference voltage of a predetermined value is applied to the other input side is a proportional amplification circuit. There is an advantage that the signal value level of the output signal can be freely selected according to the reference voltage value so as to be convenient for signal processing by the circuit receiving it.

【0025】さらに、正の温度係数をもつ補償抵抗を帰
還抵抗に組み込んで比例増幅回路の増幅率に正の温度依
存性をもたせる態様は入力信号の信号値が負の温度依存
性の場合に, これを入力抵抗に組み込んで比例増幅回路
の増幅率に負の温度依存性をもたせる態様は入力信号の
信号値が正の温度依存性の場合に対しそれぞれとくに有
利であり、集積回路装置の場合は補償抵抗用の拡散抵抗
にその不純物濃度等の選択により容易かつ正確に正の温
度係数をもたせ得る利点がある。
Further, a mode in which a compensating resistor having a positive temperature coefficient is incorporated in the feedback resistor so that the amplification factor of the proportional amplification circuit has a positive temperature dependency, when the signal value of the input signal has a negative temperature dependency, The mode in which this is incorporated into the input resistor to make the amplification factor of the proportional amplification circuit have a negative temperature dependence is particularly advantageous in the case where the signal value of the input signal has a positive temperature dependence, and in the case of an integrated circuit device, There is an advantage that the diffusion resistance for the compensation resistance can easily and accurately have a positive temperature coefficient by selecting the impurity concentration and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】補償抵抗を帰還抵抗に組み込む本発明の実施例
回路図である。
FIG. 1 is a circuit diagram of an embodiment of the present invention in which a compensation resistor is incorporated in a feedback resistor.

【図2】補償抵抗を入力抵抗に組み込む本発明の実施例
回路図である。
FIG. 2 is a circuit diagram of an embodiment of the present invention in which a compensation resistor is incorporated in an input resistor.

【符号の説明】[Explanation of symbols]

10 演算増幅器 20 入力抵抗 22 入力抵抗に組み込まれた補償抵抗 30 帰還抵抗 32 帰還抵抗に組み込まれた補償抵抗 Ri 入力抵抗の抵抗値 kRi 入力抵抗に組み込まれた補償抵抗の抵抗値 Rf 帰還抵抗の抵抗値 kRf 帰還抵抗に組み込まれた補償抵抗の抵抗値 Si 入力信号 So 出力信号 Vi 入力信号の電圧値 Vo 出力信号の電圧値 Vr 基準電圧 10 Operational amplifier 20 Input resistance 22 Compensation resistance incorporated in input resistance 30 Feedback resistance 32 Compensation resistance incorporated in feedback resistance Ri Input resistance value kRi Compensation resistance resistance value incorporated in input resistance Rf Feedback resistance resistance Value kRf Resistance value of compensation resistor incorporated in feedback resistor Si input signal So output signal Vi Input signal voltage value Vo Output signal voltage value Vr Reference voltage

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】信号値が温度依存性をもつ入力信号を入力
抵抗を介して受ける比例増幅回路として構成され、その
入力側と出力側との間に帰還抵抗を接続し、入力抵抗と
帰還抵抗の少なくともいずれかの一部に抵抗値が所定の
温度依存性をもつ補償抵抗を組み込み、比例増幅回路の
出力側から増幅率の温度依存性により入力信号の信号値
の温度依存性を補償した出力信号を取り出すようにした
ことを特徴とする信号値の温度依存性補償回路。
1. A proportional amplification circuit configured to receive an input signal whose signal value depends on temperature via an input resistor, wherein a feedback resistor is connected between an input side and an output side of the input resistor and the feedback resistor. An output that compensates the temperature dependence of the signal value of the input signal by the temperature dependence of the amplification factor from the output side of the proportional amplification circuit by incorporating a compensation resistance whose resistance value has a predetermined temperature dependence in at least one part of A temperature-dependent compensation circuit for signal values, which is characterized in that a signal is taken out.
【請求項2】請求項1に記載の回路において、温度依存
性が正な補償抵抗を帰還抵抗に組み込んで比例増幅回路
の増幅率の正の温度依存性により入力信号の信号値の負
の温度依存性を補償した出力信号を取り出すようにした
ことを特徴とする信号値の温度依存性補償回路。
2. The circuit according to claim 1, wherein a compensation resistor having a positive temperature dependency is incorporated in a feedback resistor, and a positive temperature dependency of an amplification factor of a proportional amplification circuit causes a negative temperature of a signal value of an input signal. A temperature dependency compensating circuit for a signal value, wherein an output signal whose dependency is compensated is taken out.
【請求項3】請求項1に記載の回路において、温度依存
性が正な補償抵抗を入力抵抗に組み込んで比例増幅回路
の増幅率の負の温度依存性により入力信号の信号値の正
の温度依存性を補償した出力信号を取り出すようにした
ことを特徴とする信号値の温度依存性補償回路。
3. The circuit according to claim 1, wherein a compensation resistor having a positive temperature dependency is incorporated in the input resistor, and the positive temperature of the signal value of the input signal is increased by the negative temperature dependency of the amplification factor of the proportional amplification circuit. A temperature dependency compensating circuit for a signal value, wherein an output signal whose dependency is compensated is taken out.
【請求項4】請求項1に記載の回路において、補償抵抗
を除いた入力抵抗と帰還抵抗には抵抗値の温度依存性が
同じものを用い、補償抵抗には抵抗値の温度依存性がそ
れらと異なるものを用いるようにしたことを特徴とする
信号値の温度依存性補償回路。
4. The circuit according to claim 1, wherein the input resistance and the feedback resistance excluding the compensation resistance have the same temperature dependence of resistance value, and the compensation resistance has the temperature dependence of resistance value. A circuit for compensating for temperature dependence of signal value, characterized in that a circuit different from the above is used.
【請求項5】請求項1に記載の回路において、比例増幅
回路に演算増幅器を用いて入力信号を受けるその一方の
入力側に入力抵抗および帰還抵抗を接続し、他方の入力
側に所定値の基準電圧を与えるようにしたことを特徴と
する信号値の温度依存性補償回路。
5. The circuit according to claim 1, wherein an operational amplifier is used in the proportional amplification circuit and an input resistance and a feedback resistance are connected to one input side of the input side for receiving an input signal, and the other input side has a predetermined value. A temperature-dependent compensation circuit for a signal value, characterized in that a reference voltage is applied.
JP7227603A 1995-09-05 1995-09-05 Circuit for compensating temperature dependency of signal value Pending JPH0972755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7227603A JPH0972755A (en) 1995-09-05 1995-09-05 Circuit for compensating temperature dependency of signal value

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7227603A JPH0972755A (en) 1995-09-05 1995-09-05 Circuit for compensating temperature dependency of signal value

Publications (1)

Publication Number Publication Date
JPH0972755A true JPH0972755A (en) 1997-03-18

Family

ID=16863533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7227603A Pending JPH0972755A (en) 1995-09-05 1995-09-05 Circuit for compensating temperature dependency of signal value

Country Status (1)

Country Link
JP (1) JPH0972755A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246849A (en) * 2001-02-13 2002-08-30 Mitsumi Electric Co Ltd Temperature characteristic setting method and amplifier circuit using the same
JP2004347368A (en) * 2003-05-20 2004-12-09 Mitsubishi Electric Corp Radiation monitor
JP2007240406A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Distortion detection apparatus
US20160243825A1 (en) * 2015-02-19 2016-08-25 Seiko Epson Corporation Liquid discharging apparatus and control method of liquid discharging apparatus
US20170021616A1 (en) * 2015-07-23 2017-01-26 Seiko Epson Corporation Liquid discharge apparatus, head unit, control unit, and method for controlling liquid discharge apparatus
US20170021615A1 (en) * 2015-07-23 2017-01-26 Seiko Epson Corporation Liquid discharge apparatus, head unit, control unit, and method for controlling liquid discharge apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246849A (en) * 2001-02-13 2002-08-30 Mitsumi Electric Co Ltd Temperature characteristic setting method and amplifier circuit using the same
JP2004347368A (en) * 2003-05-20 2004-12-09 Mitsubishi Electric Corp Radiation monitor
JP4540301B2 (en) * 2003-05-20 2010-09-08 三菱電機株式会社 Radiation monitor
JP2007240406A (en) * 2006-03-10 2007-09-20 Matsushita Electric Ind Co Ltd Distortion detection apparatus
US20160243825A1 (en) * 2015-02-19 2016-08-25 Seiko Epson Corporation Liquid discharging apparatus and control method of liquid discharging apparatus
US20170021616A1 (en) * 2015-07-23 2017-01-26 Seiko Epson Corporation Liquid discharge apparatus, head unit, control unit, and method for controlling liquid discharge apparatus
US20170021615A1 (en) * 2015-07-23 2017-01-26 Seiko Epson Corporation Liquid discharge apparatus, head unit, control unit, and method for controlling liquid discharge apparatus
CN106364161A (en) * 2015-07-23 2017-02-01 精工爱普生株式会社 A head unit, a control unit, a liquid ejecting apparatus and a method for controlling the liquid ejecting apparatus
US9796179B2 (en) * 2015-07-23 2017-10-24 Seiko Epson Corporation Liquid discharge apparatus, head unit, control unit, and method for controlling liquid discharge apparatus
US9815280B2 (en) * 2015-07-23 2017-11-14 Seiko Epson Corporation Liquid discharge apparatus, head unit, control unit, and method for controlling liquid discharge apparatus
CN106364161B (en) * 2015-07-23 2018-08-03 精工爱普生株式会社 Head unit, control unit, liquid ejection apparatus and its control method

Similar Documents

Publication Publication Date Title
US4556807A (en) Pressure transducer with temperature compensation circuit
EP2109024B1 (en) Semiconductor device with temperature compensation circuit
US5042307A (en) Amplifying compensation circuit for semiconductor
US4910455A (en) Non-intrusive current measuring circuit
US20090201067A1 (en) Reference voltage generating circuit, integrated circuit device, and signal processing apparatus
US4813272A (en) Semiconductor pressure sensor
EP0543056B1 (en) Temperature dependent current generator
US4558238A (en) Pressure transducer using integrated circuit elements
US7168312B2 (en) Heating resistor type air flow meter
US6825709B2 (en) Temperature compensation circuit for a hall element
JPH0972755A (en) Circuit for compensating temperature dependency of signal value
US20030080807A1 (en) General-purpose temperature compensating current master-bias circuit
US6316990B1 (en) Constant current supply circuit
JPH07113864B2 (en) Current source device
US20030048128A1 (en) Electronic circuit for generating an output voltage having a defined temperature dependence
US6101883A (en) Semiconductor pressure sensor including a resistive element which compensates for the effects of temperature on a reference voltage and a pressure sensor
US6011422A (en) Integrated differential voltage amplifier with programmable gain and input offset voltage
US5237868A (en) Thermal flow sensor for compensating gradient of flow rate characteristics
US7333038B1 (en) Eliminating the effects of the temperature coefficients of series resistance on temperature sensors
JP2610736B2 (en) Amplification compensation circuit of semiconductor pressure sensor
JPH0564864B2 (en)
JPH0371031A (en) Semiconductor pressure sensor
JPS58123780A (en) Transducer for strain gage of semiconductor
US6407625B1 (en) Method and system for generating multiple bias currents
JPH01179511A (en) Electronic volume circuit