JP2004347166A - Cold storage device using microcapsule, and heat exchanger - Google Patents

Cold storage device using microcapsule, and heat exchanger Download PDF

Info

Publication number
JP2004347166A
JP2004347166A JP2003142016A JP2003142016A JP2004347166A JP 2004347166 A JP2004347166 A JP 2004347166A JP 2003142016 A JP2003142016 A JP 2003142016A JP 2003142016 A JP2003142016 A JP 2003142016A JP 2004347166 A JP2004347166 A JP 2004347166A
Authority
JP
Japan
Prior art keywords
heat
cold storage
heat transfer
cold
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003142016A
Other languages
Japanese (ja)
Inventor
Kenji Seki
建司 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003142016A priority Critical patent/JP2004347166A/en
Publication of JP2004347166A publication Critical patent/JP2004347166A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cold storage device and a heat exchanger with high heat exchange efficiency during cold storage and cold dissipation capable of corresponding to various temperature ranges. <P>SOLUTION: The cold storage device has a cold storage material comprising the microcapsule including a phase change substance wherein absorption and dissipation of latent heat are caused in response to temperature and its phase change temperature is from -160°C to 0°C; and the heat exchanger has the cold storage device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、0℃以下の冷熱を潜熱型マイクロカプセルを用いて蓄冷する蓄冷装置および熱交換器に関する。
【0002】
【従来の技術】
冷熱を有効に利用するための蓄冷技術としては、0℃付近では氷蓄熱技術、それ以下の温度領域では例えばボイルオフガスの再液化等の、相変化物質を用いた潜熱型蓄冷技術がある(例えば、特許文献1〜3参照)。しかしながら、氷蓄熱の場合には温度的な問題があり、相変化物質を使用する場合には直接熱交換できないことによる効率的な問題等があった。
【0003】
【特許文献1】
特開平5−263997号公報
【0004】
【特許文献2】
特開平5−263998号公報
【0005】
【特許文献3】
特開平8−270897号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、各種温度領域に対応が可能であり、かつ蓄冷および放冷の際の熱交換効率が高い蓄冷装置および熱交換器を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、鋭意検討を行った結果、相変化温度が0℃以下の相変化物質を内包したマイクロカプセル型潜熱蓄冷材を用いて蓄冷および熱交換することにより、上記目的が達成されることを見出した。
【0008】
すなわち、本発明は、下記に示すとおりの蓄冷装置および熱交換器を提供するものである。
項1. 温度に応じて潜熱の吸収および放出を生じる相変化物質であって、その相変化温度が−160℃〜0℃である相変化物質を内包するマイクロカプセルからなる蓄冷材を有する蓄冷装置。
項2. 相変化物質の相変化温度が−160℃以上−60℃未満である項1に記載の蓄冷装置。
項3. 冷熱源からの冷熱媒体を前記蓄冷材に接触通過させて蓄冷する項1または2に記載の蓄冷装置。(図1,3)
項4. 冷熱媒体が流れる伝熱管が前記蓄冷材に接触して設けられ、冷熱源からの冷熱媒体が該伝熱管の内部を流れることにより、該伝熱管を介して蓄冷材に蓄冷される項1または2に記載の蓄冷装置。(図2)
項5. 前記マイクロカプセルに対して非相溶性であり、冷熱吸収時に気体から液体に変化し、冷熱放出時に液体から気体に変化する伝熱冷媒体を有する項1または2に記載の蓄冷装置。(図4,5)
項6. 冷熱媒体が流れる伝熱管が蓄冷装置内の上部に設けられ、該伝熱管と前記伝熱冷媒体を介して蓄冷材に蓄冷させる項5に記載の蓄冷装置。(図5)
項7. 項3に記載の蓄冷装置を有し、温熱源からの温熱媒体を前記蓄冷材に接触通過させて、前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。(図1)
項8. 項3に記載の蓄冷装置を有し、温熱媒体が流れる伝熱管が前記蓄冷材に接触して設けられ、温熱源からの温熱媒体が該伝熱管の内部を流れることにより、該伝熱管を介して前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。(図3)
項9. 項4に記載の蓄冷装置を有し、温熱源からの温熱媒体を前記蓄冷材に接触通過させて、前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。(図2)
項10. 項5に記載の蓄冷装置を有し、温熱媒体が流れる伝熱管が前記伝熱冷媒体に接触して設けられ、温熱源からの温熱媒体が該伝熱管の内部を流れることにより、該伝熱管と前記伝熱冷媒体を介して前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。(図4,5)
項11. 項6に記載の蓄冷装置を有し、温熱媒体が流れる伝熱管が前記伝熱冷媒体に接触して下部に設けられ、温熱源からの温熱媒体が該伝熱管の内部を流れることにより、該伝熱管と前記伝熱冷媒体を介して前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。(図5)
【0009】
【発明の実施の形態】
本発明で用いられるマイクロカプセルは、相変化物質を皮膜形成材により内包したものである。
【0010】
マイクロカプセルの製造方法としては、複合エマルジョン法によるカプセル化法(特開昭62−1452号公報)、蓄熱材粒子の表面に熱可塑性樹脂を噴霧する方法(特開昭62−45680号公報)、蓄熱材粒子の表面に液中で熱可塑性樹脂を形成する方法(特開昭62−149334号公報)、蓄熱材粒子の表面でモノマーを重合させ被覆する方法(特開昭62−225241号公報)、界面重縮合反応によるポリアミド皮膜マイクロカプセルの製法(特開平2−258052号公報)等の一般的な方法を用いることができる。
【0011】
マイクロカプセルの皮膜形成材としては、界面重合法、インサイチュー法等の手法で得られる、ポリスチレン、ポリアクリロニトリル、ポリアミド、ポリアクリルアミド、エチルセルロース、ポリウレタン、アミノプラスト樹脂、またゼラチンとカルボキシメチルセルロース若しくはアラビアゴムとのコアセルベーション法を利用した合成あるいは天然の樹脂が用いられるが、本発明の如き相変化物質を内包するマイクロカプセルの場合には、インサイチュー法によるメラミンホルマリン樹脂および尿素ホルマリン樹脂が好ましい。
【0012】
本発明で用いられるマイクロカプセルの平均粒子径は0.5〜1000μm、好ましくは1〜500μmに設定することにより物理的圧力にも破壊することのないマイクロカプセルが得られる。この粒子径の範囲より小さいと耐熱性が低下し、またこの範囲より大きいと物理的強度が低下するため好ましくない。
【0013】
本発明で用いられる相変化物質は、相変化温度(例えば、融点)が−160℃〜0℃の範囲の物質であり、具体的には脂肪族炭化水素化合物(パラフィン類化合物)や、プロピオン酸、カプロン酸、リノール酸等の脂肪酸類、ベンジルアルコール等のアルコール類、ジヘプチルフタレート、ジブチルアジペートメチルアセチルリシノレート等のエステル化合物、および無機塩類などが使用可能であるが、炭素数が5〜13の直鎖の脂肪族炭化水素化合物は蓄熱容量も多いために好ましい相変化物質として挙げられる。さらに本発明において好ましいマイクロカプセル化法であるインサイチュー法のメラミンホルマリン樹脂、尿素ホルマリン樹脂と組み合わせることにより、緻密性の高い高強度のマイクロカプセルが得られるために好ましい相変化物質として挙げられる。これらの相変化物質中には、必要に応じて過冷却防止材、比重調節材、劣化防止剤等を添加することができる。
【0014】
相変化温度が−160℃以上−60℃未満の範囲の相変化物質としては、炭素数が5〜7の直鎖の脂肪族炭化水素化合物が挙げられ、低温用として好ましい。
【0015】
図1〜5は、本発明の蓄冷装置および熱交換器の実施の形態の概略的な構成を示す。
【0016】
図1においては、蓄冷装置5に蓄冷材6が充填されている。蓄冷装置5には、冷熱源から出た冷熱媒体が通って蓄冷装置5に入るための配管1、および蓄冷装置5から出た冷熱媒体が通る配管2が設けられている。また、蓄冷装置5には、温熱源から出た温熱媒体が通って蓄冷装置5に入るための配管3、および蓄冷装置5から出た温熱媒体が通る配管4が設けられている。配管1を通って蓄冷装置5に入った冷熱媒体は、蓄冷装置5に充填されている蓄冷材6に接触しながら通過し、下方の配管2を通って出ていく。冷熱媒体が蓄冷材6に接触することにより、冷熱媒体が有していた冷熱が蓄冷材6に直接的に蓄冷される。冷熱媒体としては、液化天然ガス、低温天然ガス等を使用することができる。次いで、配管3を通って温熱媒体が蓄冷装置5に入り、蓄冷装置5に充填されている蓄冷材6に接触しながら通過し、上方の配管4を通って出ていく。温熱媒体が蓄冷材6に接触することにより、蓄冷材6が有していた冷熱が直接的に放冷される。すなわち、蓄冷材6に蓄冷されていた冷熱と温熱媒体の温熱とが熱交換される。温熱媒体としては、ブタン、二酸化炭素、水等を使用することができる。このように、媒体と蓄冷材が接触して直接的に熱交換が可能であるため、極めて高い効率で熱交換することができる。
【0017】
図2においても、蓄冷装置5に蓄冷材6が充填されている。蓄冷装置5には、冷熱源から出た冷熱媒体が通って蓄冷装置5に入るための配管1、および蓄冷装置5から出た冷熱媒体が通る配管2が設けられており、配管1と配管2はU字形の伝熱管(金属管)8で連結されている。この伝熱管8は、蓄冷装置5の内部において蓄冷材6に接触している。また、蓄冷装置5には、温熱源から出た温熱媒体が通って蓄冷装置5に入るための配管3、および蓄冷装置5から出た温熱媒体が通る配管4が設けられている。配管1を通って蓄冷装置5に入った冷熱媒体は、伝熱管8を通り、配管2を通って出ていく。冷熱媒体が伝熱管8の内部を流れることにより、冷熱媒体が有していた冷熱が伝熱管8を介して蓄冷材6に蓄冷される。一方、配管3を通って温熱媒体が蓄冷装置5に入り、蓄冷装置5に充填されている蓄冷材6に接触しながら通過し、上方の配管4を通って出ていく。温熱媒体が蓄冷材6に接触することにより、蓄冷材6が有していた冷熱が直接的に放冷される。すなわち、蓄冷材6に蓄冷されていた冷熱と温熱媒体の温熱とが熱交換される。このように、冷熱媒体と温熱媒体の混合を防止しながら、高い効率で熱交換することができる。伝熱管8にはフィンが設けられていてもよい。
【0018】
図3においては、温熱源から出た温熱媒体が通って蓄冷装置5に入るための配管3と、蓄冷装置5から出た温熱媒体が通る配管4とが、U字形の伝熱管(金属管)9で連結されている。この伝熱管9は、蓄冷装置5の内部において蓄冷材6に接触している。配管1を通って蓄冷装置5に入った冷熱媒体は、蓄冷装置5に充填されている蓄冷材6に接触しながら通過し、下方の配管2を通って出ていく。冷熱媒体が蓄冷材6に接触することにより、冷熱媒体が有していた冷熱が蓄冷材6に直接的に蓄冷される。一方、配管3を通って蓄冷装置5に入った温熱媒体は、伝熱管9を通り、配管4を通って出ていく。温熱媒体が伝熱管9の内部を流れることにより、蓄冷材6が有していた冷熱が伝熱管9を介して放冷される。すなわち、蓄冷材6に蓄冷されていた冷熱と温熱媒体の温熱とが熱交換される。このように、冷熱媒体と温熱媒体の混合を防止しながら、高い効率で熱交換することができる。伝熱管9にはフィンが設けられていてもよい。
【0019】
図4においては、蓄冷装置5の上半分に蓄冷材6が充填されている。蓄冷装置5には、冷熱源から出た冷熱媒体が通って蓄冷装置5に入るための配管1、および蓄冷装置5から出た冷熱媒体が通る配管2が設けられており、配管1と配管2はU字形の伝熱管(金属管)8で連結されている。この伝熱管8は、蓄冷装置5の内部において蓄冷材6に接触している。蓄冷装置5の下方部においては、温熱源から出た温熱媒体が通って蓄冷装置5に入るための配管3と、蓄冷装置5から出た温熱媒体が通る配管4とが、U字形の伝熱管(金属管)9で連結されている。また、蓄冷装置5の下方部には、マイクロカプセルに対して非相溶性であり、冷熱吸収時に気体から液体に変化し、冷熱放出時に液体から気体に変化する伝熱冷媒体7が充填されており、伝熱管9は、伝熱冷媒体7に接触している。伝熱冷媒体7としては、プロパン、代替フロン等を使用することができる。配管1を通って蓄冷装置5に入った冷熱媒体は、伝熱管8を通り、配管2を通って出ていく。冷熱媒体が伝熱管8の内部を流れることにより、冷熱媒体が有していた冷熱が伝熱管8を介して蓄冷材6に蓄冷される。一方、配管3を通って蓄冷装置5に入った温熱媒体は、伝熱管9を通り、配管4を通って出ていく。温熱媒体が伝熱管9の内部を流れることにより、伝熱冷媒体7が加熱されて気化する。この気体が上方の蓄冷材6と接触して直接的に熱交換し、冷却されて液体に変化して下方部に戻る。このような蓄冷と放冷の繰返しにより、冷熱と温熱とが熱交換される。伝熱冷媒体7が介在することにより、温熱媒体の過度の冷却が防止される。伝熱管8,9にはフィンが設けられていてもよい。
【0020】
図5においては、蓄冷材6が蓄冷装置5のほぼ中央部に充填されている点で図4の場合と異なる。すなわち、伝熱管8が、蓄冷材6に接触していない。配管1を通って蓄冷装置5に入った冷熱媒体は、伝熱管8を通り、配管2を通って出ていく。一方、配管3を通って蓄冷装置5に入った温熱媒体は、伝熱管9を通り、配管4を通って出ていく。温熱媒体が伝熱管9の内部を流れることにより、伝熱冷媒体7が加熱されて気化する。この気体がほぼ中央部にある蓄冷材6を通過し、さらに上にある伝熱管8と接触して熱交換し、冷却されて液体に変化して下方部に戻る。その際に、蓄冷材6に接触しながら通過し、伝熱冷媒体7が有していた冷熱が蓄冷材6に蓄冷される。なお、蓄冷材6の温度が高い場合には、蓄冷材6と接触した伝熱冷媒体7が加熱されて気化し、上方の伝熱管8と接触して冷却されて液体に変化して下方部に戻る。このような蓄冷と放冷の繰返しにより、冷熱と温熱とが熱交換される。伝熱冷媒体7が介在することにより、温熱媒体の過度の冷却が防止される。また、このような熱交換器は、蓄冷材6が過度に冷却されるのを防止する必要がある場合に有効である。伝熱管8,9にはフィンが設けられていてもよい。
【0021】
【発明の効果】
本発明の蓄冷装置および熱交換器は、各種温度領域に対応が可能であり、かつ蓄冷および放冷の際の熱交換効率が高い。
【0022】
本発明で用いられる蓄冷材は、その蓄冷に物質の相変化に際して生じる潜熱を利用するものであることから、蓄冷量がきわめて大きい。しかも、従来の、単に相変化物質をそのまま用いるものと異なり、相変化物質がマイクロカプセルに封入されているため、相変化物質をそのまま蓄冷媒体として用いる場合の欠点である間接熱交による効率の低下および冷却部での固形化による熱交換効率の低下の改善が可能となった。
【図面の簡単な説明】
【図1】本発明の熱交換器の一例を示す概略図である。
【図2】本発明の熱交換器の他の一例を示す概略図である。
【図3】本発明の熱交換器の他の一例を示す概略図である。
【図4】本発明の熱交換器の他の一例を示す概略図である。
【図5】本発明の熱交換器の他の一例を示す概略図である。
【符号の説明】
1 配管
2 配管
3 配管
4 配管
5 蓄冷装置
6 蓄冷材
7 伝熱冷媒体
8 伝熱管
9 伝熱管
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cool storage device and a heat exchanger for storing cold heat of 0 ° C. or less using latent heat type microcapsules.
[0002]
[Prior art]
As a cold storage technique for effectively utilizing cold heat, there is a latent heat type cold storage technique using a phase change material such as an ice heat storage technique near 0 ° C. and a reliquefaction of a boil-off gas in a temperature range lower than 0 ° C. (for example, , Patent Documents 1 to 3). However, in the case of ice heat storage, there is a temperature problem, and when a phase change material is used, there is an efficient problem due to the fact that direct heat exchange is not possible.
[0003]
[Patent Document 1]
JP-A-5-263997 [0004]
[Patent Document 2]
JP-A-5-263998
[Patent Document 3]
Japanese Patent Application Laid-Open No. Hei 8-27097
[Problems to be solved by the invention]
An object of the present invention is to provide a regenerator and a heat exchanger that can cope with various temperature ranges and have high heat exchange efficiency during cold storage and cooling.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies and as a result, have found that the above object can be achieved by performing cold storage and heat exchange using a microcapsule-type latent heat storage material containing a phase change substance having a phase change temperature of 0 ° C. or less. Was found.
[0008]
That is, the present invention provides a cold storage device and a heat exchanger as described below.
Item 1. A regenerator including a regenerator material comprising microcapsules containing a phase change material that causes absorption and release of latent heat according to the temperature and has a phase change temperature of −160 ° C. to 0 ° C.
Item 2. Item 2. The regenerator according to item 1, wherein the phase change material has a phase change temperature of -160 ° C or higher and lower than -60 ° C.
Item 3. Item 3. The cold storage device according to Item 1 or 2, wherein the cold storage medium from the cold heat source is stored in contact with the cold storage material by passing through the cold storage material. (Figs. 1 and 3)
Item 4. Item 1 or 2 wherein a heat transfer tube through which a cooling medium flows is provided in contact with the cold storage material, and the cold storage medium from the cold heat source flows through the inside of the heat transfer tube, whereby the cold storage material is stored in the cold storage material via the heat transfer tube. A cool storage device according to claim 1. (Fig. 2)
Item 5. Item 3. The regenerator according to item 1 or 2, further comprising a heat transfer refrigerant that is incompatible with the microcapsules, changes from gas to liquid when absorbing cold heat, and changes from liquid to gas when discharging cold heat. (Figs. 4 and 5)
Item 6. Item 6. The regenerator according to item 5, wherein a heat transfer tube through which a cooling medium flows is provided at an upper portion in the regenerator, and cools the regenerator material via the heat transfer tube and the heat transfer medium. (FIG. 5)
Item 7. Item 4. A heat exchanger having the regenerator according to item 3, wherein a heat medium from a heat source is passed through the regenerator material to exchange heat between the cold stored in the regenerator material and the heat of the heat medium. (Fig. 1)
Item 8. Item 3. The heat storage device according to item 3, wherein a heat transfer tube through which a heat medium flows is provided in contact with the cold storage material, and a heat medium from a heat source flows through the heat transfer tube, so that the heat transfer tube passes through the heat transfer tube. A heat exchanger for exchanging heat between the cold stored in the cold storage material and the heat of the heating medium. (Fig. 3)
Item 9. Item 5. A heat exchanger having the regenerator according to item 4, wherein a heat medium from a heat source is passed through the regenerator material to exchange heat between the cold stored in the regenerator material and the heat of the heat medium. (Fig. 2)
Item 10. Item 6. A heat transfer tube having the regenerator according to Item 5, wherein a heat transfer tube through which a heat transfer medium flows is provided in contact with the heat transfer refrigerant medium, and a heat transfer medium from a heat source flows through the inside of the heat transfer tube. A heat exchanger for exchanging heat between the cold heat stored in the cold storage material via the heat transfer medium and the heat of the heating medium. (Figs. 4 and 5)
Item 11. Item having a regenerator, wherein a heat transfer tube through which a heating medium flows is provided at a lower portion in contact with the heat transfer medium, and a heating medium from a heat source flows through the inside of the heat transfer tube. A heat exchanger for exchanging heat between cold stored in the cold storage material via the heat transfer tube and the heat transfer refrigerant and heat of the heating medium. (FIG. 5)
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
The microcapsule used in the present invention is one in which a phase change substance is encapsulated by a film forming material.
[0010]
Examples of the method for producing microcapsules include encapsulation by a composite emulsion method (JP-A-62-1452), a method of spraying a thermoplastic resin on the surface of heat storage material particles (JP-A-62-45680), A method of forming a thermoplastic resin in the liquid on the surface of heat storage material particles (JP-A-62-149334), and a method of polymerizing and coating a monomer on the surface of the heat storage material particles (JP-A-62-225241). A general method such as a method for producing a polyamide-coated microcapsule by an interfacial polycondensation reaction (JP-A-2-258052) can be used.
[0011]
As the film forming material of the microcapsules, interfacial polymerization, obtained by a method such as in situ method, polystyrene, polyacrylonitrile, polyamide, polyacrylamide, ethylcellulose, polyurethane, aminoplast resin, gelatin and carboxymethylcellulose or gum arabic Synthetic or natural resins utilizing the coacervation method described above are used. In the case of a microcapsule containing a phase change substance as in the present invention, a melamine formalin resin and a urea formalin resin by an in situ method are preferable.
[0012]
By setting the average particle size of the microcapsules used in the present invention to 0.5 to 1000 μm, preferably 1 to 500 μm, microcapsules that do not break even under physical pressure can be obtained. If the particle size is smaller than this range, the heat resistance decreases, and if it is larger than this range, the physical strength decreases, which is not preferable.
[0013]
The phase change substance used in the present invention is a substance having a phase change temperature (for example, melting point) in the range of -160 ° C to 0 ° C, and specifically, an aliphatic hydrocarbon compound (paraffin compound), propionic acid, or the like. , Caproic acid, fatty acids such as linoleic acid, alcohols such as benzyl alcohol, ester compounds such as diheptyl phthalate, dibutyl adipate methyl acetyl ricinoleate, and inorganic salts. Is a preferable phase change substance because of its high heat storage capacity. Further, the combination with a melamine formalin resin or an urea formalin resin of an in situ method, which is a preferred microencapsulation method in the present invention, can be mentioned as a preferable phase change substance since a high-density microcapsule with high density can be obtained. If necessary, a supercooling preventing material, a specific gravity adjusting material, a deterioration preventing agent and the like can be added to these phase change materials.
[0014]
Examples of the phase change substance having a phase change temperature of −160 ° C. or more and less than −60 ° C. include a linear aliphatic hydrocarbon compound having 5 to 7 carbon atoms, which is preferable for a low temperature use.
[0015]
1 to 5 show a schematic configuration of an embodiment of a regenerator and a heat exchanger according to the present invention.
[0016]
In FIG. 1, a cold storage device 5 is filled with a cold storage material 6. The cold storage device 5 is provided with a pipe 1 through which a cold medium from a cold heat source passes and enters the cold storage device 5, and a pipe 2 through which a cold medium from the cold storage device 5 passes. Further, the regenerator 5 is provided with a pipe 3 through which the heat medium from the heat source passes through and enters the regenerator 5, and a pipe 4 through which the heat medium from the regenerator 5 passes. The cooling medium that has entered the cool storage device 5 through the pipe 1 passes while contacting the cold storage material 6 filled in the cool storage device 5, and exits through the lower pipe 2. When the cold heat medium contacts the cold storage material 6, the cold heat of the cold heat medium is directly stored in the cold storage material 6. As the cooling medium, liquefied natural gas, low-temperature natural gas, or the like can be used. Next, the heat medium enters the cool storage device 5 through the pipe 3, passes through the cold storage material 6 filled in the cool storage device 5 while being in contact therewith, and exits through the upper pipe 4. When the heating medium comes into contact with the cold storage material 6, the cold heat of the cold storage material 6 is directly cooled. That is, heat exchange between the cold stored in the cold storage material 6 and the heat of the heating medium is performed. As the heating medium, butane, carbon dioxide, water, or the like can be used. As described above, since the medium and the cold storage material are in contact with each other and heat exchange is possible, heat exchange can be performed with extremely high efficiency.
[0017]
In FIG. 2 as well, the cold storage device 5 is filled with the cold storage material 6. The cold storage device 5 is provided with a pipe 1 through which a cold medium coming out of a cold heat source passes and enters the cold storage device 5, and a pipe 2 through which a cold medium coming out of the cold storage device 5 passes. Are connected by a U-shaped heat transfer tube (metal tube) 8. The heat transfer tube 8 is in contact with the cold storage material 6 inside the cold storage device 5. Further, the regenerator 5 is provided with a pipe 3 through which the heat medium from the heat source passes through and enters the regenerator 5, and a pipe 4 through which the heat medium from the regenerator 5 passes. The cooling medium that has entered the regenerator 5 through the pipe 1 passes through the heat transfer pipe 8 and exits through the pipe 2. When the cooling medium flows inside the heat transfer tubes 8, the cold heat of the cooling medium is stored in the cold storage material 6 via the heat transfer tubes 8. On the other hand, the heating medium enters the cold storage device 5 through the pipe 3, passes through the cold storage material 6 filled in the cold storage device 5 while being in contact therewith, and exits through the upper pipe 4. When the heating medium comes into contact with the cold storage material 6, the cold heat of the cold storage material 6 is directly cooled. That is, heat exchange between the cold stored in the cold storage material 6 and the heat of the heating medium is performed. Thus, heat exchange can be performed with high efficiency while preventing the mixture of the cooling medium and the heating medium. The heat transfer tube 8 may be provided with a fin.
[0018]
In FIG. 3, a pipe 3 through which the heat medium from the heat source passes and enters the cool storage device 5 and a pipe 4 through which the heat medium from the cool storage device 5 passes are a U-shaped heat transfer tube (metal tube). 9 are connected. The heat transfer tube 9 is in contact with the cold storage material 6 inside the cold storage device 5. The cooling medium that has entered the cool storage device 5 through the pipe 1 passes while contacting the cold storage material 6 filled in the cool storage device 5, and exits through the lower pipe 2. When the cold heat medium contacts the cold storage material 6, the cold heat of the cold heat medium is directly stored in the cold storage material 6. On the other hand, the heating medium that has entered the regenerator 5 through the pipe 3 passes through the heat transfer pipe 9 and exits through the pipe 4. When the heating medium flows inside the heat transfer tube 9, the cold heat of the cold storage material 6 is cooled through the heat transfer tube 9. That is, heat exchange between the cold stored in the cold storage material 6 and the heat of the heating medium is performed. Thus, heat exchange can be performed with high efficiency while preventing the mixture of the cooling medium and the heating medium. The heat transfer tube 9 may be provided with fins.
[0019]
In FIG. 4, the cold storage material 6 is filled in the upper half of the cold storage device 5. The cold storage device 5 is provided with a pipe 1 through which a cold medium coming out of a cold heat source passes and enters the cold storage device 5, and a pipe 2 through which a cold medium coming out of the cold storage device 5 passes. Are connected by a U-shaped heat transfer tube (metal tube) 8. The heat transfer tube 8 is in contact with the cold storage material 6 inside the cold storage device 5. In the lower part of the regenerator 5, a pipe 3 through which the heat medium from the heat source passes and enters the regenerator 5 and a pipe 4 through which the heat medium from the regenerator 5 passes are U-shaped heat transfer tubes. (Metal tube) 9. The lower part of the regenerator 5 is filled with a heat transfer refrigerant 7 that is incompatible with the microcapsules, changes from gas to liquid when absorbing cold heat, and changes from liquid to gas when releasing cold heat. The heat transfer tube 9 is in contact with the heat transfer refrigerant 7. As the heat transfer refrigerant 7, propane, alternative chlorofluorocarbon, or the like can be used. The cooling medium that has entered the regenerator 5 through the pipe 1 passes through the heat transfer pipe 8 and exits through the pipe 2. When the cooling medium flows through the inside of the heat transfer tube 8, the cold heat of the cooling medium is stored in the cold storage material 6 via the heat transfer tube 8. On the other hand, the heating medium that has entered the regenerator 5 through the pipe 3 passes through the heat transfer pipe 9 and exits through the pipe 4. The heat transfer medium 7 is heated and vaporized by the heating medium flowing inside the heat transfer tube 9. This gas contacts the upper cold storage material 6 and directly exchanges heat, is cooled, changes into a liquid, and returns to the lower part. The repetition of such cold storage and cooling allows heat exchange between cold and warm. The presence of the heat transfer refrigerant 7 prevents excessive cooling of the heating medium. The heat transfer tubes 8 and 9 may be provided with fins.
[0020]
FIG. 5 differs from the case of FIG. 4 in that the cold storage material 6 is filled substantially in the center of the cold storage device 5. That is, the heat transfer tube 8 is not in contact with the cold storage material 6. The cooling medium that has entered the regenerator 5 through the pipe 1 passes through the heat transfer pipe 8 and exits through the pipe 2. On the other hand, the heating medium that has entered the regenerator 5 through the pipe 3 passes through the heat transfer pipe 9 and exits through the pipe 4. The heat transfer medium 7 is heated and vaporized by the heating medium flowing inside the heat transfer tube 9. This gas passes through the cold storage material 6 in the substantially central portion, contacts the heat transfer tube 8 further above and exchanges heat, is cooled, changes into a liquid, and returns to the lower portion. At that time, the cold storage material 6 passes while contacting the cold storage material 6 and is stored in the cold storage material 6. When the temperature of the cold storage material 6 is high, the heat transfer refrigerant body 7 in contact with the cold storage material 6 is heated and vaporized, is cooled by contact with the upper heat transfer tube 8 and changes to a liquid, Return to The repetition of such cold storage and cooling allows heat exchange between cold and warm. The presence of the heat transfer refrigerant 7 prevents excessive cooling of the heating medium. Such a heat exchanger is effective when it is necessary to prevent the cool storage material 6 from being excessively cooled. The heat transfer tubes 8 and 9 may be provided with fins.
[0021]
【The invention's effect】
INDUSTRIAL APPLICABILITY The regenerator and the heat exchanger of the present invention can cope with various temperature ranges, and have high heat exchange efficiency during regenerative storage and cooling.
[0022]
The cold storage material used in the present invention utilizes the latent heat generated during the phase change of the substance for the cold storage, and therefore has a very large amount of cold storage. In addition, unlike the conventional case where the phase change material is simply used as it is, the phase change material is encapsulated in microcapsules, so the efficiency is reduced due to indirect heat exchange, which is a drawback when the phase change material is used as it is as a refrigerant storage medium. In addition, it is possible to improve a decrease in heat exchange efficiency due to solidification in the cooling unit.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of the heat exchanger of the present invention.
FIG. 2 is a schematic diagram showing another example of the heat exchanger of the present invention.
FIG. 3 is a schematic view showing another example of the heat exchanger of the present invention.
FIG. 4 is a schematic diagram showing another example of the heat exchanger of the present invention.
FIG. 5 is a schematic view showing another example of the heat exchanger of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 pipe 2 pipe 3 pipe 4 pipe 5 cool storage device 6 cold storage material 7 heat transfer refrigerant body 8 heat transfer tube 9 heat transfer tube

Claims (11)

温度に応じて潜熱の吸収および放出を生じる相変化物質であって、その相変化温度が−160℃〜0℃である相変化物質を内包するマイクロカプセルからなる蓄冷材を有する蓄冷装置。A regenerator including a regenerator material comprising microcapsules containing a phase change material that causes absorption and release of latent heat according to the temperature and has a phase change temperature of −160 ° C. to 0 ° C. 相変化物質の相変化温度が−160℃以上−60℃未満である請求項1に記載の蓄冷装置。The regenerator according to claim 1, wherein the phase change material has a phase change temperature of -160C or more and less than -60C. 冷熱源からの冷熱媒体を前記蓄冷材に接触通過させて蓄冷する請求項1または2に記載の蓄冷装置。The cold storage device according to claim 1 or 2, wherein the cold storage medium is stored by contacting and passing a cooling medium from a cold heat source through the cold storage material. 冷熱媒体が流れる伝熱管が前記蓄冷材に接触して設けられ、冷熱源からの冷熱媒体が該伝熱管の内部を流れることにより、該伝熱管を介して蓄冷材に蓄冷される請求項1または2に記載の蓄冷装置。A heat transfer tube through which a cooling medium flows is provided in contact with the cold storage material, and the cold storage medium from a cold heat source flows through the inside of the heat transfer tube, whereby the cold storage material is stored in the cold storage material via the heat transfer tube. 3. The cold storage device according to 2. 前記マイクロカプセルに対して非相溶性であり、冷熱吸収時に気体から液体に変化し、冷熱放出時に液体から気体に変化する伝熱冷媒体を有する請求項1または2に記載の蓄冷装置。3. The regenerator according to claim 1, further comprising a heat transfer refrigerant that is incompatible with the microcapsules, changes from a gas to a liquid when absorbing cold heat, and changes from a liquid to a gas when discharging cold heat. 4. 冷熱媒体が流れる伝熱管が蓄冷装置内の上部に設けられ、該伝熱管と前記伝熱冷媒体を介して蓄冷材に蓄冷させる請求項5に記載の蓄冷装置。The heat storage device according to claim 5, wherein a heat transfer tube through which a cooling medium flows is provided at an upper portion in the cool storage device, and cools the cold storage material via the heat transfer tube and the heat transfer refrigerant. 請求項3に記載の蓄冷装置を有し、温熱源からの温熱媒体を前記蓄冷材に接触通過させて、前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。A heat exchanger having the cold storage device according to claim 3, wherein a heat medium from a heat source is passed through the cold storage material so as to exchange heat between the cold stored in the cold storage material and the heat of the hot medium. . 請求項3に記載の蓄冷装置を有し、温熱媒体が流れる伝熱管が前記蓄冷材に接触して設けられ、温熱源からの温熱媒体が該伝熱管の内部を流れることにより、該伝熱管を介して前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。The heat transfer tube having the cold storage device according to claim 3, wherein a heat transfer tube through which a heat transfer medium flows is provided in contact with the cold storage material, and a heat transfer medium from a heat source flows through the inside of the heat transfer tube, whereby the heat transfer tube is formed. A heat exchanger for exchanging heat between the cold stored in the cold storage material and the heat of the heating medium. 請求項4に記載の蓄冷装置を有し、温熱源からの温熱媒体を前記蓄冷材に接触通過させて、前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。A heat exchanger comprising the cold storage device according to claim 4, wherein a heat medium from a heat source is caused to contact and pass through the cold storage material, and heat exchange between cold stored in the cold storage material and heat of the hot medium is performed. . 請求項5に記載の蓄冷装置を有し、温熱媒体が流れる伝熱管が前記伝熱冷媒体に接触して設けられ、温熱源からの温熱媒体が該伝熱管の内部を流れることにより、該伝熱管と前記伝熱冷媒体を介して前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。A heat transfer tube having the regenerative device according to claim 5, wherein a heat transfer tube through which a heating medium flows is provided in contact with the heat transfer cooling medium, and the heat transfer medium from a heat source flows through the inside of the heat transfer tube, thereby transferring the heat transfer medium. A heat exchanger for exchanging heat between the cold stored in the cold storage material via the heat pipe and the heat transfer refrigerant and the heat of the heating medium. 請求項6に記載の蓄冷装置を有し、温熱媒体が流れる伝熱管が前記伝熱冷媒体に接触して下部に設けられ、温熱源からの温熱媒体が該伝熱管の内部を流れることにより、該伝熱管と前記伝熱冷媒体を介して前記蓄冷材に蓄冷された冷熱と前記温熱媒体の温熱とを熱交換する熱交換器。Having the regenerative storage device according to claim 6, a heat transfer tube through which a heating medium flows is provided at a lower portion in contact with the heat transfer medium, and a heating medium from a heat source flows inside the heat transfer tube, A heat exchanger for exchanging heat between the cold stored in the cold storage material and the heat of the heating medium via the heat transfer tube and the heat transfer refrigerant.
JP2003142016A 2003-05-20 2003-05-20 Cold storage device using microcapsule, and heat exchanger Pending JP2004347166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142016A JP2004347166A (en) 2003-05-20 2003-05-20 Cold storage device using microcapsule, and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142016A JP2004347166A (en) 2003-05-20 2003-05-20 Cold storage device using microcapsule, and heat exchanger

Publications (1)

Publication Number Publication Date
JP2004347166A true JP2004347166A (en) 2004-12-09

Family

ID=33530218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142016A Pending JP2004347166A (en) 2003-05-20 2003-05-20 Cold storage device using microcapsule, and heat exchanger

Country Status (1)

Country Link
JP (1) JP2004347166A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780911A (en) * 2019-01-09 2019-05-21 青岛海尔空调器有限总公司 A kind of energy source station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109780911A (en) * 2019-01-09 2019-05-21 青岛海尔空调器有限总公司 A kind of energy source station

Similar Documents

Publication Publication Date Title
JP3883965B2 (en) Heat exchanger
JP2013518243A (en) Thermal energy storage
Tebaldi et al. Polymers with nano-encapsulated functional polymers: encapsulated phase change materials
JP2006016573A (en) Microcapsule and heat transfer fluid
Makuta et al. Synthesis of cyanoacrylate-covered xylitol microcapsules for thermal storage
CN102497764A (en) Quick-response heat dissipating and energy storing device
Sheikh et al. A review on micro-encapsulated phase change materials (EPCM) used for thermal management and energy storage systems: Fundamentals, materials, synthesis and applications
JPS5818598B2 (en) Method of receiving or dissipating heat from a heat storage device
JP2004347166A (en) Cold storage device using microcapsule, and heat exchanger
US20090169893A1 (en) Thermal Storage Material Microcapsules, Thermal Storage Material Microcapsule Dispersion and Thermal Storage Material Microcapsule Solid
JP2004347167A (en) Lng cold utilization device using latent heat microcapsule type cold storage material
KR20030018155A (en) Microencapsulation Method of Phase Change Materials(PCM) using Emulsion
JP2004197021A (en) Heat accumulation medium
JP2009173834A (en) Paraffin heat accumulation material composition
JP2006063328A (en) Microencapsulated heat-accumulating solid material
Jha et al. Low temperature thermal energy storage (tes) system for improving automotive hvac effectiveness
Venkatakrishnan et al. A state-of-the-art review on advancements in phase change material encapsulation techniques for electronics cooling
KR20190040762A (en) Heat exchanging medium having thermal conductivity reinforcement, and thermal storage system using the same
JP2007137991A (en) Thermal storage material microcapsule, thermal storage material microcapsule dispersion and thermal storage material microcapsule solid material
JP2006017436A (en) Thermal storage system
JP4953194B2 (en) Hydrogen storage tank
JP2017187181A (en) Heat exchanger and water heater
JPS62294897A (en) Heat accumulation type heat exchanger
JPH05215369A (en) Cooling or heating method utilizing latent heat
JP6247565B2 (en) Microcapsule heat storage material and heat storage device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080917

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090128