JP2004346507A - Load introduction reinforced soil foundation and load introduction reinforced soil foundation construction method - Google Patents

Load introduction reinforced soil foundation and load introduction reinforced soil foundation construction method Download PDF

Info

Publication number
JP2004346507A
JP2004346507A JP2003141676A JP2003141676A JP2004346507A JP 2004346507 A JP2004346507 A JP 2004346507A JP 2003141676 A JP2003141676 A JP 2003141676A JP 2003141676 A JP2003141676 A JP 2003141676A JP 2004346507 A JP2004346507 A JP 2004346507A
Authority
JP
Japan
Prior art keywords
foundation
soil foundation
embankment
reinforcing
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003141676A
Other languages
Japanese (ja)
Other versions
JP4153826B2 (en
Inventor
Yujiro Inaba
雄次郎 稲葉
Yasuyuki Kitano
靖行 北野
Hideo Hayashi
日出夫 林
Chikao Usami
親夫 宇佐美
Nobuaki Maehara
信章 前原
Koji Hashimoto
浩二 橋本
Kenji Hatsuda
憲治 初田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Araigumi Co Ltd
Original Assignee
Mitsubishi Electric Corp
Araigumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Araigumi Co Ltd filed Critical Mitsubishi Electric Corp
Priority to JP2003141676A priority Critical patent/JP4153826B2/en
Publication of JP2004346507A publication Critical patent/JP2004346507A/en
Application granted granted Critical
Publication of JP4153826B2 publication Critical patent/JP4153826B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a load introduction reinforced soil foundation and a load introduction reinforced soil foundation construction method capable of carrying out work in a short period of time irrespective of the state of the ground and the nature of the soil when a foundation as a sill is formed and, at the same time, increasing installation strength of a column or an erected structure to be installed in the case a sign or a lighting lamp or the like is erected on the ground or in the case a large-sized erected structure is installed. <P>SOLUTION: A plurality of excavated holes with a predetermined diameter are formed by an excavator, bottom boards as foundation supporting bodies are respectively installed to the excavated holes to laminate a multi-layer filling layer and a net-like or a lattice-like reinforced material between the filling layers on each of the bottom boards while successively rolling them to form the reinforced soil foundation, at the same time, tension members for clamping a high rigid upper board having a large area installed over between the uppermost or upper filling layers and the respective bottom boards are arranged, compressive force again acts on the whole filling layer rolled through the tension members to integrally clamp each filling layer to every bottom board from the upper board having the large area and the reinforcement members to form the load introduction reinforced soil foundation to constitute it as a structure installation foundation. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は道路の一部を掘削して基礎を埋設し、支柱やポールもしくは標識や照明灯等の立設物および電気工作物を設置するための基礎、又は、広大な土地等に大型の設置物を配設する際にも適用可能な基礎工法に関するものである。
【0002】
【従来の技術】
従来、支柱やポールもしくは標識や照明灯等の柱状物を地面に立設(設置)する際には、設置位置付近の地面を掘削してコンクリートを流し込んで基礎を形成する所謂コンクリート基礎が一般的である。
【0003】
前記コンクリート基礎による柱状物立設工法では、図7に示すように、掘削部に底盤15を設置しコンクリート型枠を仮設し、該型枠内にアンカーベース13とアンカーボルト12の下部を収納した状態でさらにコンクリート14を流し込んで基礎を形成し、上部アンカーベース11に柱状物1Dの取付部1Daを立設する工法であって、流し込んだコンクリートが硬化するまでの間、またコンクリートを養生する間、放置しておく必要があり、施工期間が長くなっている。
【0004】
さらに、コンクリートを使用するために、掘削施工のための土木工だけでなく、型枠工やコンクリート工等の専門家も必要となり、さらには各工程のプロセスや順序を管理する必要もある。
【0005】
また、このコンクリート基礎による柱状物の立設保持強度は、単に掘削した掘削部にコンクリートを流し込んだにすぎないために、不十分である。一般に土とコンクリートとはその接触部分においてなじまずに縁が切れ易い。そのため、道路に設置される柱状物に車等が衝突すると、その転倒モーメントにより基礎のコンクリートと土との間に間隙が生じて立設保持強度が低下する。
【0006】
そこで、立設保持強度を強化するために、地面に長尺な坑体を垂下埋設して、該坑体とアンカーボルトとをコンクリートにより一体化固定する立設工法が公開されている。(例えば、特許文献1参照)
【0007】
さらには、盛土を利用した土木工事として補強土を使用し、橋台や橋脚などの上部構造体を支持するための基礎構築体を形成する工法も知られている。(例えば、特許文献2参照)
【0008】
上記の特許文献2に記載の基礎構築体は、鉄筋コンクリートや鋼板からなる高剛性の基礎支持体上に、一定厚さの盛土層を複数積み重ねて、各盛土層間に、摩擦係数及び引張強度が大きいフラット若しくは略フラットな補強材を介装した基礎構築体であり、さらには、多層の盛土層と補強材とを貫通する複数本のアンカーを装着して、締め上げて高剛性の擬似躯体を形成する構成である。
【0009】
【特許文献1】
特開2000−234339号公報(第1−5頁、第1図)
【特許文献2】
特許第2597116号公報(第1−5頁、第1図)
【0010】
【発明が解決しようとする課題】
しかしながら上記特許文献1に記載の立設工法では、長尺な坑体としての鋼管を打ち込む作業が必要であり、また基礎コンクリートが硬化する期間工期が長くなることには変化がなく、保持強度は強化されるが依然として工事が長期化し大変であった。
【0011】
一般に、標識基部や照明灯基部等の柱状物を設置する道路内部には、水道管やガス管等の種々の地下埋設物が存在しており、基礎の形状をそれらの邪魔にならないように形成する必要がある等の制約を受けるために、前もって所定形状の基礎を用意しておくこともできず、現場での生コンクリートを流し込む基礎施工方法が採用されている。
【0012】
しかも、一旦コンクリート基礎により設置した柱状物を移動したり撤去するには、固まったコンクリートを破砕する必要があり、そのための専門家が必要であり、面倒であると共に困難であった。
【0013】
また、特許文献2に記載の補強土を使用した基礎構築体の形成方法では、土木工事の上部構造体を支持する基礎地盤を強化するものであって、道路の標識や照明灯等の柱状基部の設置工法に補強土を利用するものではない。
【0014】
前記の補強土による基礎構築体は、積層盛土を上下から締付けてプレストレスを加えると、積層された盛土にひずみが生じ、側方へ押出されようとするが、剛性のある補強材によりそのひずみを拘束し、前記補強材自身に引張プレストレスが導入される。その結果前記プレストレスにより積層盛土全体が高い剛性と強度を保持し又弾性化され擬似躯体を形成するものである。
【0015】
本発明の目的は、地面に標識や照明灯等を立設したり、大型の立設物を設置する際に、土台となる基礎を形成する時に、前記地面の状態や土質に拘らずに短期間で施工することができると共に、設置する柱状物や立設物の設置強度を向上することを可能とする荷重導入補強土基礎および荷重導入補強土基礎工法を提供することである。
【0016】
【課題を解決するための手段】
上記の目的を達成するために請求項1に係る発明は、掘削機により掘削される所定径の掘削穴に基礎支持体となる底盤を設置して、該底盤上に多層の盛土層と、各盛土層間に介装される網状又は格子状の補強材とを順次転圧しながら積層し、最上又は上方の盛土層上に設置する高剛性の上盤と前記底盤とを締結する緊張部材とを備え、前記緊張部材を介して前記転圧された盛土層全体に再度圧縮力を作用させて、前記高剛性の上盤より底盤に至る各盛土層及び補強材を一体的に締付けて形成する荷重導入補強土基礎としたことを特徴としている。
【0017】
上記の構成を有する請求項1に係る発明によれば、機械による掘削される掘削穴に底盤を設置して、多層の盛土層と、各盛土層間に介装される補強材と、底盤と上盤とを緊張部材により締付けて一体化する構成であるので、所謂荷重導入補強土として構成される基礎に柱状物を設置することになり、柱状物の設置強度が強い基礎を得ることができる。また、生コンクリートを使用しないために工期が短くできる。
【0018】
請求項2に係る発明は、取付フランジ部を備える立設物を前記上盤上にネジ固定する構成としたことを特徴としている。
【0019】
上記の構成を有する請求項2に係る発明によれば、任意の立設物を前記上盤に装着自在に構成することができる。
【0020】
請求項3に係る発明は、前記多層の盛土層と補強材及び前記上盤を貫通するように立設物支持部材を配設し、該立設物支持部材に立設物を着脱自在に構成したことを特徴としている。
【0021】
上記の構成を有する請求項3に係る発明によれば、任意の立設物を前記立設物支持部材に着脱自在に構成することができる。
【0022】
請求項4に係る発明は、掘削機により所定径の掘削穴を複数形成し、それぞれの掘削穴に基礎支持体となる底盤を設置して該底盤上に多層の盛土層と、各盛土層間に介装される網状又は格子状の補強材とを順次転圧しながら積層して補強土基礎を形成すると共に、最上又は上方の盛土層上間に渡って設置する高剛性の上盤と前記それぞれの底盤とを締結する緊張部材を配設し、前記緊張部材を介して前記転圧された盛土層全体に再度圧縮力を作用させて、前記上盤よりそれぞれの底盤に至る各盛土層及び補強材を一体的に締付けて形成する荷重導入補強土基礎工法であることを特徴としている。
【0023】
上記の構成を有する請求項4に係る発明によれば、大型の立設物であっても、複数の荷重導入補強土基礎上に渡って配設される上盤上に設置されることになり、立設物の設置強度が強い基礎工法とすることができる。
【0024】
請求項5に係る発明は、掘削機により所定径の掘削穴を複数形成し、それぞれの掘削穴に多層の盛土層と、各盛土層間に介装される網状又は格子状の補強材とを順次転圧しながら積層して補強土基礎を形成すると共に、最上又は上方の盛土層上に設置する高剛性の上盤から前記積層される補強土基礎とを略垂直に貫通して地中に達するスクリューアンカーを配設し、該スクリューアンカーを介して前記転圧された盛土層全体に再度圧縮力を作用させて、前記高剛性の上盤と各盛土層及び補強材を一体的に締付けて形成する荷重導入補強土基礎工法であることを特徴としている。
【0025】
上記の構成を有する請求項5に係る発明によれば、多層の盛土層と補強材とを貫通するようにスクリューアンカーをねじ込む工程で荷重導入補強土基礎を形成することができ、大型の立設物を立設する際にも工期が短くまた立設強度の強い基礎を形成することができる。
【0026】
請求項6に係る発明は、上面に開口部を有する受筒を地中に設置すると共に、該受筒の周囲を囲むように前記掘削穴を複数形成し、それぞれに前記補強土基礎を設置すると共に、それらの補強土基礎により前記受筒を立設保持して、該受筒に柱状物を設置する構成としたことを特徴としている。
【0027】
上記の構成を有する請求項6に係る発明によれば、所定数の掘削穴を機械堀りして補強土基礎を形成するだけで所定の柱状物を簡単に設置することができる。
【0028】
【発明の実施の形態】
以下、本発明に係る荷重導入補強土基礎および荷重導入補強土基礎工法の実施の形態について、図1から図7に基づいて説明する。
【0029】
図1は本発明に係る荷重導入補強土基礎を使用した立設物の設置例を示す概略説明図であり、(a)は立設物を上盤上にネジ固定した立設状態を示し、(b)は立設物支持部材を使用した設置状態を示している。図2は緊張部材の底盤に対する装着部を示し、(a)は断面図であり、(b)は平面図である。図3は補強土基礎を複数環状に配設した実施例であって、(a)は全体側面図であり、(b)はB−B断面図である。図4には補強土基礎工法の第一の実施例を示し、(a)はアンカーボルトを緊張部材とした補強土基礎を示し、(b)はスクリューアンカーを緊張部材とした補強土基礎を示す。図5は補強土基礎工法の第二の実施例であって、(a)は全体側面図であり、(b)はC−C断面図であり、基礎を集合して3ケ配設した例である。図6は補強土基礎工法の第三の実施例であって、(a)は複数の基礎を直線状に配設する例であり、(b)は十字状に配設する例である。図7は従来のコンクリート基礎を示す概略説明図である。
【0030】
図1および図2により本発明に係る補強土基礎を使用して設置される柱状物や立設物について説明する。図1(a)には、道路等の地面の所定位置に標識や照明灯等の立設物1を設置したところを示している。図示しない掘削機により掘削される円筒形の掘削穴20に、底盤2を配設し、該底盤2と上盤3との間に掘削残土からなる盛土を多層積み重ねて盛土層4を形成する。この時に、各盛土層間に補強材5を介装させて一体化した(荷重導入補強土)基礎10に立設物1を装着する構成である。
【0031】
上記基礎10は、鋼板等の高剛性の底盤2に設けられた長孔2aに、PC棒鋼からなる緊張部材6の矩形部6aを挿入して装着した後、最下層の盛土4dを造成して転圧機などで突き固めながら補強材5を敷設し、その上に次の盛土4cを造成しさらに突き固め、新たな補強材5を敷設しさらに盛土4b、補強材5、最上段の盛土層4aを順次積み重ね、最後に高剛性の上盤3を設置して形成したものである。
【0032】
この時に、補強材5として、摩擦係数及び引張強度が大きいフラット若しくは略フラットな網状又は格子状の補強材(ジオテキスタイルやエキスパンドメタル等)を採用し、厚みの薄い多重の盛土層間に介装しながら、順次所定厚みの基礎10を形成するまで積み重ねていく構成である。この際、盛土層4として、掘削穴20から掘削された埋め戻し土を用いる構成としたので、余分な廃棄物を生じることもなく、また、残土の輸送を行う必要もない。
【0033】
しかし、この掘削土が、風化や水浸等により劣化し易い土である場合には、長期的に安定した材料であるレキ粒土や砂粒土等の良質土を予め用意しておいて、盛土層4として用いると、さらに安定した基礎を形成することができる。
【0034】
前記補強材5の大きさは底盤2や上盤3等の同程度の大きさであるが、これよりも大きいサイズの補強材5aを採用し、各盛土層4を突き固める際に前記基礎10の周囲に掘削土を埋め戻して、該埋め戻し土と前記盛土層4とを共に突き固めて一体化する構成としてもよい。このような構成とすると、基礎10と該基礎10の周囲の土との一体強度をさらに高めることができる。
【0035】
緊張部材6は、底盤2に設けられた長孔2aを挿通して装着されるアンカーボルトであって、前記長孔2aに挿通自在な矩形部6aをその一端に備えている。前記矩形部6aを前記長孔2aに挿入した後で、緊張部材6を少し回転すると、図2(b)の破線に示すように、前記矩形部6aが長孔2a位置からずれて底盤2に当接して抜け止めされた構成となる。この状態で上盤3の上方に突き出た緊張部材6の他端部に形成されたネジ部にナット部材7を螺合させ締め上げることで、底盤2と上盤3と多層の盛土層4と補強材5とを堅結して一体化した(荷重導入補強土)基礎10を形成する工法である。
【0036】
前記緊張部材6の数量は、前記基礎10を形成するのに必要な締め付け力を発揮する程度の本数でよく、特に限定するものではない。
【0037】
ここで、前記ナット部材7を締めても、各盛土層がずれて横にはみ出ることがないようにその層を薄くしている。もちろん、各層間に配設した補強材5の摩擦保持力により横滑りを防止する構成であり、盛土層4の各層の厚みは10〜30cm程度が望ましい。この各層の厚みは土粒子の大きさに関係し、レキ粒土や砂粒土のように土粒子の大きいものほど厚くできる。これは横ずれしようとする土粒子間の拘束力が大きくなるためである。
【0038】
また、上記ナット部材7を螺合させ締め上げる工程は、前記基礎10を地中に埋め込んだ状態で行うために、該基礎10の周囲の土を圧迫しながら、一体の基礎躯体として堅結される構成である。そのために、該基礎10を引き抜くことは困難であり、該基礎10に標識や照明灯等の立設物1を設置した場合には、その立設物1の立設保持強度が強くなる。
【0039】
図1(a)に示す立設物1の固定方法は、上盤3に形成された取付ネジ部3aに、前記立設物1の下部に設けた取付フランジ部1aをネジ固定する構成であり、前記基礎10に対して着脱自在な構成とされている。また、図1(b)には立設物支持部材8を、多層の盛土層4と補強材5及び上盤3Aを貫通するように埋め込み構成として設けて、パイプ状の立設物支持部材8の中空状内部に立設物1Aを着脱自在とした構成を示している。
【0040】
前記立設物支持部材8は埋め込み構成として基礎に一体化したものであって、多層の盛土層4と補強材5とを積み重ねて押し固めることで固定することもできるが、前もって底盤2に溶接あるいはネジ止め等で固定しておいてもよい。また、立設物1Aを挿入自在な空隙部を備えるパイプ状であると共に、上盤3Aの上側に突出している上端部には螺着ネジ用の孔8aが設けられている。つまり、立設物支持部材8に立設物1Aを挿入して孔8aに螺着ネジを螺合して固定する構成である。
【0041】
また、立設物支持部材8の上端部に雌ネジ部を形成して、雄ネジが形成された柱状部端部を装着する構成とすることも可能であり、柱状基部の取付構造を特に限定するものではない。
【0042】
図3は大型の立設物を設置する場合に複数の荷重導入補強土基礎を環状に配置した実施例を示しており、図3(a)に示すように、複数の荷重導入補強土基礎の上に渡って上盤3Bを配設して、風力発電用の風車を支える支柱1Bを設置する構成である。また、そのB−B断面図である図3(b)に示すように、複数の荷重導入補強土基礎の配置例として、環状に基礎10Aを配置して上盤3Bを支持する構成とした。
【0043】
前記基礎10Aは、図1(a)で説明したものと同様の施工方法により形成されるものであり、底盤2上に盛土層4と補強材5とを積み重ねて転圧したものである。該基礎10Aを複数配設して、最後に高剛性の大型の上盤3Bを設置して補強土基礎を形成して、上盤3B上に取付フランジ部1Baを介して支柱1Bを設置可能に構成したものである。
【0044】
この構成では、前記上盤3Bよりもはるかに小径の掘削穴20Aを複数個(例えば6個)配設するだけでよく、そのために、大きな穴を開ける必要もなく、スクリューオーガ等の掘削機により簡単に機械掘りすることができる。そのために、掘削作業が簡単であり且つ工期が短縮できる。
【0045】
また、前記基礎10Aを形成する際には、埋め戻し土もしくは良質土からなる多層の盛土層から構成される基礎を、地中に埋めた状態で締め上げる構成であるので、前記盛土層と周囲の土との接触状態が堅固になり、前記基礎を傾けたり引き抜く力が加わっても、その荷重に抗する抵抗が増加し、保持力が強固な基礎を得ることができる。
【0046】
そのために、大型の構造物を設置する際の従来の基礎杭工法では長尺な杭が必要であったが、本発明に係る荷重導入補強土基礎工法では、比較的短尺な基礎10Aを複数配設すればよいことになる。
【0047】
この時に、環状に複数の基礎10Aを配設するだけでなく、中央部にも図中の想像線に示すような基礎10Aaを設けることもできる。
【0048】
また、大型の立設物を設置するための大面積の上盤3Bを設置する際に、該上盤3Bよりもはるかに小径な基礎10Aを複数箇所配設する構成であるので、掘削機により所定の径の掘削穴20Aを複数個機械堀りするだけで基礎を形成することができる。そのために、地面を掘り起こすような大きな掘削部を設ける必要もなく、簡単に機械式掘削が可能であり、特別な専門工程や専門家を必要としない。
【0049】
図4に示す例の荷重導入補強土基礎工法は、(a)はアンカーボルトを緊張部材とした補強土基礎を示し、(b)はスクリューアンカーを緊張部材とした補強土基礎を示す。いずれの工法においても基礎10Aを配設する部分だけを掘削して荷重導入補強土基礎を形成し、複数の前記補強土基礎上に上盤3Bを設置する工法である。そのために作業が簡単であるだけでなく、工期を短縮することが可能となり、特別な専門工程や専門家を必要としない。
【0050】
図4(a)には比較的堅固な表土層21を掘削した掘削穴20Bに底盤2を設置し、該底盤2と前記上盤3Bとを、緊張部材6としてアンカーボルトにて締付けて荷重導入補強土基礎を形成した例である。また図4(b)には底盤を使用せずに、比較的軟弱な表土層22の下の固い岩盤層23に、スクリューアンカー6Aをねじ込んで、各盛土層と補強材とを一体的に締付けて荷重導入補強土基礎を形成した例である。
【0051】
上記例でも、埋め戻し土もしくは良質土からなる多層の盛土層から構成される基礎を、地中に埋めた状態で締め上げる構成であるので、前記盛土層と周囲の土との接触状態が堅固になり、前記基礎を傾けたり引き抜く力が加わっても、その荷重に抗する抵抗が増加し、保持力が強固な基礎を得ることができる。
【0052】
図5には、基礎10Bを3個接近して配設した第二の実施例を示しており、図5(a)のC−C断面である図5(b)に示すように、相対向する3個の基礎10Bの中央部分に円筒形の受筒8Aを挟み込むように保持して配設した例である。この構成では、前記受筒8Aの周囲に該受筒8Aを挟持するように3個の基礎10Bを配設し、それぞれの基礎10Bを構成する多層の盛土層4と補強材5とを積み重ねて押し固めることで、前記受筒8Aを堅固に固定するものである。
【0053】
この時に、細長い袋状の補強材5A中に掘削土や良質土を詰め込んで盛土層4Aを渦巻き状に巻いた構成としてもよい。掘削土のような現地発生土には、風化や水浸等により劣化し易い土である場合もあるので、その場合には、長期的に安定した材料であるレキ粒土や砂粒土等の良質土を用いると好適である。
【0054】
所定高さまで盛土層4Aを積み重ねて、掘削土を埋め戻して転圧した後で、緊張部材6により底盤2と上盤3Cとの間の盛土層をさらに締め上げて荷重導入補強土基礎を形成する。この袋状の補強材5Aを用いた例では、一旦形成された盛土層4Aが雨水や流水等により流出することがなく、長期間に渡って安定した基礎を構成するものである。
【0055】
前記受筒8Aは鋼管製の立設物支持部材であって、例えば柱状物1Cを挿入自在な空隙部を有している。また、上盤3Cの上側に突出している前記受筒8Aの上端部には螺着ネジ用の孔8Aaが設けられている。つまり、受筒8Aに柱状物1Cを挿入して孔8Aaに螺着ネジを螺合して固定する構成である。
【0056】
また、受筒8Aの上端部に雌ネジ部を形成して、雄ネジが形成された柱状物端部を装着する構成とすることも可能であり、柱状物の取付構造を特に限定するものではない。
【0057】
図6に示す第三の実施例は、(a)が基礎10を直線状に配設し、長尺な上盤3Dを設置した例であり、(b)は基礎10を十字状に配設し、十字状の上盤3Eを設置した例である。このように、本発明に係る(荷重導入補強土)基礎10は、種々の形状の上盤を備える補強土基礎として活用できるものである。
【0058】
つまり設置物の大きさに応じた範囲に、スクリューオーガ等の機械堀りにより小径で且つ比較的浅い掘削穴を複数設けて基礎を配設するだけで、小型から大型の種々の構造物を設置することが可能となる。つまり、比較的浅い掘削を行い荷重導入補強土基礎を形成するだけで、道路上に標識や照明灯等の立設物を設置する場合でも、さらに大きな構造物を設置する場合でも、利用可能な基礎を設置することができる。
【0059】
図3に相当する実施例として、高さ20mの支柱を設置した例について説明する。この時には直径1mで深さ2mの基礎10Aを環状に6箇所に配設するだけでよく、その上部に4m角の上盤3Bを設置する構成であった。
【0060】
また前記基礎10Aを配設する際には、掘削機にて所定径の掘削穴を掘削するだけでよく、それぞれ略1m径で深さおおよそ2mの穴を6箇所設けて、それぞれの補強土基礎10Aを構成する作業工程である。そのために、穴を掘削するのは機械式であり、また、コンクリートも使用しないために、コンクリートの硬化期間も養生期間も必要なく、連続的に6個の基礎10Aを形成することができる。そのために、工法が簡単であるだけでなく、工期を短縮することができる。
【0061】
前記掘削穴の大きさは、設置する上部構造体の大きさにより、さらに小さな径の掘削穴径で十分である。特に、交通標識や小型の照明灯等を設置する場合は、その掘削穴の径は30cm程度の小さな穴でよく、スクリューオーガ等による機械堀りがさらに容易に行える。また、機械堀りした掘削穴に底盤を設置しそのまま基礎を形成する構成であるので、設置作業がさらに効率よく行え、一日に数十個の標識や照明灯が設置可能となる。
【0062】
従来のセメントを用いた基礎作製では、全ての作業工程を連続的に行うことはできず、コンクリートの硬化期間や養生期間が必要であり、工期が長くなっている。また、掘削のための土木工の他に、型枠工やコンクリート工が必要となり、各工程のプロセスや順序を管理する必要もある。さらには、コンクリートの硬化期間と養生期間の間は、道路上の安全管理が必要となり、そのための設備やガードマンが必要な場合もある。
【0063】
本発明に係る荷重導入補強土基礎を構築するには、先ず設置位置付近に、円筒形の掘削穴を掘削し、底ならしをして底盤を設置する。この時に、緊張部材を装着固定しておく。次いで基礎を作成する。この基礎作成とは、上述したように、多層の盛土を転圧しながら突き固めて、各層毎に補強材を敷設して作成するものである。さらに、上盤を設置し、緊張部材を締め上げて圧縮した後、一旦前記緊張部材を緩めて上盤を取り外して残土を積み足して水平化を施工する。水平状態を確認した後、再度上盤を設置し、緊張部材を締め直して、荷重導入補強土基礎を構成するものである。
【0064】
前記円筒形の掘削穴はスクリューオーガ等により簡単に機械堀りすることができる。さらに、盛土層の上に上盤を設置してスクリューオーガにより押圧または加振することで、盛土層全体を転圧することもできる。
【0065】
また、前記荷重導入補強土基礎を単独に構築して上盤上に標識や照明灯等を立設することができる。さらには、前記荷重導入補強土基礎を複数個構築して、それぞれの基礎上に一個の上盤を掛け渡して大型の構造物を設置することが可能である。
【0066】
さらには、軟弱な地盤であっても、比較的浅い複数の荷重導入補強土基礎を設けることで、大型な構造物を設置することができる。
【0067】
上記のように、本発明に係る荷重導入補強土基礎及び基礎工法は、作業工程を短縮することができると共に、生コンを使用しないために、コンクリートの硬化期間や養生期間を考慮する必要もなく、全工程を一連の連続工程として作業することができる。
【0068】
また、コンクリートを使用しないために、型枠工やコンクリート工等の専門家を必要とせず、土木工のみでよく効率的である。そして、コンクリートを使用しないことは自然にやさしい工法ともいえ、環境保全にも好適である。
【0069】
つまり、上記の本発明に係る荷重導入補強土基礎工法は、大きな掘削を行う必要もなく、スクリューオーガ等による機械堀りによる掘削穴を設けるだけでよいので、掘削土量を大幅に削減することができると共に掘削作業を連続的に行うことができる。そのために、工期を短縮することができ、多数の設置物を短期間に設置することが可能となる。また、さらには柱建て込み業者以外の特別な専門家を必要としないので、工事コストも低く押えることも可能である。
【0070】
さらには、掘削土を埋め戻し土として利用し、多層の盛土層を形成して基礎を構成するので、廃棄する掘削残土が生じずに、該残土を搬送する必要もないことになり、この点からも環境に優しく低コスト化が達成可能である。また、埋め戻し土からなる多層の盛土層から構成される基礎を、地中に埋めた状態で締め上げる構成であるので、前記盛土層と周囲の土との接触状態が堅固になり、前記基礎を傾けたり引き抜く力が加わっても、その荷重に抗する抵抗が増加し、保持力が強固な基礎を得ることができる。
【0071】
前記荷重導入補強土基礎を掘削土を利用した盛土層として構成する際には、軟弱な土質の場合には堅固な基礎を形成することができない。特に有機分を多く含む腐植土や水分の多い粘性土等の場合は、基本的に盛土材としては不向きである。しかしこういう時に、石灰やセメント材を少量混ぜた盛土層として補強土基礎を構成すると、緊張部材により締め上げておくとそのまま固まるので、十分堅固な基礎とすることが可能である。しかし、この場合には、体積収縮が生じるので再緊張が必要となる。また、袋詰め状の盛土層とすれば前記と同様に基礎構築作業が容易となる。
【0072】
【発明の効果】
上記したように本発明によれば、基礎を構成する際に、機械掘りした掘削穴に補強土基礎を構成するとしたので、工期が短く環境にやさしい、任意の立設物や柱状物等を設置自在で且つ設置強度が強い基礎を得ることができる。
【0073】
また、複数の荷重導入補強土基礎上に渡って設置される上盤に大型の構造物を設置することができる。
【0074】
さらには、簡単に機械式掘削が可能であり、特別な専門工程や専門家を必要としない基礎工法とすることができる。
【図面の簡単な説明】
【図1】本発明に係る荷重導入補強土基礎を使用した立設物の設置例を示す概略説明図であり、(a)は立設物を上盤上にネジ固定した立設状態を示し、(b)は立設物支持部材を使用した設置状態を示している。
【図2】緊張部材の底盤に対する装着部を示し、(a)は断面図であり、(b)は平面図である。
【図3】補強土基礎を複数環状に配設した実施例であって、(a)は全体側面図であり、(b)はB−B断面図である。
【図4】荷重導入補強土基礎工法の第一の実施例を示し、(a)はアンカーボルトを緊張部材とした補強土基礎を示し、(b)はスクリューアンカーを緊張部材とした補強土基礎を示す。
【図5】補強土基礎工法を示す第二の実施例であって、(a)は全体側面図であり、(b)はC−C断面図であり、杭基礎が集合して3ケ配設された例である。
【図6】補強土基礎工法を示す第三の実施例であって、(a)は直線状に配設した例であり、(b)は十字状に配設した例である。
【図7】従来のコンクリート基礎を示す概略説明図である。
【符号の説明】
1、1A 立設物
1B 支柱
1a、1Aa 取付フランジ部
2 底盤
3、3A、3B、3C、3D、3E 上盤
3a 取付ネジ部
4 盛土層
4A 盛土層(渦巻き状)
5 補強材
6 緊張部材(アンカーボルト)
6A スクリューアンカー
8 立設物支持部材
8A 受筒(立設物支持部材)
10、10A、10B (荷重導入補強土)基礎
12 アンカーボルト
14 コンクリート
20 掘削穴
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention digs a part of a road, buries a foundation, and installs a pillar, a pole, a standing object such as a sign or a lighting and an electric work, or a large-scale installation on a vast land. The present invention relates to a foundation method that can be applied when arranging objects.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when erecting (installing) pillars, poles, or pillars such as signs and lightings on the ground, a so-called concrete foundation, which excavates the ground near the installation position and pours concrete to form a foundation, is generally used. It is.
[0003]
In the method of erecting a columnar object using the concrete foundation, as shown in FIG. 7, a bottom board 15 is installed in an excavated portion, a concrete formwork is temporarily provided, and the anchor base 13 and a lower portion of the anchor bolt 12 are accommodated in the formwork. In this state, the concrete 14 is further poured to form a foundation, and the mounting portion 1Da of the columnar object 1D is erected on the upper anchor base 11 until the poured concrete is hardened and while the concrete is cured. , It is necessary to leave it, and the construction period is long.
[0004]
Furthermore, in order to use concrete, not only civil engineering for excavation work but also specialists such as formwork and concrete work are required, and it is also necessary to manage the process and sequence of each process.
[0005]
Further, the standing strength of the columnar object by the concrete foundation is insufficient because the concrete is simply poured into the excavated portion. In general, the soil and the concrete are easily cut off at the contact portion without contact. Therefore, when a car or the like collides with a columnar object installed on a road, a gap is created between the foundation concrete and the soil due to the overturning moment, and the standing holding strength is reduced.
[0006]
Therefore, in order to enhance the standing holding strength, there has been disclosed a standing construction method in which a long pit is vertically buried in the ground and the pit and the anchor bolt are integrally fixed by concrete. (For example, see Patent Document 1)
[0007]
Furthermore, there is also known a construction method in which reinforcing soil is used as civil engineering work using embankment to form a foundation structure for supporting an upper structure such as an abutment or a pier. (For example, see Patent Document 2)
[0008]
The foundation structure described in Patent Literature 2 has a plurality of embankment layers having a constant thickness stacked on a high-rigidity foundation support made of reinforced concrete or steel plate, and has a large friction coefficient and a large tensile strength between the embankment layers. It is a foundation structure with a flat or almost flat reinforcing material interposed, and furthermore, a plurality of anchors penetrating the multilayer embankment layer and the reinforcing material are attached and tightened to form a high rigidity pseudo body Configuration.
[0009]
[Patent Document 1]
JP-A-2000-234339 (pages 1-5, FIG. 1)
[Patent Document 2]
Japanese Patent No. 2597116 (pages 1 to 5, FIG. 1)
[0010]
[Problems to be solved by the invention]
However, in the upright construction method described in Patent Literature 1, it is necessary to drive a steel pipe as a long pit, and there is no change in that the period of time during which the foundation concrete hardens becomes longer, and the holding strength is not changed. The construction was prolonged, but the construction was long and difficult.
[0011]
Generally, various underground objects such as water pipes and gas pipes are present inside the road where pillars such as sign bases and lighting bases are installed, and the shape of the foundation is formed so as not to obstruct them. Due to restrictions such as the necessity of performing concrete work, it is not possible to prepare a foundation of a predetermined shape in advance, and a foundation construction method of pouring ready-mixed concrete on site has been adopted.
[0012]
Moreover, in order to move or remove the pillars once installed on the concrete foundation, it is necessary to crush the hardened concrete, which requires an expert, which is troublesome and difficult.
[0013]
Further, the method of forming a foundation structure using reinforcing soil described in Patent Literature 2 reinforces a foundation ground that supports an upper structure of civil engineering work, and includes a pillar base such as a road sign or a lighting lamp. It does not use reinforced soil for the construction method.
[0014]
When the pre-stress is applied by tightening the laminated embankment from above and below, the foundation structure with the above-mentioned reinforced soil is distorted in the laminated embankment and tends to be extruded to the side, but the rigid reinforcing material causes the distortion. And a tensile prestress is introduced into the reinforcing material itself. As a result, the whole embankment retains high rigidity and strength by the pre-stress and is elasticized to form a pseudo frame.
[0015]
An object of the present invention is to provide a short-term irrespective of the condition or soil quality of the ground when laying a sign, a lighting lamp, or the like on the ground, or when installing a large standing object, when forming a foundation serving as a base. It is an object of the present invention to provide a load-introducing reinforcing soil foundation and a load-introducing reinforcing soil foundation method capable of improving the installation strength of pillars and standing structures to be installed, while improving the installation strength.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is to install a bottom plate serving as a foundation support in a drilling hole of a predetermined diameter excavated by an excavator, and to provide a multilayer embankment layer on the bottom plate, A net-like or lattice-like reinforcing material interposed between the embankment layers is sequentially rolled and laminated, and a high-rigidity upper plate installed on the uppermost or upper embankment layer and a tension member for fastening the bottom plate are provided. A compressive force is again applied to the whole of the compacted embankment layer via the tension member to thereby integrally tighten the embankment layers and the reinforcing material from the high rigidity upper to lower bases to form a load introduction. It is characterized by a reinforced soil foundation.
[0017]
According to the invention according to claim 1 having the above configuration, a bottom plate is installed in a drilling hole to be drilled by a machine, and a multilayer embankment layer, a reinforcing material interposed between each embankment layer, Since the structure is such that the board and the board are integrated by being tightened by a tension member, the columnar object is installed on the foundation configured as a so-called load-introducing reinforcing soil, and a foundation with a strong installation strength of the columnar object can be obtained. Also, the construction period can be shortened because fresh concrete is not used.
[0018]
The invention according to claim 2 is characterized in that an upright provided with a mounting flange portion is screwed onto the upper plate.
[0019]
According to the invention according to claim 2 having the above configuration, an arbitrary standing object can be configured to be freely attached to the upper panel.
[0020]
According to a third aspect of the present invention, an upright support member is provided so as to penetrate the multilayer embankment layer, the reinforcing material, and the upper panel, and the upright is detachably attached to the upright support member. It is characterized by doing.
[0021]
According to the invention according to claim 3 having the above-described configuration, an arbitrary standing object can be detachably attached to the standing object support member.
[0022]
The invention according to claim 4 is that a plurality of excavation holes having a predetermined diameter are formed by an excavator, a bottom plate serving as a foundation support is installed in each of the excavation holes, and a multi-layered embankment layer is formed on the bottom plate, and between each embankment layer. The interstitial mesh or grid-like reinforcing material is sequentially rolled and laminated to form a reinforced soil foundation, and a high-rigidity upper plate installed between the uppermost or upper embankment layers and A tension member for fastening to the bottom plate is provided, and a compressive force is again applied to the whole of the rolled embankment layer via the tension member, so that each embankment layer and reinforcing material from the upper plate to each bottom plate are provided. It is characterized by a load-introduced reinforced soil foundation method that is formed by integrally tightening
[0023]
According to the invention according to claim 4 having the above-described configuration, even a large standing object is installed on the upper panel disposed over a plurality of load-introducing reinforcing soil foundations. In addition, a foundation method with a strong installation strength for standing structures can be provided.
[0024]
In the invention according to claim 5, a plurality of excavation holes having a predetermined diameter are formed by an excavator, and a plurality of embankment layers are formed in each of the excavation holes, and a net-like or lattice-like reinforcing material interposed between the embankment layers is sequentially formed. A screw that forms a reinforced soil foundation by laminating while rolling, and that penetrates substantially vertically from the high-rigidity upper base installed on the uppermost or upper embankment layer and the laminated reinforced foundation to reach the ground. An anchor is provided, and a compressive force is again applied to the entire embossed embankment layer via the screw anchor to integrally form the high-rigidity upper plate, each embankment layer, and a reinforcing material. It is characterized by the load-introduced reinforced soil foundation method.
[0025]
According to the invention according to claim 5 having the above configuration, the load-introducing reinforcing soil base can be formed in the step of screwing the screw anchor so as to penetrate the multilayer embankment layer and the reinforcing material, and a large-sized standing When erecting an object, the construction period is short, and a foundation having a strong erecting strength can be formed.
[0026]
In the invention according to claim 6, a receiving cylinder having an opening on the upper surface is installed in the ground, a plurality of the excavation holes are formed so as to surround the periphery of the receiving cylinder, and the reinforcing soil foundation is installed in each of the excavating holes. In addition, the receiving cylinder is erected and held by the reinforcing soil foundation, and a columnar object is installed on the receiving cylinder.
[0027]
According to the invention according to claim 6 having the above configuration, it is possible to easily install a predetermined columnar object only by mechanically digging a predetermined number of excavation holes and forming a reinforcing soil foundation.
[0028]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a load introducing reinforcing soil foundation and a load introducing reinforcing soil foundation method according to the present invention will be described with reference to FIGS. 1 to 7.
[0029]
FIG. 1 is a schematic explanatory view showing an example of installation of a standing object using a load-introducing reinforcing soil foundation according to the present invention, and FIG. 1 (a) shows a standing state in which the standing object is fixed on an upper panel with screws, (B) has shown the installation state using the standing object support member. 2A and 2B show a mounting portion of the tension member to the bottom plate, wherein FIG. 2A is a sectional view and FIG. 2B is a plan view. 3A and 3B show an embodiment in which a plurality of reinforcing soil foundations are arranged in a ring shape. FIG. 3A is an overall side view, and FIG. 3B is a sectional view taken along line BB. 4A and 4B show a first embodiment of the reinforcing soil foundation method, wherein FIG. 4A shows a reinforcing soil foundation using anchor bolts as tension members, and FIG. 4B shows a reinforcing soil foundation using screw anchors as tension members. . 5A and 5B show a second embodiment of the reinforced soil foundation method, in which FIG. 5A is an overall side view, and FIG. 5B is a cross-sectional view taken along line CC, in which three foundations are assembled and arranged. It is. FIG. 6 shows a third embodiment of the reinforced soil foundation method, in which (a) shows an example in which a plurality of foundations are arranged in a straight line, and (b) shows an example in which a plurality of foundations are arranged in a cross shape. FIG. 7 is a schematic explanatory view showing a conventional concrete foundation.
[0030]
1 and 2, a description will be given of a columnar or standing object installed using the reinforced soil foundation according to the present invention. FIG. 1A shows a state where a standing object 1 such as a sign or an illumination lamp is installed at a predetermined position on the ground such as a road. The bottom 2 is disposed in a cylindrical excavation hole 20 excavated by an excavator (not shown), and the embankment made of the excavated soil is stacked between the bottom 2 and the upper 3 to form the embankment layer 4. At this time, the uprights 1 are mounted on a foundation 10 in which the reinforcing material 5 is interposed between the embankment layers and integrated (load-introducing reinforcing soil).
[0031]
The foundation 10 is formed by inserting the rectangular portion 6a of the tension member 6 made of PC steel into the long hole 2a provided in the high rigid bottom plate 2 such as a steel plate, and then forming the lowermost embankment 4d. Reinforcing material 5 is laid while compacting with a rolling machine, etc., the next embankment 4c is formed thereon, further compacted, new reinforcing material 5 is laid, and further embankment 4b, reinforcing material 5, and top embankment layer 4a Are sequentially stacked, and finally, a high-rigidity upper plate 3 is installed.
[0032]
At this time, a flat or substantially flat net-like or lattice-like reinforcing material (geotextile, expanded metal, or the like) having a large coefficient of friction and tensile strength is adopted as the reinforcing material 5, and is interposed between multiple embankment layers having a small thickness. , The bases 10 are sequentially stacked until a base 10 having a predetermined thickness is formed. At this time, since the backfill soil excavated from the excavation hole 20 is used as the embankment layer 4, no extra waste is generated, and there is no need to transport the remaining soil.
[0033]
However, if the excavated soil is soil that is liable to deteriorate due to weathering or water immersion, etc., it is necessary to prepare in advance a long-term stable material, such as rego granular soil or sandy granular soil, of good quality soil. When used as layer 4, a more stable foundation can be formed.
[0034]
The size of the reinforcing material 5 is substantially the same as the size of the bottom plate 2 and the upper plate 3. However, when the reinforcing material 5 a having a larger size is employed and the embankment layer 4 is compacted, The excavated soil may be backfilled around the surrounding area, and the backfill soil and the embankment layer 4 may be tamped together and integrated. With such a configuration, the integral strength of the foundation 10 and the soil around the foundation 10 can be further increased.
[0035]
The tension member 6 is an anchor bolt which is attached by being inserted through a long hole 2a provided in the bottom board 2, and has a rectangular portion 6a which can be inserted into the long hole 2a at one end. When the tension member 6 is slightly rotated after the rectangular portion 6a is inserted into the long hole 2a, the rectangular portion 6a is displaced from the position of the long hole 2a and moves to the bottom plate 2 as shown by a broken line in FIG. The configuration is such that it comes into contact and is prevented from falling off. In this state, the nut member 7 is screwed into a screw portion formed at the other end of the tension member 6 protruding above the upper plate 3 and tightened up, so that the bottom plate 2, the upper plate 3, the multilayer embankment layer 4 and This is a method of forming a foundation 10 that is tightly integrated with a reinforcing material 5 (load-introducing reinforcing soil).
[0036]
The number of the tension members 6 may be such a number as to exert a tightening force necessary for forming the base 10, and is not particularly limited.
[0037]
Here, even if the nut member 7 is tightened, the layers are thinned so that the embankment layers do not shift and protrude sideways. Of course, the structure is such that the slippage is prevented by the friction holding force of the reinforcing material 5 disposed between the layers, and the thickness of each layer of the embankment layer 4 is desirably about 10 to 30 cm. The thickness of each layer is related to the size of the soil particles, and the larger the size of the soil particles, such as rekiko soil or sandy soil, the thicker the layer. This is because the restraining force between the soil particles that are about to shift sideways increases.
[0038]
In addition, the step of screwing and tightening the nut member 7 is performed in a state where the foundation 10 is buried in the ground, so that the soil around the foundation 10 is pressed and tightly connected as an integral foundation frame. Configuration. For this reason, it is difficult to pull out the foundation 10, and when the standing object 1 such as a sign or an illumination lamp is installed on the foundation 10, the standing holding strength of the standing object 1 is increased.
[0039]
The method of fixing the upright 1 shown in FIG. 1A is a configuration in which the mounting flange 1 a provided at the lower portion of the upright 1 is screwed to the mounting screw 3 a formed on the upper panel 3. , And is detachable from the base 10. In FIG. 1B, the upright support member 8 is provided as a buried structure so as to penetrate the multilayer embankment layer 4, the reinforcing material 5, and the upper plate 3A. 2 shows a configuration in which the standing article 1A is detachably mounted inside the hollow interior of the above.
[0040]
The upright support member 8 is integrated with the foundation as a buried structure, and can be fixed by stacking and embedding the multilayer embankment layer 4 and the reinforcing material 5, but it is welded to the base 2 in advance. Alternatively, they may be fixed by screws or the like. Further, it is a pipe having a space into which the standing object 1A can be inserted, and has a hole 8a for a screwing screw at the upper end protruding above the upper plate 3A. In other words, the upright 1A is inserted into the upright support member 8, and the screw 8 is screwed into the hole 8a and fixed.
[0041]
Further, it is also possible to form a female screw portion at the upper end of the standing object support member 8 and attach the end of the columnar portion formed with the male screw, and the mounting structure of the columnar base is particularly limited. It does not do.
[0042]
FIG. 3 shows an embodiment in which a plurality of load-introducing reinforcing soil foundations are arranged in a ring shape when a large standing object is installed. As shown in FIG. In this configuration, an upper panel 3B is arranged over the upper side, and a support 1B for supporting a windmill for wind power generation is installed. As shown in FIG. 3B, which is a cross-sectional view taken along the line BB, as an example of the arrangement of a plurality of load-introducing reinforcing soil foundations, the foundation 10A is arranged in an annular shape to support the upper panel 3B.
[0043]
The foundation 10A is formed by a construction method similar to that described with reference to FIG. 1A, and is obtained by stacking the embankment layer 4 and the reinforcing material 5 on the base 2 and rolling them. A plurality of the foundations 10A are provided, and finally a large-sized upper base 3B having high rigidity is installed to form a reinforced soil foundation, and the support 1B can be installed on the upper base 3B via the mounting flange portion 1Ba. It is composed.
[0044]
In this configuration, it is only necessary to arrange a plurality of (for example, six) excavation holes 20A having a diameter much smaller than that of the upper plate 3B. Therefore, there is no need to make a large hole, and an excavator such as a screw auger can be used. You can easily dig the machine. Therefore, the excavation work is simple and the construction period can be shortened.
[0045]
Further, when the foundation 10A is formed, the foundation composed of a multi-layered embankment layer made of backfill soil or high-quality soil is buried in the ground and tightened. Therefore, even if a force is applied to tilt or pull out the foundation, the resistance against the load increases, and a foundation having a strong holding force can be obtained.
[0046]
For this purpose, a long pile was required in the conventional foundation pile method when installing a large-scale structure, but in the load-introducing reinforced soil foundation method according to the present invention, a plurality of relatively short foundations 10A were arranged. You just have to set it up.
[0047]
At this time, in addition to arranging the plurality of bases 10A in a ring shape, a base 10Aa as shown by an imaginary line in the figure can be provided at the center.
[0048]
In addition, when installing a large-area upper plate 3B for installing a large standing object, the foundation 10A having a much smaller diameter than the upper plate 3B is arranged at a plurality of locations. The foundation can be formed only by mechanically digging a plurality of drilled holes 20A having a predetermined diameter. Therefore, there is no need to provide a large excavation part for excavating the ground, mechanical excavation can be easily performed, and no special specialized process or expert is required.
[0049]
In the load-introducing reinforcing soil foundation method of the example shown in FIG. 4, (a) shows a reinforcing soil foundation using an anchor bolt as a tension member, and (b) shows a reinforcement soil foundation using a screw anchor as a tension member. In either method, only the portion where the foundation 10A is provided is excavated to form a load-introducing reinforcing soil foundation, and the upper panel 3B is installed on a plurality of the reinforcing soil foundations. Therefore, not only the work is simple, but also the construction period can be shortened, and no special specialized process or expert is required.
[0050]
In FIG. 4 (a), the bottom plate 2 is installed in a digging hole 20B in which a relatively solid topsoil layer 21 is digged, and the bottom plate 2 and the upper plate 3B are tightened as anchor members 6 with an anchor bolt to introduce a load. This is an example of forming a reinforced soil foundation. In FIG. 4B, the screw anchor 6A is screwed into the hard rock layer 23 under the relatively soft topsoil layer 22 without using the bottom layer, and each embankment layer and the reinforcing material are integrally tightened. This is an example in which a load-introduced reinforcing soil foundation is formed.
[0051]
Also in the above example, since the foundation composed of a multi-layered embankment layer made of backfill soil or high-quality soil is buried in the ground and tightened, the state of contact between the embankment layer and the surrounding soil is firm. Therefore, even when a force for tilting or pulling out the foundation is applied, the resistance against the load increases, and a foundation having a strong holding force can be obtained.
[0052]
FIG. 5 shows a second embodiment in which three foundations 10B are arranged close to each other. As shown in FIG. 5B, which is a cross section taken along the line CC in FIG. This is an example in which a cylindrical receiving cylinder 8A is held and disposed at the center of three bases 10B to be inserted. In this configuration, three foundations 10B are arranged around the receiving cylinder 8A so as to sandwich the receiving cylinder 8A, and the multilayer embankment layer 4 and the reinforcing material 5 constituting each foundation 10B are stacked. The pressing cylinder 8A is firmly fixed by pressing.
[0053]
At this time, a configuration may be adopted in which excavated soil or high quality soil is packed in the elongated bag-shaped reinforcing material 5A, and the embankment layer 4A is spirally wound. Locally generated soil, such as excavated soil, may be easily deteriorated due to weathering, water immersion, etc. It is preferable to use soil.
[0054]
After stacking the embankment layer 4A to a predetermined height, backfilling the excavated soil and rolling, the tension layer 6 further tightens the embankment layer between the bottom plate 2 and the top plate 3C to form a load-introducing reinforcing soil foundation. I do. In the example using the bag-shaped reinforcing material 5A, the embankment layer 4A once formed does not flow out due to rainwater, running water, or the like, and forms a stable foundation for a long period of time.
[0055]
The receiving cylinder 8A is an upright support member made of a steel pipe, and has, for example, a gap portion into which the columnar object 1C can be inserted. A hole 8Aa for a screw is provided at the upper end of the receiving cylinder 8A protruding above the upper panel 3C. That is, the configuration is such that the columnar object 1C is inserted into the receiving cylinder 8A, and the screw is screwed into the hole 8Aa and fixed.
[0056]
Further, it is also possible to form a female screw portion at the upper end of the receiving cylinder 8A and attach a columnar object end formed with a male screw, and the mounting structure of the columnar material is not particularly limited. Absent.
[0057]
In the third embodiment shown in FIG. 6, (a) shows an example in which the foundation 10 is arranged in a straight line and a long upper panel 3D is installed, and (b) shows an arrangement in which the foundation 10 is arranged in a cross shape. In this example, a cross-shaped upper panel 3E is provided. As described above, the (load-introducing reinforcing soil) foundation 10 according to the present invention can be used as a reinforcing soil foundation having an upper wall of various shapes.
[0058]
In other words, a variety of small to large structures can be installed simply by arranging the foundation by providing a plurality of small-diameter and relatively shallow excavation holes by mechanical excavation such as a screw auger in the range according to the size of the installation object. It is possible to do. In other words, it can be used in the case of installing standing structures such as signs and lighting on the road, or in the case of setting up even larger structures, by merely performing relatively shallow excavation and forming the load-introducing reinforcing soil foundation. Foundation can be set up.
[0059]
As an example corresponding to FIG. 3, an example in which a column having a height of 20 m is installed will be described. At this time, it was only necessary to dispose the foundation 10A having a diameter of 1 m and a depth of 2 m at six locations in a ring shape, and the upper plate 3B of 4 m square was installed above the foundation.
[0060]
Further, when arranging the foundation 10A, it is only necessary to dig an excavation hole having a predetermined diameter with an excavator, and six holes each having a diameter of approximately 1 m and a depth of approximately 2 m are provided, and each reinforced soil foundation is provided. This is the work process that constitutes 10A. Therefore, the hole is mechanically excavated, and since no concrete is used, neither a hardening period nor a curing period of the concrete is required, and six foundations 10A can be formed continuously. Therefore, not only the construction method is simple, but also the construction period can be shortened.
[0061]
Regarding the size of the excavation hole, a smaller excavation hole diameter is sufficient depending on the size of the upper structure to be installed. In particular, when a traffic sign or a small illuminator is installed, the diameter of the excavation hole may be a small hole of about 30 cm, and mechanical excavation with a screw auger or the like can be performed more easily. Further, since the bottom is installed in the excavated hole machined and the foundation is formed as it is, the installation work can be performed more efficiently, and several tens of signs and lightings can be installed per day.
[0062]
In the conventional production of a foundation using cement, not all work steps can be performed continuously, and a concrete hardening period and a curing period are required, and the construction period is long. Also, in addition to civil engineering for excavation, formwork and concrete work are required, and it is also necessary to manage the process and sequence of each process. Further, during the period of hardening and curing of concrete, safety management on the road is required, and equipment and guards may be required for that.
[0063]
In order to construct the load-introducing reinforcing soil foundation according to the present invention, first, a cylindrical excavation hole is excavated near the installation position, the bottom is leveled, and the bottom is installed. At this time, the tension member is attached and fixed. Then create the foundation. As described above, the foundation is created by compacting a multi-layered embankment while rolling it and laying a reinforcing material for each layer. Further, after the upper plate is installed and the tension member is tightened and compressed, the tension member is once loosened, the upper plate is removed, and the remaining soil is added to perform leveling. After confirming the horizontal state, the upper panel is installed again, and the tension members are tightened again to constitute the load-introducing reinforcing soil foundation.
[0064]
The cylindrical excavation hole can be easily machined by a screw auger or the like. Further, by placing an upper plate on the embankment layer and pressing or vibrating with a screw auger, the entire embankment layer can be rolled.
[0065]
Further, the load-introducing reinforcing soil foundation can be independently constructed, and a sign, an illumination lamp, and the like can be erected on the upper panel. Furthermore, it is possible to construct a plurality of the load-introducing reinforcing soil foundations, and to install a large-sized structure by hanging one upper panel on each foundation.
[0066]
Furthermore, even on soft ground, a large structure can be installed by providing a plurality of relatively shallow load-introducing reinforcing soil foundations.
[0067]
As described above, the load-introducing reinforced soil foundation and the foundation method according to the present invention can shorten the working process, and do not use the ready-mixed concrete, without having to consider the hardening period and the curing period of the concrete, All steps can be operated as a series of continuous steps.
[0068]
In addition, since concrete is not used, there is no need for specialists such as formwork and concrete works, and only civil works are efficient. And not using concrete can be said to be a naturally friendly construction method, and is also suitable for environmental conservation.
[0069]
In other words, the load-introduced reinforced soil foundation method according to the present invention does not need to perform large excavation, but only needs to provide excavation holes by mechanical excavation using a screw auger or the like. And excavation work can be performed continuously. Therefore, the construction period can be shortened, and a large number of objects can be installed in a short period of time. Moreover, since no special specialist other than the pillar-building contractor is required, the construction cost can be kept low.
[0070]
Furthermore, since the excavated soil is used as backfill soil and a multi-layered embankment layer is formed to form the foundation, there is no need to transport the remaining excavated soil without generating excavated surplus soil to be discarded. Therefore, environmentally friendly and low cost can be achieved. In addition, since the foundation composed of a multi-layered embankment layer made of backfill soil is buried in the ground and tightened, the contact state between the embankment layer and the surrounding soil becomes firm, Even if a force is applied to incline or pull out, the resistance against the load increases, and a foundation having a strong holding force can be obtained.
[0071]
When the load-introducing reinforcing soil foundation is configured as an embankment layer using excavated soil, a firm foundation cannot be formed in the case of soft soil. Especially in the case of humus soil containing a large amount of organic matter or cohesive soil having a large amount of water, it is basically unsuitable as an embankment material. However, in such a case, if the reinforcing soil foundation is formed as an embankment layer in which a small amount of lime or cement material is mixed, the foundation is solidified as it is when tightened by a tension member, so that a sufficiently solid foundation can be obtained. However, in this case, reconstriction is required because of volume contraction. In addition, if the embankment layer is a bag-filled embankment, the foundation construction work is facilitated in the same manner as described above.
[0072]
【The invention's effect】
As described above, according to the present invention, when constructing the foundation, the reinforcing soil foundation is constructed in the excavated hole dug by the machine, so that the construction period is short and environment-friendly, and any standing or columnar object is installed. A free and strong foundation can be obtained.
[0073]
In addition, a large-sized structure can be installed on an upper plate installed over a plurality of load-introducing reinforcing soil foundations.
[0074]
Further, mechanical excavation can be easily performed, and the foundation method does not require a special specialized process or expert.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of installation of a standing object using a load-introducing reinforcing soil foundation according to the present invention, and FIG. And (b) shows an installation state using the standing object support member.
FIGS. 2A and 2B show a mounting portion of a tension member to a bottom plate, where FIG. 2A is a cross-sectional view and FIG. 2B is a plan view.
FIG. 3 is an embodiment in which a plurality of reinforcing soil foundations are arranged in a ring shape, (a) is an overall side view, and (b) is a BB cross-sectional view.
4A and 4B show a first embodiment of a load-introduced reinforcing soil foundation method, wherein FIG. 4A shows a reinforcing soil foundation using anchor bolts as tension members, and FIG. 4B shows a reinforcing soil foundation using screw anchors as tension members. Is shown.
5A and 5B show a second embodiment of the reinforcing soil foundation method, in which FIG. 5A is an overall side view, FIG. 5B is a cross-sectional view taken along line CC, and three pile foundations are arranged. This is an example.
FIGS. 6A and 6B show a third embodiment of the reinforcing soil foundation method, in which FIG. 6A is an example in which they are arranged in a straight line, and FIG. 6B is an example in which they are arranged in a cross shape.
FIG. 7 is a schematic explanatory view showing a conventional concrete foundation.
[Explanation of symbols]
1, 1A standing structure
1B prop
1a, 1Aa mounting flange
2 Bottom plate
3, 3A, 3B, 3C, 3D, 3E
3a Mounting screw
4 Embankment layer
4A embankment layer (swirl shape)
5 Reinforcement
6 Tension members (anchor bolts)
6A screw anchor
8 Standing member
8A receiving cylinder (standing object support member)
10, 10A, 10B (Load introduction reinforcement soil) foundation
12 anchor bolt
14 Concrete
20 drill holes

Claims (6)

掘削機により掘削される所定径の掘削穴に基礎支持体となる底盤を設置して、該底盤上に多層の盛土層と、各盛土層間に介装される網状又は格子状の補強材とを順次転圧しながら積層し、最上又は上方の盛土層上に設置する高剛性の上盤と前記底盤とを締結する緊張部材とを備え、前記緊張部材を介して前記転圧された盛土層全体に再度圧縮力を作用させて、前記高剛性の上盤より底盤に至る各盛土層及び補強材を一体的に締付けて形成することを特徴とする荷重導入補強土基礎。A bottom plate serving as a foundation support is installed in an excavation hole of a predetermined diameter excavated by an excavator, and a multilayer embankment layer and a mesh-like or lattice-like reinforcing material interposed between the embankment layers are provided on the bottom plate. Laminated while sequentially rolling, comprising a tension member for fastening the high rigidity upper plate and the bottom plate to be installed on the top or upper embankment layer, and the whole of the embankment layer that has been rolled through the tension member A load-introduced reinforced soil foundation, characterized in that a compressive force is applied again to integrally tighten the embankment layer and the reinforcing material from the upper to the lower base of the high rigidity. 取付フランジ部を備える立設物を前記上盤上にネジ固定する構成としたことを特徴とする請求項1に記載の荷重導入補強土基礎。The load-introducing reinforcing soil foundation according to claim 1, wherein an upright provided with a mounting flange portion is fixed on the upper plate with screws. 前記多層の盛土層と補強材及び前記上盤を貫通するように立設物支持部材を配設し、該立設物支持部材に立設物を着脱自在に構成したことを特徴とする請求項1に記載の荷重導入補強土基礎。An upright support member is provided so as to penetrate the multilayer embankment layer, the reinforcing material, and the upper panel, and an upright is detachably attached to the upright support member. 2. The load-introduced reinforced soil foundation according to 1. 掘削機により所定径の掘削穴を複数形成し、それぞれの掘削穴に基礎支持体となる底盤を設置して該底盤上に多層の盛土層と、各盛土層間に介装される網状又は格子状の補強材とを順次転圧しながら積層して補強土基礎を形成すると共に、最上又は上方の盛土層上間に渡って設置する高剛性の上盤と前記それぞれの底盤とを締結する緊張部材を配設し、前記緊張部材を介して前記転圧された盛土層全体に再度圧縮力を作用させて、前記上盤よりそれぞれの底盤に至る各盛土層及び補強材を一体的に締付けて形成することを特徴とする荷重導入補強土基礎工法。A plurality of excavation holes having a predetermined diameter are formed by an excavator, and a base plate serving as a foundation support is installed in each of the excavation holes, and a multi-layered embankment layer is formed on the bottom plate, and a mesh or grid is interposed between the embankment layers. A reinforcing member is formed by laminating the reinforcing materials sequentially while rolling to form a reinforced soil foundation, and a high-rigidity upper plate installed between the uppermost or upper embankment layers and a tension member for fastening the respective bottom plates. It is arranged, and the compressive force is again applied to the whole of the compacted embankment layer via the tension member, and the embankment layer and the reinforcing material from the upper board to the respective bottom boards are integrally tightened and formed. A load introducing reinforced soil foundation method characterized by the following. 掘削機により所定径の掘削穴を複数形成し、それぞれの掘削穴に多層の盛土層と、各盛土層間に介装される網状又は格子状の補強材とを順次転圧しながら積層して補強土基礎を形成すると共に、最上又は上方の盛土層上に設置する高剛性の上盤から前記積層される補強土基礎とを略垂直に貫通して地中に達するスクリューアンカーを配設し、該スクリューアンカーを介して前記転圧された盛土層全体に再度圧縮力を作用させて、前記高剛性の上盤と各盛土層及び補強材を一体的に締付けて形成することを特徴とする荷重導入補強土基礎工法。A plurality of excavating holes having a predetermined diameter are formed by an excavator, and a multilayer embankment layer and a mesh-like or lattice-like reinforcing material interposed between the embankment layers are stacked in each excavation hole while sequentially rolling them, thereby reinforcing the soil. Forming a foundation, disposing a screw anchor that penetrates substantially vertically from the high-rigidity upper base installed on the uppermost or upper embankment layer and the laminated reinforcing soil foundation and reaches the ground, Compressive force is again applied to the entire rolled embankment layer via an anchor, and the high-rigidity upper plate, each embankment layer, and a reinforcing material are integrally formed to form a load-introducing reinforcement. Soil foundation method. 上面に開口部を有する受筒を地中に設置すると共に、該受筒の周囲を囲むように前記掘削穴を複数形成し、それぞれに前記補強土基礎を設置すると共に、それらの補強土基礎により前記受筒を立設保持して、該受筒に柱状物を設置する構成としたことを特徴とする請求項4または5に記載の荷重導入補強土基礎工法。While installing a receiving cylinder having an opening on the upper surface in the ground, forming a plurality of the excavation holes so as to surround the circumference of the receiving cylinder, installing the reinforcing soil foundation in each, and by those reinforcing soil foundations The load-introducing reinforced soil foundation method according to claim 4 or 5, wherein the receiving cylinder is erected and the column is placed on the receiving cylinder.
JP2003141676A 2003-05-20 2003-05-20 Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure Expired - Fee Related JP4153826B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003141676A JP4153826B2 (en) 2003-05-20 2003-05-20 Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003141676A JP4153826B2 (en) 2003-05-20 2003-05-20 Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure

Publications (2)

Publication Number Publication Date
JP2004346507A true JP2004346507A (en) 2004-12-09
JP4153826B2 JP4153826B2 (en) 2008-09-24

Family

ID=33529969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003141676A Expired - Fee Related JP4153826B2 (en) 2003-05-20 2003-05-20 Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure

Country Status (1)

Country Link
JP (1) JP4153826B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113482036A (en) * 2021-07-19 2021-10-08 苏交科集团股份有限公司 Column base structure of reinforced concrete and construction method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113482036A (en) * 2021-07-19 2021-10-08 苏交科集团股份有限公司 Column base structure of reinforced concrete and construction method thereof

Also Published As

Publication number Publication date
JP4153826B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
CA2424334C (en) Perimeter weighted foundation for wind turbines and the like
KR101696916B1 (en) Construction method of permanent wall with retaining wall combined PHC pile and steel pipe
CN103526770A (en) High-impermeable anti-floating pile raft structure and construction method
EA027027B1 (en) Method for forming a retaining wall
US10738436B1 (en) Tubular foundation for onshore wind turbine generators
JP3158624U (en) Foundation pile structure in soft ground
CN113931211A (en) Fabricated foundation and foundation of ground firmware and installation method thereof
JP2008308945A (en) Concrete foundation combined with tension pile, and construction method thereof
JP5124007B2 (en) Retaining wall construction method
KR102223856B1 (en) Foundation structure of waste landfill site and construction method thereof
JP2004183347A (en) Pipe line installation method for columnar article and load introduction reinforcement foundation
JP4153826B2 (en) Column installation method using the load-introducing reinforced soil foundation method and the column structure installation structure
CN215715515U (en) Municipal pipe network construction supporting integrated structure under unfavorable geological conditions
JP6259271B2 (en) Caisson installation method and underground column body group
JP2005350884A (en) Method for widening road and the like, and wall surface panel
KR20130073336A (en) Pile structure and construction methods
JPH09316894A (en) Bridge pier foundation structure, and construction method thereof
KR101047257B1 (en) Construction method of earth wall using composite sheet pile
US20200208612A1 (en) Bionic Root Foundation for Onshore Wind Turbine Generators
CN217782015U (en) Soft overburden end-bearing rock-socketed pile forming system
CN116657643B (en) Tubular pile type fan foundation suitable for desert geology and construction method
JP7240622B2 (en) Partition structure
JP2011043047A (en) Improved/reinforced structure of existing gravity type quay
JP2009041285A (en) Fixing device for car port roof bearing pole
JP2006183276A (en) Vertical shaft structure and its construction method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees