JP2004346430A - Method for producing high-tension steel plate for working - Google Patents

Method for producing high-tension steel plate for working Download PDF

Info

Publication number
JP2004346430A
JP2004346430A JP2004232096A JP2004232096A JP2004346430A JP 2004346430 A JP2004346430 A JP 2004346430A JP 2004232096 A JP2004232096 A JP 2004232096A JP 2004232096 A JP2004232096 A JP 2004232096A JP 2004346430 A JP2004346430 A JP 2004346430A
Authority
JP
Japan
Prior art keywords
rolling
steel sheet
less
transformation point
modulus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004232096A
Other languages
Japanese (ja)
Other versions
JP4001134B2 (en
Inventor
Akio Tosaka
章男 登坂
Yoshikazu Kawabata
良和 河端
Osamu Furukimi
古君  修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004232096A priority Critical patent/JP4001134B2/en
Publication of JP2004346430A publication Critical patent/JP2004346430A/en
Application granted granted Critical
Publication of JP4001134B2 publication Critical patent/JP4001134B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high tension steel plate for working having high ductility and ≤200 GPa Young's modulus and ≥380 MPa yield stress after press-forming. <P>SOLUTION: To a steel blank containing by mass% ≤0.20% C, 0.005-1.5% Si, 0.05-3.5% Mn, 0.005-0.15% P, 0.005-0.2% Al and ≤0.020% N, a hot-rolling is applied in which the rolling-reduction ratio in the temperature range of Ar<SB>3</SB>transformation point to (Ar<SB>3</SB>transformation point-100°C) is ≥50% and the rolling-reduction ratio at the finish pass is ≤15% and desirably, the rolling-reduction ratio of the passes except the finish pass, is ≤30%/pass, and the number of the rolling passes is ≥5 passes, and the finish rolling temperature is ≥(Ar<SB>3</SB>transformation point-100°C). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主にプレス成形などの加工を施して自動車車体などに用いて好適な鋼板に係り、とくに低ヤング率を有する高張力鋼板の製造方法に関する。なお、本発明における鋼板とは、鋼帯をも含むものとする。   The present invention relates to a steel sheet that is mainly subjected to processing such as press forming and is suitable for use in an automobile body or the like, and particularly to a method for producing a high-tensile steel sheet having a low Young's modulus. The steel sheet in the present invention includes a steel strip.

近年、地球環境保全の観点から、炭酸ガスの排出を規制する動きが活発となっており、自動車の軽量化による燃費改善が注目されている。自動車の軽量化を進めるうえでは、自動車車体で多くの割合を占める鋼板を薄肉化するのが有効な手段であり、使用される鋼板が薄肉化される傾向にある。鋼板の薄肉化を目的として、最近では、340MPa以上の引張強さを有する高張力鋼板が開発され、広く使用されている。しかし、このように鋼板が高強度化され使用する鋼板が薄肉化されると、一般的に、車体の剛性が低下することは避けられず、薄肉化における技術的壁となっていた。   2. Description of the Related Art In recent years, from the viewpoint of global environmental protection, there has been an active movement to regulate carbon dioxide emission, and attention has been focused on improving fuel efficiency by reducing the weight of automobiles. In order to reduce the weight of automobiles, it is an effective means to reduce the thickness of a steel sheet, which accounts for a large proportion of the vehicle body, and the steel sheet used tends to be thinned. Recently, high-strength steel sheets having a tensile strength of 340 MPa or more have been developed and widely used for the purpose of thinning steel sheets. However, when the steel sheet is increased in strength and the steel sheet used is reduced in thickness in this way, the rigidity of the vehicle body is generally inevitably reduced, which has been a technical barrier in thinning.

このため、最近になって、車体の設計にあたり、部品によっては弾性範囲内である程度の歪を生じることを許容することが検討されている。このような設計指針のもとでは、同じ降伏応力を有する鋼板であれば、塑性変形が生じるまでの歪が大きいこと、すなわちヤング率が小さい鋼板であることが望ましい。   For this reason, recently, in designing a vehicle body, it has been studied to allow a certain degree of strain to occur within an elastic range depending on parts. Under such design guidelines, it is desirable that a steel sheet having the same yield stress has a large strain before plastic deformation occurs, that is, a steel sheet having a small Young's modulus.

また、使用する鋼板が高強度化され薄肉化されると、部材をプレス成形後、組立てまでの搬送工程中に衝撃等の負荷により、容易に部材の塑性変形が発生しデントなどの欠陥が生じるという問題があった。また、組立て時にスポット溶接などで接合されるフランジ部なども衝撃等による変形が大きくなる傾向があり、組立工程で不良が発生するという問題があった。低ヤング率でかつ高降伏応力である鋼板であれば、このような衝撃等による負荷を弾性変形内で吸収し塑性変形を防止することが可能となる。   In addition, when the steel sheet used is strengthened and thinned, plastic deformation of the member easily occurs due to a load such as an impact during the transporting process until press assembly after the member is pressed, and defects such as dents are generated. There was a problem. In addition, the flanges and the like joined by spot welding or the like at the time of assembly tend to be greatly deformed due to impact or the like, and there has been a problem that a defect occurs in the assembly process. If the steel sheet has a low Young's modulus and a high yield stress, it is possible to absorb a load due to such an impact or the like in elastic deformation and prevent plastic deformation.

しかしながら、鋼板のヤング率を低下させる方法については、現在までほとんど知られていない。鋼板のヤング率に関する従来の知見は、例えば、特許文献1に開示されているように、高ヤング率を得ようするものばかりであり、ヤング率を低下させようとするものは皆無である。なお、ヤング率が低い鉄系材料として鋳鉄が知られているが、板形状に製造することが工業的に困難であり、また安定して低ヤング率を得ることが難しいといった問題があった。   However, a method of lowering the Young's modulus of a steel sheet is hardly known until now. Conventional knowledge about the Young's modulus of a steel sheet is, as disclosed in, for example, Patent Document 1, merely trying to obtain a high Young's modulus, and there is no attempt to lower the Young's modulus. In addition, cast iron is known as an iron-based material having a low Young's modulus. However, there is a problem that it is industrially difficult to manufacture a plate shape and it is difficult to stably obtain a low Young's modulus.

また、例えば、特許文献2に開示されているように、鉄単結晶では<100 >方向のヤング率が低いことが知られており、また、特許文献3には、ND//<100 >(圧延面法線方向に<100 >方向が平行である結晶方位)集合組織を発達させるためにAr3変態点以下で仕上げ圧延を行うことが提案されている。しかしながら、実際には、単にAr3変態点以下で仕上げ圧延を行っても、低ヤング率鋼板の熱延条件の適正化についてはまだよく知られておらず、低ヤング率鋼板を安定して製造することは困難であるのが現状である。 Also, for example, as disclosed in Patent Document 2, it is known that the iron single crystal has a low Young's modulus in the <100> direction, and Patent Document 3 discloses that ND // <100> ( It has been proposed to perform finish rolling below the Ar 3 transformation point in order to develop a crystallographic texture in which the <100> direction is parallel to the normal direction of the rolling surface. However, in practice, it is not yet well known how to optimize the hot rolling conditions of a low Young's modulus steel sheet even if the finish rolling is performed simply at the Ar 3 transformation point or lower. It is difficult at present.

また、Siなどの合金元素を添加してND//<100 >集合組織を発達させる方法も考えられるが、Siなどの合金元素を多量に添加する必要があり、加工性が劣化し加工用鋼板として十分な成形性を具備させることが困難となる。加工用鋼板としては、30%以上、強度にもよるが好ましくは40%以上の伸びを保持することが要求されるが、従来、このような高延性と低ヤング率を共に具備する高張力鋼板を安定して製造することができなかった。   A method of adding ND // <100> texture by adding an alloy element such as Si may be considered, but it is necessary to add a large amount of an alloy element such as Si, and the workability is degraded and It is difficult to provide sufficient moldability. A steel sheet for processing is required to maintain elongation of 30% or more, preferably 40% or more, depending on strength. Conventionally, a high-tensile steel sheet having both such high ductility and low Young's modulus is required. Could not be produced stably.

なお、主相をオーステナイト相とする、たとえばオーステナイト系ステンレス鋼はヤング率は低めであるが、加工用鋼板としては、コスト高となる。
特開平4-143216号公報 特開昭56-139619 号公報 特開昭62-284016 号公報
The main phase is an austenitic phase, for example, an austenitic stainless steel has a low Young's modulus, but the cost is high as a working steel sheet.
JP-A-4-432216 JP-A-56-139619 JP-A-62-284016

本発明は、最近の設計指針に適応した、高延性と低ヤング率を有し、かつプレス成形後の降伏応力が380MPa以上である加工用高張力鋼板の製造方法を提供することを目的とする。低ヤング率を有し、かつプレス成形後の降伏応力が380MPa以上となる高張力鋼板であれば、プレス成形後成形部材組立てまでの搬送工程で受ける衝撃等を弾性変形で吸収し塑性変形を防止でき、組立て時の欠陥発生を防止できる。低ヤング率とは、具体的には、ヤング率Eが室温で200GPa以下を目標とする。   An object of the present invention is to provide a method for producing a high-tensile steel sheet for processing, which has high ductility and a low Young's modulus, and has a yield stress after press forming of 380 MPa or more, adapted to recent design guidelines. . High-strength steel sheets that have a low Young's modulus and a yield stress after press forming of 380 MPa or more are elastically deformed to prevent impacts and other shocks received during the transfer process from press forming to forming member assembly, preventing plastic deformation. It is possible to prevent the occurrence of defects during assembly. Specifically, the low Young's modulus aims at a Young's modulus E of 200 GPa or less at room temperature.

本発明者らは、上記した課題を達成するため、鋭意実験、検討を行った。その結果、固溶強化元素、および/または析出強化元素を添加した鋼板組成とし、さらに、Ar3変態点〜(Ar3変態点−100 ℃)の温度範囲で、圧延時の歪蓄積を回避しつつ、所定量以上の圧下を加える熱間圧延を施すことにより、高延性と低ヤング率を有し、かつプレス成形後の降伏応力が380MPa以上となる高張力鋼板を得ることができることを知見した。 The present inventors have conducted intensive experiments and studies to achieve the above object. As a result, a steel sheet composition to which a solid solution strengthening element and / or a precipitation strengthening element are added, and further, in a temperature range from the Ar 3 transformation point to (Ar 3 transformation point −100 ° C.), accumulation of strain during rolling is avoided. Meanwhile, it was found that by performing hot rolling applying a reduction of a predetermined amount or more, a high-tensile steel sheet having high ductility and a low Young's modulus, and having a yield stress after press forming of 380 MPa or more can be obtained. .

まず、本発明者らの行った基礎的実験結果を説明する。   First, the results of basic experiments performed by the present inventors will be described.

質量%で、0.002 %C−0.30%Si−0.5 %Mn−0.002 %P−0.01%S−0.05%Al−0.003 %N−0.01%Ti−0.0003%B組成の鋼素材を、実験室で1080℃に加熱し、粗圧延し、さらに仕上げ圧延として、3パスで全圧下率40、50、60%もしくは5パスで全圧下率50%の圧延を650 〜950 ℃の各温度で行った。仕上げ圧延中は適宜炉内で保温し、各パスにおける圧延温度を一定に保った。各パスの圧下率は、全圧下率40%の場合は20-15-10%、全圧下率50%の場合は30-20-10%、全圧下率60%の場合は30-30-15%、全圧下率50%(5パス)の場合は15-15-15-10-10%、とした。   A steel material having a composition of 0.002% C-0.30% Si-0.5% Mn-0.002% P-0.01% S-0.05% Al-0.003% N-0.01% Ti-0.0003% B by mass% was heated to 1080 ° C in a laboratory. Then, as a rough rolling, and as a finish rolling, rolling was performed at a total reduction of 40, 50, 60% in three passes or at a total reduction of 50% in five passes at each temperature of 650 to 950 ° C. During the finish rolling, the temperature was appropriately kept in the furnace, and the rolling temperature in each pass was kept constant. The rolling reduction for each pass is 20-15-10% for a total rolling reduction of 40%, 30-20-10% for a total rolling reduction of 50%, and 30-30-15 for a total rolling reduction of 60%. %, And 15-15-15-10-10% for a total reduction of 50% (5 passes).

得られた熱延板について、縦振動の共振法によりヤング率を測定した(室温:18℃)。ヤング率Eは、次(1) 式
E=(E0 +2E45+E90)/4 …………(1)
ただし、E0 、E45、E90はそれぞれ圧延方向、圧延方向に45°、圧延 方向に90°の方向のヤング率(GPa )。
で定義される平均のヤング率を用いている。その結果を図1に示す。
The Young's modulus of the obtained hot rolled sheet was measured by a longitudinal vibration resonance method (room temperature: 18 ° C.). The Young's modulus E is given by the following equation (1)
E = (E 0 + 2E 45 + E 90 ) / 4 (1)
Here, E 0 , E 45 and E 90 are Young's moduli (GPa) in the rolling direction, 45 ° in the rolling direction and 90 ° in the rolling direction, respectively.
The average Young's modulus defined by The result is shown in FIG.

図1から、Ar3変態点以下好ましくはAr3変態点〜(Ar3変態点−100 ℃)の温度範囲で50%以上の圧下率で熱間圧延することにより、ヤング率Eが急激に低下することがわかる。同じ圧下率ではパス数が多い5パス圧延のほうが、圧延温度の広い範囲で安定してヤング率が低下している。 From FIG. 1, it can be seen that the Young's modulus E sharply decreases by hot rolling at a rolling reduction of 50% or more in a temperature range of Ar 3 transformation point or lower, preferably Ar 3 transformation point to (Ar 3 transformation point −100 ° C.). You can see that At the same rolling reduction, the Young's modulus of the five-pass rolling with a large number of passes is stably reduced over a wide range of the rolling temperature.

本発明は、上記した知見に基づいて完成されたものである。   The present invention has been completed based on the above findings.

すなわち、本発明は、質量%で、C:0.20%以下、Si:0.005 〜1.5 %、Mn:0.05〜3.5 %、P:0.005 〜0.15%、S:0.02%以下、Al:0.005 〜0.2 %、N:0.020 %以下を含有する組成の鋼素材に、Ar3変態点〜(Ar3変態点−100 ℃)の温度範囲における圧下率が50%以上、最終パスの圧下率が15%以下で、かつ仕上げ圧延温度が(Ar3変態点−100 ℃)以上とする熱間圧延を施すことを特徴とする加工用高張力熱延鋼板の製造方法であり、前記熱間圧延を、Ar3変態点以下での、最終パスを除くパスの圧下率が30%/パス以下、圧延パス数が5パス以上となる熱間圧延とするのが好ましい。また、本発明では、前記組成に加えて、さらに質量%で、Nb:0.003 〜0.20%、Ti:0.003 〜0.20%、V:0.003 〜0.20%のうちから選ばれた1種または2種以上、またはCu:0.005 〜0.20%、Ni:0.005 〜0.20%、Cr:0.005 〜0.20%、Mo:0.005 〜0.20%のうちから選ばれた1種または2種以上、あるいはそれらを複合して含有するのが好ましく、またさらにこれらに加えて質量%で、B:0.0005〜0.005 %を複合して含有してもよく、あるいは前記組成に加えて質量%で、B:0.0005〜0.005 %を含有してもよい。 That is, in the present invention, C: 0.20% or less, Si: 0.005 to 1.5%, Mn: 0.05 to 3.5%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005 to 0.2%, N: the composition of the steel material containing 0.020% or less, Ar 3 transformation point - reduction ratio in the temperature range of (Ar 3 transformation point -100 ° C.) of 50% or more, reduction ratio of the final pass is 15% or less, And hot rolling at a finish rolling temperature of (Ar 3 transformation point −100 ° C.) or higher. A method for producing a high-tensile hot-rolled steel sheet for processing, wherein the hot rolling is performed at an Ar 3 transformation point. In the following, it is preferable to perform hot rolling in which the rolling reduction except for the final pass is 30% / pass or less and the number of rolling passes is 5 or more. In the present invention, in addition to the above composition, one or more selected from among Nb: 0.003 to 0.20%, Ti: 0.003 to 0.20%, V: 0.003 to 0.20% by mass%, Or one or two or more selected from Cu: 0.005 to 0.20%, Ni: 0.005 to 0.20%, Cr: 0.005 to 0.20%, Mo: 0.005 to 0.20%, or a combination thereof. And B: 0.0005 to 0.005% by mass in addition to the above, or B: 0.0005 to 0.005% by mass in addition to the above composition. Good.

また、本発明は、質量%で、C:0.20%以下、Si:0.005 〜1.5 %、Mn:0.05〜3.5 %、P:0.005 〜0.15%、S:0.02%以下、Al:0.005 〜0.2 %、N:0.020 %以下を含有する組成の鋼素材に、Ar3変態点〜(Ar3変態点−100 ℃)の温度範囲における圧下率が50%以上、最終パスの圧下率が15%以下で、かつ仕上げ圧延温度が(Ar3変態点−100 ℃)以上とする熱間圧延を施したのち、冷間圧延、再結晶焼鈍を施すことを特徴とする加工用高張力冷延鋼板の製造方法であり、前記熱間圧延を、Ar3変態点以下での、最終パスを除くパスの圧下率が30%/パス以下、圧延パス数が5パス以上となる熱間圧延とするのが好ましい。前記組成に加えて、さらに質量%で、B:0.0005〜0.005 %を含有してもよい。また、本発明では、前記組成に加えて、さらに質量%で、Nb:0.003 〜0.20%、Ti:0.003 〜0.20%、V:0.003 〜0.20%のうちから選ばれた1種または2種以上、またはCu:0.005 〜0.20%、Ni:0.005 〜0.20%、Cr:0.005 〜0.20%、Mo:0.005 〜0.20%のうちから選ばれた1種または2種以上、あるいはそれらを複合して含有するのが好ましい。 In the present invention, C: 0.20% or less, Si: 0.005 to 1.5%, Mn: 0.05 to 3.5%, P: 0.005 to 0.15%, S: 0.02% or less, Al: 0.005 to 0.2%, N: the composition of the steel material containing 0.020% or less, Ar 3 transformation point - reduction ratio in the temperature range of (Ar 3 transformation point -100 ° C.) of 50% or more, reduction ratio of the final pass is 15% or less, A method for producing a high-tensile cold-rolled steel sheet for processing, which comprises performing hot rolling at a finish rolling temperature of (Ar 3 transformation point −100 ° C.) or higher, followed by cold rolling and recrystallization annealing. Yes, the hot rolling is preferably hot rolling in which the rolling reduction is 30% / pass or less and the number of rolling passes is 5 or more, excluding the final pass, below the Ar 3 transformation point. In addition to the above composition, B: 0.0005 to 0.005% by mass may be further contained. In the present invention, in addition to the above composition, one or more selected from among Nb: 0.003 to 0.20%, Ti: 0.003 to 0.20%, V: 0.003 to 0.20% by mass%, Or one or two or more selected from Cu: 0.005 to 0.20%, Ni: 0.005 to 0.20%, Cr: 0.005 to 0.20%, Mo: 0.005 to 0.20%, or a combination thereof. Is preferred.

本発明においては、熱間圧延後の軟質化・加工性向上を目的とした熱延板焼鈍を施してもよいことは言うまでもない。また、得られた鋼板の表面調整として、通常の調質圧延を行うこと、およびYRの向上を目的として10%までの調質圧延を施すことは、なんら本発明の趣旨を損なうものではない。   In the present invention, it goes without saying that hot-rolled sheet annealing may be performed for the purpose of softening and improving workability after hot rolling. In addition, normal temper rolling as a surface adjustment of the obtained steel sheet and temper rolling up to 10% for the purpose of improving YR do not impair the purpose of the present invention.

本発明によれば、低ヤング率で、プレス成形後の降伏応力も高く、塑性変形が生じるまでの弾性変形エネルギーが大きい高張力鋼板が製造でき、しかも、自動車車体向けとして有用な加工用高張力鋼板を安価に提供でき、産業上格段の効果を奏する。さらに、本発明の低ヤング率高張力鋼板は、小石が衝突した場合でも、その外力を塑性変形なしに吸収できるという効果もある。また、さらにヤング率が低下することにより、共振周波数が低下し、防振範囲が広がるという効果も期待できる。   According to the present invention, a high tensile strength steel sheet having a low Young's modulus, a high yield stress after press forming, a large elastic deformation energy until plastic deformation occurs, and a high tensile strength for processing useful for an automobile body can be manufactured. Steel plate can be provided at low cost, and it has a remarkable industrial effect. Furthermore, the low Young's modulus high-tensile steel sheet of the present invention has an effect that even when a pebble collides, the external force can be absorbed without plastic deformation. Further, by further lowering the Young's modulus, the effect of lowering the resonance frequency and widening the vibration isolation range can be expected.

本発明の鋼板には、熱延鋼板、冷延鋼板、およびこれらの冷延鋼板を原板とした表面処理鋼板を含む。熱延鋼板は、熱間圧延後焼鈍を施された熱延焼鈍鋼板を含み、冷延鋼板は、冷間圧延後焼鈍を施された冷延焼鈍鋼板、さらに冷延焼鈍後調質圧延を施された冷延焼鈍調質鋼板が含まれる。また、熱延鋼板についても、熱延焼鈍後に調質圧延を施したものも含まれる。さらに、本発明の鋼板においては、表面の酸化スケール層の有無は問わない。   The steel sheet of the present invention includes a hot-rolled steel sheet, a cold-rolled steel sheet, and a surface-treated steel sheet using these cold-rolled steel sheets as base plates. The hot-rolled steel sheet includes a hot-rolled annealed steel sheet annealed after hot rolling, and the cold-rolled steel sheet includes a cold-rolled annealed steel sheet annealed after the cold rolling, and a temper rolling after the cold rolling annealing. Cold-rolled annealed tempered steel sheet. The hot-rolled steel sheets also include those subjected to temper rolling after hot-rolling annealing. Furthermore, in the steel sheet of the present invention, the presence or absence of the oxide scale layer on the surface does not matter.

本発明の鋼板は、優れた加工性を具備させるために、フェライト相を母相とする。フェライト以外の組織を母相とすると、均一伸びが30%以上という高延性を容易に確保することは困難である。第2相としては、パーライト、ベイナイト、マルテンサイトを面積率で10%以下含有させてもよい。第2相が10%を超えると、延性が顕著に劣化する。なお、マルテンサイトが多くなるとYRが低くなる傾向にあるので、マルテンサイトは全体の5%未満とする。なお、組織の面積率は、断面観察により求めるものとする。   The steel sheet of the present invention has a ferrite phase as a mother phase in order to provide excellent workability. When a structure other than ferrite is used as a matrix, it is difficult to easily secure high ductility such that uniform elongation is 30% or more. As the second phase, pearlite, bainite, and martensite may be contained in an area ratio of 10% or less. If the second phase exceeds 10%, the ductility is significantly deteriorated. In addition, since YR tends to decrease as the amount of martensite increases, the amount of martensite is set to less than 5% of the whole. The area ratio of the structure is determined by cross-sectional observation.

また、本発明の鋼板は、次(1)式
E=(E0 +2E45+E90)/4 …………(1)
(ただし、E0 、E45、E90はそれぞれ圧延方向、圧延方向に45°、圧延方向に90°の方向のヤング率(GPa ))で定義されるEが室温で200GPa以下である。ここで、室温とは、0〜30℃を意味し、ヤング率の測定温度としては、10〜25℃が好適である。
Further, the steel sheet of the present invention has the following formula (1)
E = (E 0 + 2E 45 + E 90 ) / 4 (1)
(Where E 0 , E 45 and E 90 are rolling directions, Young's modulus (GPa) in the direction of 45 ° in the rolling direction and 90 ° in the rolling direction, respectively), and E is 200 GPa or less at room temperature. Here, room temperature means 0 to 30 ° C., and 10 to 25 ° C. is preferable as the measurement temperature of the Young's modulus.

ヤング率の平均を表す(1)式で定義されるEが200GPaを超えると、組立て完了までに加えられた衝撃等を弾性変形で吸収することが困難となり、部材に塑性変形を生じる。なお、Eは好ましくは180GPa以下である。 ヤング率が低くなると、鋼板としての共振周波数が低下し、車体としての防振範囲が広がる。   If E defined by the equation (1), which represents the average of the Young's modulus, exceeds 200 GPa, it becomes difficult to absorb shocks and the like applied until the completion of assembly by elastic deformation, and plastic deformation occurs in the member. E is preferably 180 GPa or less. When the Young's modulus decreases, the resonance frequency of the steel sheet decreases, and the vibration isolation range of the vehicle body increases.

なお、本発明の鋼板は、次(2)式
YR=(YS0 +2YS45+YS90)/(TS0 +2TS45 +TS90)…(2)
(ただし、YS0 、YS45、YS90はそれぞれ圧延方向、圧延方向に45°、圧延方向に90°の方向の降伏応力(MPa )で、TS0 、TS45、TS90はそれぞれ圧延方向、圧延方向に45°、圧延方向に90°の方向の引張強さ(MPa )である。)で定義されるYRが0.8 以上を有することが好ましい。
In addition, the steel plate of the present invention has the following formula (2)
YR = (YS 0 + 2YS 45 + YS 90) / (TS 0 + 2TS 45 + TS 90) ... (2)
(However, YS 0 , YS 45 , and YS 90 are the yield stress (MPa) in the rolling direction, 45 ° in the rolling direction, and 90 ° in the rolling direction, respectively, and TS 0 , TS 45 , and TS 90 are the rolling directions in the rolling direction, respectively. The tensile strength (MPa) in the direction of 45 ° in the rolling direction and 90 ° in the rolling direction is preferably 0.8 or more.

YRが0.8 以上とすることにより、成形後のパネルの搬送時に変形を生じる危険性を格段に小さくできるという効果がある。YRを高くするには、マルテンサイトの発生を抑えるほかに、固溶C、固溶N、固溶強化元素であるP、Si、Mn等を添加する、あるいは炭化物、窒化物などを微細析出させることが有効である。また、調質圧延をほどこしてもよい。   By setting the YR to 0.8 or more, there is an effect that the risk of deformation during transportation of the formed panel can be significantly reduced. To increase YR, in addition to suppressing the generation of martensite, add solid solution C, solid solution N, P, Si, Mn, etc., which are solid solution strengthening elements, or finely precipitate carbides, nitrides, and the like. It is effective. Further, temper rolling may be performed.

本発明の鋼板は、プレス成形後の降伏応力を380MPa以上となる降伏応力を有する。ここに、プレス成形後とは概ね歪が10%以上となる加工をいうが、加工前の降伏応力は概ね250MPa以上とするのが好ましい。塑性変形が生じるまでの弾性変形エネルギーは(降伏応力)2/(2E)で表される。このことから、弾性変形で吸収できるエネルギーを大きくするためには、Eを低くするか、降伏応力を高めることが有効であり、プレス成形後の降伏応力を380MPa以上と高めることにより、プレス成形後組立てまでの搬送工程で受ける衝撃等の負荷による塑性変形を防止することができる。さらに、自動車外板として使用された場合には、このようなヤング率が低く、降伏応力が高く、YRが高い鋼板は、小石が衝突してもその外力を弾性変形のみで吸収でき、凹み等の疵を残さないという大きな利点がある。 The steel sheet of the present invention has a yield stress after press forming of 380 MPa or more. Here, “after press forming” refers to a process in which the strain is approximately 10% or more, but it is preferable that the yield stress before the process is approximately 250 MPa or more. The elastic deformation energy until plastic deformation occurs is expressed by (yield stress) 2 / (2E). Therefore, in order to increase the energy that can be absorbed by elastic deformation, it is effective to lower E or increase the yield stress. By increasing the yield stress after press molding to 380 MPa or more, It is possible to prevent plastic deformation due to a load such as an impact received in a transportation process up to assembling. Further, when used as an automobile outer panel, such a steel sheet having a low Young's modulus, a high yield stress, and a high YR can absorb the external force only by elastic deformation even if a pebble collides, causing dents, etc. There is a great advantage that no flaw is left.

また、プレス成形後、すなわち、10%以上の歪を生じる加工を施したのちの降伏応力が380MPa未満では、部品の単体での強度が不足する。なお、上記効果をより発揮するためには、加工後のYSが400MPa以上であることが好ましい。   In addition, if the yield stress after press forming, that is, after performing a process that causes a strain of 10% or more, is less than 380 MPa, the strength of the component alone becomes insufficient. In order to further exert the above effects, it is preferable that YS after processing is 400 MPa or more.

つぎに、上記した特性を有する鋼板の組成限定について説明する。   Next, the composition limitation of the steel sheet having the above-described characteristics will be described.

C:0.20%以下
Cは、鋼板の強度を確保するうえで重要な元素である。C量が0.20%を超えると溶接性、延性が劣化し、成形性が劣化する。このため、Cは0.20%以下に限定した。なお、延性、溶接性の観点から好ましくは0.004 〜0.10%である。
C: 0.20% or less C is an important element for securing the strength of the steel sheet. If the C content exceeds 0.20%, weldability and ductility deteriorate, and formability deteriorates. For this reason, C is limited to 0.20% or less. The content is preferably 0.004 to 0.10% from the viewpoint of ductility and weldability.

Si:0.005 〜1.5 %
Siは、鋼板の延性低下を最小限に抑えて鋼板を強化するために有効な元素である。この効果は0.005 %以上の添加で認められる。しかし、1.5 %を超える添加は、鋼板の強度を著しく増加させるため、例えば熱間変形抵抗の増加等の鋼板製造工程における負荷が大きく製造にあたり障害となる。このため、Siは0.005 〜1.5 %の範囲に限定した。なお、高強度化の観点からは0.10%以上とするのが好ましく、主としてSi量増加により高強度化を達成するためには0.5 %以上とするのがより好ましい。
Si: 0.005 to 1.5%
Si is an element effective for strengthening the steel sheet while minimizing the reduction in ductility of the steel sheet. This effect is observed at 0.005% or more. However, if the addition exceeds 1.5%, the strength of the steel sheet is significantly increased, so that the load in the steel sheet manufacturing process such as an increase in hot deformation resistance is large and hinders the manufacture. For this reason, Si is limited to the range of 0.005 to 1.5%. In addition, from the viewpoint of high strength, the content is preferably 0.10% or more, and more preferably 0.5% or more in order to achieve high strength mainly by increasing the amount of Si.

Mn:0.05〜3.5 %
Mnは、鋼板の強度を増加させる有効な元素であり、鋼板組織の微細化および低温変態組織の形成に有効である。このような効果は0.05%以上の添加で認められるが、3.5 %を超えて添加するとAr3変態点が低くなりすぎ、さらに圧延荷重の増大のためフェライト域での圧延が困難となる。このため、Mnは0.05〜3.5 %に限定した。なお、Mnによる強化を主体として、延性の低下を最小限とし、強度をプレス成形後の降伏応力が380MPa以上となる高強度とするためには、Mnは0.5 %以上、好ましくは 0.8%以上添加するのが望ましい。
Mn: 0.05-3.5%
Mn is an effective element for increasing the strength of the steel sheet, and is effective for refining the structure of the steel sheet and forming a low-temperature transformation structure. Such an effect is observed when the addition is 0.05% or more. However, when the addition exceeds 3.5%, the Ar 3 transformation point becomes too low, and the rolling load increases, so that the rolling in the ferrite region becomes difficult. For this reason, Mn was limited to 0.05 to 3.5%. In order to minimize the decrease in ductility mainly by strengthening with Mn, and to increase the strength to a high strength at which the yield stress after press molding is 380 MPa or more, Mn is added at 0.5% or more, preferably 0.8% or more. It is desirable to do.

P:0.005 〜0.15%
Pは、鋼板を固溶強化するために有効な元素であるが、この効果が認められるためには0.005 %以上の添加が必要である。一方、0.15%を超えて添加した場合には鋼板の延性が著しく低下する。このため、Pは0.005 〜0.15%の範囲に限定した。なお、Pによる強化を主体として、延性の低下を最小限とし、強度をプレス成形後の降伏応力が380MPa以上となる高強度とするためには、Pは0.02%以上、さらに望ましくは0.04%以上とするのが好ましい。
P: 0.005 to 0.15%
P is an element effective for solid solution strengthening of a steel sheet, but 0.005% or more of P must be added for this effect to be recognized. On the other hand, if added in excess of 0.15%, the ductility of the steel sheet is significantly reduced. Therefore, P is limited to the range of 0.005 to 0.15%. In order to minimize the decrease in ductility mainly by strengthening with P and to increase the strength so that the yield stress after press molding is 380 MPa or more, P is 0.02% or more, more preferably 0.04% or more. It is preferred that

S:0.02%以下
Sは、鋼板の延性を低下させるため、できるだけ低減するのが好ましい。延性確保の観点からは、0.02%まで許容できる。とくに高い延性が要求される場合には、0.008 %以下とするのが好ましい。
S: 0.02% or less S is preferably reduced as much as possible in order to reduce the ductility of the steel sheet. From the viewpoint of ensuring ductility, it is allowable up to 0.02%. When a particularly high ductility is required, the content is preferably 0.008% or less.

Al:0.005 〜0.2 %
Alは、脱酸元素として作用し、0.005 %以上の添加で鋼中の酸化物量を十分低減できる。0.2 %を超える添加は、アルミナクラスターを形成し表面欠陥が多発するとともに、熱間延性が低下する。このため、Alは0.005 〜0.2 %の範囲に限定した。なお、表面性状の観点からは0.005 〜0.15%の範囲とするのが好ましい。なお、Ti、Ca等の他の脱酸元素を用いてAlを実質的に無添加としてもよい。また、固溶Nによる強化を主体とする場合には、固溶NがAlN として固定される量を減らすために、Al量を0.02%以下とするのが好ましい。
Al: 0.005 to 0.2%
Al acts as a deoxidizing element, and the addition of 0.005% or more can sufficiently reduce the amount of oxides in steel. If the addition exceeds 0.2%, alumina clusters are formed and surface defects occur frequently, and the hot ductility decreases. Therefore, Al is limited to the range of 0.005 to 0.2%. From the viewpoint of surface properties, the content is preferably in the range of 0.005 to 0.15%. Note that Al may be substantially not added using another deoxidizing element such as Ti or Ca. In the case where reinforcement by solid solution N is mainly used, the amount of Al is preferably set to 0.02% or less in order to reduce the amount of solid solution N fixed as AlN.

N:0.02%以下
Nは、鋼中に固溶して鋼板の強度を増加する元素であるが、耐時効性を劣化させるため、耐時効性を劣化させない範囲で添加し高強度化を図ることができる。しかし、過剰な添加は、鋼板表面にブローホールを発生させるため、Nは0.02%以下に限定する。延性が要求される用途の場合には、Nは0.007 %以下とするのが好ましい。また、固溶Nによる強化を主体とする場合には、Nは 0.005%以上とするのが好ましい。
N: 0.02% or less N is an element that forms a solid solution in steel and increases the strength of the steel sheet. However, since it deteriorates the aging resistance, it must be added within the range that does not deteriorate the aging resistance to increase the strength. Can be. However, excessive addition causes blowholes on the steel sheet surface, so N is limited to 0.02% or less. For applications requiring ductility, N is preferably set to 0.007% or less. In the case where reinforcement by solid solution N is mainly used, N is preferably 0.005% or more.

Nb:0.003 〜0.20%、Ti:0.003 〜0.20%、V:0.003 〜0.20%のうちから選ばれた1種または2種以上
Nb、Ti、Vは、いずれも炭化物あるいは窒化物を形成し基地中に微細析出して鋼板の強度を増加させるとともに、鋼板組織を均一かつ微細化する有効な元素であり、Nb、Ti、Vのうちから選ばれた1種または2種以上を必要に応じ添加できる。Nb、Ti、Vは、いずれも0.003 %以上添加することにより効果が認められるが、いずれの元素も、それぞれ0.20%を超えて添加すると効果が飽和し、添加量に見合う効果が期待できない。そのため、Nb、Ti、Vはそれぞれ0.003 〜0.20%の範囲に限定した。複合して添加する場合には、Nb、Ti、Vの合計量が0.20%以下に限定するのが好ましい。Nb、Ti、Vの合計量が、0.20%を超えると効果が飽和する傾向を示し好ましくない。
Nb: 0.003 to 0.20%, Ti: 0.003 to 0.20%, V: 0.003 to 0.20%, one or more selected from the group
Nb, Ti, and V are effective elements that form carbides or nitrides and precipitate finely in the matrix to increase the strength of the steel sheet and also to uniformly and refine the steel sheet structure. One or more selected from the above can be added as necessary. Nb, Ti, and V are all effective when added in an amount of 0.003% or more. However, when any of the elements is added in excess of 0.20%, the effects are saturated, and an effect corresponding to the added amount cannot be expected. Therefore, Nb, Ti, and V are each limited to the range of 0.003 to 0.20%. In the case of adding in combination, the total amount of Nb, Ti, and V is preferably limited to 0.20% or less. If the total amount of Nb, Ti, and V exceeds 0.20%, the effect tends to be saturated, which is not preferable.

Cu:0.005 〜0.20%、Ni:0.005 〜0.20%、Cr:0.005 〜0.20%、Mo:0.005 〜0.20%のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Moは、固溶強化で鋼板の強度(降伏応力)を増加させる元素であり、必要に応じ、これら元素のうちから1種または2種以上添加できる。Cu、Ni、Cr、Moはそれぞれ0.005 %以上の添加で効果が認められるが、0.20%を超える添加は鋼板を顕著に硬質化し、成形性を劣化させる。このため、Cu、Ni、Cr、Moはそれぞれ0.005 〜0.20%の範囲とするのが好ましい。また、複合して添加する場合は、合計量で0.20%を超える添加は、延性を著しく低下させ、成形性を劣化させる。このため各元素の合計量を0.20%以下に限定するのが好ましい。
Cu: 0.005 to 0.20%, Ni: 0.005 to 0.20%, Cr: 0.005 to 0.20%, Mo: 0.005 to 0.20% One or more selected from
Cu, Ni, Cr, and Mo are elements that increase the strength (yield stress) of the steel sheet by solid solution strengthening, and one or more of these elements can be added as necessary. The effects of Cu, Ni, Cr, and Mo can be recognized when added in amounts of 0.005% or more, respectively. However, when added in amounts of more than 0.20%, the steel sheet is significantly hardened and the formability is deteriorated. Therefore, Cu, Ni, Cr, and Mo are each preferably in the range of 0.005 to 0.20%. In addition, in the case of adding as a composite, the addition exceeding 0.20% in total amount remarkably reduces ductility and deteriorates moldability. For this reason, the total amount of each element is preferably limited to 0.20% or less.

B:0.0005〜0.01%
Bは、固溶C量が顕著に低下する場合には、2次加工脆性を改善するため、必要に応じ添加できる。Bが0.0005%未満では、上記した効果が期待できない。一方、0.01%を超える添加では、加工性が劣化する。このため、Bは0.0005〜0.01%の範囲とするのが好ましい。なお、鋼の表面性状改善の観点からより好ましくは0.0005〜0.005 %である。
B: 0.0005-0.01%
B can be added as necessary in order to improve the brittleness in secondary processing when the amount of solute C is significantly reduced. If B is less than 0.0005%, the above effects cannot be expected. On the other hand, if the addition exceeds 0.01%, workability deteriorates. For this reason, B is preferably set in the range of 0.0005 to 0.01%. The content is more preferably 0.0005 to 0.005% from the viewpoint of improving the surface properties of steel.

残部は、Feおよび不可避的不純物である。不可避的不純物としては、例えば、主としてスクラップより混入するSnについては0.01%以下が許容できる。   The balance is Fe and inevitable impurities. As unavoidable impurities, for example, 0.01% or less can be tolerated for Sn mainly mixed from scrap.

上記したように、C、N以外のSi、Mn、Pの固溶強化で鋼板の強度を増加させるためには、Si:0.1 %以上、Mn:0.5 %以上、P:0.02%以上のうち少なくとも2つ以上を満足する組成とするか、あるいはSi:0.5 %以上、Mn:0.8 %以上、P:0.04%以上のうち1つ以上を満足する組成とするのが好ましい。   As described above, in order to increase the strength of the steel sheet by solid solution strengthening of Si, Mn, and P other than C and N, at least one of Si: 0.1% or more, Mn: 0.5% or more, and P: 0.02% or more. Preferably, the composition satisfies at least two or more than one of Si: 0.5% or more, Mn: 0.8% or more, and P: 0.04% or more.

上記した組成とすることにより、プレス成形後の降伏応力が380MPa以上となる高張力鋼板となる。   With the above composition, a high tensile strength steel sheet having a yield stress after press forming of 380 MPa or more is obtained.

つぎに、上記した特性を有する鋼板の製造方法について説明する。   Next, a method for manufacturing a steel sheet having the above-described characteristics will be described.

上記した組成範囲の鋼素材に熱間圧延を施し熱延鋼板とする。本発明における熱間圧延は、フェライト域圧延とし、フェライト相の圧延集合組織として、ヤング率の低減に有効なND//<100 >集合組織を優先的に形成させる。このためには、Ar3変態点〜(Ar3変態点−100 ℃)の温度範囲で50%以上の圧下率で、最終パスの圧下率を15%以下とし圧延終了温度を(Ar3変態点−100 ℃)以上とする圧延とする。フェライト域圧延により、圧延集合組織として、ND//<100 >、ND//<211 >、ND//<111 >が発達するが、この圧延条件では、いずれの集合組織も再結晶を生じるほど歪が蓄積しないため、結晶の回転が速いND//<100 >が他の集合組織の結晶粒を侵食し、ND//<100 >集合組織を優先的に形成されるものと考えられる。上記した範囲の圧延条件を外れ、歪の蓄積が多くなると再結晶の進行により、ND//<111 >集合組織の形成が促進され、また蓄積された歪により結晶の回転が阻害される。そのためND//<100 >集合組織の形成が弱められ、低ヤング率が達成されない。 Hot rolling is performed on a steel material having the above composition range to obtain a hot-rolled steel sheet. The hot rolling in the present invention is a ferrite region rolling, and preferentially forms a ND // <100> texture effective for reducing the Young's modulus as a rolling texture of the ferrite phase. For this purpose, the reduction rate of the final pass is set to 15% or less in the temperature range from the Ar 3 transformation point to the (Ar 3 transformation point-100 ° C.), and the rolling end temperature is set to the (Ar 3 transformation point). (-100 ° C) or higher. In the ferrite zone rolling, ND // <100>, ND // <211>, ND // <111> are developed as rolling textures, but under these rolling conditions, any texture can be recrystallized. Since no strain is accumulated, it is considered that ND // <100> in which the rotation of the crystal is fast erodes the crystal grains of other textures, and ND // <100> texture is formed preferentially. If the rolling conditions deviate from the above range and the accumulation of strain increases, the progress of recrystallization promotes the formation of the ND // <111> texture, and the accumulated strain hinders the rotation of the crystal. Therefore, the formation of the ND // <100> texture is weakened, and a low Young's modulus cannot be achieved.

圧下率を規制する温度範囲が、Ar3変態点を超えると、フェライト域圧延とならないため、変態により組織がランダム化するなどして、ND//<100 >集合組織が形成されない。一方、(Ar3変態点−100 ℃)未満で圧延すると歪が蓄積し、その結果、とくに歪が蓄積しやすいND//<111 >が優先的に再結晶、成長する。なお、Ar3変態点以下の圧延パス数は3パス以上とするのが望ましい。

また、この温度範囲での圧下率が50%未満では、結晶の回転が少なくND//<100 >集合組織が形成されない。最終パスは、最終的に蓄積される歪にもっとも影響するため、このパスの圧下量を規制する。最終パスの圧下率が15%超えでは、歪の蓄積量が多くなる。また、圧延終了温度が(Ar3変態点−100 ℃)未満では、ND//<111 >方位の結晶粒が再結晶・成長しやすくなり、ND//<100 >集合組織の形成が促進されない。
If the temperature range that regulates the rolling reduction exceeds the Ar 3 transformation point, rolling in the ferrite region does not occur, and the ND // <100> texture is not formed due to the randomization of the structure due to the transformation. On the other hand, when rolling is performed at a temperature lower than (Ar 3 transformation point −100 ° C.), strain accumulates. As a result, ND // <111>, in which strain is easily accumulated, is preferentially recrystallized and grown. The number of rolling passes below the Ar 3 transformation point is desirably 3 or more.

If the rolling reduction in this temperature range is less than 50%, the rotation of the crystal is small and the ND // <100> texture is not formed. The final pass most affects the finally accumulated distortion, so the amount of reduction in this pass is regulated. If the rolling reduction of the final pass exceeds 15%, the amount of strain accumulation increases. If the rolling end temperature is lower than the (Ar 3 transformation point −100 ° C.), the crystal grains in the ND // <111> orientation tend to recrystallize and grow, and the formation of the ND // <100> texture is not promoted. .

Ar3変態点以下の圧延において、最終パスを除くパスの圧下率が30%/パス以下、圧延パス数が5パス以上となる熱間圧延とするのが好ましい。これにより、ヤング率Eは180GPa以下となる。この条件を外れると、歪蓄積が増し、ND//<111 >集合組織の形成が促進され、ND//<100 >集合組織の形成が弱められる。 In the rolling at the Ar 3 transformation point or lower, it is preferable to perform hot rolling in which the rolling reduction excluding the final pass is 30% / pass or less and the number of rolling passes is 5 or more. As a result, the Young's modulus E becomes 180 GPa or less. Outside of this condition, strain accumulation increases, the formation of ND // <111> texture is promoted, and the formation of ND // <100> texture is weakened.

上記した熱間圧延条件とすることにより、低ヤング率化に有効な集合組織を効果的に形成できるようになる。なお、Ti、Nb、Vの炭化物を析出させるためには、熱間圧延後の冷却パターンを制御するのが好ましい。具体的には、鋼組成および目的とする材質(強度・延性等)により異なるが、圧延後速やかに600 〜750 ℃まで30℃/s以上の冷却速度で急冷し(前段冷却)、その後好ましくは3〜20sec 間綾冷(例えば空冷)することが好適である。綾冷後巻取りまでの冷却速度は限定する必要はないが20〜80℃/s程度の急冷とするのが好ましい。   By using the above hot rolling conditions, a texture effective for lowering the Young's modulus can be effectively formed. In order to precipitate carbides of Ti, Nb and V, it is preferable to control the cooling pattern after hot rolling. Specifically, although it differs depending on the steel composition and the target material (strength, ductility, etc.), it is rapidly cooled at a cooling rate of at least 30 ° C./s from 600 to 750 ° C. immediately after rolling (pre-cooling). It is preferable to perform twill cooling (for example, air cooling) for 3 to 20 seconds. It is not necessary to limit the cooling rate from the twill cooling to the winding, but rapid cooling at about 20 to 80 ° C./s is preferable.

つぎに、熱間圧延のままでND//<100 >集合組織が十分に発達すれば、その後この熱延鋼板を焼鈍しても、ND//<100 >集合組織が維持されることを確認した。その後、冷間圧延−焼鈍、熱延板焼鈍−冷間圧延−再結晶焼鈍工程を経ても、ND//<100 >集合組織が維持され、鋼板は低ヤング率のままである。さらに、調質圧延はヤング率にはほとんど影響しないため、鋼板に調質圧延を施すことにより、低ヤング率のままで、鋼板の降伏応力を高めることができる。   Next, if the ND // <100> texture is fully developed with hot rolling, it is confirmed that the ND // <100> texture is maintained even after annealing this hot-rolled steel sheet. did. After that, the ND // <100> texture is maintained even after the cold rolling-annealing, hot rolled sheet annealing-cold rolling-recrystallization annealing steps, and the steel sheet remains at a low Young's modulus. Furthermore, since temper rolling hardly affects the Young's modulus, by subjecting the steel sheet to temper rolling, the yield stress of the steel sheet can be increased while keeping the Young's modulus low.

なお、熱延板焼鈍は、箱型焼鈍炉、あるいは連続焼鈍炉で、Ac1変態点以下、好ましくは、400 〜 750℃(箱型焼鈍)、400 〜 850℃(連続焼鈍)の温度で、必要に応じ行うことができる。 The hot-rolled sheet annealing is performed in a box-type annealing furnace or a continuous annealing furnace at a temperature not higher than the Ac 1 transformation point, preferably at 400 to 750 ° C (box-type annealing) and 400 to 850 ° C (continuous annealing). It can be performed as needed.

また、冷間圧延は、40〜95%の圧下率で行うのが低ヤング率の観点から望ましい。圧下率が40%未満では、組織が顕著に粗大化し、肌荒れを起こす危険があり、95%を超えると冷間圧延が極めて困難となる。   Further, it is desirable that the cold rolling is performed at a rolling reduction of 40 to 95% from the viewpoint of a low Young's modulus. If the rolling reduction is less than 40%, the structure is remarkably coarsened, and there is a risk of roughening. If it exceeds 95%, cold rolling becomes extremely difficult.

また、冷延後の焼鈍は、箱型焼鈍炉、あるいは連続焼鈍炉で、Ac1変態点以下、好ましくは、650 〜750 ℃(箱型焼鈍)、400 〜850 ℃(連続焼鈍)の温度で行うことができる。 Annealing after cold rolling is performed in a box-type annealing furnace or a continuous annealing furnace at an Ac 1 transformation point or lower, preferably at a temperature of 650 to 750 ° C (box-type annealing) and 400 to 850 ° C (continuous annealing). It can be carried out.

なお、冷延焼鈍板に、圧下率10%以下の調質圧延を施してもよい。これにより、鋼板の降伏応力が増加し、YRが高くなる。   The cold-rolled annealed sheet may be subjected to temper rolling at a rolling reduction of 10% or less. Thereby, the yield stress of the steel sheet increases, and the YR increases.

表1に示す化学組成の溶鋼を、転炉で溶製し、連続鋳造法でスラブに鋳造した。これらスラブを1200℃に加熱したのち、表2に示す熱間圧延条件で板厚1.4 mmの熱延鋼板とした。得られた熱延鋼板から、試験片を採取し、ヤング率を測定した。ヤング率の測定方法は、圧延方向、圧延方向と45°、圧延方向と90°の各方向について縦振動の共振法により測定し前記(1)式で定義される平均Eを求めた。測定時室温は20℃であった。   Molten steel having the chemical composition shown in Table 1 was melted in a converter and cast into a slab by a continuous casting method. After heating these slabs to 1200 ° C., hot rolled steel sheets having a thickness of 1.4 mm were formed under the hot rolling conditions shown in Table 2. A test piece was sampled from the obtained hot-rolled steel sheet, and its Young's modulus was measured. The Young's modulus was measured by a longitudinal vibration resonance method in each of the rolling direction, the rolling direction at 45 ° and the rolling direction at 90 °, and the average E defined by the above equation (1) was obtained. At the time of measurement, the room temperature was 20 ° C.

さらに、得られた熱延鋼板は、
(イ)700 ℃× 4hの熱延板焼鈍、
(ロ)冷間圧延(圧下率50%)−750 ℃×30sec の再結晶焼鈍、
(ハ)450 ℃×4 hの熱延板焼鈍−冷間圧延(圧下率50%)−750 ℃×30sec の再結晶焼鈍−調質圧延
の各工程を施された。(ロ)と(ハ)では、材質上の差異はほとんどないが冷間圧延の負荷が大幅に軽減された。これら各工程を経た鋼板について、試験片を採取し、ヤング率を熱延板と同様に測定した。また、各鋼板の組織観察を行った。
Furthermore, the obtained hot rolled steel sheet
(B) hot rolled sheet annealing at 700 ° C for 4 hours,
(B) Cold rolling (rolling reduction 50%)-recrystallization annealing at -750 ° C x 30 sec.
(C) Each process of hot rolled sheet annealing at 450 ° C. × 4 h, cold rolling (rolling reduction 50%), recrystallization annealing at 750 ° C. × 30 sec, and temper rolling was performed. In (b) and (c), there was almost no difference in material, but the load of cold rolling was greatly reduced. A test piece was sampled from the steel sheet that passed through each of these steps, and the Young's modulus was measured in the same manner as the hot-rolled sheet. In addition, the structure of each steel sheet was observed.

さらに、これら鋼板から試験片を採取し、引張特性(降伏応力、引張強さ、伸び)を測定した。さらに、10%の歪を与える引張変形を行い、変形後の降伏応力を測定した。また、各鋼板について、鋼板を300mm φの円筒状に拘束して、数水準の重さを衝突させた際に生ずる衝撃変形量(凹量)を測定した。鋼板No.1の熱延板の衝撃変形量(凹量)を1.0 とし、鋼板No.1の熱延板の衝撃変形量(凹量)に対する各鋼板の衝撃変形量(凹量)比を比較した。   Further, test pieces were taken from these steel sheets, and tensile properties (yield stress, tensile strength, elongation) were measured. Furthermore, tensile deformation giving 10% strain was performed, and the yield stress after deformation was measured. Further, with respect to each steel plate, the steel plate was constrained in a cylindrical shape of 300 mmφ, and the amount of impact deformation (concave amount) generated when several levels of weight were colliding was measured. Compare the ratio of impact deformation (concave amount) of each steel plate to the amount of impact deformation (concave amount) of hot rolled sheet of steel plate No. 1 with 1.0 as the amount of impact deformation (concave amount) of hot rolled sheet of steel plate No. 1. did.

これらの結果を、表2〜表5に示す。   Tables 2 to 5 show these results.

Figure 2004346430
Figure 2004346430

Figure 2004346430
Figure 2004346430

Figure 2004346430
Figure 2004346430

Figure 2004346430
Figure 2004346430

Figure 2004346430
Figure 2004346430

各鋼板とも、組織はフェライトを母相とする組織を有していた。母相の面積比は90%以上であった。なお第2相はパーライト、ベイナイト、およびマルテンサイトであった。   Each steel sheet had a structure having ferrite as a matrix. The area ratio of the parent phase was 90% or more. The second phase was pearlite, bainite, and martensite.

本発明例は、いずれもヤング率Eが200 GPa 以下の低ヤング率を有し、10%の変形後の降伏応力が380MPa以上の高張力鋼板である。さらに、本発明例は、いずれも同一YS、YRの比較例とくらべ衝撃負荷に対して、塑性変形を生じにくい特性を有していることがわかる。   Each of the examples of the present invention is a high tensile strength steel sheet having a low Young's modulus E of 200 GPa or less and a yield stress after deformation of 10% of 380 MPa or more. Furthermore, it can be seen that each of the examples of the present invention has characteristics in which plastic deformation is less likely to occur under an impact load than the comparative examples of the same YS and YR.

熱延板のヤング率におよぼす熱間仕上げ圧延の圧延温度と圧下率の影響を示すグラフである。4 is a graph showing the effect of the rolling temperature and the rolling reduction of hot finish rolling on the Young's modulus of a hot-rolled sheet.

Claims (2)

質量%で、
C:0.20%以下、 Si:0.005 〜1.5 %、
Mn:0.05〜3.5 %、 P:0.005 〜0.15%、
S:0.02%以下、 Al:0.005 〜0.2 %、
N:0.020 %以下を含有する組成の鋼素材に、Ar3変態点〜(Ar3変態点−100 ℃)の温度範囲における圧下率が50%以上、最終パスの圧下率が15%以下で、かつ仕上げ圧延温度が(Ar3変態点−100 ℃)以上とする熱間圧延を施すことを特徴とする加工用高張力熱延鋼板の製造方法。
In mass%,
C: 0.20% or less, Si: 0.005 to 1.5%,
Mn: 0.05-3.5%, P: 0.005-0.15%,
S: 0.02% or less, Al: 0.005 to 0.2%,
N: the composition of the steel material containing 0.020% or less, Ar 3 transformation point - reduction ratio in the temperature range of (Ar 3 transformation point -100 ° C.) of 50% or more, reduction ratio of the final pass is 15% or less, A method for producing a high-tensile hot-rolled steel sheet for working, wherein hot rolling is performed at a finish rolling temperature of (Ar 3 transformation point −100 ° C.) or higher.
質量%で、
C:0.20%以下、 Si:0.005 〜1.5 %、
Mn:0.05〜3.5 %、 P:0.005 〜0.15%、
S:0.02%以下、 Al:0.005 〜0.2 %、
N:0.020 %以下を含有する組成の鋼素材に、Ar3変態点〜(Ar3変態点−100 ℃)の温度範囲における圧下率が50%以上、最終パスの圧下率が15%以下で、かつ仕上げ圧延温度が(Ar3変態点−100 ℃)以上とする熱間圧延を施したのち、冷間圧延、再結晶焼鈍を施すことを特徴とする加工用高張力冷延鋼板の製造方法。
In mass%,
C: 0.20% or less, Si: 0.005 to 1.5%,
Mn: 0.05-3.5%, P: 0.005-0.15%,
S: 0.02% or less, Al: 0.005 to 0.2%,
N: the composition of the steel material containing 0.020% or less, Ar 3 transformation point - reduction ratio in the temperature range of (Ar 3 transformation point -100 ° C.) of 50% or more, reduction ratio of the final pass is 15% or less, A method for producing a high-tensile cold-rolled steel sheet for processing, comprising: performing hot rolling at a finish rolling temperature of (Ar 3 transformation point −100 ° C.) or higher, followed by cold rolling and recrystallization annealing.
JP2004232096A 2004-08-09 2004-08-09 Manufacturing method of high-tensile steel sheet for processing Expired - Fee Related JP4001134B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232096A JP4001134B2 (en) 2004-08-09 2004-08-09 Manufacturing method of high-tensile steel sheet for processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232096A JP4001134B2 (en) 2004-08-09 2004-08-09 Manufacturing method of high-tensile steel sheet for processing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15643298A Division JP3972467B2 (en) 1998-06-04 1998-06-04 High-tensile steel plate for processing

Publications (2)

Publication Number Publication Date
JP2004346430A true JP2004346430A (en) 2004-12-09
JP4001134B2 JP4001134B2 (en) 2007-10-31

Family

ID=33535991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232096A Expired - Fee Related JP4001134B2 (en) 2004-08-09 2004-08-09 Manufacturing method of high-tensile steel sheet for processing

Country Status (1)

Country Link
JP (1) JP4001134B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111378A1 (en) * 2014-01-24 2015-07-30 Jfeスチール株式会社 Hot rolled steel sheet and manufacturing method therefor
WO2017169560A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel plate, galvanized steel plate, hot rolled steel plate production method, cold rolled full hard steel plate production method, thin steel plate production method, and galvanized steel plate production method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015111378A1 (en) * 2014-01-24 2015-07-30 Jfeスチール株式会社 Hot rolled steel sheet and manufacturing method therefor
WO2017169560A1 (en) * 2016-03-31 2017-10-05 Jfeスチール株式会社 Thin steel plate, galvanized steel plate, hot rolled steel plate production method, cold rolled full hard steel plate production method, thin steel plate production method, and galvanized steel plate production method
JPWO2017169560A1 (en) * 2016-03-31 2018-04-05 Jfeスチール株式会社 Thin steel plate and plated steel plate, method for producing hot rolled steel plate, method for producing cold rolled full hard steel plate, method for producing thin steel plate, and method for producing plated steel plate
US11965222B2 (en) 2016-03-31 2024-04-23 Jfe Steel Corporation Method for producing hot-rolled steel sheet and method for producing cold-rolled full hard steel sheet

Also Published As

Publication number Publication date
JP4001134B2 (en) 2007-10-31

Similar Documents

Publication Publication Date Title
CN110100032B (en) Tempered martensitic steel having low yield ratio and excellent uniform elongation and method for producing same
JP4640130B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
EP3707289B1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
JP4843982B2 (en) High-rigidity and high-strength steel sheet and manufacturing method thereof
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
JP4661306B2 (en) Manufacturing method of ultra-high strength hot-rolled steel sheet
JP2010059452A (en) Cold-rolled steel sheet and producing method therefor
JP5126844B2 (en) Steel sheet for hot pressing, manufacturing method thereof, and manufacturing method of hot pressed steel sheet member
EP3728679B1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
US20210340642A1 (en) Hot rolled steel sheet and a method of manufacturing thereof
JP3899680B2 (en) Paint bake-hardening type high-tensile steel sheet and manufacturing method thereof
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JPH10130776A (en) High ductility type high tensile strength cold rolled steel sheet
JP4333379B2 (en) Method for producing high-strength thin steel sheet with excellent workability, surface texture and flatness
JPH0657375A (en) Ultrahigh tensile strength cold-rolled steel sheet and its production
JP4299774B2 (en) High strength low specific gravity steel sheet with excellent ductility and fatigue characteristics and method for producing the same
JP3247907B2 (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP2002317249A (en) Low yield ratio type high strength steel sheet having excellent ductility and production method therefor
KR101066691B1 (en) Hot-rolled steel sheet having ultra-high strength and high burring workability, and method for producing the same
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP3762700B2 (en) High-strength steel sheet excellent in formability and chemical conversion treatment and method for producing the same
US20230265537A1 (en) Heat treated cold rolled steel sheet and a method of manufacturing thereof
CN111465710B (en) High yield ratio type high strength steel sheet and method for manufacturing same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070724

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100824

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110824

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120824

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130824

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees