JP2004345214A - RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET - Google Patents

RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET Download PDF

Info

Publication number
JP2004345214A
JP2004345214A JP2003144583A JP2003144583A JP2004345214A JP 2004345214 A JP2004345214 A JP 2004345214A JP 2003144583 A JP2003144583 A JP 2003144583A JP 2003144583 A JP2003144583 A JP 2003144583A JP 2004345214 A JP2004345214 A JP 2004345214A
Authority
JP
Japan
Prior art keywords
steel sheet
resin
plated steel
coated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003144583A
Other languages
Japanese (ja)
Inventor
Masanobu Matsubara
政信 松原
Masatoki Ishida
正説 石田
Mitsuhide Aihara
光英 粟飯原
Shozo Ichinose
市之▲瀬▼省三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Kohan Co Ltd
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd, Toyo Seikan Kaisha Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2003144583A priority Critical patent/JP2004345214A/en
Publication of JP2004345214A publication Critical patent/JP2004345214A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin-coated Sn plated steel sheet showing excellent work-bonding properties when strict molding work is applied; a can using this steel sheet; and a method for manufacturing the resin-coated Sn plated steel sheet. <P>SOLUTION: The resin-coated Sn plated steel sheet is manufactured by laminating a corona discharge-treated resin film on an Sn plated steel sheet with a silane coupling coated layer formed on an Sn plating layer, by thermal bonding. In addition, either of the following molding works is performed to obtain the can: the resin-coated Sn plated steel sheet is worked; the sheet is stretched after drawing; it is further squeezed through after the drawing; or it is subjected to both stretching work and squeezing work after the drawing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、樹脂被覆層の加工接着性に優れた樹脂被覆Snめっき鋼板、それを絞り加工等の厳しい成形加工を施してなる缶、およびこの樹脂被覆Snめっき鋼板の製造方法に関する。
【0002】
【従来の技術】
近年、樹脂を被覆してなる鋼板を絞り加工、絞り加工後のさらなるストレッチ加工、絞り加工後のさらなるしごき加工、絞り加工後のさらなるストレッチ加工としごき加工を併用する加工などの厳しい加工を施してなる缶胴部と缶底部が一体で加工成形された缶に内容物を充填し、天板を巻締めたものが市販されている。これらの缶においては、これらの厳しい成形加工中および成形加工後に被覆樹脂が剥離もしくは破断することがないように、鋼板に対する樹脂の優れた接着性が要求される。そのため、これらの用途における樹脂被覆鋼板としては、有機樹脂との加工接着性に優れるクロメート皮膜を表面に形成させたティンフリースチールなどのクロメート処理鋼板に樹脂を被覆したものが用いられていた。
【0003】
しかし、樹脂被覆クロメート処理鋼板を用いた缶においては、樹脂層に鋼板面に達する微細な孔や亀裂が生じた場合、クロメート処理鋼板が耐食性に乏しいために、特に酸性度の大きな内容物を充填した場合に鋼板の腐食が急速に進行して穿孔しやすい欠点を有している。そのため、酸性度の大きな内容物を充填した場合に優れた耐食性を示すSnめっき鋼板に樹脂を被覆してなる樹脂被覆Snめっき鋼板の適用が試みられたが、Snめっき層に対する樹脂の接着性、特に加工接着性に乏しく、上記のような厳しい加工用途に適用可能な樹脂被覆Snめっき鋼板が求められている。
【0004】
本発明の発明者等は、厳しい加工用途に適用可能な樹脂被覆Snめっき鋼板として、樹脂被覆Snめっき鋼板を提案した(例えば特許文献1参照)。この公報に記載された樹脂被覆Snめっき鋼板は、ノーリフローSnめっき鋼板またはリフローSnめっき鋼板のSnめっき層上にシランカップリング剤塗布層を設けてなるSnめっき鋼板に有機樹脂皮膜を積層してなる樹脂被覆Snめっき鋼板である。この樹脂被覆Snめっき鋼板においては、缶に成形加工する前の有機樹脂皮膜の接着強度がTピール強度で2kg/10mm以上であることを特徴としている。しかし、この樹脂被覆Snめっき鋼板を成形加工して缶に成形加工した場合、特により厳しい、絞り加工後にさらにストレッチ加工としごき加工を併用して缶に成形加工した場合、問題なく成形加工可能な場合もあるが、成形加工途中で缶の上部で樹脂が剥離することがあり、Snめっき層に対する樹脂の優れた接着性が安定して得られないことが判明した。また、缶に成形加工する前の有機樹脂皮膜の接着強度では、成形加工時や成形加工後の接着性を必ずしも正確に反映していないことも判明した。
【0005】
本発明においては、ノーリフローSnめっき鋼板またはリフローSnめっき鋼板のSnめっき層上にシランカップリング剤塗布層を設けてなるSnめっき鋼板に、コロナ放電処理を施した有機樹脂皮膜を積層することにより、成形加工時や成形加工後の安定した接着性を示す樹脂被覆Snめっき鋼板が得られることが判明した。また、ポリプロピレン系樹脂フィルムにコロナ放電処理を施すことが開示されている(例えば特許文献2参照)。これは有機樹脂にコロナ放電処理を施すことにより積層する基板との接着性が向上することは公知である。しかし、有機樹脂との加工接着性に乏しいSnめっき鋼板に有機樹脂を積層して、絞り加工後にさらにストレッチ加工としごき加工を併用して缶に成形加工する過酷な加工に耐える加工接着性を得るために、Snめっき層上にシランカップリング剤塗布層を設け、このシランカップリング剤塗布層にコロナ放電処理面が接するようにしてコロナ放電処理を施した有機樹脂を被覆することにより、耐食性に優れたSnめっき鋼板を基板とする樹脂被覆Snめっき鋼板からこのような過酷な加工による缶を安定して得られることが初めて可能となったのである。
【0006】
本出願に関する先行技術文献情報として次のものがある。
【特許文献1】
特開2002−285354号公報
【特許文献2】
特許3352553号公報
【0007】
【発明が解決しようとする課題】
本発明は、厳しい成形加工を施した際の優れた加工接着性を有する樹脂被覆Snめっき鋼板、それを用いた缶、およびこの樹脂被覆Snめっき鋼板の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の樹脂被覆Snめっき鋼板は、Snめっき層上にシランカップリング剤塗布層を形成させてなるSnめっき鋼板の少なくとも片面に、コロナ放電処理を施した有機樹脂フィルムを被覆してなる樹脂被覆Snめっき鋼板(請求項1)であり、
Snめっき鋼板が、鋼板上にSnめっき層を形成させたままのSnめっき鋼板(ノーリフローSnめっき鋼板)、または鋼板とSnめっき層の間にSn−Fe合金層を形成させてなるSnめっき鋼板(リフローSnめっき鋼板)であること、(請求項2)また
シランカップリング剤の塗布量が、Si量で1〜50mg/mであること(請求項3)、さらにまた、
コロナ放電処理が電圧:200V、電流:0.2〜8A/25cmの条件で施したものであること(請求項4)、さらにまた
上記の請求項1〜4のいずれかの樹脂被覆Snめっき鋼板を、絞り比:1.64の1段絞り加工で径:96mm、高さ:42mmの絞りカップに成形した後の、カップ側壁部の樹脂フィルムの剥離強度が0.05kg/15mm以上であること(請求項5)を特徴とする。
【0009】
また本発明の缶は、上記の請求項1〜5のいずれかの樹脂被覆Snめっき鋼板を絞り加工してなる缶(請求項6)、または
絞り加工後さらにストレッチ加工してなる缶(請求項7)、さらにまたは
絞り加工後さらにしごき加工してなる缶(請求項8)、さらにまたは
絞り加工後さらにストレッチ加工としごき加工を併用して加工してなる缶(請求項9)である。
【0010】
また本発明の樹脂被覆Snめっき鋼板の製造方法は、鋼板の少なくとも片面にSnめっき層を形成させ、次いでSnめっき層上にシランカップリング剤を塗布し乾燥させた後、シランカップリング剤塗布層上にコロナ放電処理面が接するようにしてコロナ放電処理を施した有機樹脂フィルムを積層することを特徴とする、樹脂被覆Snめっき鋼板の製造方法、または
鋼板の少なくとも片面にSnめっき層を形成させ、次いでSnの溶融温度以上に加熱した後急冷することにより鋼板とSnめっき層の間にSn−Fe合金層を形成させ、その後Snめっき層上にシランカップリング剤を塗布し乾燥させた後、シランカップリング剤塗布層上にコロナ放電処理面が接するようにしてコロナ放電処理を施した有機樹脂フィルムを積層することを特徴とする、樹脂被覆Snめっき鋼板の製造方法である。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の樹脂被覆Snめっき鋼板に用いる鋼板としては、通常のアルミキルド鋼の熱間圧延板を冷間圧延し、焼鈍した後調質圧延した冷延鋼板、または焼鈍後さらに冷間圧延を施して強度を増加させた冷延鋼板のいずれかが、用途に応じて選択的に用いられる。これらの冷延鋼板を電解脱脂し酸洗した後、鋼板上にSnめっき層を形成させてSnめっき鋼板とする。Snめっき鋼板としては、公知のフェロスタン浴やハロゲン浴を用いてSnをめっきしたままのSnめっき鋼板(ノーリフローSnめっき鋼板)、Snをめっきした後、Snの溶融温度以上に加熱した後急冷することにより、Snめっき層の間にSn−Fe合金層を形成させたSnめっき鋼板(リフローSnめっき鋼板)がある。またこれらのSnめっき鋼板の他に、Niを電気めっきし、その上層にそのまま、またはNiめっき後加熱してNiを鋼中に拡散させてNi−Fe合金層を形成させ、その後Snを電気めっきした後、Snの溶融温度以上に加熱した後急冷する、などの方法を用いて、島状のSn層を形成させた島状Snめっき鋼板なども用いることができる。
【0012】
無光沢のノーリフローSnめっき鋼板におけるSnめっき量は、耐食性および経済性の観点から0.1〜10g/mの範囲にあることが好ましい。光沢を有するリフローSnめっき鋼板においてはSnめっき層と鋼板の間にSn−Fe合金層が形成されるので、めっき鋼板の表面に金属Snを残存させる場合は全Snめっき量は1〜10g/mの範囲にあることが必要である。めっき鋼板の表面に金属Snを残存させず、Sn−Fe合金層のみからなる層を表面層とする場合は、全Snめっき量は0.1〜10g/mの範囲にあることが好ましい。
【0013】
島状Snめっき鋼板の場合は、Snめっきを施す前に鋼板上に形成させるNiめっきの量が0.005〜0.1g/m、その上層に形成させるSnめっきの量が0.1〜1.5g/mの範囲にあることが好ましい。このようなめっき量でそれぞれのめっき層を形成させた後、またはNiを上記のめっき量でめっきした後拡散熱処理を施し、その後Snを上記のめっき量でめっきした後、Snの溶融温度以上に加熱することにより、表面にSnが島状に分散して存在する島状Snめっき鋼板が得られる。
【0014】
上記のようにして得られるSnめっき鋼板の表面にシランカップリング剤を塗布し乾燥させる。シランカップリング剤としては、ビニル系、アクリル系、エポキシ系、アミノ系、メルカプト系、クロロピル系などの各種のものがあるが、本発明においてはアミノ系のシランカップリング剤を用いることが好ましい。アミノ系のシランカップリング剤としては、アミノプロピルトリメトキシシラン、アミノプロピルメチルジエトキシシラン、アミノプロピルトリエトキシシラン、フェニルアミノプロピルトリメトキシシランなどを用いることができる。これらのシランカップリング剤の5〜200g/Lの水溶液を上記のSnめっき鋼板に塗布し、乾燥させる。塗布方法としては公知の方法が適用でき、例えば、浸漬法、ロールコート法、浸漬後に絞りロールを用いて余剰分を絞る方法、スプレー法、電解処理法など、いずれも適用することができる。乾燥後の塗布膜量は、蛍光X線法で測定したSi量で1〜50mg/mであることが好ましい。Si量で1mg/m未満である場合はこのシランカップリング剤塗布層上に積層する樹脂皮膜の加工接着強度に乏しくなる。一方、Si量で50mg/m を超えても樹脂皮膜の加工接着強度は不十分となり、また経済的でなくなる。このようにして本発明の樹脂被覆Snめっき鋼板に用いるSnめっき鋼板が得られる。
【0015】
本発明の樹脂被覆Snめっき鋼板は、上記のようにして得られたSnめっき鋼板の片面または両面に、コロナ放電処理を施した有機樹脂フィルムをコロナ放電処理面がシランカップリング剤塗布層に接するようにして積層することにより得られる。有機樹脂フィルムとしては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレンテレフタレート・エチレンイソフタレート共重合体、ブチレンテレフタレート・ブチレンイソフタレート共重合体などのポリエステル樹脂、あるいはこれらのポリエステル樹脂の2種類以上をブレンドした樹脂、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、およびそれらをマレイン酸変性したもの、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体などのポリオレフィン樹脂、6−ナイロン、6,6−ナイロン、6,10−ナイロンなどのポリアミド樹脂、ポリカーボネート、ポリメチルペンテン、さらに上記のポリエステル樹脂とアイオノマーをブレンドしたものからなる単層の樹脂フィルム、さらにこれらの樹脂の2種類以上からなる複層の樹脂フィルムなどを用いることができる。樹脂フィルムの厚さとしては、フィルム積層作業のしやすさ、樹脂被覆Snめっき鋼板の成形加工した後の成形体(缶)における樹脂フィルムの接着強度、耐食性、および経済性の観点から10〜100μmであることが好ましい。
【0016】
これらの樹脂フィルムは、樹脂ペレットを加熱溶融し、それを押出機のTダイから押し出して所望の厚さのフィルムに製膜したものを上記のSnめっき鋼板に熱接着法を用いて接着積層する。熱接着法は、樹脂が接着する温度範囲に加熱したSnめっき鋼板に樹脂フィルムを当接し、1対の加圧ロールで挟み付けて加圧して圧接する方法であり、樹脂フィルムに延伸加工を施さずに製膜した樹脂フィルムを用いることにより、Snの溶融温度よりかなり低い温度で熱接着することができる。1軸方向、または2軸方向に延伸加工して製膜した樹脂フィルムを積層する場合は、延伸加工後の熱固定をSnの溶融温度よりかなり低い温度で行わないと、樹脂の溶融温度より高温に加熱しないかぎりSnめっき鋼板に対する良好な加工接着強度が得られないので、溶融温度がSnの溶融温度よりも高い樹脂を用いる場合は、熱接着することが困難になることがある。
【0017】
本発明においては、特に、絞り加工後さらにストレッチ加工としごき加工を併用して加工して缶に成形するような厳しい成形加工を施した場合でも安定した優れた樹脂膜の加工接着性を得るために、上記のようにして得られる樹脂フィルムのSnめっき鋼板に当接する面にコロナ放電処理を施したものを用いる。コロナ放電処理は電圧:200V、電流:0.2〜8A/25cmの条件で行う。電流が0.2A/25cm未満であるとコロナ放電処理の効果が発現しない。一方、電流が8A/25cmを超えると放電電流が過剰となり、樹脂フィルムに皺や膨れが生じるようになり、好ましくない。より好ましい電流の範囲は1〜5A/25cmである。このようにして樹脂フィルムのコロナ放電処理を施した側を、上記のSnめっき鋼板のシランカップリング剤を塗布した面に当接して上記のようにして熱接着することにより、厳しい成形加工を施した場合でも安定した優れた樹脂膜の加工接着性が得られるようになる。
【0018】
樹脂膜のSnめっき鋼板に対する剥離強度すなわち接着強度は、従来は加工前の平板の状態でTピール強度を測定して評価していた。しかし、平板の状態で測定したTピール強度では、特に、絞り加工後さらにストレッチ加工としごき加工を併用して加工して缶に成形するような厳しい成形加工を施した場合の加工中および加工後の接着強度、すなわち加工接着強度を必ずしも正確に反映しないことが判明した。そこで本発明においては、樹脂被覆Snめっき鋼板に絞り加工を施してカップに成形加工し、カップ側壁から試片を切り出し、その試片の樹脂膜の剥離強度で加工接着強度(以下Sピール強度という)を評価する。
【0019】
Sピール強度の測定方法を以下に示す。上記のようにして得られる本発明の樹脂被覆Snめっき鋼板から154mmのブランクを打ち抜き、絞り比:1.64で1段の絞り加工を施して、径:96mm、高さ:42mmの絞りカップに成形する。このカップから、カップ高さ方向:30mm、カップ周方向:120mmの大きさで側壁部を切り出して平板状に曲げ戻した後、図1に示すT字状の形状の試片1を打ち抜く。次いで図2に示すようにカッターナイフを用いて試片1の一方の端部1aの接着強度測定面と反対の側の樹脂膜にSnめっき鋼板面に達するように切れ目2を入れる。次いで図3および図4に示すようにして、スコア加工用ダイセットを用いて接着強度測定面と反対の側からスコア3を入れた後、スコア部を折り曲げてSnめっき鋼板を切断する。この時、接着強度測定面においては樹脂膜は切断されることなく、切断されたSnめっき鋼板の両側に繋がったまま残っている。次いで図5に示すように、試片ホルダー4の試片挿入部4aに片端部1aを挿入して試片1を試片ホルダー4に固定した後、試片ホルダー4の上部4bと試片1の他方の端部1bをテンシロン引張試験機のチャック部で挟んで引張って、樹脂膜をSnめっき鋼板から強制剥離して引張強度を測定し、Sピール強度として加工接着強度を評価する。
【0020】
上記のようにして測定されるSピール強度は0.05kg/15mm以上であることが好ましい。Sピール強度が0.05kg/15mm未満であると、特に、絞り加工後さらにストレッチ加工としごき加工を併用して加工して缶に成形するような厳しい成形加工を施した場合に安定した良好な加工接着強度が得られない。
【0021】
本発明の樹脂被覆Snめっき鋼板を絞り缶に成形加工する場合は、片面または両面に樹脂を積層した樹脂被覆Snめっき鋼板から打ち抜いたブランクを絞りダイスを用いてカップ状に絞り加工する。径を狭めて側壁の高さを高める場合は、前段よりも小径の絞りダイスを用いて再絞り加工する。絞り加工は通常1段または2段の絞り加工で行われ、比較的缶径が大きく、側壁高さが低い缶に適用される。
【0022】
本発明の樹脂被覆Snめっき鋼板を絞り加工し次いでストレッチ加工して缶に成形加工する場合は、片面または両面に樹脂を積層した樹脂被覆Snめっき鋼板から打ち抜いたブランクを絞りダイスを用いてカップ状に絞り加工する。次いで複数段の絞りダイスを用いて、順次縮径しつつ側壁高さを高めていくが、ストレッチ加工においては、カップが加工ポンチに押されて絞り加工ダイスおよびしわ抑え治具に出入りする際に側壁が曲げおよび曲げ戻し加工され、側壁部分が伸びて薄肉化しながら絞り加工される。比較的缶径が小さく、側壁高さが高い缶に適用される。
【0023】
本発明の樹脂被覆Snめっき鋼板を絞り加工し次いでしごき加工して缶に成形加工する場合は、片面または両面に樹脂を積層した樹脂被覆Snめっき鋼板から打ち抜いたブランクを1段または複数段の絞りダイスを用いてカップ状に絞り加工する。次いで1段または複数段のしごきダイスを用いて、カップの側壁厚みより小さく設定したしごきダイスとパンチの間のクリアランス部分に側壁部を強制的に押し込んで薄肉化しながら側壁高さを高めていくしごき加工を施す。このため、比較的缶径が小さく、側壁高さが高く、かつ側壁厚みの小さい缶に適用される。片面のみに樹脂を積層した樹脂被覆Snめっき鋼板を、非樹脂被覆面が缶外面となるようにしてしごき加工すると、Snめっき層がしごきダイスに擦られて鏡面になり、美麗な表面光沢が得られる。
【0024】
本発明の樹脂被覆Snめっき鋼板を絞り加工し次いでストレッチ加工としごき加工を併用して缶に成形加工する場合は、片面または両面に樹脂を積層した樹脂被覆Snめっき鋼板から打ち抜いたブランクを1段または複数段の絞りダイスを用いてカップ状に絞り加工する。次いで通常のストレッチ加工と同様にして複数段の絞りダイスを用いて、順次縮径しつつ側壁高さを高めていくが、しごき加工におけるしごきダイスのようにダイスとパンチの間のクリアランス部分をカップの側壁厚みより小さく設定しておくことにより、側壁が曲げおよび曲げ戻し加工されると同時にしごき加工され、側壁部分が伸びて薄肉化しながら絞りしごき加工される。この加工において、片面のみに樹脂を積層した樹脂被覆Snめっき鋼板を用いた場合も、美麗な表面光沢が得られる。
【0025】
【実施例】
以下、実施例にて本発明をさらに詳細に説明する。
[Snめっき鋼板の作成]
表1に示す板厚およびテンパーの冷延鋼板をアルカリ水溶液中で電解脱脂し、水洗し、次いで硫酸酸洗し、水洗した後、公知のフェロスタン浴を用いて、表1に示す条件でSnめっき層を形成させるか、またはSnめっき層を形成させた後リフロー処理を施して鋼板とSnめっき層の間にSn−Fe合金層を形成させた。次いで表1に示す処理浴を用い、表1に示すシランカップリング剤の5〜200g/L水溶液を、表1に示す塗布量となるように、浸漬法を用いて塗布し乾燥してSnめっき上にシランカップリング剤塗布層を形成させた。また比較材として、試料番号10で示す、冷延鋼板に電解クロム酸処理を施してCrめっき層とCr水和酸化物層の2層を形成させたティンフリースチールを作成した。
【0026】
【表1】

Figure 2004345214
【0027】
【表2】
Figure 2004345214
【0028】
[樹脂被覆Snめっき鋼板の作成]
表1に示すSnめっき鋼板およびティンフリースチールの片面に、片側に表2に示す条件でコロナ放電処理を施した厚さ:28μmの無配向の透明のエチレンテレフタレート・エチレンイソフタレート共重合体(PETIで表示)の2層フィルム(上層がPETI15(厚さ:12μm)、下層がPETI5(厚さ:16μm)、数字はエチレンイソフタレートのモル%を示し、PETI5側が鋼板側と接する)、他の片面に同一のエチレンテレフタレート・エチレンイソフタレート共重合体にチタン系白色顔料を20重量%含有させた白色の無配向の2層フィルム(上層がPETI15(厚さ:5μm)、下層がPETI5(厚さ:11μm))を熱接着法を用い、225℃で熱接着して積層し、試料番号1〜8で示す樹脂被覆Snめっき鋼板および試料番号10で示す樹脂被覆ティンフリースチールを作成した。また比較材として、試料番号9で示すコロナ放電処理を施さない樹脂フィルムを積層した被覆Snめっき鋼板も作成した。
【0029】
[Sピール強度測定用の試片の作成]
表1に示す樹脂被覆Snめっき鋼板および樹脂被覆ティンフリースチールから、透明樹脂フィルム被覆面がカップ内面側となるようにして、先に示したようにして絞り比:1.64の1段絞り加工を施して絞りカップを作成し、透明樹脂フィルム被覆面が測定面となるようにして、先に示したようにしてSピール強度測定用の試片を作成した。次いでテンシロンを用いて先に示したようにしてSピール強度を測定した。結果を表3に示す。
【0030】
【表3】
Figure 2004345214
【0031】
[絞り加工缶の成形]
表1に示す試料番号1〜2、6〜9の樹脂被覆Snめっき鋼板および試料番号10の樹脂被覆ティンフリースチールを、直径:112mmのブランクに打ち抜いた後、透明樹脂フィルム被覆面がカップ内面側となるようにして、絞り比:1.50の絞り比で絞り加工し、次いで絞り比:2.1で再絞り加工し、缶径:53mmの絞り缶に成形加工した。次いで公知の方法で缶上部をトリミングし、ネックイン加工、フランジ加工を施した。このようにして1000個の絞り缶を成形した後、樹脂フィルムの剥離の有無を肉眼観察し、剥離が認められた成形缶の発生率を%で評価した。結果を表4に示す。
【0032】
[絞り加工後ストレッチ加工を施してなる缶の成形]
表1に示す試料番号1〜2、6〜9の樹脂被覆Snめっき鋼板および試料番号10の樹脂被覆ティンフリースチールを、直径:187mmのブランクに打ち抜いた後、透明樹脂フィルム被覆面がカップ内面側となるようにして、絞り比:1.70の絞り比で絞り加工し、カップに成形した。次いで第一次再絞り比:1.29、第二次再絞り比:1.24、第三次再絞り比:1.20、再絞りダイス肩の曲率半径:0.4mm、しわ抑え荷重:58Nの条件で複数段のストレッチ加工を行い、缶径:66mmのストレッチ加工缶に成形加工した。次いで公知の方法で缶上部をトリミングし、ネックイン加工、フランジ加工を施した。このようにして1000個のストレッチ加工缶を成形した後、樹脂フィルムの剥離の有無を肉眼観察し、剥離が認められた成形缶の発生率を%で評価した。結果を表4に示す。
【0033】
[絞り加工後しごき加工を施してなる缶の成形]
表2に示す試料番号3〜5の樹脂被覆Snめっき鋼板および樹脂被覆ティンフリースチールを、直径:140mmのブランクに打ち抜いた後、透明樹脂フィルム被覆面がカップ内面側となるようにして、絞り比:1.63の絞り比で絞り加工し、次いで絞り比:1.30の絞り比で再絞り加工して缶径:66mmのカップに成形した。次いで3段のしごき加工(総しごき率:65%)を施し、缶径:66mmの缶に成形加工した。次いで公知の方法で缶上部をトリミングし、ネックイン加工、フランジ加工を施した。このようにして1000個のストレッチ加工缶を成形した後、樹脂フィルムの剥離の有無を肉眼観察し、剥離が認められた成形缶の発生率を%で評価した。結果を表4に示す。
【0034】
[絞り加工後ストレッチ加工としごき加工を併用して加工してなる缶の成形]
表1に示す試料番号1〜2、6〜9の樹脂被覆Snめっき鋼板およびおよび試料番号10の樹脂被覆ティンフリースチールを、直径:160mmのブランクに打ち抜いた後、透明樹脂フィルム被覆面がカップ内面側となるようにして、缶径:100mmのカップに絞り加工した。次いで再絞り加工により缶径:80mmの再絞りカップとした。さらにこの再絞りカップにストレッチ加工としごき加工を併用して缶径:65mmの缶とした。ストレッチ加工としごき加工を併用する加工は、缶の上端部となる再絞り加工部としごき加工部の間隔が20mm、再絞りダイス肩の曲率半径が板厚の1.5倍、再絞りダイスとポンチのクリアランスが板厚の1.0倍、しごき加工部のクリアランスが板厚の0.5倍となる条件で実施した。次いで公知の方法で缶上部をトリミングし、ネックイン加工、フランジ加工を施した。このようにして300個のストレッチ加工缶を成形した後、樹脂フィルムの剥離の有無を肉眼観察し、剥離が認められた成形缶の発生率を%で評価した。結果を表4に示す。
【0035】
【表4】
Figure 2004345214
【0036】
表4に示すように、コロナ放電処理を施した樹脂フィルムを、シランカップリング塗布層を設けたSnめっき鋼板に積層してなる本発明の樹脂被覆Snめっき鋼板は、コロナ放電処理を施さない樹脂フィルムを、シランカップリング塗布層を設けたSnめっき鋼板に積層してなる樹脂被覆Snめっき鋼板に比べて樹脂フィルムのSnめっき鋼板に対する加工接着性に優れており、表3に示したSピール強度、すなわち1段の絞り加工による加工後の接着性の結果と一致している。このように、本発明の樹脂被覆Snめっき鋼板は、複数段の絞り加工、絞り加工後のスチレッチ加工、絞り加工後のしごき加工、絞り加工後ストレッチ加工としごき加工を併用して加工する厳しい加工を施した場合に、樹脂被覆ティンフリースチールにおけるのと同様に、安定した優れた加工接着性を示す。
【0037】
【発明の効果】
本発明の樹脂被覆Snめっき鋼板は、Snめっき層上にシランカップリング塗布層を設けてなるSnめっき鋼板に、コロナ放電処理を施した樹脂フィルムを熱接着して積層してなり、絞り加工、絞り加工後のさらなるストレッチ加工、絞り加工後のさらなるしごき加工、のいずれの加工を施しても樹脂フィルムが剥離することなく安定した優れた加工接着性を示す。さらに、より過酷な絞り加工後にさらにストレッチ加工としごき加工を併用する加工を施した場合においても、樹脂フィルムが剥離することがなく、Snめっき層上にシランカップリング塗布層を設けてなるSnめっき鋼板に、コロナ放電処理を施さない樹脂フィルムを熱接着して積層してなる樹脂被覆Snめっき鋼板に比べて安定した優れた加工接着性を示す。
【図面の簡単な説明】
【図1】Sピール強度測定用の試片の形状を示す平面図。
【図2】Sピール強度測定用の試片の樹脂面に切れ目を入れる箇所を示す平面図。
【図3】Sピール強度測定用の試片にスコアを入れる箇所を示す平面図。
【図4】スコアを入れた部分の形状を示す試片の一部の断面図
【図5】試片ホルダーの概略図
【符号の説明】
1 : 試片
1a: 試片の一方の端部
1b: 試片の他方の端部
2: 切れ目
3: スコア
4: 試片ホルダー
4a: 試片挿入部
4b: 試片ホルダー上部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin-coated Sn-plated steel sheet having excellent work adhesion of a resin-coated layer, a can formed by subjecting the resin-coated Sn-plated sheet to severe forming such as drawing, and a method for producing the resin-coated Sn-plated steel sheet.
[0002]
[Prior art]
In recent years, steel plates coated with resin have been subjected to severe processing such as drawing, further stretching after drawing, further ironing after drawing, and further stretching and drawing combined with drawing. A can in which the can body and the bottom of the can are integrally formed and processed is filled with the contents and a top plate is wound around the can, which is commercially available. In these cans, excellent adhesiveness of the resin to the steel sheet is required so that the coating resin does not peel or break during and after these severe forming processes. Therefore, as a resin-coated steel sheet for these applications, a steel sheet coated with a chromate-treated steel sheet such as tin-free steel having a surface formed with a chromate film having excellent workability with an organic resin has been used.
[0003]
However, in cans using resin-coated chromate-treated steel sheets, if fine holes or cracks that reach the steel sheet surface occur in the resin layer, the chromate-treated steel sheets have poor corrosion resistance and are filled with contents with particularly high acidity. In this case, the steel sheet has a disadvantage that corrosion of the steel sheet progresses rapidly and piercing is easily caused. Therefore, application of a resin-coated Sn-plated steel sheet obtained by coating a resin on a Sn-plated steel sheet exhibiting excellent corrosion resistance when filled with contents having a large acidity has been attempted. In particular, there is a demand for a resin-coated Sn-plated steel sheet which has poor workability and is applicable to such severe processing applications as described above.
[0004]
The inventors of the present invention have proposed a resin-coated Sn-plated steel sheet as a resin-coated Sn-plated steel sheet applicable to severe processing applications (for example, see Patent Document 1). The resin-coated Sn-plated steel sheet described in this publication is obtained by laminating an organic resin film on a Sn-plated steel sheet in which a silane coupling agent coating layer is provided on a Sn-plated layer of a no-reflow Sn-plated steel sheet or a reflow Sn-plated steel sheet. Resin-coated Sn-plated steel sheet. This resin-coated Sn-plated steel sheet is characterized in that the adhesive strength of the organic resin film before forming into a can is 2 kg / 10 mm or more in T peel strength. However, when the resin-coated Sn-plated steel sheet is formed into a can and formed into a can, in particular, when it is formed into a can by using a more severe stretching process and ironing after drawing, it can be formed without any problem. In some cases, it was found that the resin sometimes peeled off at the top of the can during the molding process, and that excellent adhesion of the resin to the Sn plating layer could not be stably obtained. It has also been found that the adhesive strength of the organic resin film before forming into a can does not always accurately reflect the adhesiveness at the time of forming or after forming.
[0005]
In the present invention, a corona discharge-treated organic resin film is laminated on a Sn-plated steel sheet having a silane coupling agent coating layer provided on a Sn-plated layer of a no-reflow Sn-plated steel sheet or a reflow Sn-plated steel sheet. It has been found that a resin-coated Sn-plated steel sheet exhibiting stable adhesiveness during and after forming can be obtained. Further, it is disclosed that a corona discharge treatment is applied to a polypropylene-based resin film (for example, see Patent Document 2). It is known that the adhesion to a substrate to be laminated is improved by performing a corona discharge treatment on an organic resin. However, the organic resin is laminated on a Sn-plated steel sheet with poor processing adhesion with the organic resin, and after the drawing, the processing adhesion that withstands the severe processing of forming into a can using a combination of stretching and ironing after drawing is obtained. Therefore, by providing a silane coupling agent coating layer on the Sn plating layer and coating the silane coupling agent coating layer with an organic resin that has been subjected to corona discharge treatment such that the corona discharge treatment surface is in contact with the silane coupling agent coating layer, the corrosion resistance is improved. For the first time, it was possible to stably obtain a can by such severe processing from a resin-coated Sn-plated steel sheet using an excellent Sn-plated steel sheet as a substrate.
[0006]
Prior art document information on the present application includes the following.
[Patent Document 1]
JP-A-2002-285354
[Patent Document 2]
Japanese Patent No. 3352553
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a resin-coated Sn-plated steel sheet having excellent work adhesion when subjected to severe molding, a can using the same, and a method for producing the resin-coated Sn-plated steel sheet.
[0008]
[Means for Solving the Problems]
The resin-coated Sn-plated steel sheet of the present invention is a resin coating obtained by coating at least one surface of an Sn-plated steel sheet having a silane coupling agent coating layer formed on a Sn plating layer with an organic resin film subjected to a corona discharge treatment. An Sn-plated steel sheet (Claim 1),
Sn-plated steel sheet, Sn-plated steel sheet with no Sn-plated layer formed on the steel sheet (No reflow Sn-plated steel sheet), or Sn-plated steel sheet formed by forming Sn-Fe alloy layer between steel sheet and Sn-plated layer (Reflow Sn plated steel sheet), (Claim 2)
The amount of the silane coupling agent applied is 1 to 50 mg / m in terms of Si amount. 2 (Claim 3)
The corona discharge treatment is performed under the conditions of a voltage of 200 V and a current of 0.2 to 8 A / 25 cm (Claim 4).
Cup side wall after forming the resin-coated Sn-plated steel sheet according to any one of claims 1 to 4 into a drawn cup having a diameter of 96 mm and a height of 42 mm by a one-step drawing with a drawing ratio of 1.64. The peel strength of the resin film is 0.05 kg / 15 mm or more (Claim 5).
[0009]
Further, the can of the present invention is obtained by drawing the resin-coated Sn-plated steel sheet according to any one of claims 1 to 5 (claim 6), or
After drawing, the can is further stretched (Claim 7), or
After drawing, the can is further ironed (claim 8), or
The can (claim 9) is obtained by further performing stretching and ironing after drawing.
[0010]
Further, the method for producing a resin-coated Sn-plated steel sheet of the present invention comprises forming an Sn-plated layer on at least one side of the steel sheet, applying a silane coupling agent on the Sn-plated layer and drying, and then applying a silane coupling agent-coated layer. A method for producing a resin-coated Sn-plated steel sheet, characterized by laminating an organic resin film subjected to corona discharge treatment so that a corona discharge treatment surface is in contact therewith, or
A Sn plating layer is formed on at least one side of the steel sheet, and then heated to a temperature equal to or higher than the melting temperature of Sn and rapidly cooled to form a Sn—Fe alloy layer between the steel sheet and the Sn plating layer. After coating and drying a coupling agent, a resin-coated Sn plating is characterized in that an organic resin film subjected to a corona discharge treatment is laminated on the silane coupling agent application layer so that the corona discharge treatment surface is in contact with the resin film. This is a method for manufacturing a steel sheet.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
As the steel sheet used for the resin-coated Sn-plated steel sheet of the present invention, a normal aluminum-killed steel hot-rolled sheet is cold-rolled, and then subjected to temper-rolled cold-rolled steel sheet after annealing, or further cold-rolled after annealing. Any of the cold-rolled steel sheets having increased strength is selectively used depending on the application. After electrolytically degreased and pickled these cold-rolled steel sheets, an Sn-plated layer is formed on the steel sheets to obtain Sn-plated steel sheets. As the Sn-plated steel sheet, an Sn-plated steel sheet (Sn-plated no-reflow Sn-plated steel sheet) with Sn plated using a well-known ferrostan bath or halogen bath, after plating Sn, heating to the melting temperature of Sn or more and then quenching. Thus, there is an Sn-plated steel sheet (a reflow Sn-plated steel sheet) in which an Sn-Fe alloy layer is formed between Sn plating layers. In addition to these Sn-plated steel sheets, Ni is electroplated, and Ni is plated on the upper layer as it is, or after Ni plating, heated to diffuse Ni into the steel to form a Ni—Fe alloy layer, and then Sn is electroplated. Then, an island-shaped Sn-plated steel sheet having an island-shaped Sn layer formed thereon may be used by using a method of heating to a temperature not lower than the melting temperature of Sn and then rapidly cooling.
[0012]
The amount of Sn plating in the matte no-reflow Sn-plated steel sheet is 0.1 to 10 g / m from the viewpoint of corrosion resistance and economy. 2 Is preferably within the range. In a glossy reflow Sn-plated steel sheet, an Sn-Fe alloy layer is formed between the Sn plating layer and the steel sheet. Therefore, when metal Sn is left on the surface of the plated steel sheet, the total Sn plating amount is 1 to 10 g / m. 2 Must be within the range. In the case where the metal Sn is not left on the surface of the plated steel sheet and a layer composed of only the Sn—Fe alloy layer is used as the surface layer, the total Sn plating amount is 0.1 to 10 g / m. 2 Is preferably within the range.
[0013]
In the case of an island-shaped Sn-plated steel sheet, the amount of Ni plating to be formed on the steel sheet before Sn plating is 0.005 to 0.1 g / m. 2 And the amount of Sn plating to be formed on the upper layer is 0.1 to 1.5 g / m. 2 Is preferably within the range. After forming each plating layer with such a plating amount, or after plating Ni with the above-described plating amount and performing a diffusion heat treatment, and then plating Sn with the above-described plating amount, the temperature is equal to or higher than the melting temperature of Sn. By heating, an island-shaped Sn-plated steel sheet in which Sn is dispersed in an island form on the surface is obtained.
[0014]
A silane coupling agent is applied to the surface of the Sn-plated steel sheet obtained as described above and dried. Examples of the silane coupling agent include various types such as a vinyl type, an acrylic type, an epoxy type, an amino type, a mercapto type and a chloropyr type. In the present invention, it is preferable to use an amino type silane coupling agent. As an amino-based silane coupling agent, aminopropyltrimethoxysilane, aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane, phenylaminopropyltrimethoxysilane, and the like can be used. A 5-200 g / L aqueous solution of these silane coupling agents is applied to the above-mentioned Sn-plated steel sheet and dried. As the coating method, a known method can be applied, and for example, any of a dipping method, a roll coating method, a method of squeezing a surplus using a squeezing roll after dipping, a spray method, an electrolytic treatment method, and the like can be applied. The amount of the coating film after drying was 1 to 50 mg / m as the amount of Si measured by a fluorescent X-ray method. 2 It is preferable that 1 mg / m in Si amount 2 If it is less than this, the processing adhesive strength of the resin film laminated on the silane coupling agent coating layer will be poor. On the other hand, the amount of Si is 50 mg / m 2 Even if it exceeds 2,000, the processing adhesive strength of the resin film becomes insufficient and it is not economical. Thus, the Sn-plated steel sheet used for the resin-coated Sn-plated steel sheet of the present invention is obtained.
[0015]
In the resin-coated Sn-plated steel sheet of the present invention, an organic resin film subjected to corona discharge treatment on one or both sides of the Sn-plated steel sheet obtained as described above is brought into contact with the silane coupling agent coated layer on the corona discharge treated surface. It is obtained by laminating as described above. As the organic resin film, a polyester resin such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene terephthalate / ethylene isophthalate copolymer, butylene terephthalate / butylene isophthalate copolymer, or two or more of these polyester resins , Polyethylene, polypropylene, ethylene-propylene copolymers, and those obtained by modifying them with maleic acid, polyolefin resins such as ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, 6-nylon, 6 Polyamide resins such as 6,6-nylon and 6,10-nylon, polycarbonate, polymethylpentene, and blends of the above polyester resins and ionomers Resin film layer, further can be used as the resin film multilayer of two or more kinds of these resins. The thickness of the resin film is 10 to 100 μm from the viewpoints of ease of film lamination work, adhesion strength of the resin film in a molded article (can) after molding of the resin-coated Sn-plated steel sheet, corrosion resistance, and economy. It is preferable that
[0016]
These resin films are obtained by heating and melting resin pellets, extruding the resin pellets from a T-die of an extruder, and forming a film having a desired thickness on the Sn-plated steel sheet by using a thermal bonding method. . The thermal bonding method is a method in which a resin film is brought into contact with a Sn-plated steel sheet heated to a temperature range in which the resin is bonded, sandwiched between a pair of pressure rolls, and pressed to press the resin film. By using a resin film formed without using a film, heat bonding can be performed at a temperature considerably lower than the melting temperature of Sn. In the case of laminating a resin film formed by stretching in a uniaxial direction or a biaxial direction, if the heat setting after the stretching process is not performed at a temperature considerably lower than the melting temperature of Sn, the temperature is higher than the melting temperature of the resin. Unless the resin is heated to a high temperature, good working adhesive strength to the Sn-plated steel sheet cannot be obtained. Therefore, when a resin having a melting temperature higher than the melting temperature of Sn is used, heat bonding may be difficult.
[0017]
In the present invention, in particular, in order to obtain a stable and excellent resin film processing adhesion even when subjected to severe forming processing such as forming into a can by processing in combination with stretching and ironing after drawing and further processing. Then, a resin film obtained by performing a corona discharge treatment on the surface of the resin film obtained as described above, which is in contact with the Sn-plated steel sheet, is used. The corona discharge treatment is performed under the conditions of a voltage: 200 V and a current: 0.2 to 8 A / 25 cm. If the current is less than 0.2 A / 25 cm, the effect of the corona discharge treatment will not be exhibited. On the other hand, when the current exceeds 8 A / 25 cm, the discharge current becomes excessive, and wrinkles and swelling occur in the resin film, which is not preferable. A more preferable current range is 1 to 5 A / 25 cm. The corona discharge-treated side of the resin film is brought into contact with the surface of the Sn-plated steel sheet to which the silane coupling agent has been applied, and is thermally bonded as described above, thereby performing severe forming processing. Even in this case, stable and excellent processing adhesion of the resin film can be obtained.
[0018]
Conventionally, the peel strength, that is, the adhesive strength of the resin film to the Sn-plated steel sheet has been evaluated by measuring the T-peel strength in a flat state before processing. However, the T-peel strength measured in the state of a flat plate is particularly during and after processing in the case where severe forming such as forming into a can is performed by using a combination of stretching and ironing after drawing. It was found that the adhesive strength, ie, the processed adhesive strength was not always accurately reflected. Therefore, in the present invention, the resin-coated Sn-plated steel sheet is drawn and formed into a cup, a test piece is cut out from the cup side wall, and the processing adhesive strength (hereinafter referred to as S-peel strength) is obtained from the peel strength of the resin film of the test piece. ) To evaluate.
[0019]
The method for measuring the S peel strength is described below. A 154 mm blank was punched out of the resin-coated Sn-plated steel sheet of the present invention obtained as described above, and subjected to one-step drawing at a drawing ratio of 1.64 to form a drawing cup having a diameter of 96 mm and a height of 42 mm. Mold. From this cup, a side wall portion is cut out in a size of 30 mm in a cup height direction and 120 mm in a cup circumferential direction and bent back to a flat plate shape, and then a T-shaped specimen 1 shown in FIG. 1 is punched out. Next, as shown in FIG. 2, a cut 2 is made using a cutter knife in the resin film on one side 1a of the specimen 1 on the side opposite to the adhesive strength measurement surface so as to reach the surface of the Sn-plated steel sheet. Next, as shown in FIGS. 3 and 4, a score 3 is inserted from the side opposite to the adhesive strength measurement surface using a score processing die set, and then the score portion is bent to cut the Sn-plated steel sheet. At this time, on the adhesion strength measurement surface, the resin film is not cut, but remains connected to both sides of the cut Sn-plated steel sheet. Next, as shown in FIG. 5, after inserting one end 1a into the specimen insertion portion 4a of the specimen holder 4 to fix the specimen 1 to the specimen holder 4, the upper part 4b of the specimen holder 4 and the specimen 1 are fixed. The other end 1b is sandwiched between the chucks of a Tensilon tensile tester and pulled, the resin film is forcibly peeled off from the Sn-plated steel sheet, and the tensile strength is measured, and the processing adhesive strength is evaluated as S peel strength.
[0020]
The S-peel strength measured as described above is preferably 0.05 kg / 15 mm or more. When the S-peel strength is less than 0.05 kg / 15 mm, it is stable and good especially when a severe forming process such as forming into a can by performing a combination of stretching and ironing after drawing is performed. Unable to obtain processing adhesive strength.
[0021]
When the resin-coated Sn-plated steel sheet of the present invention is formed into a drawn can, a blank punched from a resin-coated Sn-plated steel sheet having resin laminated on one or both sides is drawn into a cup shape using a drawing die. To increase the height of the side wall by reducing the diameter, redrawing is performed using a drawing die having a smaller diameter than the former stage. The drawing is usually performed by one or two steps of drawing, and is applied to a can having a relatively large can diameter and a low side wall height.
[0022]
When the resin-coated Sn-plated steel sheet of the present invention is drawn and then stretched to form a can, a blank punched from a resin-coated Sn-plated steel sheet having resin laminated on one or both sides is cup-shaped using a drawing die. And drawing. Next, using a plurality of stages of drawing dies, the height of the side wall is increased while sequentially reducing the diameter.In stretch processing, when the cup is pressed by a processing punch and enters and exits the drawing die and wrinkle suppressing jig The side wall is bent and unbent, and the side wall portion is stretched and drawn while being thinned. It is applied to cans with relatively small can diameter and high side wall height.
[0023]
When the resin-coated Sn-plated steel sheet of the present invention is drawn and then ironed to form a can, a blank punched from a resin-coated Sn-plated steel sheet having resin laminated on one or both sides is drawn in one or more stages. It is drawn into a cup shape using a die. Then, using one or more stages of ironing dies, the side wall is forcibly pushed into the clearance between the ironing die and the punch, which is set smaller than the side wall thickness of the cup, to increase the side wall height while reducing the thickness. Apply processing. Therefore, the present invention is applied to a can having a relatively small can diameter, a high side wall height, and a small side wall thickness. When ironing a resin-coated Sn-plated steel sheet with resin laminated on one side only so that the non-resin-coated surface becomes the outer surface of the can, the Sn-plated layer is rubbed by an ironing die and becomes a mirror surface, resulting in a beautiful surface gloss. Can be
[0024]
When the resin-coated Sn-plated steel sheet of the present invention is drawn and then formed into a can by using both stretching and ironing, a blank punched from a resin-coated Sn-plated steel sheet having resin laminated on one or both sides is formed in one step. Alternatively, drawing is performed in a cup shape using a plurality of stages of drawing dies. Next, the side wall height is increased while reducing the diameter sequentially using multiple stages of drawing dies in the same way as in normal stretching, but the clearance between the dies and the punch is cupped like the ironing dies in ironing. By setting the side wall thickness to be smaller than the side wall thickness, the side wall is bent and unbent, and at the same time is ironed, and the side wall portion is stretched and thinned to draw and iron. In this processing, even when a resin-coated Sn-plated steel sheet in which a resin is laminated on only one side is used, a beautiful surface gloss can be obtained.
[0025]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples.
[Preparation of Sn-plated steel sheet]
A cold-rolled steel sheet having a thickness and a temper shown in Table 1 is electrolytically degreased in an alkaline aqueous solution, washed with water, washed with sulfuric acid, washed with water, and then subjected to Sn plating using a known ferrostan bath under the conditions shown in Table 1. After forming the layer, or after forming the Sn plating layer, reflow treatment was performed to form an Sn—Fe alloy layer between the steel sheet and the Sn plating layer. Next, using a treatment bath shown in Table 1, a 5-200 g / L aqueous solution of the silane coupling agent shown in Table 1 was applied by an immersion method so as to have an application amount shown in Table 1, and dried to obtain Sn plating. A silane coupling agent coating layer was formed thereon. Further, as a comparative material, a tin-free steel in which two layers of a Cr plating layer and a Cr hydrated oxide layer were formed by subjecting a cold-rolled steel sheet to electrolytic chromic acid treatment, which is shown in Sample No. 10, was produced.
[0026]
[Table 1]
Figure 2004345214
[0027]
[Table 2]
Figure 2004345214
[0028]
[Preparation of resin-coated Sn-plated steel sheet]
One side of a Sn-plated steel sheet and tin-free steel shown in Table 1 was subjected to a corona discharge treatment on one side under the conditions shown in Table 2. Thickness: 28 μm non-oriented transparent ethylene terephthalate / ethylene isophthalate copolymer (PETI) 2 layer film (upper layer is PETI15 (thickness: 12 μm), lower layer is PETI5 (thickness: 16 μm), numbers indicate mol% of ethylene isophthalate, and PETI5 side is in contact with the steel sheet side), and one other side A white non-oriented two-layer film containing the same ethylene terephthalate / ethylene isophthalate copolymer containing 20% by weight of a titanium-based white pigment (the upper layer is PETI15 (thickness: 5 μm), and the lower layer is PETI5 (thickness: 11 μm)) by heat bonding at 225 ° C. using a heat bonding method, and laminated, and a resin-coated Sn-plated steel sheet indicated by sample numbers 1 to 8 A resin-coated tin-free steel indicated by Sample No. 10 was produced. As a comparative material, a coated Sn-plated steel sheet laminated with a resin film not subjected to the corona discharge treatment shown in Sample No. 9 was also prepared.
[0029]
[Preparation of specimen for S peel strength measurement]
From the resin-coated Sn-plated steel sheet and the resin-coated tin-free steel shown in Table 1, the transparent resin film-coated surface was on the cup inner surface side, and as described above, a one-step drawing process with a drawing ratio of 1.64 was performed. Was performed to prepare a drawing cup, and a sample for measuring the S-peel strength was prepared as described above, with the transparent resin film-coated surface serving as a measurement surface. The S-peel strength was then measured using Tensilon as described above. Table 3 shows the results.
[0030]
[Table 3]
Figure 2004345214
[0031]
[Formation of drawn cans]
After punching a resin-coated Sn-plated steel plate of Sample Nos. 1-2 and 6-9 and a resin-coated tin-free steel of Sample No. 10 shown in Table 1 into a blank having a diameter of 112 mm, the transparent resin film-coated surface was on the cup inner surface side. Then, drawing was performed at a drawing ratio of 1.50, then re-drawing was performed at a drawing ratio of 2.1, and formed into a drawn can having a can diameter of 53 mm. Next, the upper part of the can was trimmed by a known method, and neck-in processing and flange processing were performed. After forming 1,000 drawn cans in this way, the presence or absence of peeling of the resin film was visually observed, and the occurrence rate of molded cans in which peeling was recognized was evaluated in%. Table 4 shows the results.
[0032]
[Forming cans that are stretched after drawing]
After punching a resin-coated Sn-plated steel plate of Sample Nos. 1-2 and 6-9 and a resin-coated tin-free steel of Sample No. 10 shown in Table 1 into a blank having a diameter of 187 mm, the transparent resin film-coated surface was on the cup inner surface side. Then, drawing was performed at a drawing ratio of 1.70 and a cup was formed. Next, the primary redrawing ratio: 1.29, the secondary redrawing ratio: 1.24, the tertiary redrawing ratio: 1.20, the radius of curvature of the redrawing die shoulder: 0.4 mm, and the wrinkle suppressing load: Stretching was performed in a plurality of stages under the condition of 58N, and formed into a stretched can having a can diameter of 66 mm. Next, the upper part of the can was trimmed by a known method and subjected to neck-in processing and flange processing. After forming 1,000 stretched cans in this way, the presence or absence of peeling of the resin film was visually observed, and the occurrence rate of molded cans in which peeling was recognized was evaluated in%. Table 4 shows the results.
[0033]
[Forming of cans made by drawing and then ironing]
After punching a resin-coated Sn-plated steel plate and resin-coated tin-free steel of sample numbers 3 to 5 shown in Table 2 into a blank having a diameter of 140 mm, the drawing ratio was set such that the transparent resin film-coated surface was on the cup inner surface side. Drawing was performed at a drawing ratio of 1.63, and then redrawing was performed at a drawing ratio of 1.30 to form a cup having a can diameter of 66 mm. Subsequently, three-stage ironing (total ironing rate: 65%) was performed, and the resultant was molded into a can having a can diameter of 66 mm. Next, the upper part of the can was trimmed by a known method and subjected to neck-in processing and flange processing. After forming 1,000 stretched cans in this way, the presence or absence of peeling of the resin film was visually observed, and the occurrence rate of molded cans in which peeling was recognized was evaluated in%. Table 4 shows the results.
[0034]
[Forming of cans that are processed by using both stretching and ironing after drawing]
After punching the resin-coated Sn-plated steel sheets of Sample Nos. 1-2 and 6-9 and the resin-coated tin-free steel of Sample No. 10 shown in Table 1 into a blank having a diameter of 160 mm, the transparent resin film-coated surface was the cup inner surface. And drawn into a cup with a can diameter of 100 mm. Next, a redraw cup having a can diameter of 80 mm was obtained by redrawing. Further, the redrawn cup was subjected to stretching and ironing in combination to obtain a can having a can diameter of 65 mm. Stretching and ironing are used together. The distance between the redrawing part, which is the upper end of the can, and the ironing part is 20 mm, the radius of curvature of the redrawing die shoulder is 1.5 times the plate thickness, and the redrawing die is used. The test was performed under the condition that the clearance of the punch was 1.0 times the plate thickness and the clearance of the ironed portion was 0.5 times the plate thickness. Next, the upper part of the can was trimmed by a known method and subjected to neck-in processing and flange processing. After forming 300 stretched cans in this way, the presence or absence of peeling of the resin film was visually observed, and the occurrence rate of molded cans in which peeling was observed was evaluated in%. Table 4 shows the results.
[0035]
[Table 4]
Figure 2004345214
[0036]
As shown in Table 4, the resin-coated Sn-plated steel sheet of the present invention obtained by laminating the resin film subjected to the corona discharge treatment on the Sn-plated steel sheet provided with the silane coupling coating layer is made of a resin not subjected to the corona discharge treatment. Compared to a resin-coated Sn-plated steel sheet obtained by laminating a film on a Sn-plated steel sheet provided with a silane coupling coating layer, the resin film has better work adhesion to the Sn-plated steel sheet, and the S-peel strength shown in Table 3 That is, the result is consistent with the result of the adhesiveness after processing by one-step drawing. As described above, the resin-coated Sn-plated steel sheet of the present invention is subjected to severe processing in which a plurality of stages of drawing, styret after drawing, ironing after drawing, stretching after drawing, and ironing are used in combination. Shows stable and excellent work adhesion as in resin-coated tin-free steel.
[0037]
【The invention's effect】
The resin-coated Sn-plated steel sheet of the present invention is obtained by laminating a resin film that has been subjected to corona discharge treatment to a Sn-plated steel sheet provided with a silane coupling coating layer on the Sn plating layer by heat bonding, drawing, The resin film shows stable and excellent work adhesion without peeling even when any of stretch processing after drawing and further ironing after drawing are performed. Furthermore, even in the case of performing a process using a combination of stretching and ironing after a more severe drawing process, the Sn film formed by providing the silane coupling coating layer on the Sn plating layer without peeling the resin film. It shows a stable and excellent work adhesion as compared with a resin-coated Sn-plated steel sheet obtained by thermally bonding a resin film not subjected to corona discharge treatment to a steel sheet.
[Brief description of the drawings]
FIG. 1 is a plan view showing the shape of a test piece for measuring S-peel strength.
FIG. 2 is a plan view showing a place where a cut is made in a resin surface of a test piece for S-peel strength measurement.
FIG. 3 is a plan view showing a place where a score is put on a test piece for measuring S peel strength.
FIG. 4 is a partial cross-sectional view of a test piece showing the shape of a scored portion.
FIG. 5 is a schematic view of a specimen holder.
[Explanation of symbols]
1: Specimen
1a: One end of specimen
1b: the other end of the specimen
2: Break
3: Score
4: Specimen holder
4a: specimen insertion part
4b: Upper part of specimen holder

Claims (11)

Snめっき層上にシランカップリング剤塗布層を形成させてなるSnめっき鋼板の少なくとも片面に、コロナ放電処理を施した有機樹脂フィルムを被覆してなる樹脂被覆Snめっき鋼板。A resin-coated Sn-plated steel sheet in which at least one surface of an Sn-plated steel sheet in which a silane coupling agent coating layer is formed on an Sn plating layer is coated with an organic resin film that has been subjected to corona discharge treatment. Snめっき鋼板が、鋼板上にSnめっき層を形成させたままのSnめっき鋼板(ノーリフローSnめっき鋼板)、または鋼板とSnめっき層の間にSn−Fe合金層を形成させてなるSnめっき鋼板(リフローSnめっき鋼板)である、請求項1に記載の樹脂被覆Snめっき鋼板。The Sn-plated steel sheet is an Sn-plated steel sheet having a Sn-plated layer formed on the steel sheet (No reflow Sn-plated steel sheet), or an Sn-plated steel sheet formed by forming an Sn-Fe alloy layer between the steel sheet and the Sn-plated layer The resin-coated Sn-plated steel sheet according to claim 1, which is a (reflow Sn-plated steel sheet). シランカップリング剤の塗布量が、Si量で1〜50mg/mである請求項1または2に記載の樹脂被覆Snめっき鋼板。The coating amount of the silane coupling agent, a resin-coated Sn-plated steel sheet according to claim 1 or 2 is 1 to 50 mg / m 2 in Si amount. コロナ放電処理が電圧:200V、電流:0.2〜8A/25cmの条件で施したものである、請求項1〜3のいずれかに記載の樹脂被覆Snめっき鋼板。The resin-coated Sn-plated steel sheet according to any one of claims 1 to 3, wherein the corona discharge treatment is performed under conditions of a voltage: 200 V and a current: 0.2 to 8 A / 25 cm. 絞り比:1.64の1段絞り加工で径:96mm、高さ:42mmの絞りカップに成形した後の、カップ側壁部の樹脂フィルムの剥離強度が0.05kg/15mm以上であることを特徴とする、請求項1〜4のいずれかに記載の樹脂被覆Snめっき鋼板。After being formed into a draw cup having a diameter of 96 mm and a height of 42 mm by a one-step drawing process with a draw ratio of 1.64, the peel strength of the resin film on the side wall of the cup is 0.05 kg / 15 mm or more. The resin-coated Sn-plated steel sheet according to claim 1. 請求項1〜5のいずれかに記載の樹脂被覆Snめっき鋼板を絞り加工してなる缶。A can formed by drawing the resin-coated Sn-plated steel sheet according to any one of claims 1 to 5. 請求項1〜5のいずれかに記載の樹脂被覆Snめっき鋼板を絞り加工後さらにストレッチ加工してなる缶。A can formed by drawing the resin-coated Sn-plated steel sheet according to claim 1 and further stretching. 請求項1〜5のいずれかに記載の樹脂被覆Snめっき鋼板を絞り加工後さらにしごき加工してなる缶。A can formed by drawing the resin-coated Sn-plated steel sheet according to any one of claims 1 to 5 and then ironing it. 請求項1〜5のいずれかに記載の樹脂被覆Snめっき鋼板を絞り加工後さらにストレッチ加工としごき加工を併用して加工してなる缶。A can obtained by subjecting the resin-coated Sn-plated steel sheet according to any one of claims 1 to 5 to drawing and further performing stretching and ironing. 鋼板の少なくとも片面にSnめっき層を形成させ、次いでSnめっき層上にシランカップリング剤を塗布し乾燥させた後、シランカップリング剤塗布層上にコロナ放電処理面が接するようにしてコロナ放電処理を施した有機樹脂フィルムを積層することを特徴とする、樹脂被覆Snめっき鋼板の製造方法。After forming an Sn plating layer on at least one side of the steel sheet, and then applying and drying a silane coupling agent on the Sn plating layer, a corona discharge treatment is performed so that the corona discharge treatment surface is in contact with the silane coupling agent application layer. A method for producing a resin-coated Sn-plated steel sheet, comprising laminating an organic resin film subjected to aging. 鋼板の少なくとも片面にSnめっき層を形成させ、次いでSnの溶融温度以上に加熱した後急冷することにより鋼板とSnめっき層の間にSn−Fe合金層を形成させ、その後Snめっき層上にシランカップリング剤を塗布し乾燥させた後、シランカップリング剤塗布層上にコロナ放電処理面が接するようにしてコロナ放電処理を施した有機樹脂フィルムを積層することを特徴とする、樹脂被覆Snめっき鋼板の製造方法。A Sn plating layer is formed on at least one side of the steel sheet, and then heated to a temperature equal to or higher than the melting temperature of Sn and rapidly cooled to form an Sn—Fe alloy layer between the steel sheet and the Sn plating layer. After coating and drying a coupling agent, a resin-coated Sn plating is characterized in that an organic resin film subjected to a corona discharge treatment is laminated on a silane coupling agent application layer so that a corona discharge treatment surface is in contact with the organic resin film. Steel sheet manufacturing method.
JP2003144583A 2003-05-22 2003-05-22 RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET Pending JP2004345214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003144583A JP2004345214A (en) 2003-05-22 2003-05-22 RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003144583A JP2004345214A (en) 2003-05-22 2003-05-22 RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET

Publications (1)

Publication Number Publication Date
JP2004345214A true JP2004345214A (en) 2004-12-09

Family

ID=33532002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003144583A Pending JP2004345214A (en) 2003-05-22 2003-05-22 RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET

Country Status (1)

Country Link
JP (1) JP2004345214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110740A1 (en) * 2004-05-14 2005-11-24 Toyo Kohan Co., Ltd. Sn-PLATED STEEL SHEET COATED WITH RESIN, CAN USING THE SAME, AND METHOD FOR PRODUCING Sn-PLATED STEEL SHEET COATED WITH RESIN
JP2023505688A (en) * 2019-12-11 2023-02-10 ポスコホールディングス インコーポレーティッド METAL-PLASTIC COMPOSITE MATERIAL AND PRODUCTION METHOD THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005110740A1 (en) * 2004-05-14 2005-11-24 Toyo Kohan Co., Ltd. Sn-PLATED STEEL SHEET COATED WITH RESIN, CAN USING THE SAME, AND METHOD FOR PRODUCING Sn-PLATED STEEL SHEET COATED WITH RESIN
JP2023505688A (en) * 2019-12-11 2023-02-10 ポスコホールディングス インコーポレーティッド METAL-PLASTIC COMPOSITE MATERIAL AND PRODUCTION METHOD THEREOF
JP7368627B2 (en) 2019-12-11 2023-10-24 ポスコホールディングス インコーポレーティッド Metal-plastic composite material and its manufacturing method
US11993056B2 (en) 2019-12-11 2024-05-28 Posco Metal-plastic composite material and method for manufacturing same

Similar Documents

Publication Publication Date Title
JPH02303634A (en) Manufacture of drawing/ironing can
CN104080604A (en) Copper foil composite, molded body, and method for producing same
CN104080605A (en) Copper foil composite, molded body, and method for producing same
JP4285924B2 (en) A can body comprising a resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a method for producing the same
JP3655592B2 (en) Manufacturing method of Sn-plated steel sheet, Sn-plated steel sheet, resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a can using the same
WO2011045833A1 (en) Method for producing resin-coated metal plate
JP2004345214A (en) RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET
JP3887009B2 (en) Steel plate for thinned deep-drawn ironing can and manufacturing method thereof
JP5419638B2 (en) Manufacturing method of surface-treated steel sheet
JPH0598465A (en) Manufacture of thinned resin coated tinned steel sheet for deep drawing excellent in working corrosion resistance
JP5398024B2 (en) Resin coated steel sheet
WO2005110739A1 (en) Sn-PLATED STEEL SHEET COATED WITH RESIN, CAN USING THE SAME, AND METHOD FOR PRODUCING Sn-PLATED STEEL SHEET COATED WITH RESIN
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JP4103974B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
WO2000058087A1 (en) Metal plate coated with polyester resin, and can using the same
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP3949283B2 (en) Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans
JP2937788B2 (en) Manufacturing method of resin-coated steel sheet for dry drawing and ironing can
JP3287764B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP5078155B2 (en) Method for producing resin-coated metal sheet
JP3140929B2 (en) Resin-coated steel sheet for dry drawing and ironing can
JP4872315B2 (en) Surface-treated steel sheet and method for producing the same, resin-coated steel sheet, can and can lid
JP3270684B2 (en) Resin-coated aluminum alloy plate for drawing and ironing cans
JP3282994B2 (en) Surface treatment method of steel sheet, surface treated steel sheet, and thermoplastic resin coated steel sheet using the surface treated steel sheet
JP3781156B2 (en) Resin film for metal plate lamination, resin film laminated metal plate, manufacturing method thereof, and container using resin film laminated metal plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Effective date: 20080416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080618

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20090728

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20091026

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20091028

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20091110

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100205