JP5078155B2 - Method for producing resin-coated metal sheet - Google Patents

Method for producing resin-coated metal sheet Download PDF

Info

Publication number
JP5078155B2
JP5078155B2 JP2008172315A JP2008172315A JP5078155B2 JP 5078155 B2 JP5078155 B2 JP 5078155B2 JP 2008172315 A JP2008172315 A JP 2008172315A JP 2008172315 A JP2008172315 A JP 2008172315A JP 5078155 B2 JP5078155 B2 JP 5078155B2
Authority
JP
Japan
Prior art keywords
resin
heating
coupling agent
silane coupling
metal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008172315A
Other languages
Japanese (ja)
Other versions
JP2010012624A (en
Inventor
政信 松原
慎一 田屋
政浩 甲斐
亘 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Priority to JP2008172315A priority Critical patent/JP5078155B2/en
Publication of JP2010012624A publication Critical patent/JP2010012624A/en
Application granted granted Critical
Publication of JP5078155B2 publication Critical patent/JP5078155B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

本発明は、加工密着性に優れた樹脂被覆金属板の製造方法に関する。 The present invention relates to a method for producing a resin-coated metal plate having excellent work adhesion.

近年、樹脂を被覆してなる鋼板を絞り加工や絞り加工後のさらなるストレッチ加工、
絞り加工後のさらなるしごき加工、絞り加工後のさらなるストレッチ加工としごき加工を併用する加工、などの厳しい加工を施してなる缶胴部と、缶底部とが一体で加工成形された缶体に天板を巻締めた缶が製造されている。
これらの缶体においては、厳しい成形加工中および成形加工後に被覆樹脂が剥離もしくは破断することがないように、鋼板に対する樹脂の優れた密着性が要求される。
そのため、これらの缶体用の素材として、加工密着性に優れるクロメート皮膜を表面に形成させたティンフリースチールなどのクロメート処理鋼板に有機樹脂を被覆した樹脂被覆クロメート処理鋼板が用いられていた。
In recent years, steel sheets coated with resin are further stretched after drawing and drawing,
A can body part that has been subjected to severe processing such as further ironing after drawing, further stretching and ironing after drawing, etc. Cans are produced by winding plates.
In these cans, excellent adhesion of the resin to the steel sheet is required so that the coating resin does not peel or break during or after the severe forming process.
Therefore, a resin-coated chromate-treated steel sheet in which an organic resin is coated on a chromate-treated steel sheet such as tin-free steel having a chromate film excellent in processing adhesion formed on the surface has been used as a material for these cans.

しかし、樹脂被覆クロメート処理鋼板を用いた缶体においては、樹脂層に鋼板面に達する微細な孔や亀裂が生じた場合、クロメート処理鋼板が耐食性に乏しいために、特に酸性度の大きな内容物を充填した場合に、鋼板の腐食が急速に進行しやすいという問題点があった。
そのため、酸性度の大きな内容物を缶に充填した場合においても、優れた耐食性を示す錫めっき鋼板に樹脂を被覆してなる樹脂被覆錫めっき鋼板の適用が試みられたが、錫めっき層に対する樹脂の密着性、特に缶体加工時におけるフィルム加工密着性に乏しく、上記のような厳しい加工用途であってもフィルム加工密着性に優れた材料の開発が求められていた。
However, in cans using resin-coated chromate-treated steel sheets, if fine holes or cracks that reach the steel sheet surface occur in the resin layer, the chromate-treated steel sheet has poor corrosion resistance. When filled, there was a problem that the corrosion of the steel sheet was likely to proceed rapidly.
Therefore, even when filling the can with high acidity contents, application of a resin-coated tin-plated steel sheet obtained by coating a resin on a tin-plated steel sheet exhibiting excellent corrosion resistance has been attempted. Therefore, the development of a material excellent in film processing adhesion has been demanded even in severe processing applications as described above.

このような問題点を解決するため、特許文献1には、ノーリフロー錫めっき鋼板またはリフロー錫めっき鋼板の錫めっき層上にシランカップリング剤塗布層を設け、さらに有機樹脂皮膜を積層してなる樹脂被覆錫めっき鋼板が記載されている。 In order to solve such problems, Patent Document 1 discloses that a silane coupling agent coating layer is provided on a tin-plated layer of a no-reflow tin-plated steel sheet or a reflow tin-plated steel sheet, and an organic resin film is further laminated. A resin-coated tin-plated steel sheet is described.

特開2002−285354号公報JP 2002-285354 A

しかし、特許文献1の樹脂被覆錫めっき鋼板を、絞り加工後にさらにストレッチ加工としごき加工を併用して缶体に成形加工した場合、成形加工途中で缶体の上部で樹脂が剥離することがあり、缶体加工時におけるフィルム加工密着性に問題があった。
本発明は、上記の問題点を解決し、厳しい成形加工時においても、フィルム加工密着性に優れた樹脂被覆錫めっき金属板の製造方法を提供することを目的とする。
However, when the resin-coated tin-plated steel sheet of Patent Document 1 is formed into a can body by further using a stretch process and an ironing process after drawing, the resin may peel off at the top of the can body during the forming process. There was a problem in film processing adhesion during can body processing.
An object of the present invention is to solve the above-mentioned problems and to provide a method for producing a resin-coated tin-plated metal plate having excellent film processing adhesion even during severe molding.

(1)本発明の樹脂被覆金属板の製造方法は、
金属板の少なくとも片面に錫めっき層を形成させる工程と、
前記錫めっき層上にシランカップリング剤を塗布する工程と、
前記シランカップリング剤塗布層上に樹脂層を形成する工程と、
少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、
シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、
前記樹脂の融点−10℃〜前記樹脂の融点+100℃に加熱する工程と、
前記金属板の加熱の後に、前記樹脂の結晶化温度領域を30℃/秒以上の割合で前記樹脂を冷却することを特徴とする。
なお、前記錫めっき層及び前記樹脂層が形状変化を起こさない条件については、錫めっき層及び樹脂層の形状がくずれてしまわないように加熱温度が上がりすぎず、樹脂層が軟化や融解して密着性が向上するように制御することで実現できる。これは例えば、高周波加熱であれば、高周波電流、直流電流、直流電圧を制御することで、高周波加熱装置の発信機の出力を制御し、最大加熱温度、加熱時間を変更することで制御可能である。
また、「少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、前記樹脂の融点−10℃〜前記樹脂の融点+100℃に加熱する」ことについては、例えば、高周波加熱により鋼板全体を加熱して高周波電流、直流電流を制御し、高周波加熱装置の発信機の出力を制御して最大加熱温度、加熱時間を変更することで、溶解を起こさせたい箇所の温度を高くし、他の箇所については温度上昇を一定温度以下に抑えることで実現できる。
(2)本発明の樹脂被覆樹脂被覆金属板の製造方法は、前記(1)において、前記加熱温度は、前記樹脂の融点+30℃〜前記樹脂の融点+60℃であることを特徴とする。
(3)本発明の樹脂被覆金属板の製造方法は、前記(1)又は(2)において、前記加熱は、高周波加熱により実施することを特徴とする。
(4)本発明の樹脂被覆金属板の製造方法は、前記(1)〜(3)のいずれかにおいて、前記加熱の際の前記樹脂の温度について、前記樹脂の結晶化温度領域を5℃/秒以上の割合で前記加熱を行うことを特徴とする。
(5)本発明の樹脂被覆金属板の製造方法は、前記(1)〜(4)のいずれかにおいて、前記錫めっき層は、錫めっき量0.5〜13g/mであることを特徴とする。
(6)本発明の樹脂被覆金属板の製造方法は、前記(1)〜(5)のいずれかにおいて、前記シランカップリング剤は、水溶性のアミノ系シランカップリング剤であり、
Si付着量が0.5〜30mg/mであることを特徴とする。
(1) The method for producing the resin-coated metal plate of the present invention comprises:
Forming a tin plating layer on at least one side of the metal plate;
Applying a silane coupling agent on the tin plating layer;
Forming a resin layer on the silane coupling agent coating layer;
At least the interface region between the tin plating layer and the silane coupling agent coating layer,
Silane coupling agent coating layer and the interface region between the silane coupling agent coating layer and the resin layer,
Heating to a melting point of the resin of −10 ° C. to a melting point of the resin of + 100 ° C .;
After the metal plate is heated, the resin is cooled at a rate of 30 ° C./second or more in the crystallization temperature region of the resin .
In addition, about the conditions which the said tin plating layer and the said resin layer do not raise | generate a shape change, heating temperature does not rise too much so that the shape of a tin plating layer and a resin layer may not collapse, and a resin layer softens or melt | dissolves. This can be realized by controlling the adhesion to be improved. For example, in the case of high-frequency heating, it is possible to control the output of the transmitter of the high-frequency heating device by controlling the high-frequency current, direct current, and direct-current voltage, and change the maximum heating temperature and heating time. is there.
Further, "at least the interface region between the tin plating layer and the silane coupling agent coating layer, the silane coupling agent coating layer and the interface region between the silane coupling agent coating layer and the resin layer, and the melting point of the resin. Regarding “heating to −10 ° C. to the melting point of the resin + 100 ° C.”, for example, the whole steel sheet is heated by high-frequency heating to control high-frequency current and direct current, and the output of the transmitter of the high-frequency heating device is controlled. By changing the maximum heating temperature and the heating time, it is possible to increase the temperature at a location where dissolution is desired to occur, and to suppress the temperature rise at a certain temperature or less at other locations.
(2) The method for producing a resin-coated resin-coated metal sheet according to the present invention is characterized in that, in (1) , the heating temperature is a melting point of the resin + 30 ° C. to a melting point of the resin + 60 ° C.
(3) The method for producing a resin-coated metal sheet according to the present invention is characterized in that, in (1) or (2) , the heating is performed by high-frequency heating.
(4) The method for producing a resin-coated metal plate of the present invention is the method according to any one of (1) to (3) , wherein the resin crystallization temperature region is set to 5 ° C./temperature with respect to the temperature of the resin during the heating. The heating is performed at a rate of at least seconds.
(5) The method for producing a resin-coated metal sheet according to the present invention is characterized in that, in any of the above (1) to (4) , the tin plating layer has a tin plating amount of 0.5 to 13 g / m 2. And
(6) In the method for producing a resin-coated metal plate of the present invention, in any one of (1) to (5) , the silane coupling agent is a water-soluble amino silane coupling agent,
The Si adhesion amount is 0.5 to 30 mg / m 2 .

本発明の樹脂被覆金属板の製造方法は、錫めっき層上にシランカップリング剤を塗布し、その上に樹脂フィルムを熱接着して積層した後に加熱処理を施すので、従来よりも優れた加工密着性を示す樹脂被覆金属板を提供することができる。 The method for producing a resin-coated metal plate of the present invention is a process superior to conventional processes because a silane coupling agent is applied onto a tin plating layer, and a resin film is thermally bonded and laminated thereon, followed by heat treatment. A resin-coated metal plate showing adhesion can be provided.

以下、本発明の実施の形態について詳細に説明する。
[金属板]
本発明の樹脂被覆金属板に用いる金属板としては、通常のアルミキルド鋼の熱間圧延板を冷間圧延し、焼鈍した後調質圧延した板厚=0.15〜0.3mmの冷延鋼板や、焼鈍後さらに冷間圧延を施して強度を増加させた冷延鋼板等が、用途に応じて用いられる。
これらの冷延鋼板を電解脱脂し酸洗した後、鋼板上に錫めっき層を形成させて錫めっき鋼板とする。
錫めっき鋼板としては、公知のフェロスタン浴やハロゲン浴、硫酸浴を用いて錫めっきを施し、錫の溶融温度以上に加熱した後急冷することにより(リフロー処理)錫めっき層の間にSn−Fe合金層を形成させた錫めっき鋼板や、錫めっき層を加熱溶融処理しない(ノーリフロー処理)錫めっき鋼板等が適用できる。
また、冷延鋼板上にニッケルめっきを施し、その後、その上層に、又はニッケルめっき後加熱してNiを鋼中に拡散させてNi−Fe合金層を形成させた上層に、錫めっきを施し、錫の溶融温度以上に加熱した後急冷する、などの方法を用いて、島状の錫層を形成させた島状錫めっき鋼板なども用いることができる。
Hereinafter, embodiments of the present invention will be described in detail.
[Metal plate]
As a metal plate used for the resin-coated metal plate of the present invention, a cold rolled steel sheet having a thickness of 0.15 to 0.3 mm is obtained by cold rolling, annealing, and tempering a normal aluminum killed steel hot rolled sheet. Alternatively, a cold-rolled steel sheet or the like that is further cold-rolled after annealing to increase the strength is used depending on the application.
After these cold-rolled steel sheets are electrolytically degreased and pickled, a tin-plated layer is formed on the steel sheets to obtain tin-plated steel sheets.
As the tin-plated steel sheet, tin plating is performed using a known ferrostan bath, halogen bath, or sulfuric acid bath, heated to a temperature higher than the melting temperature of tin, and then rapidly cooled (reflow treatment) between the Sn-Fe layers. A tin-plated steel sheet on which an alloy layer is formed, a tin-plated steel sheet in which the tin-plated layer is not heat-melted (no reflow treatment), or the like can be applied.
Further, nickel plating is performed on the cold-rolled steel sheet, and then tin plating is performed on the upper layer or on the upper layer in which Ni is diffused in the steel by heating after nickel plating to form a Ni-Fe alloy layer, An island-shaped tin-plated steel sheet in which an island-shaped tin layer is formed using a method such as heating after the melting temperature of tin or higher and then rapidly cooling can also be used.

錫めっき鋼板における錫めっき量は、耐食性および経済性の観点から、0.5〜13g/mの範囲にあることが好ましい。0.5g/m未満では、耐食性が不足するので好ましくない。
特に、リフロー処理を行うと、めっきした錫の全てがFe−Sn合金化し、耐食性だけでなく、加工性も著しく悪くなるので、少なくとも0.5g/m以上の錫めっき量を必要とする。
一方、13g/mを超えると、飲料缶や食缶として要求される耐食性効果が飽和すると共に、リフロー時に錫の溶融ムラやエッジダレなどが発生し、ぶりきの表面状態が悪くなる。
It is preferable that the tin plating amount in a tin plating steel plate exists in the range of 0.5-13 g / m < 2 > from a corrosion-resistant and economical viewpoint. Less than 0.5 g / m 2 is not preferable because the corrosion resistance is insufficient.
In particular, when the reflow treatment is performed, all of the plated tin becomes an Fe—Sn alloy and not only the corrosion resistance but also the workability is remarkably deteriorated. Therefore, a tin plating amount of at least 0.5 g / m 2 or more is required.
On the other hand, if it exceeds 13 g / m 2 , the corrosion resistance effect required for beverage cans and food cans is saturated, and tin melting unevenness and edge sag occur at the time of reflow, resulting in poor tint surface condition.

次に、上記のようにして形成した錫めっき層の上にシランカップリング剤を塗布し乾燥させる。
シランカップリング剤としては、ビニル系、アクリル系、エポキシ系、アミノ系、メルカプト系、クロロピル系などの各種のものがあるが、取り扱いや環境面から水溶性のカップリング剤が挙げられる。
また、保存安定性に優れることも重要であり、樹脂被覆金属板は食缶や飲料缶に適用されることから毒性がないことも必要である。
これらを総合的に判断すると、アミノ系シランカップリング剤を適用することが最も好ましい。
アミノ系のシランカップリング剤としては、アミノプロピルトリメトキシシラン、アミノプロピルメチルジエトキシシラン、アミノプロピルトリエトキシシラン、フェニルアミノプロピルトリメトキシシランなどを用いることができ、一例として、信越化学工業社製のKBM−903やKBM603、KBE903などが挙げられ、水溶性、保存安定性に優れ、FDA(米国食品医薬品局。Food and Drug Administraionの略)にも認可済みであるので好ましい。
シランカップリング剤の5〜200g/Lの水溶液を上記の錫めっき鋼板に塗布し、乾燥させる。
塗布、乾燥方法としては公知の方法が適用でき、例えば、浸漬法、ロールコート法、浸漬後に絞りロールを用いて余剰分を絞る方法、スプレー法、電解処理法などの塗布方法が挙げられ、電気オーブンを用いて100℃−5分の乾燥方法が挙げられる。
Next, a silane coupling agent is applied on the tin plating layer formed as described above and dried.
Examples of the silane coupling agent include vinyl, acrylic, epoxy, amino, mercapto, chloropyr, and the like, and water-soluble coupling agents are mentioned from the viewpoint of handling and environment.
It is also important to have excellent storage stability, and the resin-coated metal plate must be non-toxic because it is applied to food cans and beverage cans.
When these are judged comprehensively, it is most preferable to apply an amino silane coupling agent.
As an amino-based silane coupling agent, aminopropyltrimethoxysilane, aminopropylmethyldiethoxysilane, aminopropyltriethoxysilane, phenylaminopropyltrimethoxysilane, etc. can be used. As an example, Shin-Etsu Chemical Co., Ltd. KBM-903, KBM603, KBE903, and the like, which are preferable because they are excellent in water solubility and storage stability and have been approved by the FDA (Food and Drug Administration).
A 5-200 g / L aqueous solution of a silane coupling agent is applied to the above tin-plated steel sheet and dried.
As the coating and drying method, known methods can be applied, and examples thereof include a coating method such as a dipping method, a roll coating method, a method of squeezing the excess using a squeezing roll after dipping, a spray method, an electrolytic treatment method, etc. A drying method using an oven at 100 ° C. for 5 minutes can be mentioned.

本発明の樹脂被覆金属板は、上記のようにして得られた錫めっき鋼板の片面または両面に、樹脂層となる有機樹脂フィルムをシランカップリング剤塗布層に接するようにして積層することにより得られる。
有機樹脂フィルムとしては、加熱後も加工性に優れる熱可塑性樹脂が好ましく、
ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、エチレンテレフタレート・エチレンイソフタレート共重合体、ブチレンテレフタレート・ブチレンイソフタレート共重合体などのポリエステル樹脂、あるいはこれらのポリエステル樹脂の2種類以上をブレンドした樹脂、ポリエチレン、ポリプロピレン、エチレン・プロピレン共重合体、およびそれらをマレイン酸変性したもの、エチレン・酢酸ビニル共重合体、エチレン・アクリル酸共重合体などのポリオレフィン樹脂、6−ナイロン、6,6−ナイロン、6,10−ナイロンなどのポリアミド樹脂、ポリカーボネート、ポリメチルペンテン、さらに上記のポリエステル樹脂とアイオノマーをブレンドしたものからなる単層の樹脂フィルム、さらにこれらの樹脂の2種類以上からなる複層の樹脂フィルムなどが挙げられる。
樹脂フィルムの厚さとしては、フィルム積層作業のしやすさ、樹脂被覆金属板の成形加工した後の成形体(缶など)における樹脂フィルムの密着強度、耐食性、および経済性の観点から10〜100μmであることが好ましい。
The resin-coated metal sheet of the present invention is obtained by laminating an organic resin film to be a resin layer on one side or both sides of the tin-plated steel sheet obtained as described above so as to be in contact with the silane coupling agent coating layer. It is done.
As the organic resin film, a thermoplastic resin excellent in processability after heating is preferable,
Polyester resins such as polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, ethylene terephthalate / ethylene isophthalate copolymer, butylene terephthalate / butylene isophthalate copolymer, or a blend of two or more of these polyester resins, polyethylene , Polypropylene, ethylene / propylene copolymers, and those modified with maleic acid, polyolefin resins such as ethylene / vinyl acetate copolymer, ethylene / acrylic acid copolymer, 6-nylon, 6,6-nylon, 6 , 10-nylon and other polyamide resins, polycarbonate, polymethylpentene, and a single layer resin film comprising a blend of the above polyester resin and ionomer, A resin film of a double layer consisting of two or more these resins.
The thickness of the resin film is 10 to 100 μm from the viewpoint of ease of film laminating work, adhesion strength of the resin film in a molded body (can, etc.) after molding the resin-coated metal plate, corrosion resistance, and economy. It is preferable that

これらの樹脂フィルムは、樹脂ペレットを加熱溶融し、それを押出機のTダイから押し出して所望の厚さのフィルムに製膜したものを、錫めっき鋼板の錫めっき層上に塗布されているシランカップリング剤塗布層の上に樹脂層として形成する。
この樹脂層形成方法としては、例えば熱接着法が挙げられ、樹脂フィルムを、所定の温度範囲に加熱した錫めっき鋼板に樹脂フィルムを当接し、1対の加圧ロールで挟み付けて加圧して圧接する。
この方法によれば、製膜した樹脂フィルムを延伸加工を施さないで用いることにより、錫の溶融温度よりかなり低い温度で熱接着することができる。
These resin films are obtained by heating and melting resin pellets, and extruding them from a T-die of an extruder to form a film having a desired thickness, which is applied to a tin-plated layer of a tin-plated steel sheet. A resin layer is formed on the coupling agent coating layer.
As this resin layer forming method, for example, a thermal bonding method can be cited. The resin film is brought into contact with a tin-plated steel plate heated to a predetermined temperature range, and sandwiched between a pair of pressure rolls and pressed. Press contact.
According to this method, it is possible to perform heat bonding at a temperature considerably lower than the melting temperature of tin by using the formed resin film without performing a drawing process.

[被処理材処理]
本発明においては、上記の樹脂層形成後、さらに、錫めっき層とシランカップリング剤塗布層との界面領域、シランカップリング剤塗布層及びシランカップリング剤塗布層と樹脂層との界面領域を、「被覆樹脂の融点−10℃」〜「被覆樹脂の融点+100℃」に加熱する。被処理材処理としていわゆる後加熱処理を行う。
より好ましい後加熱温度としては、被覆樹脂フイルムの「融点+30℃」〜「融点+60℃」の範囲である。
被覆樹脂フイルムの加熱温度が「被覆樹脂の融点−10℃」未満では、前記界面領域の軟化が不十分で密着性の向上が図れず、また加熱によるシランカップリング剤の密着性効果が充分に発揮されない。
一方、「被覆樹脂の融点+100℃」より加熱温度が高いと、樹脂層におけるバルク層の温度が上がりすぎて、樹脂層に気泡が発生しやすくなるので好ましくない。
上記後加熱においては、樹脂層に気泡が発生しないようにしつつ、前記の界面領域が前記温度範囲になり、上記の界面領域のみにおいて樹脂層や錫めっき層が軟化や融解して密着性が向上するようにする。
[Material treatment]
In the present invention, after the resin layer is formed, an interface region between the tin plating layer and the silane coupling agent coating layer, a silane coupling agent coating layer, and an interface region between the silane coupling agent coating layer and the resin layer are further provided. , “Melting point of coating resin—10 ° C.” to “Melting point of coating resin + 100 ° C.” A so-called post-heating treatment is performed as a material treatment.
A more preferable post-heating temperature is in the range of “melting point + 30 ° C.” to “melting point + 60 ° C.” of the coated resin film.
When the heating temperature of the coating resin film is less than “the melting point of the coating resin −10 ° C.”, the interface region is not sufficiently softened to improve the adhesion, and the adhesion effect of the silane coupling agent by heating is sufficient. It is not demonstrated.
On the other hand, if the heating temperature is higher than “the melting point of the coating resin + 100 ° C.”, the temperature of the bulk layer in the resin layer is excessively increased, and bubbles are easily generated in the resin layer, which is not preferable.
In the post-heating, the interface region becomes the temperature range while preventing bubbles from being generated in the resin layer, and the resin layer and the tin plating layer are softened and melted only in the interface region, thereby improving the adhesion. To do.

具体的な手段としては、図1に示すような装置を用い、樹脂被覆後に通板する樹脂被覆金属板に対して、進行方向に対し直角に高周波コイルを巻回して、図2に示すように、所定の温度まで加熱し、高周波コイルをでた後空冷し、その後常温まで水冷する加熱サイクルで処理することが好ましい。 As a specific means, an apparatus as shown in FIG. 1 is used, and a high frequency coil is wound at right angles to the traveling direction on a resin-coated metal plate that is passed through after resin coating, as shown in FIG. Heating to a predetermined temperature, starting the high frequency coil, air cooling, then water cooling to room temperature is preferable.

[シランカップリング剤の塗布]
次に、後加熱処理時においてシランカップリング剤がフィルム密着性に及ぼす効果を、図3及び図4を用いて詳細に説明する。
錫めっき鋼板にシランカップリング剤処理を行った上に樹脂を被覆した状態では、
図3に示すように錫めっき鋼板と被覆樹脂フイルム界面のOH基が多く残存し密着力が低い。
[Application of silane coupling agent]
Next, the effect of the silane coupling agent on the film adhesion during the post-heating treatment will be described in detail with reference to FIGS.
In a state where the resin is coated on the tin-plated steel sheet after the silane coupling agent treatment,
As shown in FIG. 3, a large amount of OH groups remain at the interface between the tin-plated steel sheet and the coated resin film, and the adhesion is low.

シランカップリング剤の塗布膜量は、Si付着量で0.5〜30mg/mであることが好ましい。
Si付着量が、0.5mg/m未満である場合は、シランカップリング剤塗布層上に積層する被覆樹脂の加工密着が向上せず本発明の効果が得られない。
一方、Si付着量が30mg/mを超えても、被覆樹脂のさらなる向上がみられず、コスト面からもこれ以上の塗布は不必要である。
The coating amount of the silane coupling agent is preferably 0.5 to 30 mg / m 2 in terms of Si adhesion.
When the Si adhesion amount is less than 0.5 mg / m 2 , the processing adhesion of the coating resin laminated on the silane coupling agent coating layer is not improved, and the effect of the present invention cannot be obtained.
On the other hand, even if the Si adhesion amount exceeds 30 mg / m 2 , the coating resin is not further improved, and further application is unnecessary from the viewpoint of cost.

その後、樹脂被覆金属板を「被覆樹脂の融点−10℃」以上の温度に加熱すると、
図4に示すように、シランカップリング剤の脱水縮合反応が充分進行して、
Snとフイルム間の結合力が強固になり密着性が著しく向上する。
なお、樹脂層は、DSC(示差走査熱量測定)曲線などから、公称の融点より約10℃下の温度から軟化が始まり、樹脂融点より10℃低い温度からでも本処理の効果が認められたので、本発明においては、「被覆樹脂の融点−10℃」以上の加熱温度とした。
After that, when the resin-coated metal plate is heated to a temperature of “the melting point of the coating resin—10 ° C.” or higher,
As shown in FIG. 4, the dehydration condensation reaction of the silane coupling agent proceeds sufficiently,
The bonding force between Sn and film is strengthened, and the adhesion is remarkably improved.
The resin layer started to soften at a temperature about 10 ° C. below the nominal melting point from the DSC (Differential Scanning Calorimetry) curve and the effect of this treatment was observed even at a temperature 10 ° C. below the resin melting point. In the present invention, the heating temperature is equal to or higher than “the melting point of the coating resin—10 ° C.”.

また、樹脂被覆樹脂被覆金属板の加熱速度は、
樹脂フイルムの結晶化温度領域(120℃〜180℃)を出来るだけ短時間で昇温させることが樹脂フイルムの結晶化防止という観点から好ましく、この点において、
高周波波誘導加熱や通電加熱などの加熱速度の速い処理手段を採用することが好ましい。
しかしながら、被覆した後において、樹脂フイルムを結晶化温度領域で保持すると、
樹脂フイルムの結晶化が進行し、缶体加工時におけるデラミ発生などの支障を来たすので、
樹脂被覆鋼板の加熱速度は、5℃/sec以上とすることが望ましい。
5℃/sec未満の加熱速度では、
結晶化温度領域の通過時間が長くなり、樹脂フイルムの結晶化が進行すると考えられるので好ましくない。
The heating rate of the resin-coated resin-coated metal plate is
From the viewpoint of preventing crystallization of the resin film, it is preferable to raise the temperature of the crystallization temperature region (120 ° C. to 180 ° C.) of the resin film in as short a time as possible.
It is preferable to employ a processing means having a high heating rate such as high-frequency wave induction heating or electric heating.
However, after coating, holding the resin film in the crystallization temperature range,
Since the crystallization of the resin film progresses, it causes troubles such as delamination during can body processing.
The heating rate of the resin-coated steel sheet is desirably 5 ° C./sec or more.
At a heating rate of less than 5 ° C / sec,
Since the transit time in the crystallization temperature region becomes long and crystallization of the resin film is considered to proceed, it is not preferable.

このシランカップリング剤の塗布量の決定につき以下に述べる。
次に、上記処理方法によって被覆された樹脂層の密着強度について説明する。
図5は、シランカップリング剤塗布量(横軸)とSピール強度(縦軸)の関係を示すグラフである。
図5に示すように、シランカップリング剤を塗布しても、「後加熱なし」、「オーブン加熱(2℃/秒で260℃まで昇温・・・低速加熱)では、フイルム密着力はあまり向上しない。
一方、「高周波誘導加熱(100℃/秒で260℃まで昇温・・・高速加熱)では、
シランカップリング剤の塗布量が増すほどSピール強度は増加し、Si付着量=6mg/mでフィルム密着力(Sピール強度)は最大となり、シランカップリング剤塗布量:Si付着量=30mg/mでも、無しのときに比較すれば密着性向上に効果があるが、Si付着量=30mg/mを超えると、シラン層の凝集破壊が起こるために密着性が低下すると考えられる。
The determination of the coating amount of the silane coupling agent will be described below.
Next, the adhesion strength of the resin layer coated by the above processing method will be described.
FIG. 5 is a graph showing the relationship between the silane coupling agent application amount (horizontal axis) and the S peel strength (vertical axis).
As shown in FIG. 5, even when a silane coupling agent is applied, the film adhesion is not so much in “no post-heating” and “oven heating (heating up to 260 ° C. at 2 ° C./sec....slow heating)” Does not improve.
On the other hand, in “high frequency induction heating (heating up to 260 ° C. at 100 ° C./sec....high speed heating),
As the coating amount of the silane coupling agent increases, the S peel strength increases. When the Si adhesion amount = 6 mg / m 2 , the film adhesion (S peel strength) becomes maximum, and the silane coupling agent coating amount: Si adhesion amount = 30 mg. Even if / m 2 , it is effective to improve the adhesion as compared to when it is not present. However, if the amount of Si adhesion exceeds 30 mg / m 2 , it is considered that the adhesion is lowered because cohesive failure of the silane layer occurs.

次に、上記処理方法によって被覆された樹脂被覆金属板を浅絞りカップに成形し、その場合のカップデラミ巾の大きさを、シランカップリング剤塗布量との関係で調べた結果を、図6に示す。
シランカップリング剤を塗布しても、「後加熱なし」、「オーブン加熱(2℃/秒で260℃まで昇温・・・低速加熱)では、デラミは殆ど解消されない。
一方、「高周波誘導加熱(100℃/秒で260℃まで昇温・・・高速加熱)では、
シランカップリング剤の塗布量が増すほどカップデラミ巾は減少するが、
シランカップリング剤塗布量:Si付着量=0.5mg/mを超えると、デラミは殆ど無くなる。
よって、シランカップリング剤の塗布量は、Si付着量=0.5〜30mg/mが好ましく、より好ましくは0.5〜6mg/mである。
ここで、カップデラミ巾とは、下記のようにして測定した値をいう。すなわち、カップの先端を実態顕微鏡で拡大撮影し、写真にしたものについて端部を観察して、デラミ巾を測定する。
なお、Si付着量の測定は、蛍光X線法等が適用できる。
Next, the resin-coated metal plate coated by the above processing method is formed into a shallow drawn cup, and the result of examining the size of the cup delamination width in that case in relation to the amount of silane coupling agent applied is shown in FIG. Show.
Even if the silane coupling agent is applied, delamination is hardly eliminated by “no post-heating” and “oven heating (heating up to 260 ° C. at 2 ° C./second, low-speed heating)”.
On the other hand, in “high frequency induction heating (heating up to 260 ° C. at 100 ° C./sec....high speed heating),
As the amount of silane coupling agent increases, the cup delamination width decreases,
Application amount of silane coupling agent: Si adhesion amount = 0.5 mg / m 2 is exceeded, delamination almost disappears.
Therefore, the coating amount of the silane coupling agent is preferably Si adhesion amount = 0.5 to 30 mg / m 2 , more preferably 0.5 to 6 mg / m 2 .
Here, the cup delamination width means a value measured as follows. That is, the tip of the cup is enlarged and photographed with a microscope, and the end of the photograph is observed to measure the delamination width.
Note that a fluorescent X-ray method or the like can be applied to the measurement of the Si adhesion amount.

[被処理材冷却速度]
また、樹脂被覆金属板の後加熱後の冷却方法においても、前述した樹脂の結晶化温度領域(120℃〜180℃)を短時間で通過させることが好ましい。
すなわち、後加熱の後に、樹脂の結晶化温度領域を30℃/秒以上の割合で樹脂を冷却することが望ましい。
冷却速度が30℃/秒であると、結晶化温度領域の通過時間が長くなり、樹脂フイルムの結晶化が進行すると考えられるので好ましくない。
このため、冷却手段としてスプレー、ディップなどの水冷手段を採用することが好ましい。
[Processing material cooling rate]
Moreover, also in the cooling method after post-heating of the resin-coated metal plate, it is preferable to pass the above-described resin crystallization temperature region (120 ° C. to 180 ° C.) in a short time.
That is, it is desirable to cool the resin at a rate of 30 ° C./second or more in the crystallization temperature region of the resin after post-heating.
A cooling rate of 30 ° C./second is not preferable because it takes a long time to pass through the crystallization temperature region and crystallization of the resin film proceeds.
For this reason, it is preferable to employ water cooling means such as spray and dip as the cooling means.

以下、本発明を、実施例1〜12及び比較例1〜3を用いて具体的に説明する。
[錫めっき鋼板の作成]
表1の「板厚」の欄に示す低炭素冷延鋼板を用い、アルカリ水溶液中で電解脱脂−水洗、硫酸酸洗−水洗した後、フェロスタン浴を用い、
表1に示す条件で錫めっき層を形成しリフロー処理を施した。
次いで、錫めっき層の上にシランカップリング剤の水溶液を塗布乾燥して、表1の実施例、比較例に示すSi付着量のシランカップリング剤塗布層を形成させた。
Hereinafter, this invention is demonstrated concretely using Examples 1-12 and Comparative Examples 1-3.
[Creation of tin-plated steel sheet]
Using the low-carbon cold-rolled steel sheet shown in the “plate thickness” column of Table 1, after electrolytic degreasing-water washing, sulfuric acid washing-water washing in an alkaline aqueous solution, using a ferrostan bath,
A tin plating layer was formed under the conditions shown in Table 1 and reflowed.
Next, an aqueous solution of a silane coupling agent was applied and dried on the tin plating layer to form a silane coupling agent coating layer having an Si adhesion amount shown in the Examples and Comparative Examples of Table 1.

[樹脂被覆金属板の作成]
実施例1〜12及び比較例1〜3に示す錫めっき鋼板の片面(缶内面側になる)に、厚さ28μmの透明エチレンテレフタレート・エチレンイソフタレート共重合体(PETI)のクリア無延伸フィルムを、
他の片面(缶外面側になる)に、同一のエチレンテレフタレート・エチレンイソフタレート共重合体にチタン系白色顔料を20質量%含有させた白色のホワイト無延伸フィルムを、表に示す条件で積層した。
樹脂フィルムの積層終了後は直ちに冷却した。
さらに、この樹脂フィルムの積層終了後、表1に示す被処理材処理条件で後加熱処理して、樹脂被覆金属板を作成した。
ここで、表1の高周波誘導加熱設定条件中のIhfは出力トランス前の高周波電流を、IdcLは整流器によって交流電流を直流電流にした直流電流を、Vdcは電源電圧を直流にしたところの直流電圧をそれぞれ示し、Ihf=38.5〔A〕、IdcL=10.7〔A〕、Vdc=280〔V〕である。
これらのうち、Ihf、IdcLを増やすことで加熱温度を上昇させることができる。
また、表1の被処理材処理条件中の「MAX板温度」は加熱中の板温度の最大値を示し、常温〜MAX板温になるまでの加熱速度で、上昇温度をかかった時間で割ることで求められる。
表1の「板温加熱速度」は一秒あたりにどれくらい温度を上げるかの値をいい、MAX板温〜常温になるまでの冷却速度で、下降温度をかかった時間で割ることで求められる。
表1の「冷却温度」は一秒あたりにどれくらい温度を下げるかの値をいう。
[Production of resin-coated metal sheet]
A clear unstretched film of a transparent ethylene terephthalate / ethylene isophthalate copolymer (PETI) having a thickness of 28 μm is provided on one side of the tin-plated steel sheet shown in Examples 1 to 12 and Comparative Examples 1 to 3 (on the inner side of the can). ,
A white white unstretched film containing 20% by mass of a titanium-based white pigment in the same ethylene terephthalate / ethylene isophthalate copolymer was laminated on the other side (being the outer surface of the can) under the conditions shown in the table. .
The resin film was immediately cooled after the lamination.
Furthermore, after the lamination of the resin film was completed, post-heating treatment was performed under the processing conditions for the material to be processed shown in Table 1 to prepare a resin-coated metal plate.
Here, Ihf in the high frequency induction heating setting conditions in Table 1 is a high frequency current before the output transformer, IdcL is a direct current obtained by converting the alternating current into a direct current by a rectifier, and Vdc is a direct current voltage obtained by changing the power supply voltage to a direct current. And Ihf = 38.5 [A], IdcL = 10.7 [A], and Vdc = 280 [V].
Of these, the heating temperature can be increased by increasing Ihf and IdcL.
Further, “MAX plate temperature” in the processing condition of the material to be processed in Table 1 indicates the maximum value of the plate temperature during heating, and is divided by the time taken for the rising temperature at the heating rate from room temperature to the MAX plate temperature. Is required.
The “plate temperature heating rate” in Table 1 is a value indicating how much temperature is raised per second, and is a cooling rate from the MAX plate temperature to room temperature, and is obtained by dividing the descending temperature by the time taken.
“Cooling temperature” in Table 1 is a value indicating how much the temperature is lowered per second.

[評価]
錫めっき鋼板に対する被覆樹脂の加工密着性の評価は、剥離強度としてのSピール強度を採用して評価する。
従来は加工前の平板の状態でTピール強度を測定して評価していたが、加工密着性を必ずしも正確に反映していないと考えられるので、
本発明においては、絞り加工後さらにストレッチ加工としごき加工を併用して加工して缶体に成形するような厳しい成形加工を施した場合の、加工中および加工後の密着性(加工密着性)を正確に反映する評価法としてSピール強度を採用する。
Sピール強度とは、樹脂被覆金属板を絞り加工を施してカップに成形加工し、カップ側壁から試片を切り出し、その試片の樹脂膜の剥離強度で加工密着強度を評価するものである。
[Evaluation]
The evaluation of the work adhesion of the coating resin to the tin-plated steel sheet is evaluated by employing the S peel strength as the peel strength.
Conventionally, the T peel strength was measured and evaluated in the state of the flat plate before processing, but it is considered that the processing adhesion is not necessarily accurately reflected.
In the present invention, adhesiveness during processing and after processing (processing adhesion) when subjected to strict molding processing such as forming into a can body by further combining drawing processing and ironing processing after drawing processing The S peel strength is adopted as an evaluation method that accurately reflects.
The S peel strength is obtained by drawing a resin-coated metal plate into a cup, cutting the specimen from the side wall of the cup, and evaluating the work adhesion strength by the peel strength of the resin film of the specimen.

Sピール強度の具体的な測定方法を以下に示す。
樹脂被覆金属板から、直径154mmのブランクを打ち抜き、絞り比:1.64で第一段の絞り加工を施して、径:96mm、高さ:42mmの絞りカップを成形する。
このカップから、カップ高さ方向:30mm、カップ周方向:120mmの大きさで絞りカップの側壁部を切り出して平板状に曲げ戻した後、図7の平面図に示すようなサイズのT字形状の試片71をプレス金型を用いて打ち抜く。
次いで、図8に示すように、カッターナイフを用いて試片71の一方(右)の端部71aの密着強度測定面(図示では手前の面)と反対の側の被覆樹脂(図示では裏側の面)に、錫めっき鋼板面に達するように切れ目72を入れる。
さらに、図9および図10に示すように、スコア加工用ダイセットを用いて、密着強度測定面と反対の側(切れ目72を入れた面)にスコア73を入れた後、スコア部を折り曲げて錫めっき鋼板のみを切断する。
この時、密着強度測定面においては、被覆樹脂は切断されることなく、切断分離された錫めっき鋼板の両側に繋がったまま残っている。
次いで、図11に示すように、試片ホルダー74の試片挿入部74aに片端部71aを挿入して、試片71を試片ホルダー74に固定した後、試片ホルダー74の上部74bと試片71の他方の端部71bとを、引張試験機の両チャック部で挟んで引張り、被覆樹脂を錫めっき鋼板から強制剥離して引張強度を測定しSピール強度とし、加工密着強度を評価する。
A specific method for measuring the S peel strength is shown below.
A blank having a diameter of 154 mm is punched out of the resin-coated metal plate, and a first-stage drawing is performed at a drawing ratio of 1.64 to form a drawn cup having a diameter of 96 mm and a height of 42 mm.
From this cup, the side wall of the squeezed cup is cut out in a cup height direction: 30 mm and a cup circumferential direction: 120 mm, bent back into a flat plate shape, and then a T-shape having a size as shown in the plan view of FIG. The test piece 71 is punched out using a press die.
Next, as shown in FIG. 8, a coating resin (on the back side in the figure) on the side opposite to the adhesion strength measuring surface (the front side in the figure) of one (right) end 71 a of the test piece 71 using a cutter knife is used. A cut 72 is made in the surface) so as to reach the surface of the tin-plated steel plate.
Further, as shown in FIG. 9 and FIG. 10, using the score processing die set, after putting the score 73 on the side opposite to the adhesion strength measurement surface (the surface with the cut 72), the score portion is bent. Only the tin-plated steel sheet is cut.
At this time, on the adhesion strength measurement surface, the coating resin remains connected to both sides of the cut and separated tin-plated steel sheet without being cut.
Next, as shown in FIG. 11, after inserting one end 71 a into the specimen insertion portion 74 a of the specimen holder 74 and fixing the specimen 71 to the specimen holder 74, the upper part 74 b of the specimen holder 74 and the specimen 74 are arranged. The other end 71b of the piece 71 is pulled between both chuck portions of a tensile tester, the coating resin is forcibly peeled from the tin-plated steel sheet, the tensile strength is measured, and the S peel strength is evaluated to evaluate the work adhesion strength. .

上記のようにして測定されるSピール強度は、試片の巾15mmにおいて、0.6Kg/15mm以上であることが好ましい。Sピール強度が0.6Kg/15mm未満であると、絞り加工後さらにストレッチ加工としごき加工を併用した製缶加工などの厳しい成形加工において安定した良好な加工密着性が得られない。 The S peel strength measured as described above is preferably 0.6 kg / 15 mm or more when the width of the specimen is 15 mm. If the S peel strength is less than 0.6 Kg / 15 mm, stable and good work adhesion cannot be obtained in severe molding processes such as a can-making process using a stretch process and an ironing process after drawing.

本実施例では、表1に示す実施例1〜12及び比較例1〜3の樹脂被覆金属板を、直径:151mmのブランクに打ち抜いた後、透明樹脂フィルム被覆面がカップ内面側となるようにして(白色顔料を含有する樹脂フイルムを被覆した面が缶の外面となる)、絞り比:1.64の1段絞り加工を施して絞り1stカップ、B/M缶、Fi缶を作成し、透明樹脂フィルム被覆面が測定面となるようにして、Sピール強度測定用の試片を作成した。
次いで引張試験機を用いてSピール強度を測定した。
また、1stカップ、B/M缶のカップ先端デラミ(フイルム剥離)の有無を観察した。
さらに、Fi缶について、レトルト傷デラミ評価を、外面ホワイト側及び内面クリア側で目視で確認した。
なお、ここで、1stカップは板を絞り加工して製造したものをいい、B/M缶は1stカップをさらに絞り、しごき加工して缶径が小さく側壁高さの高い缶に成形したものをいい、Fi缶はB/M缶をさらにトリム、フランジ、ネック加工して製造したものをいう。
In this example, after punching the resin-coated metal plates of Examples 1 to 12 and Comparative Examples 1 to 3 shown in Table 1 into a blank having a diameter of 151 mm, the transparent resin film-coated surface is on the cup inner surface side. (The surface coated with a resin film containing a white pigment is the outer surface of the can), and a 1st drawing cup, B / M can, and Fi can are made by performing a one-stage drawing process with a drawing ratio of 1.64. Specimens for measuring S peel strength were prepared so that the transparent resin film-coated surface was the measurement surface.
Next, the S peel strength was measured using a tensile tester.
Also, the presence or absence of delamination (film peeling) of the 1st cup and B / M can was observed.
Furthermore, about the Fi can, the retort damage | dermatism evaluation was confirmed visually on the outer surface white side and the inner surface clear side.
In addition, 1st cup means what was manufactured by squeezing a board, and B / M can is a thing formed by further squeezing and squeezing the 1st cup to form a can with a small can diameter and a high side wall height. Good, Fi cans are manufactured by trimming, flange and neck processing of B / M cans.

その結果を表2に示す。
実施例1〜12のカップは、1stカップ、B/M缶、Fi缶のいずれにおいても、内面Sピール強度は、0.7Kg/15mm以上の値を示し、厳しい缶成形加工時の際の樹脂フィルムの加工密着性に優れていた。
さらに、1stカップ及びB/M缶のカップ先端デラミは観察されず、Fi缶のレトルト傷デラミも観察されなかった。
これに対し、比較例1〜3は、1stカップに成形加工を行った際に、カップ先端部の樹脂フイルムと錫めっき鋼板とが密着性不良となり、カップ先端部にデラミが発生した。
なお、比較例1、2は、B/M缶加工時に破胴が発生し、缶体加工用の素材として不適なものであった。
なお、表中の上矢印は、その上欄に記載の値と同じであることを示す。
The results are shown in Table 2.
The cups of Examples 1 to 12 show that the inner surface S peel strength is 0.7 kg / 15 mm or more in any of the 1st cup, the B / M can, and the Fi can, and the resin during severe can molding processing. Excellent film processing adhesion.
Furthermore, the cup tip delamination of the 1st cup and the B / M can was not observed, and the retort scratch delamination of the Fi can was not observed.
On the other hand, in Comparative Examples 1 to 3, when the 1st cup was formed, the resin film at the tip of the cup and the tin-plated steel sheet had poor adhesion, and delamination occurred at the tip of the cup.
Note that Comparative Examples 1 and 2 were unsuitable as materials for can body processing due to the occurrence of broken bodies during B / M can processing.
In addition, the up arrow in a table | surface shows that it is the same as the value as described in the upper column.

Figure 0005078155
Figure 0005078155

Figure 0005078155

以上説明したように、絞り加工、絞り加工後のさらなるストレッチ加工、絞り加工後のさらなるしごき加工、のいずれの加工を施しても、成形加工時において樹脂フィルムが剥離することなく、安定した、また、より過酷な絞り加工後にさらにストレッチ加工としごき加工を併用する加工を施す缶体成形加工時においても、樹脂フィルムが剥離することがなく、安定して優れた加工密着性を示す樹脂被覆金属板を提供することができる。
Figure 0005078155

As described above, even if any of the drawing process, the further stretching process after the drawing process, and the further ironing process after the drawing process, the resin film does not peel off during the molding process, Resin-coated metal plate that shows stable process adhesion without causing the resin film to peel off even during the can body forming process, which is subjected to processing that uses both stretching and ironing after more severe drawing Can be provided.

樹脂フィルムをシランカップリング塗布層を設けた錫めっき鋼板に積層して、その後後加熱処理を施してなる本発明の樹脂被覆金属板は、後加熱処理を施さない樹脂フィルムを、シランカップリング塗布層を設けた錫めっき鋼板に積層してなる樹脂被覆金属板に比べて、樹脂フィルムの錫めっき鋼板に対する加工密着性に優れ、産業上の利用可能性が極めて高い。 The resin-coated metal plate of the present invention obtained by laminating a resin film on a tin-plated steel sheet provided with a silane coupling coating layer and then subjecting it to a post-heating treatment is a resin film that is not subjected to a post-heating treatment. Compared to a resin-coated metal plate laminated on a tin-plated steel sheet provided with a layer, the resin film has excellent work adhesion to a tin-plated steel sheet, and the industrial applicability is extremely high.

樹脂被覆後に通板する樹脂被覆金属板に対して、進行方向に対し直角に高周波コイルを巻回して後加熱する手段を示す概略斜視図である。It is a schematic perspective view which shows the means to wind after winding a high frequency coil with respect to the resin coated metal plate which passes through after resin coating, at right angles to the traveling direction. 後加熱の加熱サイクルを示すグラフである。It is a graph which shows the heating cycle of post-heating. 錫めっき鋼板にシランカップリング剤処理を行った上に樹脂を被覆した状態を示す説明図である。It is explanatory drawing which shows the state which coat | covered resin, after performing a silane coupling agent process to a tin plating steel plate. 図3の状態の後、樹脂被覆金属板を「被覆樹脂の融点−10℃」以上の加熱処理を行い、シランカップリング剤の脱水縮合反応が充分進行して、ぶりきとフイルム間の結合力が強固になり密着性が著しく向上した状態を示す説明図である。After the state of FIG. 3, the resin-coated metal plate is subjected to a heat treatment of “the melting point of the coated resin—10 ° C.” or more, and the dehydration condensation reaction of the silane coupling agent proceeds sufficiently so that the binding force between the tinplate and the film It is explanatory drawing which shows the state which became strong and adhesiveness improved remarkably. シランカップリング剤塗布量(横軸)とSピール強度(縦軸)の関係を示すグラフである。It is a graph which shows the relationship between a silane coupling agent application amount (horizontal axis) and S peel strength (vertical axis). 後加熱後の樹脂被覆金属板を浅絞りカップに成形し、その場合のカップデラミ巾の大きさを、シランカップリング剤塗布量との関係で調べた結果を示すグラフである。It is a graph which shows the result of shape | molding the resin-coated metal plate after post-heating to a shallow drawing cup, and investigating the magnitude | size of the cup delamination width | variety in that case in relation to the application amount of a silane coupling agent. Sピール強度測定用の試片の形状を示す平面図である。It is a top view which shows the shape of the test piece for S peel strength measurement. Sピール強度測定用の試片の被覆樹脂面に切れ目を入れた状態を示す平面図である。It is a top view which shows the state which cut | disconnected the coating resin surface of the test piece for S peel strength measurement. Sピール強度測定用の試片にスコアを入れた状態を示す平面図である。It is a top view which shows the state which put the score in the test piece for S peel strength measurement. スコアを入れた部分の形状を示すSピール強度測定用の試片の部分断面図である。It is a fragmentary sectional view of the specimen for S peel strength measurement which shows the shape of the part which put the score. Sピール強度測定用の試片を試片ホルダーに入れて強度測定をする状態を示す概略斜視図である。It is a schematic perspective view which shows the state which puts the test piece for S peel strength measurement in a test piece holder, and measures intensity | strength.

符号の説明Explanation of symbols

71 : 試片
71a: 試片の一方の端部
71b: 試片の他方の端部
72: 切れ目
73: スコア
74: 試片ホルダー
74a: 試片挿入部
74b: 試片ホルダー上部
71: Specimen 71a: One end 71b of the specimen: The other end 72 of the specimen: Cut 73: Score 74: Specimen holder 74a: Specimen insertion part 74b: Upper part of the specimen holder

Claims (6)

金属板の少なくとも片面に錫めっき層を形成させる工程と、
前記錫めっき層上にシランカップリング剤を塗布する工程と、
前記シランカップリング剤塗布層上に樹脂層を形成する工程と、
少なくとも、前記錫めっき層と前記シランカップリング剤塗布層との界面領域、
シランカップリング剤塗布層及び前記シランカップリング剤塗布層と前記樹脂層との界面領域を、
前記樹脂の融点−10℃〜前記樹脂の融点+100℃に加熱する工程と、
前記金属板の加熱の後に、前記樹脂の結晶化温度領域を30℃/秒以上の割合で前記樹脂を冷却することを特徴とする樹脂被覆金属板の製造方法。
Forming a tin plating layer on at least one side of the metal plate;
Applying a silane coupling agent on the tin plating layer;
Forming a resin layer on the silane coupling agent coating layer;
At least the interface region between the tin plating layer and the silane coupling agent coating layer,
Silane coupling agent coating layer and the interface region between the silane coupling agent coating layer and the resin layer,
Heating to a melting point of the resin of −10 ° C. to a melting point of the resin of + 100 ° C .;
A method for producing a resin-coated metal plate , wherein the resin is cooled at a rate of 30 ° C./second or more in a crystallization temperature region of the resin after the metal plate is heated .
前記金属板の加熱温度は、前記樹脂の融点+30℃〜前記樹脂の融点+60℃であることを特徴とする請求項1に記載の樹脂被覆金属板の製造方法。 The method for producing a resin-coated metal plate according to claim 1 , wherein the heating temperature of the metal plate is the melting point of the resin + 30 ° C to the melting point of the resin + 60 ° C. 前記金属板の加熱は、高周波加熱により実施することを特徴とする請求項1又は2に記載の樹脂被覆金属板の製造方法。 The method for producing a resin-coated metal plate according to claim 1 or 2 , wherein the heating of the metal plate is performed by high-frequency heating. 前記金属板の加熱の際の前記樹脂の温度について、
前記樹脂の結晶化温度領域を5℃/秒以上の割合で前記加熱を行うことを特徴とする請求項1〜3いずれかに記載の樹脂被覆金属板の製造方法。
About the temperature of the resin at the time of heating the metal plate,
The method for producing a resin-coated metal sheet according to any one of claims 1 to 3 , wherein the heating is performed at a rate of 5 ° C / second or more in a crystallization temperature region of the resin.
前記錫めっき層は、錫めっき量0.5〜13g/mであることを特徴とする請求項1〜4いずれかに記載の樹脂被覆金属板の製造方法。 The method for producing a resin-coated metal plate according to claim 1 , wherein the tin plating layer has a tin plating amount of 0.5 to 13 g / m 2 . 前記シランカップリング剤は、水溶性のアミノ系シランカップリング剤であり、
Si付着量が0.5〜30mg/mであることを特徴とする請求項1〜5のいずれかに記載の樹脂被覆金属板の製造方法。
The silane coupling agent is a water-soluble amino silane coupling agent,
The method for producing a resin-coated metal sheet according to any one of claims 1 to 5, wherein the Si deposition amount is 0.5 to 30 mg / m 2.
JP2008172315A 2008-07-01 2008-07-01 Method for producing resin-coated metal sheet Expired - Fee Related JP5078155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008172315A JP5078155B2 (en) 2008-07-01 2008-07-01 Method for producing resin-coated metal sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008172315A JP5078155B2 (en) 2008-07-01 2008-07-01 Method for producing resin-coated metal sheet

Publications (2)

Publication Number Publication Date
JP2010012624A JP2010012624A (en) 2010-01-21
JP5078155B2 true JP5078155B2 (en) 2012-11-21

Family

ID=41699218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008172315A Expired - Fee Related JP5078155B2 (en) 2008-07-01 2008-07-01 Method for producing resin-coated metal sheet

Country Status (1)

Country Link
JP (1) JP5078155B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3826450B2 (en) * 1996-08-28 2006-09-27 東洋紡績株式会社 Method for producing film-coated metal plate for can manufacturing process and method for producing printing can
JP4144074B2 (en) * 1998-08-03 2008-09-03 東洋紡績株式会社 Resin-coated metal plate and method for producing the same
JP2000153843A (en) * 1998-09-17 2000-06-06 Hokkai Can Co Ltd Two-piece can body and its manufacture
JP2003127273A (en) * 2001-10-19 2003-05-08 Kobe Steel Ltd Laminated metal plate, its production method, and molding using the same
JP3655592B2 (en) * 2002-02-07 2005-06-02 東洋鋼鈑株式会社 Manufacturing method of Sn-plated steel sheet, Sn-plated steel sheet, resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a can using the same
JP4019751B2 (en) * 2002-03-08 2007-12-12 東洋製罐株式会社 Press-formed can made of pre-coated steel plate
JP2005144734A (en) * 2003-11-12 2005-06-09 Daiwa Can Co Ltd Polyester film coated metal sheet, its manufacturing method and polyester film coated metal can
JP2005298688A (en) * 2004-04-13 2005-10-27 Toyobo Co Ltd Polyester-based film for coating metal sheet and its manufacturing method, polyester-based film-coated metal sheet and its manufacturing method, polyester-based film-coated metal can

Also Published As

Publication number Publication date
JP2010012624A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
CA2901209C (en) Laminated metal sheet for two-piece can and two-piece laminated can body
WO2011045833A1 (en) Method for producing resin-coated metal plate
JP2004148324A (en) Method for manufacturing shear spun can made of resin coated metal
JP4278271B2 (en) Laminated seamless can
JP4285924B2 (en) A can body comprising a resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a method for producing the same
JP5078155B2 (en) Method for producing resin-coated metal sheet
US11697539B2 (en) Heat sealed lid and can
JP6380688B2 (en) Film laminated metal plate having excellent retort adhesion and method for producing the same
JP3655592B2 (en) Manufacturing method of Sn-plated steel sheet, Sn-plated steel sheet, resin-coated Sn-plated steel sheet obtained by coating a Sn-coated steel sheet with a resin film, and a can using the same
JP5419638B2 (en) Manufacturing method of surface-treated steel sheet
JP5398024B2 (en) Resin coated steel sheet
JP4103974B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
JP3986170B2 (en) Polyester resin-coated aluminum seamless can and method for producing the same
US11760064B2 (en) Laminated steel having extremely low interface bubble rate and method for manufacturing same
TW201630725A (en) Film laminated metal sheet, and twist cap and can lid using thereof
WO2000058087A1 (en) Metal plate coated with polyester resin, and can using the same
JPH0631362A (en) Manufacture of multi-drawing can made of laminated steel sheet with high adhesion
JP3949283B2 (en) Polyester resin-coated aluminum plate for seamless cans and method for producing seamless cans
JP2001088241A (en) Film laminated metal plate for container
JP4278272B2 (en) Film-coated two-piece can
JP2004345214A (en) RESIN-COATED Sn PLATED STEEL SHEET, CAN USING THIS STEEL SHEET AND METHOD FOR MANUFACTURING RESIN-COATED Sn PLATED STEEL SHEET
JP2803837B2 (en) Manufacturing method of polyester resin film laminated steel sheet
JP2003277886A (en) Resin-coated steel sheet for shear spun can, method of producing resin-coated steel sheet for shear spun can and shear spun can produced by using the same
JPH11314122A (en) Manufacture of resin coated seamless aluminum can
JP2019177892A (en) Can body for heat seal container and heat seal container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120822

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120827

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5078155

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees