JP2004345054A - Method for grinding disc part - Google Patents

Method for grinding disc part Download PDF

Info

Publication number
JP2004345054A
JP2004345054A JP2003146851A JP2003146851A JP2004345054A JP 2004345054 A JP2004345054 A JP 2004345054A JP 2003146851 A JP2003146851 A JP 2003146851A JP 2003146851 A JP2003146851 A JP 2003146851A JP 2004345054 A JP2004345054 A JP 2004345054A
Authority
JP
Japan
Prior art keywords
grindstone
grinding
speed
width
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003146851A
Other languages
Japanese (ja)
Other versions
JP3842245B2 (en
Inventor
Akira Seki
亮 關
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003146851A priority Critical patent/JP3842245B2/en
Publication of JP2004345054A publication Critical patent/JP2004345054A/en
Application granted granted Critical
Publication of JP3842245B2 publication Critical patent/JP3842245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for grinding a disc part that is applicable to workpieces of different widths by a rotary grinding wheel of a small width for reducing manufacturing cost of a grinding wheel. <P>SOLUTION: The grinding wheel 55 is moved from an inner part 21 positioned at a center of the disc part 13 to an outer part 22 positioned diametrically outward by feeding f to move (for traverse cut) as shown with an arrow 3. Rotation speed (rotation number n) of the disc part 13 is controlled in such a way that circumferential speed V of the disc part 13 as measured at a width center 56 of the grinding wheel 55 is constant. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は鍔状の円板部の円板面をトラバースカットで研削する円板部の研削方法に関する。
【0002】
【従来の技術】
従来の円板部の研削方法は、円板部の幅とほぼ同じ幅の砥石を研削盤に取り付け、この砥石でワークとともに回転する円板部をプランジカット法にて研削した(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平9−155703号公報 (第3頁、図1−2)
【0004】
特許文献1を、図面を参照の上、詳しく説明する。
図8(a),(b)は従来の円板部の研削方法の説明図である(特許文献1の図1の再掲図を(a)とし、図2の再掲図を(b)とした。)。
従来の研削装置1を用いた円板部の研削方法では、まず、回転砥石10を用意する。回転砥石10は、幅をワーク6のテーパ面7aの幅とほぼ同一とし、研削面11をα°だけ傾斜させた砥石である。その次に、回転砥石10を砥石用駆動モータ22に取り付け、続けて、回転砥石10の研削面11でワーク6のフランジ部(円板部)7のテーパ面7aをプランジカット法にて研削する。その結果、心押台5に回転砥石10が干渉することなく、フランジ部(円板部)7のテーパ面7aを研削することができる。
【0005】
【発明が解決しようとする課題】
しかし、上記図8に示す特許文献1の研削装置を用いた円板部の研削方法では、回転砥石10の幅をフランジ部(円板部)7のテーパ面7aに対応させる必要があり、ワークの幅ごとに砥石幅を設定すると、砥石の製造コストは嵩む。特に、CBN砥石の場合には、砥石の幅に製造コストが比例する。
また、回転砥石10の研削面11に所定の傾斜角を形成した砥石を採用しなければならず、砥石の製造コストは嵩む。
さらに、回転砥石10で研削する際に、研削油を供給するが、回転砥石10の幅中央内に達し難く、ワークの温度は上昇して、焼けの原因となりやすい。
【0006】
そこで、本発明の目的は、砥石の製造コストの削減を図れる円板部の研削方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために請求項1は、円板部を有するワークを加工対象とし、円板部を回転させつつ、円板部の円板面を回転砥石で研削する研削方法において、回転砥石の幅を円板面の幅より小さく設定し、回転砥石を円板部の中心から径外方へ又は径外方から中心へ移動させるとともに、回転砥石の幅中心で計測する相対研削速度が一定になるように円板部の回転速度と回転砥石の回転速度との両方又は一方を制御することを特徴とする。
【0008】
円板部の回転速度を制御する研削方法では、相対研削速度は円板部の周速度である。回転中の円板部の回転速度を連続して変えることで、回転砥石の幅中心で計測する円板部の相対研削速度は円板部の中心から径外方において一定になる。その結果、回転砥石を円板部の中心から径外方へ移動させるトラバースカットの際に、回転砥石の幅中心は常に同じ条件で円板部の円板面を研削するので、円板面の幅より回転砥石の幅を小さく設定しても、円板部の円板面を所望の公差内に仕上げることができる。従って、幅の小さい回転砥石で異なる幅のワークに対応することができ、砥石の製造コストの削減を図れる。
【0009】
回転砥石の回転速度を制御する研削方法では、相対研削速度は回転砥石の幅中心で計測する円板部の周速度と回転砥石の周速度との間の相対速度である。円板部の回転速度を変えずに、回転中の回転砥石の回転速度を連続して変えるので、相対研削速度は円板部の中心から径外方において一定なる。その結果、回転砥石を円板部の中心から径外方へ移動させるトラバースカットの際に、回転砥石の幅中心は常に同じ条件で円板部の円板面を研削するので、円板面の幅より回転砥石の幅を小さく設定しても、円板部の円板面を所望の公差内に仕上げることができる。
【0010】
円板部の回転速度と回転砥石の回転速度との両方を制御する。これらの回転速度をともに連続して変えるので、相対研削速度は円板部の中心から径外方において一定になる。その結果、回転砥石を円板部の中心から径外方へ移動させるトラバースカットの際に、回転砥石の幅中心は常に同じ条件で円板部の円板面を研削するので、円板面の幅より回転砥石の幅を小さく設定しても、円板部の円板面を所望の公差内に仕上げることができる。
【0011】
請求項2は、円板部を有するワークを加工対象とし、円板部を回転させつつ、円板部の円板面を回転砥石で研削する研削方法において、回転砥石の幅を円板面の幅より小さく設定し、回転砥石を円板部の中心から径外方へ又は径外方から中心へ移動させるとともに、回転砥石の仕上げ部で計測する相対研削速度が一定になるように円板部の回転速度と回転砥石の回転速度との両方又は一方を制御することを特徴とする。
【0012】
円板部の円板面をトラバースカットする際に、仕上げ部は常に同じ条件の部位を研削するので、円板部の円板面を所望の公差内に仕上げることができる。従って、幅の小さい回転砥石で異なる幅のワークに対応することができる。
【0013】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る円板部の研削方法で研削するワークの正面図である。
ワーク11は、無段変速機(CVT)の部品で、軸12と、この軸12の中央に形成した円板部13と、を有する。
軸12は、中央に形成した第1外面15および第2外面16を有する。
【0014】
円板部13は、軸12に連続して内方部21を直径Diで形成し、この内方部21から連続して外方部22を直径Doで形成するとともに、一方に円板面であるところのシーブ面23をシーブ面角度θで形成し、他方に背面24を形成したものである。Wfはシーブ面の幅を示す。
シーブ面23は金属製のベルトを挟持する部位である。
【0015】
図2は本発明に係る円板部の研削方法に用いる研削盤の平面図である。図右の軸は、座標軸であり、直線又は回転で動く方向を示す。Xは水平な直線運動を示す軸、YはXに直交(図の表裏方向)する軸、ZはX,Yに直交する軸、BはY軸の周りの旋回運動を示す軸、CはZ軸の周りの旋回運動を示す軸である。
【0016】
研削盤31は、NC(数値制御)研削盤で、ベース32と、このベース32上に配置した主軸台33と、主軸台33に対向する心押台34と、心押台34と並行に配置したZ軸ベース35と、このZ軸ベース35上に取り付けたB軸旋回装置36と、このB軸旋回装置36上に取り付けたX軸送り装置41と、このX軸送り装置41上に取り付けたZ軸送り装置42と、Z軸送り装置42上に取り付けた砥石台43と、ワーク定寸検出装置44と、研削治具45と、これらの主軸台33、Z軸ベース35、B軸旋回装置36、X軸送り装置41、Z軸送り装置42、砥石台43、ワーク定寸検出装置44、研削治具45を予め設定したNCプログラムの情報に基づいて制御する制御盤47と、操作盤48とを備える。
【0017】
主軸台33は、ワーク11を回転させる主軸部51と、電動モータ52とを備え、予め設定したNCプログラム若しくは操作盤48の情報に基づいて電動モータ52の回転数を連続的に増減し、研削中のワーク11の周速度を変えることが可能なものである。
【0018】
砥石台43は、回転軸53と、電動モータ54とを備え、予め設定したNCプログラム若しくは操作盤48の情報に基づいて電動モータ54の回転数を連続的に増減し、研削中の砥石55の周速度を変えることができる。
【0019】
砥石55は、砥粒をCBNとし、幅をWs(20mm)、外径をDs(350mm)としたものである。56は幅中心、57は仕上げ部を示す。
砥石55の幅Wsは円板部13のシーブ面(円板面)23の幅Wfより小さく設定した。
ワーク定寸検出装置44は、シーブ面23の寸法を検出するシーブ面検出装置58と、軸12の第1外面15の寸法を検出する軸径検出装置59と、を有する。
【0020】
このような構成の研削盤31を用いて行う円板部の研削方法を次に説明する。
まず、研削盤31にワーク11をセットし、その次に、制御盤47および操作盤48でNCプログラムを入力する。
【0021】
研削条件は、主軸部51の回転数をN(rpm)、円板部13の回転数をn(rpm)、円板部13の周速度をV(m/min)、相対研削速度をVr(m/min)、砥石55の回転数をNs(rpm),砥石55の周速度をv(m/min)、切込み深さ(矢印▲1▼の方向)をt(mm)、砥石55の送り(矢印▲2▼の方向)をf(mm/sec)とした。当然、その他の、B軸旋回装置36の旋回角度θやZ軸ベース35などの装置の座標も設定する。
円板部13の回転速度とは、円板部13の回転数(rpm)である。
砥石55の回転速度とは、砥石55の回転数(rpm)である。
【0022】
さらに、研削条件は、三つあり、第1〜第3の速度条件の内いずれかを設定する。
第1の速度条件は、砥石55の周速度vを一定にし、ワーク11の回転数nを可変制御する。
第2の速度条件は、ワーク11の回転数nを一定にし、砥石55の周速度vを可変制御する。
第3の速度条件は、ワーク11の回転数nと砥石55の周速度vの両方を可変制御する。
これらの第1〜第3の速度条件を設定した円板部の研削方法を次図で詳しく説明する。
【0023】
図3は本発明に係る円板部の研削方法の説明図である。
第1の速度条件では、相対研削速度Vrは、円板部13の周速度V(Vr=V)であり、関係する砥石55の周速度vを無視する。
まず、円板部13の中心側に位置する内方部21に砥石55を送り、続けて、砥石55を内方部21から径外方に位置する外方部22へ、送りfで矢印▲3▼の如く移動(トラバースカット)させる。その際、砥石55の幅中心56で計測する円板部13の周速度(研削速度)Vが一定になるようにワーク11の回転数nを変える。
【0024】
例えば、砥石55の周速度vが7200m/min、ワーク11の回転数nが1000rpmで、内方部21を研削するときに、砥石55の幅中心56の位置が円板部13の直径Ds(0.082m)の位置Sにあると、位置Sの円板部13の周速度(研削速度)Vsは257m/minである。この257m/minを一定に保つ。最後に、砥石55の幅中心56の位置が外方部22の直径De(0.156m)の位置Eに達したときには、位置Eの周速度(研削速度)Veは当然257m/minでなければならず、そうするために、ワーク11の回転数nを526rpmまで下げる。つまり、ワーク11の回転数nを526〜1000rpmの範囲で滑らかに変える。
【0025】
上述したワーク11の回転数の減速と相対研削速度の一定の関係を簡単にグラフで示す。
図4は、円板部の研削位置と相対研削速度の関係、研削位置と回転砥石の周速度並びにワークの回転数の関係を示したグラフであり、横軸を円板部の研削位置とし、図左の縦軸を相対研削速度Vr、回転砥石の周速度vとし、図右の縦軸をワークの回転数nとしたものである。
砥石が円板部の中心側(直径Di)の位置から外方の直径Doの位置へ移動するのに伴い、ワークの回転数nを次第に下げることで、円板部の相対研削速度Vr、つまり周速度Vを一定にする。
【0026】
このように、円板部の研削方法(第1の速度条件)では、円板部13の周速度(研削速度)Vが一定になるように円板部13の回転速度(回転数n)を制御するので、常に同じ条件でシーブ面(円板面)23を研削することができ、シーブ面(円板面)23の幅Wfより砥石55の幅Wsを小さく設定して、トラバースカット法で研削しても、円板部13のシーブ面23を所望の公差内に仕上げることができるとともに、幅の小さい砥石で異なる幅のワークに対応することができる。従って、砥石55の幅Wsを小さくして、砥石の製造コストの削減を図ることができる。
【0027】
図5は図3の5部詳細図であり、研削後のシーブ面23の表面粗さおよびうねりを示す。計測に用いた表面粗さ計は既製のものであり、詳しい計測条件については説明を省略するが、縦軸の1目盛りを1μに設定した。研削条件は、図3で既に説明した条件とほぼ同じで、砥石の送りfを1.6mm/sec、切込み深さtを0.1mmに設定した。
【0028】
シーブ面23の表面粗さは確保されているとともに、円板部13のシーブ面(円板面)23のうねりは小さい。従って、本発明の円板部の研削方法では、砥石の幅を小さくして、砥石の製造コストの削減を図ることができる。
【0029】
次に第2の速度条件について図3で説明する。
第2の速度条件では、相対研削速度Vrは、砥石55の周速度vと円板部13の周速度Vとの間の相対速度である。詳しくは、砥石55の幅中心56で計測する円板部13の周速度Vと砥石55の周速度vとの間の相対研削速度Vrが一定になるように砥石55の周速度vを変える。
なお、研削加工では、砥石55の回転方向を、例えば、右回転としたら、円板部13の回転方向も右回転となる。つまり、砥石55と円板部13は同じ方向に移動する。
【0030】
例えば、ワーク11の回転数nが1000rpmで、内方部21を研削するときに、砥石55の幅中心56の位置が円板部13の直径Ds(0.082m)の位置Sにあると、位置Sの相対研削速度Vrは、円板部13の周速度Vs(257m/min)と砥石55の周速度v(7200m/min)の差、Vr=6943m/minである。この6943m/minを一定に保つ。最後に、砥石55の幅中心56の位置が外方部22の直径De(0.156m)の位置Eに達したときには、位置Eの相対研削速度Vrは6943m/minでなければならず、そうするために、砥石55の周速度vを6453m/minまで下げる。6453m/minは、位置Eで増速する円板部13の周速度Ve(490m/min)を減算した値である。
つまり、砥石55の周速度vを6453〜7200m/minの範囲で滑らかに変える。
【0031】
このように、円板部の研削方法(第2の速度条件)では、常に同じ条件でシーブ面(円板面)23を研削することができ、第1の速度条件と同様の効果を発揮することができる。つまり、砥石の製造コストの削減を図ることができる。
【0032】
最後に第3の速度条件を選択した場合について説明する。
第3の速度条件は、既に述べたように、ワーク11の回転数nと砥石55の周速度vの両方を変える。詳しくは、砥石55の幅中心56で計測する円板部13の周速度Vと砥石55の周速度vとの間の相対研削速度Vrが一定になるように両方を変える。
円板部の研削方法(第3の速度条件)では、第2の速度条件と同様の効果を発揮することができる。つまり、砥石の製造コストの削減を図ることができる。
【0033】
次に、本発明に係る円板部の研削方法の別の実施の形態を示す。
図6は別の実施の形態図であり、請求項2の形態を示す。上記図3に示す実施の形態と同様の構成については、同一符号を付し説明を省略する。
【0034】
別の実施の形態は、砥石55の仕上げ部57で相対研削速度Vrを計測することを特徴とする。
砥石55の仕上げ部57では、トラバースカット(矢印▲4▼の方向)の際に、円板部13のシーブ面23に切込む切込み深さtがなく、火花がほとんど出ない状態で押し付けるように研削する部位である。
【0035】
まず、第1の速度条件について説明する。
砥石55を円板部13の内方部21から外方部22へ、送りfで矢印▲4▼の如く移動(トラバースカット)させるとともに、ワーク11の回転数nを変える。具体的には、砥石55の仕上げ部57で計測する相対研削速度Vrであるところの円板部13の周速度(研削速度)Vが一定になるようにワーク11の回転数nを変える。
【0036】
図7は図6の7部詳細図であり、研削後のシーブ面23の表面粗さおよびうねりを示す。縦軸の1目盛りは1μに設定した。研削条件は、図3で説明した条件と同様である。
シーブ面23のうねりをより小さくすることができる。
【0037】
このように、別の実施の形態の円板部の研削方法(第1の速度条件)では、うねりをより小さくすることができる。従って、砥石55の幅Wsを小さくして、砥石の製造コストの削減を図ることができる。
【0038】
次に第2の速度条件について説明する。
砥石55の仕上げ部57で計測する円板部13の周速度Vと砥石55の周速度vとの間の相対研削速度Vrが一定になるように砥石55の周速度vを制御する。
【0039】
別の実施の形態の円板部の研削方法(第2の速度条件)では、別の実施の形態の第1の速度条件と同様の効果を発揮することができる。つまり、砥石55の幅Wsを小さくして、砥石の製造コストの削減を図ることができる。
【0040】
最後に第3の速度条件について説明する。
第3の速度条件では、砥石55の仕上げ部57で計測する円板部13の周速度Vと砥石55の周速度vとの間の相対研削速度Vrが一定になるようにワーク11の回転数nと砥石55の周速度vの両方を制御する。
【0041】
別の実施の形態の円板部の研削方法(第3の速度条件)では、別の実施の形態の第1の速度条件と同様の効果を発揮することができる。つまり、砥石55の幅Wsを小さくして、砥石の製造コストの削減を図ることができる。
【0042】
尚、本発明の実施の形態に示した図3および図6の砥石55を円板部13の中心から径外方へ移動(トラバースカット)させたが、逆に、径外方から中心へ移動させてもよく、同様の効果を発揮することができる。
砥石55の幅中心56若しくは仕上げ部57に対応する位置で速度を計測したが、残りの部位、例えば、先端の縁(仕上げ部57の逆)で速度を計測することも可能である。
【0043】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1では、回転砥石の幅を円板面の幅より小さく設定し、回転砥石を円板部の中心から径外方へ又は径外方から中心へ移動させるとともに、回転砥石の幅中心で計測する相対研削速度が一定になるように円板部の回転速度と回転砥石の回転速度との両方又は一方を制御する。
ワークの回転速度を制御する研削方法では、回転砥石の回転速度を変えずに、回転中のワークの回転速度を連続して変えるので、円板部の相対研削速度は円板部の中心から径外方において一定になる。その結果、円板部の円板面をトラバースカットする際に、回転砥石の幅中心は常に同じ条件の部位を研削するので、回転砥石の幅を小さく設定しても、円板部の円板面を所望の公差内に仕上げることができる。従って、幅の小さい回転砥石で異なる幅のワークに対応することができ、砥石の製造コストの削減を図ることができる。
【0044】
回転砥石の回転速度を制御する研削方法では、ワークの回転速度を変えずに、回転中の回転砥石の回転速度を連続して変えるので、相対研削速度は円板部の中心から径外方において一定になる。従って、幅の小さい回転砥石で異なる幅のワークに対応することができ、砥石の製造コストの削減を図ることができる。
【0045】
ワークの回転速度と回転砥石の回転速度との両方を制御する。回転速度をともに連続して変えるので、相対研削速度は円板部の中心から径外方において一定になる。従って、幅の小さい回転砥石で異なる幅のワークに対応することができ、砥石の製造コストの削減を図ることができる。
【0046】
請求項2では、回転砥石の幅を円板面の幅より小さく設定し、回転砥石を円板部の中心から径外方へ又は径外方から中心へ移動させるとともに、回転砥石の仕上げ部で計測する相対研削速度が一定になるように円板部の回転速度と回転砥石の回転速度との両方又は一方を制御する。
円板部の円板面をトラバースカットする際に、仕上げ部は常に同じ条件の部位を研削するので、回転砥石の幅を小さく設定しても、円板部の円板面を所望の公差内に仕上げることができる。従って、幅の小さい回転砥石で異なる幅のワークに対応することができ、砥石の製造コストの削減を図ることができる。
【図面の簡単な説明】
【図1】本発明に係る円板部の研削方法で研削するワークの正面図
【図2】本発明に係る円板部の研削方法に用いる研削盤の平面図
【図3】本発明に係る円板部の研削方法の説明図
【図4】円板部の研削位置と相対研削速度の関係、研削位置と回転砥石の周速度並びにワークの回転数の関係を示したグラフ
【図5】図3の5部詳細図
【図6】別の実施の形態図
【図7】図6の7部詳細図
【図8】従来の円板部の研削方法の説明図
【符号の説明】
11…ワーク、13…円板部、23…円板面(シーブ面)、55…回転砥石(砥石)、56…回転砥石の幅中心、57…回転砥石の仕上げ部、Ns…回転砥石の回転速度、n…円板部の回転速度、V…円板部の周速度、v…砥石の周速度、Vr…相対研削速度、Ws…砥石の幅、Wf…円板面の幅(シーブ面の幅)。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a disk part grinding method for grinding the disk surface of a flange-shaped disk part by traverse cutting.
[0002]
[Prior art]
In a conventional method of grinding a disk portion, a grindstone having a width substantially equal to the width of the disk portion is attached to a grinding machine, and the disk portion rotating together with the workpiece is ground by the plunge cutting method using the grindstone. 1).
[0003]
[Patent Document 1]
JP-A-9-155703 (page 3, FIG. 1-2)
[0004]
Patent Document 1 will be described in detail with reference to the drawings.
8 (a) and 8 (b) are explanatory views of a conventional disk portion grinding method (reprinted illustration of FIG. 1 of Patent Document 1 is (a), and reprinted illustration of FIG. 2 is (b). .).
In the method of grinding a disk portion using the conventional grinding device 1, first, a rotating grindstone 10 is prepared. The rotary grindstone 10 is a grindstone whose width is substantially the same as the width of the tapered surface 7a of the work 6 and whose grinding surface 11 is inclined by α °. Next, the rotary grindstone 10 is attached to the grindstone drive motor 22, and then the tapered surface 7 a of the flange portion (disk portion) 7 of the work 6 is ground by the plunge cutting method on the grinding surface 11 of the rotary grindstone 10. . As a result, the tapered surface 7a of the flange portion (disk portion) 7 can be ground without the rotating grindstone 10 interfering with the tailstock 5.
[0005]
[Problems to be solved by the invention]
However, in the disk portion grinding method using the grinding device of Patent Document 1 shown in FIG. 8 described above, the width of the rotary grindstone 10 needs to correspond to the tapered surface 7a of the flange portion (disk portion) 7, and the work If the grindstone width is set for each of the widths, the production cost of the grindstone increases. In particular, in the case of a CBN grinding wheel, the manufacturing cost is proportional to the width of the grinding wheel.
In addition, a grindstone having a predetermined inclination angle formed on the grinding surface 11 of the rotary grindstone 10 must be employed, and the production cost of the grindstone increases.
Further, when grinding is performed with the rotating grindstone 10, grinding oil is supplied. However, the grinding oil hardly reaches the center of the width of the rotating grindstone 10, and the temperature of the work increases, which easily causes burning.
[0006]
Therefore, an object of the present invention is to provide a disk portion grinding method that can reduce the manufacturing cost of a grinding wheel.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, claim 1 is a grinding method for grinding a disk surface of a disk portion with a rotary grindstone while rotating the disk portion with a workpiece having a disk portion being processed. The width of the wheel is set smaller than the width of the disk surface, and the rotating grindstone is moved from the center of the disk part to the outside or from the outside to the center, and the relative grinding speed measured at the center of the width of the rotating wheel is constant. It is characterized in that both or one of the rotation speed of the disk portion and the rotation speed of the rotary grindstone is controlled so that
[0008]
In the grinding method for controlling the rotation speed of the disk, the relative grinding speed is the peripheral speed of the disk. By continuously changing the rotation speed of the rotating disk portion, the relative grinding speed of the disk portion measured at the center of the width of the rotating grindstone becomes constant outside the center of the disk portion. As a result, when performing a traverse cut in which the rotating grindstone is moved radially outward from the center of the disc portion, the center of the width of the rotating grindstone always grinds the disc surface of the disc portion under the same conditions. Even if the width of the rotary grindstone is set smaller than the width, the disk surface of the disk portion can be finished within a desired tolerance. Therefore, it is possible to cope with a work having a different width by using a rotating grindstone having a small width, and it is possible to reduce the manufacturing cost of the grindstone.
[0009]
In the grinding method for controlling the rotation speed of the rotating grindstone, the relative grinding speed is a relative speed between the peripheral speed of the disk portion measured at the width center of the rotating grindstone and the peripheral speed of the rotating grindstone. Since the rotation speed of the rotating grindstone is continuously changed without changing the rotation speed of the disk portion, the relative grinding speed is constant outside the center of the disk portion. As a result, when performing a traverse cut in which the rotating grindstone is moved radially outward from the center of the disc portion, the center of the width of the rotating grindstone always grinds the disc surface of the disc portion under the same conditions. Even if the width of the rotary grindstone is set smaller than the width, the disk surface of the disk portion can be finished within a desired tolerance.
[0010]
It controls both the rotation speed of the disk portion and the rotation speed of the rotating grindstone. Since both of these rotation speeds are continuously changed, the relative grinding speed is constant outside the center of the disk portion and radially outward. As a result, when performing a traverse cut in which the rotating grindstone is moved radially outward from the center of the disc portion, the center of the width of the rotating grindstone always grinds the disc surface of the disc portion under the same conditions. Even if the width of the rotary grindstone is set smaller than the width, the disk surface of the disk portion can be finished within a desired tolerance.
[0011]
Claim 2 is a grinding method in which a workpiece having a disk portion is processed, and the disk surface is ground with a rotary grindstone while rotating the disk portion. Set the width smaller than the width, move the rotating grindstone from the center of the disc to the outside or from the outside to the center, and keep the relative grinding speed measured at the finishing part of the rotating grindstone constant. And / or controlling one or both of the rotation speed of the rotating wheel and the rotation speed of the rotating grindstone.
[0012]
When the disc surface of the disc portion is traversed, the finishing portion always grinds a portion under the same conditions, so that the disc surface of the disc portion can be finished within a desired tolerance. Therefore, it is possible to cope with a work having a different width by using a rotating grindstone having a small width.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below with reference to the accompanying drawings. The drawings should be viewed in the direction of reference numerals.
FIG. 1 is a front view of a work to be ground by the disk part grinding method according to the present invention.
The work 11 is a component of a continuously variable transmission (CVT) and has a shaft 12 and a disk portion 13 formed at the center of the shaft 12.
The shaft 12 has a first outer surface 15 and a second outer surface 16 formed at the center.
[0014]
The disk portion 13 has an inner portion 21 formed with a diameter Di continuously from the shaft 12, and an outer portion 22 formed with a diameter Do continuously from the inner portion 21. A sheave surface 23 is formed at a sheave surface angle θ, and a back surface 24 is formed on the other. Wf indicates the width of the sheave surface.
The sheave surface 23 is a portion for holding a metal belt.
[0015]
FIG. 2 is a plan view of a grinding machine used in the disk portion grinding method according to the present invention. The axis on the right side of the figure is a coordinate axis, and indicates the direction of movement by a straight line or rotation. X is an axis indicating horizontal linear motion, Y is an axis orthogonal to X (the direction of the front and back in the figure), Z is an axis orthogonal to X and Y, B is an axis indicating a turning motion around the Y axis, and C is Z. It is an axis that shows a swiveling motion about the axis.
[0016]
The grinder 31 is an NC (numerical control) grinder, and is arranged in parallel with a base 32, a headstock 33 disposed on the base 32, a tailstock 34 facing the headstock 33, and the tailstock 34. Z-axis base 35, a B-axis turning device 36 mounted on the Z-axis base 35, an X-axis feed device 41 mounted on the B-axis turning device 36, and mounted on the X-axis feed device 41 A Z-axis feeder 42, a grindstone table 43 mounted on the Z-axis feeder 42, a work sizing detector 44, a grinding jig 45, a headstock 33, a Z-axis base 35, and a B-axis turning device 36, a control panel 47 for controlling the X-axis feeder 41, the Z-axis feeder 42, the grindstone table 43, the work size detector 44, and the grinding jig 45 based on information of a preset NC program, and an operation panel 48 And
[0017]
The headstock 33 includes a spindle 51 that rotates the work 11 and an electric motor 52. The number of revolutions of the electric motor 52 is continuously increased or decreased based on a preset NC program or information on the operation panel 48 to perform grinding. It is possible to change the peripheral speed of the middle work 11.
[0018]
The grindstone table 43 includes a rotating shaft 53 and an electric motor 54, and continuously increases or decreases the number of revolutions of the electric motor 54 based on a preset NC program or information on an operation panel 48, and controls the grinding wheel 55 during grinding. The peripheral speed can be changed.
[0019]
The grindstone 55 has abrasive grains of CBN, a width of Ws (20 mm), and an outer diameter of Ds (350 mm). 56 indicates a width center, and 57 indicates a finished portion.
The width Ws of the grindstone 55 was set smaller than the width Wf of the sheave surface (disk surface) 23 of the disk portion 13.
The work size detecting device 44 has a sheave surface detecting device 58 for detecting the size of the sheave surface 23 and a shaft diameter detecting device 59 for detecting the size of the first outer surface 15 of the shaft 12.
[0020]
Next, a method of grinding a disk portion using the grinding machine 31 having such a configuration will be described.
First, the work 11 is set on the grinding machine 31, and then the NC program is input on the control panel 47 and the operation panel 48.
[0021]
The grinding conditions are as follows: the rotational speed of the spindle 51 is N (rpm), the rotational speed of the disk 13 is n (rpm), the peripheral speed of the disk 13 is V (m / min), and the relative grinding speed is Vr ( m / min), the rotational speed of the grindstone 55 is Ns (rpm), the peripheral speed of the grindstone 55 is v (m / min), the cutting depth (the direction of the arrow (1)) is t (mm), and the feed of the grindstone 55 is performed. (The direction of arrow (2)) was set to f (mm / sec). Naturally, the coordinates of other devices such as the turning angle θ of the B-axis turning device 36 and the Z-axis base 35 are also set.
The rotation speed of the disk unit 13 is the number of rotations (rpm) of the disk unit 13.
The rotation speed of the grindstone 55 is the number of revolutions (rpm) of the grindstone 55.
[0022]
Further, there are three grinding conditions, and any one of the first to third speed conditions is set.
The first speed condition is to make the peripheral speed v of the grindstone 55 constant and variably control the rotation speed n of the work 11.
As the second speed condition, the rotational speed n of the work 11 is kept constant, and the peripheral speed v of the grindstone 55 is variably controlled.
The third speed condition variably controls both the rotational speed n of the work 11 and the peripheral speed v of the grindstone 55.
A method of grinding the disk portion in which the first to third speed conditions are set will be described in detail with reference to the following drawings.
[0023]
FIG. 3 is an explanatory view of a method of grinding a disk portion according to the present invention.
Under the first speed condition, the relative grinding speed Vr is the peripheral speed V of the disk portion 13 (Vr = V), and ignores the peripheral speed v of the related grindstone 55.
First, the grindstone 55 is sent to the inner portion 21 located on the center side of the disk portion 13, and then the grindstone 55 is sent from the inner portion 21 to the outer portion 22 located radially outward by an arrow ▲. Move (traverse cut) as shown in 3 ▼. At this time, the rotational speed n of the work 11 is changed so that the peripheral speed (grinding speed) V of the disk portion 13 measured at the width center 56 of the grindstone 55 becomes constant.
[0024]
For example, when the peripheral speed v of the grindstone 55 is 7200 m / min, the rotation speed n of the work 11 is 1000 rpm, and the inner portion 21 is ground, the position of the width center 56 of the grindstone 55 is the diameter Ds ( 0.082 m), the peripheral speed (grinding speed) Vs of the disk portion 13 at the position S is 257 m / min. This 257 m / min is kept constant. Finally, when the position of the width center 56 of the grindstone 55 reaches the position E having the diameter De (0.156 m) of the outer portion 22, the peripheral speed (grinding speed) Ve at the position E is naturally 257 m / min. In order to do so, the rotation speed n of the work 11 is reduced to 526 rpm. That is, the rotation speed n of the work 11 is smoothly changed in the range of 526 to 1000 rpm.
[0025]
The above-mentioned fixed relationship between the deceleration of the rotation speed of the work 11 and the relative grinding speed is simply shown by a graph.
FIG. 4 is a graph showing the relationship between the grinding position of the disk portion and the relative grinding speed, the relationship between the grinding position and the peripheral speed of the rotating grindstone, and the number of revolutions of the work. The horizontal axis represents the grinding position of the disk portion. The vertical axis on the left in the figure is the relative grinding speed Vr and the peripheral speed v of the rotary grindstone, and the vertical axis on the right in the figure is the rotational speed n of the work.
As the grindstone moves from the position on the center side (diameter Di) of the disc portion to the position on the outside diameter Do, the rotational speed n of the work is gradually reduced, so that the relative grinding speed Vr of the disc portion, that is, The peripheral speed V is kept constant.
[0026]
As described above, in the disk portion grinding method (first speed condition), the rotation speed (the number of rotations n) of the disk portion 13 is set such that the peripheral speed (grinding speed) V of the disk portion 13 is constant. Since the control is performed, the sheave surface (disc surface) 23 can always be ground under the same conditions, and the width Ws of the grindstone 55 is set to be smaller than the width Wf of the sheave surface (disc surface) 23. Even if the grinding is performed, the sheave surface 23 of the disk portion 13 can be finished within a desired tolerance, and a small width grindstone can be used for a workpiece having a different width. Therefore, the width Ws of the grindstone 55 can be reduced, and the manufacturing cost of the grindstone can be reduced.
[0027]
FIG. 5 is a detailed view of part 5 of FIG. 3, and shows the surface roughness and undulation of the sheave surface 23 after grinding. The surface roughness meter used for the measurement is a ready-made one, and the detailed measurement conditions are not described, but one scale on the vertical axis is set to 1 μ. The grinding conditions were almost the same as those already described with reference to FIG. 3. The feed f of the grindstone was set to 1.6 mm / sec, and the cutting depth t was set to 0.1 mm.
[0028]
The surface roughness of the sheave surface 23 is ensured, and the undulation of the sheave surface (disk surface) 23 of the disk portion 13 is small. Therefore, in the disk portion grinding method of the present invention, it is possible to reduce the width of the grindstone and reduce the manufacturing cost of the grindstone.
[0029]
Next, the second speed condition will be described with reference to FIG.
Under the second speed condition, the relative grinding speed Vr is a relative speed between the peripheral speed v of the grinding wheel 55 and the peripheral speed V of the disk portion 13. Specifically, the peripheral speed v of the grindstone 55 is changed so that the relative grinding speed Vr between the peripheral speed V of the disk portion 13 measured at the width center 56 of the grindstone 55 and the peripheral speed v of the grindstone 55 is constant.
In the grinding, if the rotation direction of the grindstone 55 is, for example, clockwise rotation, the rotation direction of the disk portion 13 is also clockwise rotation. That is, the grindstone 55 and the disk portion 13 move in the same direction.
[0030]
For example, when the rotational speed n of the workpiece 11 is 1000 rpm and the inner portion 21 is ground, if the position of the width center 56 of the grindstone 55 is at the position S of the diameter Ds (0.082 m) of the disk portion 13, The relative grinding speed Vr at the position S is a difference between the peripheral speed Vs (257 m / min) of the disk portion 13 and the peripheral speed v (7200 m / min) of the grindstone 55, that is, Vr = 6943 m / min. This 6943 m / min is kept constant. Finally, when the position of the width center 56 of the grindstone 55 reaches the position E having the diameter De (0.156 m) of the outer portion 22, the relative grinding speed Vr at the position E must be 6943 m / min, and so on. To do so, the peripheral speed v of the grindstone 55 is reduced to 6453 m / min. 6453 m / min is a value obtained by subtracting the peripheral speed Ve (490 m / min) of the disk portion 13 increasing at the position E.
That is, the peripheral speed v of the grindstone 55 is smoothly changed in the range of 6453 to 7200 m / min.
[0031]
As described above, in the disk portion grinding method (the second speed condition), the sheave surface (disk surface) 23 can always be ground under the same condition, and the same effect as in the first speed condition is exhibited. be able to. That is, the manufacturing cost of the grindstone can be reduced.
[0032]
Finally, the case where the third speed condition is selected will be described.
As described above, the third speed condition changes both the rotational speed n of the work 11 and the peripheral speed v of the grindstone 55. Specifically, both are changed so that the relative grinding speed Vr between the peripheral speed V of the disk portion 13 measured at the width center 56 of the grindstone 55 and the peripheral speed v of the grindstone 55 becomes constant.
In the disk portion grinding method (third speed condition), the same effect as in the second speed condition can be exhibited. That is, the manufacturing cost of the grindstone can be reduced.
[0033]
Next, another embodiment of the disk portion grinding method according to the present invention will be described.
FIG. 6 is a diagram showing another embodiment, and shows a second embodiment. The same components as those in the embodiment shown in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
[0034]
Another embodiment is characterized in that the relative grinding speed Vr is measured at the finishing portion 57 of the grindstone 55.
In the finishing portion 57 of the grindstone 55, the traverse cut (in the direction of the arrow [4]) is performed so that there is no cutting depth t cut into the sheave surface 23 of the disc portion 13 and almost no sparks come out. This is the part to be ground.
[0035]
First, the first speed condition will be described.
The grindstone 55 is moved (traverse cut) by the feed f from the inner portion 21 to the outer portion 22 of the disk portion 13 as indicated by the arrow (4), and the rotation speed n of the work 11 is changed. Specifically, the rotational speed n of the work 11 is changed so that the peripheral speed (grinding speed) V of the disk portion 13 at the relative grinding speed Vr measured by the finishing portion 57 of the grindstone 55 becomes constant.
[0036]
FIG. 7 is a detailed view of a portion 7 of FIG. 6, and shows the surface roughness and undulation of the sheave surface 23 after grinding. One scale on the vertical axis was set to 1 μ. The grinding conditions are the same as those described with reference to FIG.
The undulation of the sheave surface 23 can be further reduced.
[0037]
As described above, in the disk portion grinding method (first speed condition) according to another embodiment, undulation can be further reduced. Therefore, the width Ws of the grindstone 55 can be reduced, and the manufacturing cost of the grindstone can be reduced.
[0038]
Next, the second speed condition will be described.
The peripheral speed v of the grindstone 55 is controlled such that the relative grinding speed Vr between the peripheral speed V of the disk portion 13 measured by the finishing portion 57 of the grindstone 55 and the peripheral speed v of the grindstone 55 is constant.
[0039]
According to the disk portion grinding method (second speed condition) of another embodiment, the same effect as the first speed condition of another embodiment can be exerted. That is, the width Ws of the grindstone 55 can be reduced, and the manufacturing cost of the grindstone can be reduced.
[0040]
Finally, the third speed condition will be described.
Under the third speed condition, the rotation speed of the work 11 is controlled so that the relative grinding speed Vr between the peripheral speed V of the disk portion 13 and the peripheral speed v of the grindstone 55 measured by the finishing portion 57 of the grindstone 55 is constant. n and the peripheral speed v of the grindstone 55 are both controlled.
[0041]
In the disk portion grinding method (third speed condition) of another embodiment, the same effect as the first speed condition of another embodiment can be exerted. That is, the width Ws of the grindstone 55 can be reduced, and the manufacturing cost of the grindstone can be reduced.
[0042]
Although the grindstone 55 of FIGS. 3 and 6 shown in the embodiment of the present invention is moved outward (traverse cut) from the center of the disk portion 13, conversely, it is moved from the outside to the center. The same effect can be exerted.
Although the speed is measured at the position corresponding to the width center 56 of the grindstone 55 or the finishing portion 57, it is also possible to measure the speed at the remaining portion, for example, at the edge of the tip (reverse of the finishing portion 57).
[0043]
【The invention's effect】
The present invention has the following effects by the above configuration.
In claim 1, the width of the rotating grindstone is set to be smaller than the width of the disk surface, and the rotating grindstone is moved from the center of the disk portion to the outside or from the outside to the center, and at the center of the width of the rotating grindstone. Both or one of the rotation speed of the disk portion and the rotation speed of the rotating grindstone is controlled so that the measured relative grinding speed is constant.
In the grinding method that controls the rotation speed of the work, the rotation speed of the rotating work is continuously changed without changing the rotation speed of the rotating grindstone. It becomes constant outside. As a result, when traversing the disk surface of the disk part, the width center of the rotary grinding wheel always grinds the part under the same conditions, so even if the width of the rotary grinding wheel is set small, the disk of the disk part The surface can be finished to a desired tolerance. Therefore, it is possible to cope with a work having a different width by using a rotating grindstone having a small width, and it is possible to reduce the manufacturing cost of the grindstone.
[0044]
In the grinding method that controls the rotating speed of the rotating grindstone, the rotating speed of the rotating grindstone during rotation is continuously changed without changing the rotating speed of the work. Be constant. Therefore, it is possible to cope with a work having a different width by using a rotating grindstone having a small width, and it is possible to reduce the manufacturing cost of the grindstone.
[0045]
It controls both the rotation speed of the work and the rotation speed of the rotating grindstone. Since both rotation speeds are continuously changed, the relative grinding speed is constant outside the center of the disk portion and radially outward. Therefore, it is possible to cope with a work having a different width by using a rotating grindstone having a small width, and it is possible to reduce the manufacturing cost of the grindstone.
[0046]
In claim 2, the width of the rotating grindstone is set smaller than the width of the disk surface, and the rotating grindstone is moved from the center of the disk portion to the outside or from the outside to the center. Both or one of the rotation speed of the disk portion and the rotation speed of the rotating grindstone is controlled so that the measured relative grinding speed is constant.
When traversing the disk surface of the disk part, the finishing part always grinds the part under the same conditions, so even if the width of the rotating grindstone is set small, the disk surface of the disk part is within the desired tolerance. Can be finished. Therefore, it is possible to cope with a work having a different width by using a rotating grindstone having a small width, and it is possible to reduce the manufacturing cost of the grindstone.
[Brief description of the drawings]
FIG. 1 is a front view of a work to be ground by the disk part grinding method according to the present invention; FIG. 2 is a plan view of a grinding machine used in the disk part grinding method according to the present invention; FIG. FIG. 4 is a graph showing the relationship between the grinding position of the disk portion and the relative grinding speed, and the relationship between the grinding position, the peripheral speed of the rotating grindstone, and the number of revolutions of the workpiece. FIG. 5 is a detailed view of 5 parts of FIG. 6 FIG. 6 is a view of another embodiment FIG. 7 is a detailed view of 7 parts of FIG. 6 FIG.
Reference numeral 11: Work, 13: Disk portion, 23: Disk surface (sheave surface), 55: Rotating grindstone (grinding stone), 56: Width center of rotating grindstone, 57: Finishing portion of rotating grindstone, Ns: Rotation of rotating grindstone Speed, n: rotational speed of the disc portion, V: peripheral speed of the disc portion, v: peripheral speed of the grindstone, Vr: relative grinding speed, Ws: width of the grindstone, Wf: width of the disc surface (of the sheave surface) width).

Claims (2)

円板部を有するワークを加工対象とし、前記円板部を回転させつつ、円板部の円板面を回転砥石で研削する研削方法において、
前記回転砥石の幅を前記円板面の幅より小さく設定し、回転砥石を円板部の中心から径外方へ又は径外方から中心へ移動させるとともに、回転砥石の幅中心で計測する相対研削速度が一定になるように円板部の回転速度と回転砥石の回転速度との両方又は一方を制御することを特徴とする円板部の研削方法。
In a grinding method for processing a workpiece having a disk portion, while rotating the disk portion, grinding the disk surface of the disk portion with a rotary grindstone,
The width of the rotating grindstone is set to be smaller than the width of the disk surface, and the rotating grindstone is moved from the center of the disk part to the outside or from the outside to the center, and the relative measurement is performed at the center of the width of the rotating grindstone. A method for grinding a disk portion, characterized by controlling both or one of a rotation speed of a disk portion and a rotation speed of a rotary grindstone so that a grinding speed is constant.
円板部を有するワークを加工対象とし、前記円板部を回転させつつ、円板部の円板面を回転砥石で研削する研削方法において、
前記回転砥石の幅を前記円板面の幅より小さく設定し、回転砥石を円板部の中心から径外方へ又は径外方から中心へ移動させるとともに、回転砥石の仕上げ部で計測する相対研削速度が一定になるように円板部の回転速度と回転砥石の回転速度との両方又は一方を制御することを特徴とする円板部の研削方法。
In a grinding method for processing a workpiece having a disk portion, while rotating the disk portion, grinding the disk surface of the disk portion with a rotary grindstone,
The width of the rotating grindstone is set to be smaller than the width of the disk surface, and the rotating grindstone is moved from the center of the disk portion to the outside or from the outside to the center, and the relative measurement at the finishing part of the rotating grindstone is performed. A method for grinding a disk portion, characterized by controlling both or one of a rotation speed of a disk portion and a rotation speed of a rotary grindstone so that a grinding speed is constant.
JP2003146851A 2003-05-23 2003-05-23 Disc part grinding method Expired - Fee Related JP3842245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003146851A JP3842245B2 (en) 2003-05-23 2003-05-23 Disc part grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003146851A JP3842245B2 (en) 2003-05-23 2003-05-23 Disc part grinding method

Publications (2)

Publication Number Publication Date
JP2004345054A true JP2004345054A (en) 2004-12-09
JP3842245B2 JP3842245B2 (en) 2006-11-08

Family

ID=33533587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003146851A Expired - Fee Related JP3842245B2 (en) 2003-05-23 2003-05-23 Disc part grinding method

Country Status (1)

Country Link
JP (1) JP3842245B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190097A (en) * 2008-02-12 2009-08-27 Seibu Jido Kiki Kk Superfinishing method and grinding machine
CN102335844A (en) * 2011-10-22 2012-02-01 安庆机床有限公司 Grinding machine for spherical fiducial surface of conical roller
KR101291546B1 (en) * 2011-06-29 2013-08-08 현대제철 주식회사 Method for controlling grinding machine for rolling equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009190097A (en) * 2008-02-12 2009-08-27 Seibu Jido Kiki Kk Superfinishing method and grinding machine
KR101291546B1 (en) * 2011-06-29 2013-08-08 현대제철 주식회사 Method for controlling grinding machine for rolling equipment
CN102335844A (en) * 2011-10-22 2012-02-01 安庆机床有限公司 Grinding machine for spherical fiducial surface of conical roller

Also Published As

Publication number Publication date
JP3842245B2 (en) 2006-11-08

Similar Documents

Publication Publication Date Title
JP5034951B2 (en) Wheel correction device
JP5239251B2 (en) Traverse grinding apparatus and processing method
JP5125391B2 (en) Swivel device and cylindrical grinder provided with the same
US20190217405A1 (en) Gear machining apparatus and gear machining method
JP2007030119A (en) Wafer chamfering device and wafer chamfering method
JPH01127260A (en) Cylindrical grinding method of work
JP3842245B2 (en) Disc part grinding method
JP2008093788A (en) Grinder
JP2007044853A (en) Method and apparatus for chamfering wafer
JP2007061978A (en) Truing method for wafer chamfering grinding wheel and wafer chamfering device
JP6127657B2 (en) Truing method for rotating wheel and grinding machine for carrying out the truing method
JP6776660B2 (en) Center and grinder
JP2009291887A (en) Grinding wheel and grinding plate
JP2007125644A (en) Truing device of grinding wheel
JP2000084852A (en) Dressing device for grinding machine
JPH11156682A (en) Inner diameter grinding machine
JP2004345058A (en) Method for determining width of grindstone
JP2011056632A (en) Method for machining non-circular shape
JP4313090B2 (en) CVT sheave surface grinding method and grinding jig
JP2003291069A (en) Grinding wheel for grinder and grinding method using grinding wheel
JP2002144199A (en) Surface grinding method and surface grinding machine for sheet disc-like workpiece
JP2006263834A (en) Grinding method and cylindrical grinder
JP2001328067A (en) Grinding method in cylindrical grinding panel
JPS6348663B2 (en)
JPH06134668A (en) Grinding machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20060411

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060530

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060809

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100818

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20110818

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110818

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120818

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees