JP2004345003A - Abrasive, and method for polishing optical connector end face - Google Patents

Abrasive, and method for polishing optical connector end face Download PDF

Info

Publication number
JP2004345003A
JP2004345003A JP2003142230A JP2003142230A JP2004345003A JP 2004345003 A JP2004345003 A JP 2004345003A JP 2003142230 A JP2003142230 A JP 2003142230A JP 2003142230 A JP2003142230 A JP 2003142230A JP 2004345003 A JP2004345003 A JP 2004345003A
Authority
JP
Japan
Prior art keywords
polishing
abrasive
face
optical connector
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003142230A
Other languages
Japanese (ja)
Inventor
Kenji Takenouchi
研二 竹之内
Yasuhiro Tani
泰弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Admatechs Co Ltd
Original Assignee
Admatechs Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Admatechs Co Ltd filed Critical Admatechs Co Ltd
Priority to JP2003142230A priority Critical patent/JP2004345003A/en
Publication of JP2004345003A publication Critical patent/JP2004345003A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide abrasive, with which an optical connector end face or the like can be polished with high precision, and which is not likely to leave abrasive grains attached to it after polishing, and a method for polishing the optical connector end face. <P>SOLUTION: This abrasive is composed to be provided with an abrasive layer comprising abrasive grains and coupling agent. The abrasive layer further includes photocatalyst material having photocatalytic effect, and the coupling agent includes anti-oxidation resin having anti-oxidation effect. Using the abrasive, light having wavelength to generate photocatalytic effect of the photocatalyst material is radiated to the abrasive layer while polishing. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバーコネクタ端面等の仕上げ研磨に用いられる研磨材、および光コネクタ端面の研磨方法に関する。
【0002】
【従来の技術】
光通信の伝達手段として使用される光ファイバーには、近年の大容量化、高効率化の要求に伴い、光損失ができるだけ小さいことが要求される。光ファイバーと光ファイバーとの接続には、光コネクタが用いられる。光コネクタは、フェルールを有し、フェルールの内部に形成された挿通孔に光ファイバーが挿通される。光ファイバーは、接着剤等によりフェルールに固定される。光コネクタの接続端面の品質は、光ファイバーの光学特性に影響することから、非常に重要となる。そのため、光コネクタ端面には、複数段階の研磨により鏡面加工がなされる。研磨の最終仕上げとして、微細な砥粒を含む研磨層を備えた研磨シート、研磨テープ、研磨砥石、研磨布等の研磨材を使用した精密な鏡面研磨が行われる。
【0003】
精密な鏡面研磨に使用される研磨材として、例えば、砥粒と所定の結合剤とを含む研磨層が支持体上に形成された研磨媒体が開示されている(例えば、特許文献1参照。)。また、基材上に、シリカ粒子と結合剤とを含む研磨層を備えた研磨テープとして、研磨層表面の中心線平均粗さが0.005〜0.5μmである研磨テープが開示されている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開2002−254319号公報
【特許文献2】
特開2002−254326号公報
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1、2に開示されたような研磨材を使用して精密な鏡面研磨を行った場合には、研磨後に、研磨層に含まれる砥粒等が被研磨面に付着残存するという問題がある。そのため、被研磨面の付着物を除去する工程を、別途設ける必要がある。また、付着物が被研磨面に残存すると、目的とする光学特性が得られず、使用の際に不具合を生じるおそれがある。
【0006】
本発明は、上記問題を解決するためになされたものであり、光コネクタ端面等を高精度に研磨することができ、かつ、研磨後においても被研磨面に砥粒等が付着残存し難い研磨材、および光コネクタ端面の研磨方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明の研磨材は、砥粒と結合剤とを含む研磨層を備える研磨材であって、前記研磨層は、さらに光触媒作用を有する光触媒材料を含み、前記結合剤は、耐酸化性を有する耐酸化性樹脂を含み、該光触媒材料の光触媒作用が発現する波長を持つ光を該研磨層に照射しながら研磨する光照射研磨に用いられることを特徴とする。
【0008】
本発明の研磨材では、研磨層に相手部材の被研磨面が摺接することで、研磨が行われる。また、本発明の研磨材は、研磨層に光触媒材料を含む。よって、光触媒材料の光触媒作用が発現する波長を持つ光が研磨層に照射されることで、光触媒作用が発揮される。この光触媒作用により、砥粒等は被研磨面へ付着残存し難くなる。例えば、光触媒材料として酸化チタンを用いた場合、砥粒等の付着抑制のメカニズムは、以下のように考えられる。
【0009】
酸化チタンに、バンドギャップ以上のエネルギーを有する光(紫外線)が照射されると、結晶中の酸素が持つ価電子が励起され、チタン側に遷移する。その結果、酸素は遊離酸素となり、結晶中には正孔が生成する。正孔は、酸化チタンの表面にある吸着水や周囲にある水と反応し、強力な酸化力を持つ水酸ラジカル(・OH)を発生させる。この水酸ラジカルにより、被研磨面に付着した樹脂成分が酸化分解される。また、水酸ラジカルは、酸化チタン表面と反応して水酸基(−OH)を形成し、その表面を強親水性にする。そのため、被研磨面に付着した親水性物質(砥粒のコロイダルシリカ等)は、酸化チタン表面に吸着される。
【0010】
一方、チタン側に遷移した電子は、周囲の酸素と反応し、スーパーオキサイドイオン(O2−)を発生させる。スーパーオキサイドイオンによっても、被研磨面に付着した樹脂成分が酸化分解される。また、スーパーオキサイドイオンは、上記水酸ラジカルと同様、酸化チタン表面と反応して水酸基を形成し、その表面を強親水性にする。そのため、被研磨面に付着した親水性物質は、酸化チタン表面に吸着される。
【0011】
このように、被研磨面と接する研磨層に特定の波長を持つ光が照射されると、光触媒作用により、被研磨面への砥粒等の付着残存が抑制される。したがって、本発明の研磨材を用いれば、研磨後に被研磨面の付着物を除去する工程を省略することができ、研磨工程を簡素化することができる。また、付着物の残存による光学特性の低下のおそれも少ない。また、本発明の研磨材は、結合剤として耐酸化性を有する耐酸化性樹脂を含む。そのため、研磨層へ照射される光や光触媒作用により、結合剤が酸化劣化するおそれが少ない。よって、本発明の研磨材は、耐久性の高い研磨材となる。
【0012】
本発明の光コネクタ端面の研磨方法は、砥粒を含む研磨層を備えた研磨材の該研磨層の表面に、光ファイバーと、該光ファイバーの周囲を被覆するフェルールと、からなる光コネクタの端面を押し当てて該端面を研磨する光コネクタ端面の研磨方法であって、前記研磨層は、光触媒作用を有する光触媒材料を含み、該光触媒材料の光触媒作用が発現する波長を持つ光を該研磨層に照射しながら研磨することを特徴とする。
【0013】
本発明の光コネクタ端面の研磨方法では、研磨層に光触媒材料を含んだ研磨材を用い、光触媒材料の光触媒作用が発現する波長を持つ光を研磨層に照射しながら研磨する。その結果、光触媒材料の上述した光触媒作用により、砥粒等が被研磨面へ付着残存し難くなる。したがって、本発明の研磨方法によれば、光コネクタ端面の研磨後に、端面に付着した付着物を除去する工程を省略することができ、研磨工程を簡素化することができる。また、付着物の残存による光学特性の低下のおそれも少ない。
【0014】
【発明の実施の形態】
以下に、本発明の研磨材および光コネクタ端面の研磨方法の実施形態について詳しく説明する。なお、本発明の研磨材および光コネクタ端面の研磨方法は、下記の実施形態に限定されるものではない。本発明の研磨材および光コネクタ端面の研磨方法は、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。
【0015】
〈研磨材〉
本発明の研磨材は、砥粒と結合剤とを含む研磨層を備える。砥粒には、既に公知の材料を用いればよい。例えば、シリカ(SiO)、酸化ケイ素(SiO)、コロイダルシリカ、オルガノシリカ、アルミナ(Al)、ジルコニア(ZrO)、酸化鉄、酸化クロム、酸化スズ等の粒子を用いればよい。また、上記単一金属の酸化物の他、SiO−Al、SiO−ZrO等の複合酸化物を用いてもよい。なかでも、良好な被研磨面が得られることから、コロイダルシリカを用いることが望ましい。
【0016】
結合剤は、砥粒どうしを接着する役割を果たす。また、基材の表面に研磨層を形成して研磨材を構成する場合には、砥粒と基材とを接着する役割をも果たす。本発明の研磨材では、結合剤として、耐酸化性を有する耐酸化性樹脂を含む。耐酸化性樹脂は、シリコーン樹脂、フッ素樹脂、アクリル樹脂、塩化ビニル樹脂、ポリフェニレンエーテル、およびこれらの変性樹脂から選ばれる一種以上であることが望ましい。特に、紫外線に対する耐性が高いという理由から、シリコーン樹脂を用いると好適である。なお、本発明の研磨材では、結合剤として、上記耐酸化性樹脂以外の樹脂を含んでいても構わない。例えば、ウレタン樹脂、塩化ビニル樹脂等を含んでいてもよい。また、研磨層における結合剤の配合割合は、特に限定されるものではない。例えば、砥粒の100重量部に対して10〜186重量部程度配合すればよい。
【0017】
本発明の研磨材では、研磨層に、さらに光触媒作用を有する光触媒材料を含む。光触媒材料としては、例えば、酸化チタン(TiO)、Nドープ二酸化チタン、酸化亜鉛、酸化タングステン、酸化鉄、ジルコニア、酸化すず、ストロンチウムチタニアオキサイド、酸化ニオブ、酸化バナジウム、酸化セリウム、硫化カドミウム、オキシ硫化亜鉛、アンチモンポルフィリン錯体等が挙げられる。これらを単独で、あるいは複合させて用いればよい。また、上記材料に金属を担持させて用いてもよい。なかでも、入手し易く実用的であるという理由から、酸化チタン、Nドープ二酸化チタン、酸化亜鉛の少なくとも一種を用いることが望ましい。特に、酸化チタンが好適である。
【0018】
光触媒材料は、研磨層に含まれていればよく、含有態様が特に限定されるものではない。例えば、粒子状、チューブ状、針状、繊維状等の光触媒材料が、砥粒と、あるいは結合剤と混合されている態様が挙げられる。また、砥粒を構成する粒子の表面に、光触媒材料が付着している、あるいは光触媒材料の皮膜が形成されている態様であってもよい。なお、酸化チタン、酸化鉄、ジルコニア等の研磨作用を併有する光触媒材料を粒子状にして砥粒と混合することにより、光触媒材料に研磨作用をも発揮させることができる。
【0019】
被研磨面への砥粒等の付着を抑制する光触媒作用を充分発揮させるという観点から、研磨層における光触媒材料の含有割合は、砥粒全体の重量を100wt%とした場合の3wt%以上とすることが望ましい。10wt%以上とするとより好適である。一方、光触媒材料の含有割合が高くなると、光触媒材料の種類によっては、研磨材の研磨特性に影響を与える場合がある。例えば、光触媒材料として酸化チタンを用いた場合には、その含有割合を、砥粒全体の重量を100wt%とした場合の30wt%以下とすることが望ましい。なお、研磨層は、上記砥粒、結合剤、光触媒材料以外に、潤滑剤、砥粒の分散剤等を含んでいてもよい。
【0020】
本発明の研磨材は、例えば、研磨シート、研磨テープ、研磨砥石、研磨布等として実施することができる。例えば、研磨シート等として実施する場合には、基材の表面に研磨層を形成して研磨材とすればよい。この場合、使用する基材は、必要な弾性および強度を有し、研磨層を保持できるものであればよい。例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル、ポリカーボネート(PC)等からなるフィルム等が好適である。基材の厚さは、特に限定されるものではなく、例えば、25〜150μm程度とすればよい。
【0021】
また、基材と研磨層との接着性の向上、研磨層の表面のパターニング等、目的に応じて、基材の表面に予めバッファー層を形成しておいてもよい。例えば、基材表面に易接着層を形成してバッファー層とすればよい。また、基材表面を熱処理、コロナ処理、プラズマ処理等してバッファー層を形成してもよい。易接着層は、例えば、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂等からなるバッファー塗工液を、基材表面に塗布、乾燥することで形成することができる。
【0022】
上記基材を用いる態様の場合、本発明の研磨材は、例えば、砥粒、結合剤、光触媒材料等を含む塗工剤を基材の表面に塗布、乾燥して製造することができる。具体的には、まず、砥粒等を所定の溶剤に分散させた塗工剤を調製する。次いで、バーコータ法、マイクログラビア法、コンマコート法等により、塗工剤を基材表面に塗布した後、20〜140℃に加熱して乾燥すればよい。形成する研磨層の厚さは、被研磨面の材質や研磨工程に応じて適宜設定すればよい。例えば、3〜15μm程度とすると好適である。研磨材は、シート状、帯状、円形状等、所定の形状にて用いればよい。
【0023】
本発明の研磨材は、触媒材料の光触媒作用が発現する波長を持つ光を研磨層に照射しながら研磨する光照射研磨に用いられる。被研磨面と接する研磨層への光の照射方法は、特に限定されるものではない。例えば、基材と研磨層とから研磨材を構成する場合、基材側から光を照射して、基材を透過した光を研磨層に照射させることができる。また一般に、光触媒材料の種類により、光触媒作用の発現する波長は異なる。よって、本発明の研磨材に用いる光触媒材料の種類に応じて、適宜最適な波長の光を照射すればよい。例えば、光触媒材料としてアナターゼ型の酸化チタンを用いた場合には、強度ピークが360〜390nmにある紫外線を照射すると効果的である。また、Nドープ二酸化チタンを用いた場合には、紫外線の他、可視光線を照射してもよい。
【0024】
本発明の研磨材は、例えば、光コネクタ端面、半導体ウエーハ、光学レンズ、光ディスク基板等の種々の精密部品の研磨に用いることができる。また、本発明の研磨材は、研磨の最終仕上げ工程の他、研磨の中間工程等においても使用することができる。特に、光コネクタ端面の最終仕上げ研磨工程に最適である。
【0025】
〈光コネクタ端面の研磨方法〉
本発明の光コネクタ端面の研磨方法では、砥粒と光触媒材料とを含む研磨層を備える研磨材を用いる。研磨材は、上記本発明の研磨材に準ずればよい。よって、ここでは詳細を省略する。なお、本発明の研磨方法では、研磨層を構成する結合剤に、必ずしも耐酸化性樹脂を含む必要はない。つまり、結合剤として、既に公知の材料を用いてもよい。但し、光触媒作用等による酸化劣化をより抑制し、研磨材の耐久性を向上させることを考慮すれば、結合剤として、シリコーン樹脂等の耐酸化性樹脂を含む態様が好適である。
【0026】
本発明の研磨方法では、上記研磨材の研磨層の表面に、光コネクタの端面を押し当てて研磨を行う。その際、光触媒材料の光触媒作用が発現する波長を持つ光を、研磨層に照射する。ここで、研磨層への光の照射方法は、特に限定されるものではない。例えば、研磨材が基材と研磨層とから構成される場合、研磨材の基材側から光を照射して、基材を透過した光を研磨層に照射させることができる。また、光コネクタの光ファイバーを通して研磨層に光を照射することができる。光ファイバーを通して光を照射する態様では、光を導くための特別な装置は不要となる。よって、容易に実施することができ、実用的である。
【0027】
図1に、本発明の研磨方法を実施できる研磨装置の一例の模式図を示す。図1に示すように、光コネクタ1は、研磨材2の上面に配置される。なお、光コネクタ1は、ジグ(図略)により固定される。
【0028】
光コネクタ1は、フェルール11と、光ファイバー12とからなる。フェルール11は、ジルコニア製である。フェルール11の内部には、挿通孔が形成される。光ファイバー12の一端(下端)は、フェルール11の挿通孔に挿通され、接着剤で固定される。光ファイバー12の他端(上端)は、光源に接続される。光源からは、光ファイバー12を通じて紫外線が照射される。光コネクタ1の端面13は、研磨材2の研磨層22表面に押し当てられる。
【0029】
研磨材2は、基材21と、研磨層22とを備える。基材21は、ポリエステル製でありシート状を呈する。基材21の厚さは75μmである。研磨層22が形成される基材21の表面には、易接着処理が施されている。研磨層22は、基材21の表面に形成され、コロイダルシリカ(砥粒)、アナターゼ型の酸化チタン粒子(光触媒材料)、およびシリコーン樹脂(結合剤)を含む。研磨層22中の酸化チタン粒子の含有割合は、コロイダルシリカの重量を100wt%とした場合の10wt%である。研磨層22の厚さは約5μmである。
【0030】
研磨材2は、回転しながら水平方向に往復動する。これにより、研磨層22表面に押し当てられた光コネクタ1の端面13が研磨される。同時に、光ファイバー12を通じて紫外線が研磨層22の表面に照射される。その結果、研磨層22に含まれる酸化チタン粒子の光触媒作用により、端面13に付着したコロイダルシリカは、研磨層22に吸着される。したがって、端面13への砥粒等の付着残存は抑制される。
【0031】
本実施形態では、光触媒材料としてアナターゼ型の酸化チタンを用いた。そのため、酸化チタンの光触媒作用を考慮して、強度ピークが360〜390nmにある紫外線を照射した。しかしながら、研磨の際に照射する光は、紫外線に限定されるものではない。上述したように、光触媒作用が発現する波長は、光触媒材料の種類により異なる。よって、光触媒材料の種類に応じて、適宜最適な光を採用すればよい。また、本実施形態では、ジルコニア製のフェルールから構成される光コネクタ端面を研磨した。しかしながら、フェルールの材質は、特に限定されるものではなく、金属、あるいはプラスチックであってもよい。さらに、本実施形態では、研磨材を基材と研磨層とから構成した。しかしながら、研磨材は上記構成に限定されるものではなく、研磨層のみから構成されていてもよい。
【0032】
本発明の研磨方法は、光コネクタ端面の最終仕上げ研磨工程に最適であるが、中間研磨工程等においても使用することができる。また、光ファイバーの、被研磨面を構成する端面と反対側の端面は、光の通過や波長への影響を少なくするため、ある程度良好な状態に研磨されていることが望ましい。
【0033】
【実施例】
上記実施形態に基づいて研磨材を製造した。製造した研磨材を用い、紫外線を照射しながら光コネクタ端面の仕上げ研磨を行い、研磨後の被研磨面を評価した。以下、研磨材の製造、仕上げ研磨試験および被研磨面の評価について説明する。
【0034】
〈研磨材の製造〉
(1)#1の研磨材
砥粒として、コロイダルシリカ(日産化学工業株式会社製:平均粒子径0.02μm)を用いた。光触媒材料として、アナターゼ型の酸化チタン(商品名「AMT−100」、テイカ株式会社製:平均粒子径6nm)を用いた。結合剤として、シリコーン樹脂(信越化学工業株式会社製)を用いた。まず、コロイダルシリカ100重量部と、酸化チタン10重量部と、シリコーン樹脂100重量部とを、溶剤であるメチルエチルケトン(MEK)に分散させ、塗工剤を調製した。コロイダルシリカ全重量に対する酸化チタンの重量割合は10wt%とした。次いで、調製した塗工剤を、バーコータ法により、基材であるポリエステルシート(株式会社パナック製:厚さ75μm)の表面に塗布した。なお、塗工剤を塗布したポリエステルシートの表面には、予め易接着処理を施しておいた。その後、60℃に加熱して、塗布した塗工剤を乾燥させ、研磨層を形成した。形成された研磨層の厚さは、約5μmであった。このように製造された研磨材を、円形状に加工して下記の仕上げ研磨に供した。なお、本研磨材を、#1の研磨材とした。
【0035】
(2)#2の研磨材
光触媒材料を含まない研磨材を製造した。上記#1の研磨材の製造において、酸化チタンを混合しない点以外は、#1の研磨材と同様にして製造した。製造された研磨材を、#2の研磨材と番号付けした。
【0036】
〈仕上げ研磨試験および被研磨面の評価〉
(1)仕上げ研磨試験
製造した#1および#2の研磨材を、それぞれ研磨機(「OFL−15」、セイコーインスツル株式会社製)に取り付け、光コネクタ端面の仕上げ研磨試験を行った。また、光コネクタ端面の仕上げ研磨用として市販されている研磨シートAおよびF(A:商品名「ATR−01」:日本ミクロコーティング株式会社製、F:商品名「FOS−01」:大日本印刷株式会社製)をも使用して、同様に仕上げ研磨試験を行った。仕上げ研磨試験は、各研磨材、研磨シートにつき、光コネクタを6個ずつ使用して行った。そして、使用した光コネクタの3個については、紫外線(強度ピークの波長:360〜390nm)を照射しながら研磨し、残りの3個については、紫外線を照射せずに研磨した。研磨は、180秒間行った。なお、使用した光コネクタ端面には、仕上げ研磨までの前研磨として、規定のPCフェルール用研磨処方を施した。そして、仕上げ研磨直後の光コネクタ端面を、以下(a)〜(d)の四つの項目にて評価した。
(a)フェルール端面への付着物の有無:光学顕微鏡によりフェルール端面を観察し、付着物の有無を調査した。(b)フェルール端面の研磨傷(スクラッチ)の有無、および鏡面状態:光学顕微鏡によりフェルール端面を観察し、研磨傷の有無、および鏡面状態を調査した。(c)光ファイバー部中心線における表面粗さ(Ra):テーラーホブソン株式会社製の表面形状粗さ測定機により、光ファイバー部中心線における表面粗さ;Ra(nm)を測定した。(d)光ファイバーのフェルールに対する凸量:テーラーホブソン株式会社製の超精密段差測定器により、光ファイバーのフェルールに対する凸量(nm)を測定した。
【0037】
(2)被研磨面の評価
(2−1)#1の研磨材
#1の研磨材を用いた研磨では、紫外線の照射の有無により、光コネクタ端面の状態は異なった。一例として、紫外線を照射しながら研磨した光コネクタ端面の光学顕微鏡写真を図2に示す。図2に示すように、紫外線を照射した場合、被研磨面には付着物および研磨屑は観察されなかった。また、光コネクタ端面には研磨傷は無く、良好な鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)、および光ファイバーのフェルールに対する凸量は、ともに規格値の範囲内であった。
【0038】
これに対して、紫外線を照射せずに研磨した光コネクタ端面には、雨滴形状の付着物が観察された。この付着物の大きさは、1〜150mm程度であり、長軸方向がほぼ同方向に揃っていた。また、付着物は、被研磨面に固着しており、アルコール等を含ませた不織布等で拭いても除去することはできなかった。なお、紫外線を照射しなかった場合でも、研磨傷は観察されず、鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)、および光ファイバーのフェルールに対する凸量も、ともに規格値の範囲内であった。
【0039】
(2−2)#2の研磨材
#2の研磨材を用いた研磨では、紫外線の照射の有無によらず、光コネクタ端面は、ほぼ同じ状態となった。一例として、紫外線を照射しながら研磨した光コネクタ端面の光学顕微鏡写真を図3に示す。図3に示すように、#2の研磨材による研磨では、(2−1)後段で述べた付着物と同様の付着物が、光コネクタ端面のほぼ全体において観察された。付着物は、被研磨面をアルコール等を含ませた不織布等で拭いても残存した。これより、付着物は被研磨面に固着していることがわかる。また、フェルールの周縁部には、研磨屑も観察された。なお、研磨傷は観察されず、鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)、および光ファイバーのフェルールに対する凸量は、ともに規格値の範囲内であった。
【0040】
(2−3)市販の研磨シートA、F
研磨シートAおよび研磨シートFを用いた研磨では、いずれも紫外線の照射の有無によらず、光コネクタ端面はほぼ同じ状態となった。すなわち、研磨シートA、Fによる研磨では、光コネクタ端面において、上記図2に示したような雨滴形状の付着物が観察された。また、フェルールの周縁部には、研磨屑も観察された。なお、研磨傷は観察されず、鏡面状態に仕上がっていた。光ファイバー部中心線における表面粗さ(Ra)、および光ファイバーのフェルールに対する凸量は、ともに規格値の範囲内であった。
【0041】
(2−4)まとめ
光触媒材料を研磨層に含まない#2の研磨材、市販の研磨シートA、Fを用いた研磨では、紫外線の照射の有無に関わらず、光コネクタ端面に付着物や研磨屑が観察された。また、光触媒材料を研磨層に含む#1の研磨材を用いても、紫外線を照射せずに研磨した場合には、光コネクタ端面に付着物が観察された。これに対して、光触媒材料を研磨層に含む#1の研磨材を用い、かつ紫外線を照射しながら研磨すると、光コネクタ端面に付着物や研磨屑を残存させずに、光コネクタ端面を高精度に研磨できた。
【0042】
【発明の効果】
本発明の研磨材は、研磨層に光触媒材料を含む。よって、本発明の研磨材による研磨において、光触媒材料の光触媒作用が発現する波長を持つ光を研磨層に照射すると、光触媒作用により、砥粒等が被研磨面へ付着残存し難くなる。また、本発明の研磨材は、結合剤として耐酸化性樹脂を含む。よって、研磨層へ照射される光や光触媒作用により、結合剤が酸化劣化するおそれが少なく、耐久性が高い。
【0043】
本発明の光コネクタ端面の研磨方法では、光触媒材料を含む研磨層を備える研磨材を用い、光触媒作用が発現する波長を持つ光を研磨層に照射しながら研磨する。本発明の研磨方法によれば、光触媒材料の光触媒作用により、砥粒等が被研磨面へ付着残存し難くなる。したがって、研磨後に被研磨面の付着物を除去する工程を省略することができ、研磨工程を簡素化することができる。また、付着物の残存による光学特性の低下のおそれも少ない。
【図面の簡単な説明】
【図1】本発明の研磨方法を実施できる研磨装置の一例の模式図を示す。
【図2】#1の研磨材を用いた紫外線照射研磨後の光コネクタ端面の光学顕微鏡写真である。
【図3】#2の研磨材を用いた紫外線照射研磨後の光コネクタ端面の光学顕微鏡写真である。
【符号の説明】
1:光コネクタ 11:フェルール 12:光ファイバー 13:端面
2:研磨材 21:基材 22:研磨層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polishing material used for finish polishing of an optical fiber connector end face and the like, and a polishing method of an optical connector end face.
[0002]
[Prior art]
Optical fibers used as transmission means for optical communication are required to have as small an optical loss as possible with recent demands for large capacity and high efficiency. An optical connector is used to connect the optical fibers. The optical connector has a ferrule, and an optical fiber is inserted into an insertion hole formed inside the ferrule. The optical fiber is fixed to the ferrule with an adhesive or the like. The quality of the connection end face of the optical connector is very important because it affects the optical characteristics of the optical fiber. Therefore, the end face of the optical connector is mirror-finished by polishing in a plurality of stages. As a final finish of polishing, precise mirror polishing using a polishing material such as a polishing sheet, a polishing tape, a polishing grindstone, or a polishing cloth provided with a polishing layer containing fine abrasive grains is performed.
[0003]
As an abrasive used for precise mirror polishing, for example, a polishing medium in which a polishing layer containing abrasive grains and a predetermined binder is formed on a support is disclosed (for example, see Patent Document 1). . Further, as a polishing tape provided with a polishing layer containing silica particles and a binder on a base material, a polishing tape having a center line average roughness of the polishing layer surface of 0.005 to 0.5 μm is disclosed. (For example, see Patent Document 2).
[0004]
[Patent Document 1]
JP 2002-254319 A [Patent Document 2]
JP-A-2002-254326
[Problems to be solved by the invention]
However, when precise mirror-polishing is performed using an abrasive as disclosed in Patent Literatures 1 and 2, after polishing, abrasive grains and the like contained in the polishing layer may adhere to the surface to be polished and remain. There's a problem. Therefore, it is necessary to separately provide a step of removing the deposits on the surface to be polished. Further, if the adhered substance remains on the surface to be polished, the desired optical characteristics cannot be obtained, and there is a possibility that a problem may occur during use.
[0006]
The present invention has been made in order to solve the above-mentioned problem, and is capable of polishing an optical connector end face or the like with high accuracy, and has a polishing method in which abrasive grains or the like hardly adhere and remain on a polished surface even after polishing. It is an object of the present invention to provide a material and a method for polishing an end face of an optical connector.
[0007]
[Means for Solving the Problems]
The abrasive of the present invention is an abrasive provided with a polishing layer containing abrasive grains and a binder, wherein the polishing layer further contains a photocatalytic material having a photocatalytic action, and the binder has oxidation resistance It is characterized by being used for light irradiation polishing in which the polishing layer contains an oxidation resistant resin and is polished while irradiating the polishing layer with light having a wavelength at which the photocatalytic action of the photocatalytic material is exhibited.
[0008]
In the polishing material of the present invention, polishing is performed by the surface to be polished of the partner member slidingly contacting the polishing layer. Further, the polishing material of the present invention contains a photocatalytic material in the polishing layer. Therefore, the photocatalytic action is exhibited by irradiating the polishing layer with light having a wavelength at which the photocatalytic action of the photocatalytic material is exhibited. This photocatalytic action makes it difficult for abrasive grains and the like to adhere and remain on the surface to be polished. For example, when titanium oxide is used as a photocatalyst material, the mechanism of suppressing the adhesion of abrasive grains and the like is considered as follows.
[0009]
When the titanium oxide is irradiated with light (ultraviolet light) having energy equal to or greater than the band gap, the valence electrons of oxygen in the crystal are excited and transition to the titanium side. As a result, oxygen becomes free oxygen, and holes are generated in the crystal. The holes react with the adsorbed water on the surface of the titanium oxide and the surrounding water to generate hydroxyl radicals (.OH) having strong oxidizing power. These hydroxyl radicals oxidize and decompose the resin component attached to the surface to be polished. Further, the hydroxyl radical reacts with the titanium oxide surface to form a hydroxyl group (-OH), and makes the surface strongly hydrophilic. Therefore, the hydrophilic substance (colloidal silica of the abrasive grains) attached to the surface to be polished is adsorbed on the titanium oxide surface.
[0010]
On the other hand, electrons that have transitioned to the titanium side react with surrounding oxygen to generate superoxide ions (O 2− ). The resin component attached to the surface to be polished is also oxidatively decomposed by the superoxide ions. In addition, the superoxide ion reacts with the titanium oxide surface to form a hydroxyl group similarly to the above-mentioned hydroxyl radical, and makes the surface strongly hydrophilic. Therefore, the hydrophilic substance attached to the polished surface is adsorbed on the titanium oxide surface.
[0011]
When light having a specific wavelength is applied to the polishing layer in contact with the surface to be polished in this manner, the adhesion of abrasive grains and the like to the surface to be polished is suppressed by photocatalysis. Therefore, if the abrasive of the present invention is used, the step of removing the deposits on the surface to be polished after polishing can be omitted, and the polishing step can be simplified. In addition, there is little possibility that the optical characteristics are deteriorated due to the remaining of the attached matter. Further, the abrasive of the present invention contains an oxidation-resistant resin having oxidation resistance as a binder. Therefore, there is little possibility that the binder is oxidatively degraded by light or photocatalytic action applied to the polishing layer. Therefore, the abrasive of the present invention is a highly durable abrasive.
[0012]
The polishing method of the end face of the optical connector of the present invention, the surface of the polishing layer provided with a polishing layer containing abrasive grains, on the surface of the polishing layer, an optical fiber, a ferrule covering the periphery of the optical fiber, the end face of the optical connector comprising. A method for polishing an end face of an optical connector in which the end face is pressed against the polishing surface, wherein the polishing layer includes a photocatalytic material having a photocatalytic action, and light having a wavelength at which the photocatalytic action of the photocatalytic material is developed is applied to the polishing layer. It is characterized by polishing while irradiating.
[0013]
In the method for polishing an end face of an optical connector according to the present invention, a polishing layer containing a photocatalytic material is used for the polishing layer, and polishing is performed while irradiating the polishing layer with light having a wavelength at which the photocatalytic action of the photocatalytic material is exhibited. As a result, the above-described photocatalytic action of the photocatalytic material makes it difficult for abrasive grains and the like to adhere and remain on the surface to be polished. Therefore, according to the polishing method of the present invention, after polishing the end face of the optical connector, the step of removing the deposit attached to the end face can be omitted, and the polishing step can be simplified. In addition, there is little possibility that the optical characteristics are deteriorated due to the remaining of the attached matter.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a polishing material and a method for polishing an end face of an optical connector of the present invention will be described in detail. The polishing material and the method for polishing the end face of the optical connector according to the present invention are not limited to the following embodiments. The polishing material and the method for polishing an end face of an optical connector of the present invention can be carried out in various modes in which a person skilled in the art can make changes and improvements without departing from the gist of the present invention.
[0015]
<Abrasive>
The abrasive of the present invention includes a polishing layer containing abrasive grains and a binder. Known materials may be used for the abrasive grains. For example, particles such as silica (SiO 2 ), silicon oxide (SiO), colloidal silica, organosilica, alumina (Al 2 O 3 ), zirconia (ZrO 2 ), iron oxide, chromium oxide, and tin oxide may be used. In addition to the single metal oxide, a composite oxide such as SiO 2 —Al 2 O 3 or SiO 2 —ZrO 2 may be used. Among them, it is desirable to use colloidal silica because a good polished surface can be obtained.
[0016]
The binder serves to bond the abrasive grains together. Further, when the polishing material is formed by forming a polishing layer on the surface of the base material, it also has a role of bonding the abrasive grains to the base material. The abrasive of the present invention contains an oxidation-resistant resin having oxidation resistance as a binder. The oxidation resistant resin is desirably at least one selected from silicone resins, fluorine resins, acrylic resins, vinyl chloride resins, polyphenylene ethers, and modified resins thereof. Particularly, it is preferable to use a silicone resin because of its high resistance to ultraviolet rays. In the abrasive of the present invention, a resin other than the above-mentioned oxidation-resistant resin may be contained as a binder. For example, it may contain a urethane resin, a vinyl chloride resin, or the like. The mixing ratio of the binder in the polishing layer is not particularly limited. For example, about 10 to 186 parts by weight may be added to 100 parts by weight of the abrasive grains.
[0017]
In the polishing material of the present invention, the polishing layer further contains a photocatalytic material having a photocatalytic action. Examples of the photocatalyst material include titanium oxide (TiO 2 ), N-doped titanium dioxide, zinc oxide, tungsten oxide, iron oxide, zirconia, tin oxide, strontium titania oxide, niobium oxide, vanadium oxide, cerium oxide, cadmium sulfide, and oxy. Zinc sulfide, antimony porphyrin complex and the like can be mentioned. These may be used alone or in combination. Further, a metal may be supported on the above-mentioned material. Among them, it is desirable to use at least one of titanium oxide, N-doped titanium dioxide, and zinc oxide because it is easily available and practical. In particular, titanium oxide is preferred.
[0018]
The photocatalyst material only needs to be contained in the polishing layer, and the content form is not particularly limited. For example, there is an embodiment in which a photocatalyst material such as a particle, a tube, a needle, and a fiber is mixed with abrasive grains or a binder. Further, a mode may be adopted in which the photocatalytic material is attached to the surface of the particles constituting the abrasive grains, or a film of the photocatalytic material is formed. Note that the photocatalytic material can also exhibit a polishing effect by forming a photocatalytic material having a polishing effect such as titanium oxide, iron oxide, or zirconia into particles and mixing with the abrasive grains.
[0019]
From the viewpoint of sufficiently exhibiting a photocatalytic action for suppressing the attachment of abrasive grains or the like to the surface to be polished, the content ratio of the photocatalytic material in the polishing layer is 3 wt% or more when the weight of the entire abrasive grains is 100 wt%. It is desirable. More preferably, the content is 10% by weight or more. On the other hand, when the content ratio of the photocatalyst material is increased, the polishing characteristics of the abrasive may be affected depending on the type of the photocatalyst material. For example, when titanium oxide is used as the photocatalyst material, the content ratio is desirably 30 wt% or less when the weight of the entire abrasive grains is 100 wt%. The polishing layer may include a lubricant, a dispersant for abrasive grains, and the like, in addition to the abrasive grains, the binder, and the photocatalytic material.
[0020]
The abrasive of the present invention can be implemented, for example, as a polishing sheet, a polishing tape, a polishing stone, a polishing cloth, or the like. For example, in the case of implementing as a polishing sheet or the like, an abrasive may be formed by forming a polishing layer on the surface of a base material. In this case, the substrate to be used only needs to have the required elasticity and strength and can hold the polishing layer. For example, a film made of polyester such as polyethylene terephthalate (PET) or polybutylene terephthalate (PBT), a film made of polycarbonate (PC), or the like is suitable. The thickness of the substrate is not particularly limited, and may be, for example, about 25 to 150 μm.
[0021]
Further, a buffer layer may be formed on the surface of the base material in advance according to the purpose, such as improvement in adhesion between the base material and the polishing layer and patterning of the surface of the polishing layer. For example, a buffer layer may be formed by forming an easily adhesive layer on the surface of the base material. Alternatively, the buffer layer may be formed by heat treatment, corona treatment, plasma treatment, or the like on the surface of the base material. The easy-adhesion layer can be formed by, for example, applying a buffer coating solution composed of an epoxy resin, an acrylic resin, a polyester resin, or the like to the surface of the base material and drying the coating solution.
[0022]
In the case of using the above-described base material, the abrasive of the present invention can be produced by applying a coating agent containing abrasive grains, a binder, a photocatalytic material and the like to the surface of the base material and drying. Specifically, first, a coating agent in which abrasive grains and the like are dispersed in a predetermined solvent is prepared. Next, a coating agent may be applied to the surface of the substrate by a bar coater method, a microgravure method, a comma coat method, or the like, and then heated to 20 to 140 ° C. and dried. The thickness of the polishing layer to be formed may be appropriately set according to the material of the surface to be polished and the polishing process. For example, the thickness is preferably about 3 to 15 μm. The abrasive may be used in a predetermined shape such as a sheet shape, a band shape, and a circular shape.
[0023]
The polishing material of the present invention is used for light irradiation polishing for polishing while irradiating the polishing layer with light having a wavelength at which the photocatalytic action of the catalyst material is exhibited. The method of irradiating light to the polishing layer in contact with the surface to be polished is not particularly limited. For example, when an abrasive is composed of a base material and a polishing layer, light can be irradiated from the base material side, and light transmitted through the base material can be applied to the polishing layer. In general, the wavelength at which the photocatalytic action is exhibited differs depending on the type of the photocatalytic material. Therefore, light having an optimal wavelength may be appropriately irradiated according to the type of the photocatalytic material used for the abrasive of the present invention. For example, when anatase-type titanium oxide is used as the photocatalyst material, it is effective to irradiate ultraviolet light having an intensity peak at 360 to 390 nm. When N-doped titanium dioxide is used, visible light may be applied in addition to ultraviolet light.
[0024]
The abrasive of the present invention can be used for polishing various precision parts such as optical connector end faces, semiconductor wafers, optical lenses, optical disk substrates, and the like. The abrasive of the present invention can be used not only in the final finishing step of polishing, but also in intermediate steps of polishing and the like. In particular, it is most suitable for the final polishing step of the optical connector end face.
[0025]
<Method of polishing optical connector end face>
In the method for polishing an end face of an optical connector according to the present invention, an abrasive having an abrasive layer containing abrasive grains and a photocatalytic material is used. The abrasive may be in accordance with the abrasive of the present invention. Therefore, details are omitted here. In the polishing method of the present invention, the binder constituting the polishing layer does not necessarily need to contain an oxidation-resistant resin. That is, a known material may be used as the binder. However, in consideration of further suppressing oxidative deterioration due to photocatalysis and improving the durability of the abrasive, an embodiment containing an oxidation-resistant resin such as a silicone resin as the binder is preferable.
[0026]
In the polishing method of the present invention, polishing is performed by pressing the end face of the optical connector against the surface of the polishing layer of the polishing material. At that time, the polishing layer is irradiated with light having a wavelength at which the photocatalytic action of the photocatalytic material is exhibited. Here, the method of irradiating the polishing layer with light is not particularly limited. For example, when the polishing material is composed of a base material and a polishing layer, light can be irradiated from the base material side of the polishing material, and the light transmitted through the base material can be applied to the polishing layer. Further, the polishing layer can be irradiated with light through the optical fiber of the optical connector. In the mode of irradiating light through an optical fiber, a special device for guiding light is not required. Therefore, it can be easily implemented and is practical.
[0027]
FIG. 1 shows a schematic view of an example of a polishing apparatus that can carry out the polishing method of the present invention. As shown in FIG. 1, the optical connector 1 is disposed on the upper surface of the abrasive 2. The optical connector 1 is fixed by a jig (not shown).
[0028]
The optical connector 1 includes a ferrule 11 and an optical fiber 12. The ferrule 11 is made of zirconia. An insertion hole is formed inside the ferrule 11. One end (lower end) of the optical fiber 12 is inserted into the insertion hole of the ferrule 11 and fixed with an adhesive. The other end (upper end) of the optical fiber 12 is connected to a light source. Ultraviolet rays are emitted from the light source through the optical fiber 12. The end face 13 of the optical connector 1 is pressed against the surface of the polishing layer 22 of the polishing material 2.
[0029]
The polishing material 2 includes a base material 21 and a polishing layer 22. The substrate 21 is made of polyester and has a sheet shape. The thickness of the substrate 21 is 75 μm. The surface of the substrate 21 on which the polishing layer 22 is formed is subjected to an easy adhesion treatment. The polishing layer 22 is formed on the surface of the substrate 21 and includes colloidal silica (abrasive grains), anatase-type titanium oxide particles (photocatalytic material), and a silicone resin (binder). The content ratio of the titanium oxide particles in the polishing layer 22 is 10 wt% when the weight of the colloidal silica is 100 wt%. The thickness of the polishing layer 22 is about 5 μm.
[0030]
The abrasive 2 reciprocates in the horizontal direction while rotating. Thereby, the end surface 13 of the optical connector 1 pressed against the surface of the polishing layer 22 is polished. At the same time, ultraviolet light is applied to the surface of the polishing layer 22 through the optical fiber 12. As a result, the colloidal silica attached to the end face 13 is adsorbed on the polishing layer 22 by the photocatalytic action of the titanium oxide particles contained in the polishing layer 22. Therefore, the remaining of the abrasive particles and the like on the end face 13 is suppressed.
[0031]
In the present embodiment, anatase-type titanium oxide is used as the photocatalyst material. Therefore, in consideration of the photocatalytic action of titanium oxide, ultraviolet light having an intensity peak at 360 to 390 nm was irradiated. However, the light applied during polishing is not limited to ultraviolet light. As described above, the wavelength at which the photocatalytic action is exhibited differs depending on the type of the photocatalytic material. Therefore, optimal light may be appropriately used according to the type of the photocatalyst material. In this embodiment, the end face of the optical connector made of a zirconia ferrule is polished. However, the material of the ferrule is not particularly limited, and may be metal or plastic. Further, in the present embodiment, the abrasive is composed of the base material and the abrasive layer. However, the abrasive is not limited to the above configuration, and may be composed of only the polishing layer.
[0032]
The polishing method of the present invention is most suitable for the final finishing polishing step of the end face of an optical connector, but can also be used in an intermediate polishing step or the like. Further, it is desirable that the end face of the optical fiber opposite to the end face constituting the polished surface be polished to a somewhat favorable state in order to reduce the influence of light passage and wavelength.
[0033]
【Example】
An abrasive was manufactured based on the above embodiment. Using the manufactured abrasive, finish polishing of the optical connector end surface was performed while irradiating ultraviolet rays, and the polished surface after polishing was evaluated. Hereinafter, the production of the abrasive, the finish polishing test, and the evaluation of the polished surface will be described.
[0034]
<Manufacture of abrasives>
(1) Colloidal silica (manufactured by Nissan Chemical Industries, Ltd .: average particle diameter 0.02 μm) was used as abrasive grains of # 1. As a photocatalyst material, anatase type titanium oxide (trade name “AMT-100”, manufactured by Teica Co., Ltd .: average particle diameter: 6 nm) was used. As the binder, a silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.) was used. First, 100 parts by weight of colloidal silica, 10 parts by weight of titanium oxide, and 100 parts by weight of a silicone resin were dispersed in methyl ethyl ketone (MEK) as a solvent to prepare a coating agent. The weight ratio of titanium oxide to the total weight of colloidal silica was 10% by weight. Next, the prepared coating agent was applied to the surface of a polyester sheet (manufactured by Panac Co., Ltd .: 75 μm in thickness) as a base material by a bar coater method. In addition, the surface of the polyester sheet to which the coating agent was applied was previously subjected to an easy adhesion treatment. Then, it heated at 60 degreeC and dried the applied coating agent, and formed the polishing layer. The thickness of the formed polishing layer was about 5 μm. The abrasive thus produced was processed into a circular shape and subjected to the following finish polishing. In addition, this abrasive was used as # 1 abrasive.
[0035]
(2) Abrasive of # 2 An abrasive containing no photocatalytic material was produced. In the production of the abrasive # 1 above, the abrasive was produced in the same manner as the abrasive # 1, except that titanium oxide was not mixed. The manufactured abrasive was numbered as # 2 abrasive.
[0036]
<Finish polishing test and evaluation of polished surface>
(1) Finish polishing test The manufactured abrasives of # 1 and # 2 were each attached to a polishing machine (“OFL-15”, manufactured by Seiko Instruments Inc.), and a finish polishing test of the end face of the optical connector was performed. Also, polishing sheets A and F (A: trade name “ATR-01”: manufactured by Nippon Micro Coating Co., Ltd., F: trade name “FOS-01”: Dai Nippon Printing) are commercially available for finish polishing of the end face of an optical connector. (Manufactured by Co., Ltd.), and the finish polishing test was similarly performed. The final polishing test was performed using six optical connectors for each polishing material and polishing sheet. Then, three of the used optical connectors were polished while being irradiated with ultraviolet rays (wavelength of intensity peak: 360 to 390 nm), and the other three were polished without being irradiated with ultraviolet rays. Polishing was performed for 180 seconds. The end face of the used optical connector was subjected to a prescribed polishing prescription for PC ferrule as pre-polishing until finish polishing. Then, the end face of the optical connector immediately after the finish polishing was evaluated by the following four items (a) to (d).
(A) Presence or absence of attached matter on ferrule end face: The ferrule end face was observed with an optical microscope, and the presence or absence of attached matter was investigated. (B) Presence / absence of polishing flaw (scratch) on ferrule end face and mirror surface state: The ferrule end face was observed with an optical microscope, and the presence / absence of polishing flaw and the mirror surface state were examined. (C) Surface roughness (Ra) at the center line of the optical fiber: Ra (nm) was measured using a surface profile roughness measuring instrument manufactured by Taylor Hobson Co., Ltd. (D) The amount of protrusion of the optical fiber relative to the ferrule: The amount of protrusion (nm) of the optical fiber relative to the ferrule was measured using an ultra-precision level difference meter manufactured by Taylor Hobson.
[0037]
(2) Evaluation of Polished Surface (2-1) In polishing using abrasive # 1 of abrasive # 1, the state of the end face of the optical connector was different depending on the presence or absence of irradiation of ultraviolet rays. As an example, FIG. 2 shows an optical microscope photograph of an optical connector end face polished while being irradiated with ultraviolet light. As shown in FIG. 2, when irradiated with ultraviolet rays, no deposits and polishing debris were observed on the surface to be polished. In addition, there was no polishing scratch on the end face of the optical connector, and the optical connector was finished in a good mirror surface state. The surface roughness (Ra) at the center line of the optical fiber and the convexity of the optical fiber with respect to the ferrule were both within the range of the standard value.
[0038]
In contrast, raindrop-shaped deposits were observed on the end face of the optical connector polished without irradiating ultraviolet rays. The size of the attached matter was about 1 to 150 mm, and the major axis directions were substantially aligned in the same direction. Further, the adhered matter was fixed to the surface to be polished, and could not be removed by wiping with a nonwoven fabric or the like impregnated with alcohol or the like. Even when ultraviolet light was not irradiated, polishing scratches were not observed and the mirror was finished. The surface roughness (Ra) at the center line of the optical fiber and the convexity of the optical fiber with respect to the ferrule were both within the range of the standard value.
[0039]
(2-2) Polishing of abrasive material # 2 In polishing using the abrasive material of # 2, the end faces of the optical connector were almost in the same state regardless of the presence or absence of ultraviolet irradiation. As an example, FIG. 3 shows an optical microscope photograph of an end face of an optical connector polished while being irradiated with ultraviolet rays. As shown in FIG. 3, in the polishing with the abrasive material of # 2, the same deposits as those described in the later stage of (2-1) were observed on almost the entire end face of the optical connector. The adhered substance remained even when the surface to be polished was wiped with a nonwoven fabric or the like impregnated with alcohol or the like. From this, it can be seen that the deposit is fixed to the surface to be polished. Polishing debris was also observed at the periphery of the ferrule. No polishing scratches were observed, and the mirror finished. The surface roughness (Ra) at the center line of the optical fiber and the convexity of the optical fiber with respect to the ferrule were both within the range of the standard value.
[0040]
(2-3) Commercially available polishing sheets A and F
In the polishing using the polishing sheet A and the polishing sheet F, the end faces of the optical connector were almost in the same state regardless of the presence or absence of the irradiation of the ultraviolet light. That is, in the polishing using the polishing sheets A and F, a raindrop-shaped deposit as shown in FIG. 2 was observed on the end face of the optical connector. Polishing debris was also observed at the periphery of the ferrule. No polishing scratches were observed, and the mirror finished. The surface roughness (Ra) at the center line of the optical fiber and the convexity of the optical fiber with respect to the ferrule were both within the range of the standard value.
[0041]
(2-4) Conclusion In the polishing using the # 2 polishing material containing no photocatalyst material in the polishing layer and the commercially available polishing sheets A and F, the adhering matter and the polishing are applied to the end face of the optical connector regardless of the irradiation of ultraviolet rays. Debris was observed. In addition, even when the polishing material was used without irradiating ultraviolet rays even when the polishing material of # 1 containing a photocatalytic material in the polishing layer was used, an adhering substance was observed on the end face of the optical connector. On the other hand, when polishing using # 1 abrasive containing the photocatalyst material in the polishing layer and irradiating with ultraviolet rays, the end face of the optical connector can be precisely formed without deposits or polishing debris remaining on the end face of the optical connector. Could be polished.
[0042]
【The invention's effect】
The polishing material of the present invention contains a photocatalytic material in the polishing layer. Therefore, in the polishing with the abrasive of the present invention, when light having a wavelength at which the photocatalytic action of the photocatalytic material is exerted is applied to the polishing layer, abrasive grains and the like hardly adhere and remain on the surface to be polished due to the photocatalytic action. Further, the abrasive of the present invention contains an oxidation-resistant resin as a binder. Therefore, there is little possibility that the binder is oxidized and deteriorated by the light or photocatalytic action applied to the polishing layer, and the durability is high.
[0043]
In the method for polishing an end face of an optical connector of the present invention, a polishing material having a polishing layer containing a photocatalytic material is used, and polishing is performed while irradiating the polishing layer with light having a wavelength at which a photocatalytic action is exhibited. According to the polishing method of the present invention, the abrasive particles and the like hardly adhere to and remain on the surface to be polished by the photocatalytic action of the photocatalytic material. Therefore, the step of removing the deposit on the surface to be polished after polishing can be omitted, and the polishing step can be simplified. In addition, there is little possibility that the optical characteristics are deteriorated due to the remaining of the attached matter.
[Brief description of the drawings]
FIG. 1 shows a schematic view of an example of a polishing apparatus capable of performing a polishing method of the present invention.
FIG. 2 is an optical micrograph of an end face of an optical connector after ultraviolet irradiation polishing using a polishing material of # 1.
FIG. 3 is an optical microscope photograph of an end face of an optical connector after ultraviolet irradiation polishing using an abrasive of # 2.
[Explanation of symbols]
1: optical connector 11: ferrule 12: optical fiber 13: end face 2: abrasive 21: base material 22: polishing layer

Claims (10)

砥粒と結合剤とを含む研磨層を備える研磨材であって、
前記研磨層は、さらに光触媒作用を有する光触媒材料を含み、
前記結合剤は、耐酸化性を有する耐酸化性樹脂を含み、
該光触媒材料の光触媒作用が発現する波長を持つ光を該研磨層に照射しながら研磨する光照射研磨に用いられる研磨材。
An abrasive having a polishing layer containing abrasive grains and a binder,
The polishing layer further includes a photocatalytic material having a photocatalytic action,
The binder includes an oxidation-resistant resin having oxidation resistance,
A polishing material used for light irradiation polishing for polishing while irradiating the polishing layer with light having a wavelength at which the photocatalytic action of the photocatalytic material is exhibited.
前記光触媒材料は、酸化チタン、Nドープ二酸化チタン、酸化亜鉛の少なくとも一種を含む請求項1に記載の研磨材。The polishing material according to claim 1, wherein the photocatalytic material includes at least one of titanium oxide, N-doped titanium dioxide, and zinc oxide. 前記耐酸化性樹脂は、シリコーン樹脂、フッ素樹脂、アクリル樹脂、塩化ビニル樹脂、ポリフェニレンエーテル、およびこれらの変性樹脂から選ばれる一種以上である請求項1に記載の研磨材。The abrasive according to claim 1, wherein the oxidation-resistant resin is at least one selected from a silicone resin, a fluorine resin, an acrylic resin, a vinyl chloride resin, a polyphenylene ether, and a modified resin thereof. 前記光触媒材料は酸化チタンであり、前記光は紫外線である請求項1に記載の研磨材。The polishing material according to claim 1, wherein the photocatalytic material is titanium oxide, and the light is ultraviolet light. 前記光触媒材料は、前記砥粒全体の重量を100wt%とした場合の3wt%以上の割合で含まれる請求項1に記載の研磨材。2. The abrasive according to claim 1, wherein the photocatalyst material is contained in a ratio of 3 wt% or more when the weight of the entire abrasive grains is 100 wt%. 3. 砥粒を含む研磨層を備えた研磨材の該研磨層の表面に、
光ファイバーと、該光ファイバーの周囲を被覆するフェルールと、からなる光コネクタの端面を押し当てて該端面を研磨する光コネクタ端面の研磨方法であって、
前記研磨層は、光触媒作用を有する光触媒材料を含み、
該光触媒材料の光触媒作用が発現する波長を持つ光を該研磨層に照射しながら研磨することを特徴とする光コネクタ端面の研磨方法。
On the surface of the polishing layer of the abrasive having a polishing layer containing abrasive grains,
An optical fiber, a ferrule for coating the periphery of the optical fiber, and a method for polishing an end face of an optical connector for polishing the end face by pressing the end face of the optical connector,
The polishing layer contains a photocatalytic material having a photocatalytic action,
A method for polishing an end face of an optical connector, wherein the polishing is performed while irradiating the polishing layer with light having a wavelength at which the photocatalytic action of the photocatalytic material is exhibited.
前記光は、前記光ファイバーを通して前記研磨層に照射される請求項6に記載の光コネクタ端面の研磨方法。The method for polishing an end face of an optical connector according to claim 6, wherein the light is applied to the polishing layer through the optical fiber. 前記光触媒材料は、酸化チタン、Nドープ二酸化チタン、酸化亜鉛の少なくとも一種を含む請求項6に記載の光コネクタ端面の研磨方法。The method of claim 6, wherein the photocatalyst material includes at least one of titanium oxide, N-doped titanium dioxide, and zinc oxide. 前記光触媒材料は、前記砥粒全体の質量を100wt%とした場合の3wt%以上の割合で含まれる請求項6に記載の光コネクタ端面の研磨方法。The method for polishing an end face of an optical connector according to claim 6, wherein the photocatalyst material is contained at a rate of 3 wt% or more when the mass of the entire abrasive grains is 100 wt%. 前記光触媒材料は酸化チタンであり、前記光は紫外線である請求項6に記載の光コネクタ端面の研磨方法。The method according to claim 6, wherein the photocatalyst material is titanium oxide, and the light is ultraviolet light.
JP2003142230A 2003-05-20 2003-05-20 Abrasive, and method for polishing optical connector end face Pending JP2004345003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142230A JP2004345003A (en) 2003-05-20 2003-05-20 Abrasive, and method for polishing optical connector end face

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142230A JP2004345003A (en) 2003-05-20 2003-05-20 Abrasive, and method for polishing optical connector end face

Publications (1)

Publication Number Publication Date
JP2004345003A true JP2004345003A (en) 2004-12-09

Family

ID=33530379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142230A Pending JP2004345003A (en) 2003-05-20 2003-05-20 Abrasive, and method for polishing optical connector end face

Country Status (1)

Country Link
JP (1) JP2004345003A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007683A1 (en) * 2005-07-07 2007-01-18 National University Corporation Kumamoto University Substrate, and method and device for polishing same
JP2008260815A (en) * 2007-04-10 2008-10-30 Admatechs Co Ltd Abrasive grain for polishing material, and polishing material
CN107597164A (en) * 2017-09-14 2018-01-19 重庆理工大学 Photovoltaic/thermal changes the visible light catalytic optical fiber and preparation method with transmitting

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007683A1 (en) * 2005-07-07 2007-01-18 National University Corporation Kumamoto University Substrate, and method and device for polishing same
US8008203B2 (en) 2005-07-07 2011-08-30 National Universtiy Corporation Kumamoto University Substrate, method of polishing the same, and polishing apparatus
JP4904506B2 (en) * 2005-07-07 2012-03-28 国立大学法人 熊本大学 Substrate, polishing method thereof, and polishing apparatus
JP2008260815A (en) * 2007-04-10 2008-10-30 Admatechs Co Ltd Abrasive grain for polishing material, and polishing material
CN107597164A (en) * 2017-09-14 2018-01-19 重庆理工大学 Photovoltaic/thermal changes the visible light catalytic optical fiber and preparation method with transmitting
CN107597164B (en) * 2017-09-14 2020-05-15 重庆理工大学 Visible light catalytic optical fiber for photoelectric and photothermal conversion and transfer and manufacturing method thereof

Similar Documents

Publication Publication Date Title
CN100339740C (en) Stainproof eyeglass lens and method for production thereof
JP4536824B2 (en) Transparent resin plate and manufacturing method thereof
JP6881301B2 (en) Glass plate manufacturing method
WO2007034643A1 (en) Process for producing film with rugged pattern
EP2293119A1 (en) Antireflection film and process for producing the antireflection film
TWI382893B (en) Substrate, grinding method of the same and grinding device
CN116395972A (en) Anti-glare glass substrate
JP2007140282A (en) Transparent electro-conductive hard coat film, polarizing plate and image display apparatus using the same
JP2004241775A (en) Anti-scattering layer for polishing pad window
JP6904234B2 (en) Mask blank substrate and mask blank
TW580419B (en) Polishing foaming sheet and method of manufacture
US6782717B2 (en) Method for manufacturing glass substrate of information recording medium
WO2004014603B1 (en) Polishing pad with window
JP6307830B2 (en) Low refractive index film and manufacturing method thereof, antireflection film and manufacturing method thereof, and coating liquid set for low refractive index film
JP2009113484A (en) Base material with fine particle layered thin film, manufacturing method of the same and optical member using the same
JP2004345003A (en) Abrasive, and method for polishing optical connector end face
JP2010274348A (en) Polishing film and polishing method using the same
JP2008260815A (en) Abrasive grain for polishing material, and polishing material
JP2004083307A (en) Silica fine particle, coating material for low refractive index film formation, low refractive index film and method for manufacturing the same, and antireflection film
JP2000343390A (en) Processing method for glass substrate
JP4357625B2 (en) Color filter and manufacturing method thereof
JP5202622B2 (en) Manufacturing method of plastic lens
JP2015136773A (en) Method for polishing glass substrate
JP2005234311A (en) Optical element and method of manufacturing optical element
JPH09248771A (en) Abrasive tape for optical connector ferrule end surface, polishing method for optical connector ferrule end surface, and polishing device for optical connector ferrule end surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818