JP2004344741A - Sewage treatment method - Google Patents

Sewage treatment method Download PDF

Info

Publication number
JP2004344741A
JP2004344741A JP2003143254A JP2003143254A JP2004344741A JP 2004344741 A JP2004344741 A JP 2004344741A JP 2003143254 A JP2003143254 A JP 2003143254A JP 2003143254 A JP2003143254 A JP 2003143254A JP 2004344741 A JP2004344741 A JP 2004344741A
Authority
JP
Japan
Prior art keywords
tank
sewage treatment
bulking
activated sludge
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003143254A
Other languages
Japanese (ja)
Other versions
JP4854918B2 (en
Inventor
Yoshio Nishiwaki
芳男 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
Original Assignee
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soda Co Ltd filed Critical Nippon Soda Co Ltd
Priority to JP2003143254A priority Critical patent/JP4854918B2/en
Publication of JP2004344741A publication Critical patent/JP2004344741A/en
Application granted granted Critical
Publication of JP4854918B2 publication Critical patent/JP4854918B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sewage treatment method using active sludge and a bulking prevention agent where bulking caused by filamentous microorganisms as the maximum trouble on facility management can securely be prevented. <P>SOLUTION: In the sewage treatment method, sewage is stirred in a horizontal direction in the presence of the active sludge and the bulking prevention agent within a disposal tank. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、活性汚泥法による汚水処理法において、施設管理上、最大の障害となる糸状性微生物によるバルキングの発生を確実に防除できる汚水処理方法に関する。
【0002】
【従来の技術】
従来、生活排水や産業排水、廃水等の汚水を処理する方法として、活性汚泥を用いる活性汚泥法が広く採用されている。この方法は、有機物を含有する汚水を活性汚泥の存在下に曝気することにより、活性汚泥によって有機物を吸着・分解させたのち、重力により沈殿する性質を利用して上澄み水(処理水)を得るものである。
【0003】
この活性汚泥法を用いる汚水処理施設の一例(概略)を図4に示す。図4に示す処理施設は、第1次沈殿槽1、曝気槽2、最終沈殿槽(第2次沈殿槽)3及び汚泥返送手段4からなる。この処理施設では、先ず、汚水を第1次沈殿槽1に流入させて大型の沈殿物を除去し、沈殿物を除去した汚水を活性汚泥が収容された曝気槽2に移送する。次に、この汚水を活性汚泥とともに曝気することで、汚水に含まれる有機物を活性汚泥によって吸着・分解させる。次いで、得られた処理水を最終沈殿槽3へ移送して活性汚泥を沈殿除去し、上澄み水を必要に応じて塩素殺菌を行った後に外部に放出させている。また、沈殿した活性汚泥の一部は、返送汚泥として汚泥返送手段4により曝気槽に戻し、残りの活性汚泥は濃縮して脱水ケーキとし、焼却処理を行っている。
【0004】
ところで、これらの活性汚泥法による汚水処理の際には、最終沈殿槽において活性汚泥が沈降不良となる現象が生じる場合がある。活性汚泥が沈降不良となる現象はバルキングと称され、活性汚泥法における最大の問題となっている。その原因は、活性汚泥中の微生物相の生育バランスが崩れ、フロック形成菌よりも糸状性微生物が優勢となることであるといわれている。
【0005】
バルキングが発生すると、活性汚泥が膨張して沈殿しにくくなり、沈殿槽において活性汚泥と処理水との界面を得ることが不可能となる。そして、活性汚泥が処理水とともに外部に流出し、環境汚染の原因となる。さらに、活性汚泥の流出により、曝気槽内のMLSS(曝気槽水内の浮遊物質)濃度が維持されず、排水や廃水中に溶解している有機物の活性汚泥による生物分解が不良となり、より一層の環境汚染をもたらす。
【0006】
従来、バルキングが発生した場合の対処方法としては、無機凝集剤や高分子凝集剤を投入することにより活性汚泥の沈降性を大きくする方法や、廉価な殺菌剤である塩素を投入する方法等が知られている。しかしながら、凝集剤の添加は活性汚泥の沈降性悪化を一時的に解決するが、単なる応急処置にすぎず、バルキングの原因である糸状性微生物の生育を抑制しているわけではないので、バルキングの再発防止には有効でない。また、塩素等の殺菌剤は選択性がないため、バルキングの原因となる糸状性微生物の生育のみならず、活性汚泥中の有用な生物の生育に多大なる悪影響を与え、バルキング防除後に水質が極端に悪化したり、有用微生物の死滅によりバルキングの再発を誘発するという問題があった。
【0007】
そこで、汚水を曝気槽に移して活性汚泥とともに曝気する際に、各種バルキング防除剤を汚水処理槽に投入する方法が提案されている(特許文献1〜4)。しかしながら、各種バルキング防除剤を汚水処理槽へ投入しただけでは、バルキングを完全に抑えることができない場合があり、問題となっていた。
【0008】
【特許文献1】
特開平10−244287号公報
【特許文献2】
特開平11−33583号公報
【特許文献3】
特開平11−47783号公報
【特許文献4】
特開平11−57762号公報
【0009】
【発明が解決すべき課題】
【0010】
本発明は、かかる従来技術の問題に鑑みてなされたものであり、活性汚泥及びバルキング防除剤を用いる汚水処理方法において、施設管理上、最大の障害となる糸状性微生物によるバルキングを確実に防除できる汚水処理方法を提供することを課題とする。
【0011】
【課題を解決するための手段】
本発明者は、活性汚泥法による汚水処理方法において、バルキングを確実に防除できる方法について鋭意検討した。その結果、バルキング防除剤の存在下、汚水処理槽内の内容物を水平方向に撹拌することで、バルキングの発生を確実に防除できることを見出し、本発明を完成するに至った。
【0012】
かくして本発明によれば、少なくとも一つの汚水処理槽を用いる、活性汚泥法による汚水処理方法であって、バルキング防除剤の存在下、汚水処理槽内で内容物を水平方向に撹拌することを特徴とする汚水処理方法が提供される。
本発明の汚水処理方法においては、前記撹拌を、さらにカチオン系高分子凝集剤、無機凝集剤、粘土鉱物、酵素製剤及び好気性微生物から選ばれる少なくとも1種の存在下で行うのが好ましい。
【0013】
本発明の汚水処理方法においては、前記汚水処理槽が、曝気槽、又は該曝気槽とは別個に設けられた、好気性微生物を培養し、この培養物を前記曝気槽に流入するための混合槽であるのが好ましい。また、前記混合槽において、返送汚泥、汚水原水、曝気槽水及び処理水から選ばれる1種又は2種以上を用いて好気性微生物を培養するのがより好ましい。
【0014】
【発明の実施の形態】
以下、本発明の汚水処理方法を詳細に説明する。
本発明の汚水処理方法は、活性汚泥法による汚水処理方法であって、汚水処理槽内で、バルキング防除剤の存在下、内容物を水平方向に撹拌することを特徴とする。
本発明の汚水処理法は、活性汚泥を用いて汚水を浄化するものであればよく、標準活性汚泥法のほか、長時間エアレーション法、回分式活性汚泥法等の方法を包含するものである。また、循環式硝化脱窒法のごとく、汚水中の有機物(BOD)と窒素とを同時に除去することができる方法も本発明に含まれる。
【0015】
本発明の対象とする汚水は有機物を含むものであって、浄化が必要とされるものであれば特に制限されない。例えば、生活排水や産業排水、廃水等の有機物により汚染された水が挙げられる。
本発明に用いる活性汚泥は、有機物を含有する汚水を曝気することにより得られるものであって、水中の有機物を吸着・分解しながら呼吸、増殖を続ける好気性のバクテリアや原生動物の集合体である。
【0016】
本発明に用いるバルキング防除剤としては、糸状性微生物の生育を選択的に阻害し、活性汚泥の沈降性の改善に役立つものであれば特に制約されない。その具体例としては、特公昭58−14274号公報に記載されたジチオカルバミン酸塩、特開昭55−11536号公報に記載されたヨードプロパルギル誘導体、特開昭55−147196号公報に記載されたビスビグアニド誘導体、特公昭63−39562号公報に記載された塩化ベンザルコニウムや塩化ベンゼトニウム、特公平1−37364号公報に記載された塩酸クロロヘキシジンやグルコン酸クロルヘキシジン、特公平1−49560号公報に記載されたアクリル酸ヒドラジド系高分子化合物やアミノ基又は第4級アンモニウム塩を含有する高分子化合物、スルファミン酸等酸又はその塩、特開昭62−168599号公報に記載された第四級アンモニウム塩、チオシアネート類及びハロゲン化アセトキシアルケン類からなる殺菌剤、特開平4−74595号公報に記載された別々に添加されるアルキレンイミン重合体等と次亜塩素酸ナトリウム等、特開平5−146790号公報に記載されたシンナミックアルデヒド、アニスアルデヒド、オイゲノール等、特公平6−88889号公報に記載されたイミダゾール化合物とエピハロヒドリンとの陽イオン性反応物、特開平6−170385号公報に記載されたインダゾール誘導体、特開平6−63580号公報に記載されたイソフタロニトリル誘導体、特開平6−71286号公報に記載された少量の凝集剤と少量の殺菌剤との混合物、特開平6−142676号公報に記載されたエピハロヒドリン等とアミンの反応で得られる水溶性重合体又はアルキレンイミン重合体と硫酸アルミニウム等との混合物、特開平6−206089号公報に記載されたメチレンジチオシアネート、特開平7−8985号公報に記載されたテトラメチルアンモニウムクロライドやプロピルトリメチルアンモニウムブロマイド等、特開平6−343989号公報に記載された1−アルキルピリジニウムハライド、特開平7−24490号公報に記載されたエピハロヒドリン等とアミンの反応で得られる水溶性重合体とアルキレンイミン重合体とテトラアルキルアンモニウムハライドや1−アルキルピリジニウムハライドとの混合物、特公平7−38991号公報に記載されたソルビン酸及びその塩、特開平7−80492号公報に記載された炭酸カルシウム等とフロック形成菌との混合物、特公平7−41263号公報に記載されたジアルキルアミンとエピハロヒドリンとからの水溶性陽イオン性重合体、特開平7−116686号公報に記載されたアニオン性界面活性剤とノニオン性界面活性剤との混合物、特開平7−116687号公報に記載された第一乃至第三アミノ基を有するカチオン性界面活性剤と両性界面活性剤との混合物、特開平7−136684号公報に記載されたマクロライド系抗生物質、特開平7−241590号公報に記載された1−ヒドロキシ−2(1H)−ピリジンチオンアルカリ金属塩とカチオン系高分子凝集剤との混合物、特開平9−70595号公報に記載されたアミノグリコシド系抗生物質、特開平10−244287号公報記載のナフトール類、特開平11−33583号公報記載のナフトキノン類等の従来公知のバルキング防除剤が挙げられる。これらのバルキング防除剤は1種単独で、あるいは2種以上を組み合わせて用いることができる。
【0017】
これらの中でも、バルキングの原因となる有害な糸状性微生物の生育を阻害するが、有用なフロック形成菌の生育は阻害しないという選択性に優れるものが好ましい。このようなバルキング防除剤としては、上記特開平6−170385号公報に記載されているインダゾール誘導体又はそれらの塩の少なくとも1種を含有するものが挙げられる。
【0018】
バルキング防除剤は、通常粉剤として用いるが、水等に溶解させた液剤として使用することもできる。粉剤として使用する場合、添加量は汚水処理槽の総容量に対し、1〜200mg/リットル程度、好ましくは2〜50mg/リットル程度である。
バルキング防除剤の汚水処理槽への添加方法は特に制約されず、例えば、連続的に添加する方法、1回/日で2〜3回に分けて添加する方法等が挙げられる。
【0019】
本発明においては、前記バルキング防除剤とともに、カチオン系高分子凝集剤、無機系凝集剤、粘土鉱物、酵素製剤及び好気性微生物から選ばれる少なくとも一種を汚水処理槽に添加するのが好ましい。これらの添加剤をバルキング防除剤と併用することで、バルキング防除剤添加直後の初期活性汚泥沈降性が改善され、またバルキング防除期間が持続するという効果が期待できる。
【0020】
用いるカチオン系高分子凝集剤としては、ポリアクリル酸エステル系、ポリメタクリル酸エステル系、ビニルホルムアルデヒド系、ジシアンアミド系等が挙げられ、無機系凝集剤としては、硫酸アルミニウム、塩化第二鉄等が挙げられる。粘土鉱物としては、ゼオライト、バーミュキュライト、アタパルジャイト等が挙げられる。カチオン系高分子凝集剤の添加量は、汚水処理槽の総容量に対して、通常10〜50mg/リットル程度であり、無機系凝集剤及び粘土鉱物の添加量は、汚水処理槽の総容量に対して、通常10〜200mg/リットル程度である。
【0021】
用いる酵素製剤としては、アミラーゼ、プロテアーゼ、セルラーゼ、リパーゼ等の酵素の1種又は2種以上を含む製剤が挙げられる。酵素製剤は、好気性微生物や他の微生物の培養物であっても、植物等から抽出したものであってもよい。また酵素製剤は、これらの微生物から酵素成分を単離・精製したものであっても、これらの混合物であってもよい。
【0022】
好気性微生物としては、通気培養で増殖しうるものであればバクテリア、カビ、酵母等どのような微生物でも使用することができる。これら微生物は混合菌として用いてもよい。これらの中でも、増殖速度が速く、菌体外酵素を多量に生産する微生物が好ましい。かかる微生物としては、枯草菌(Bacillus subtilis)、ズーグレア等の活性汚泥菌、原水に油分が多い場合は油分解菌、原水に難分解性物質が多い場合は種々の難分解性物質分解菌等を例示することができる。
これら酵素製剤や好気性微生物は、後述するように、曝気槽とは別個に用意した混合槽に添加するのが好ましい。
【0023】
本発明の汚水処理方法は、バルキング防除剤の存在下、汚水処理槽内で内容物を水平方向に撹拌することを特徴とする。
本発明に用いる汚水処理槽としては、水平方向の撹拌を行える形状のものであれば特に制約はないが、水平方向に対する撹拌効率のよい円筒形状のものが好ましい。活性汚泥は好気性微生物の集合体であるため、用いる汚水処理槽としては、好気性微生物の混合と分解反応に必要な酸素(空気)を供給する装置(散気装置)が設置されたものが好ましい。具体的には、汚水を活性汚泥の存在下に曝気処理する曝気槽や、酵素剤又は好気性微生物の培養物を曝気槽に流入するための混合槽が挙げられる。
【0024】
本発明において、水平方向に攪拌するとは、汚水処理槽内において、少なくともバルキング防除剤を含む混合物(汚水処理槽内の内容物)を、機械的な攪拌により強制的に水平方向に対流させることをいう。また、水平方向に対流させることができるものであれば、渦状や、水平方向及び垂直方向の組み合わせ等のように多方向に対流させるものであってもよい。
【0025】
水平方向に撹拌する方法としては、例えば、垂直に設けた軸の先端に取り付けた撹拌翼を回転させ、回転の遠心作用による水の流れを翼の半径方向に強く発生させる輻流型撹拌による方法、撹拌翼を回転させて、回転軸方向の推力により軸方向の流れも同時に発生させることができる軸流型撹拌による方法等の攪拌翼を用いる方法;噴流ノズルからの水平方向の噴流による噴流式撹拌による方法;磁力により回転する攪拌子を用いる方法;等が挙げられる。これらの中でも、機械的かつ強制的に激しく水平方向に撹拌することができること、及び既存の設備をそのまま利用することができること等の理由から、撹拌翼を用いて撹拌する方法が好ましい。
【0026】
撹拌翼を用いる方法は、撹拌モーター、撹拌軸及び撹拌翼を有する撹拌装置を使用して行うことができる。
用いる撹拌翼としては特に制限されないが、例えばパドル型、プロペラ型、タービン型、ブルマージン型、イカリ型、及びこれらの変形型の撹拌翼等が挙げられる。また、撹拌翼の大きさや段数は特に制限されず、用いる曝気槽の大きさ(幅及び高さ)を考慮して、バルキング防除効果が最も発揮されるように適宜な大きさ、段数のものを選定することができる。
【0027】
撹拌装置の設置位置及び設置数は、水平方向に均一な撹拌が確保されるのであれば特に制限されず、汚水処理槽内の適宜な位置に撹拌装置を1基設置してもよいし、複数の撹拌翼を設置してもよい。また、汚水処理槽を複数個設置する場合には、全ての汚水処理槽に撹拌装置が設置されていてもよいし、特定の汚水処理槽のみに設置してもよい。
【0028】
撹拌装置の撹拌速度等の撹拌条件は、所期のバルキング防除効果を得ることができるのであれば特に制限されず、適宜な条件を設定することができる。
撹拌時間は、通常1〜24時間、好ましくは2〜10時間である。また、撹拌時の温度は、通常0〜40℃、好ましくは10〜35℃である。
【0029】
汚水処理槽内で内容物を水平方向に撹拌することにより、バルキングを確実に防止できる理由の詳細は明らかではないが、汚水処理槽内での撹拌を縦方向の対流を起こすバブリングのみとした場合には、同様な効果が得られないことから、次のように考えることができる。すなわち、汚水処理槽内で内容物を水平方向に撹拌することにより、糸状性微生物が、糸状体の切断、折れ曲がり、ねじれ、細胞膜の破裂等の機械的なダメージを受け、結果として糸状性微生物を死滅、又は微細な菌糸断片となり、バルキング防除剤の添加のみだけでは不十分であったバルキングの発生を抑制することができる。
【0030】
本発明によれば、バルキング防除剤の働き(糸状性微生物の生育阻害)と水平方向の撹拌による機械的ダメージとの相乗効果により、汚水処理槽内の糸状性微生物を死滅、又は微細な菌糸断片とすることで、バルキングの発生を防止し、活性汚泥の沈降性を改善することができる。
【0031】
本発明の汚水処理方法は、例えば、図1(a)及び(b)に示す汚水処理施設により実施することができる。図1(a)及び(b)中、1は第1沈殿槽、2は曝気槽、2aは第1の曝気槽、2bは第2の曝気槽、3は最終沈殿槽、4は活性汚泥の返送手段、5は撹拌装置である。
【0032】
図1(a)に示す汚水処理施設では、先ず、汚水が第1次沈澱槽に流入され、大型のゴミが除去される。次に、大型のゴミが除去された汚水は曝気槽2に送液される。
【0033】
曝気槽2は、図1(a)に示すごとく一つの槽からなるものであってもよいが、図1(b)に示すごとく複数の槽が連結されたものでもよく、一つの大きな曝気槽の中に仕切り板を設けたものであってもよい。さらに、有機物の分解と同時に窒素を除去することを目的とする場合のように、曝気せずに撹拌のみを行う曝気槽と、散気装置により曝気を行う曝気槽からなるものであってもよい。前記曝気槽や混合槽の大きさは特に制約されず、汚水の処理量等に応じて適宜なものを選択使用できる。
【0034】
曝気槽2内では、散気装置6により新鮮な空気が絶えずバブリングされる状態で、第1の沈殿槽1から送り込まれた汚水が、活性汚泥及びバルキング防除剤とともに撹拌装置5により水平方向に撹拌される。この間に、汚水に含まれる有機物は活性汚泥により吸着・分解され、バルキング防除剤の効果と水平方向に撹拌する効果との相乗効果により、糸状性微生物は死滅、又は微細な菌糸断片となっており、バルキングの発生が確実に防止される。
【0035】
有機物が分解された汚水は活性汚泥とともに、最終沈殿槽3に移送される。最終沈殿槽3において、静置して重力分離することにより、上澄み水と活性汚泥とに分離される。分離した活性汚泥の一部は、活性汚泥の返送手段4により曝気槽2に戻され、再び汚水処理に供される。また余分な活性汚泥は、脱水等を行った後に焼却処分される。一方、上澄み水は、図示を省略する塩素殺菌装置により殺菌消毒された後、外部へ放流される。
【0036】
図1(b)に示す汚水処理施設では、先ず、第1の曝気槽2aにおいて、通気性条件下、汚水、活性汚泥及びバルキング防除剤を含む混合物を一定時間滞留させて、汚水に含まれる有機物を活性汚泥により十分に分解させる。次いで、処理された汚水を第2の曝気槽2bに移送し、第2の曝気槽2b内において撹拌装置5により水平方向に撹拌を行っている。第2の曝気槽2bにおいて、第1の曝気槽2aで処理された汚水を水平方向に撹拌することにより、バルキングの発生を確実の防止することができる。図1(b)に示す装置によれば、最終沈殿槽3に送り込まれる活性汚泥の量を少なくして、活性汚泥を分離、回収及び処分する作業の負担を軽減することができる。
【0037】
本発明の汚水処理方法おいては、バルキング防除剤と汚泥活性化媒体とを、曝気槽とは別に用意した混合槽中で水平方向に撹拌して得られる汚泥活性化物を、曝気槽に添加するようにしてもよい。この方法は、撹拌装置の設置が簡便であり、かつ活性汚泥による汚水処理の効率をさらに高めることができるので、特に好適である。
【0038】
用いる汚泥活性化媒体としては、返送汚泥、汚水原水、曝気槽水、処理水の1種又は2種以上が挙げられる。これらのうち、活性汚泥の活性化効率、すなわちバルキング防除剤の使用量当たりの活性化効率の観点からは、返送汚泥の使用が好ましい。また、一年中汚水原水が流入し、かつ原水濃度が安定している施設の場合、汚水原水がバルキングを発生させる糸状性微生物を含有する可能性がある場合、未だバルキングが発生していない曝気槽におけるバルキング発生予防を目的とする場合等においては、汚泥活性化媒体として汚水原水を使用するのが好ましい。汚水原水を使用する場合には、発泡が生じることがあるので、泡抜き処理や消泡処理をすることが望ましい。一方、用いる混合槽が小さい場合や、特殊事情により返送汚泥、汚水原水、曝気槽水が使用できない場合、生物膜方式等特殊な処理方式を用いる場合には、水道水又は処理水を使用するのが好ましい。水道水等を使用する場合は、汚泥活性化媒体に、酵素・微生物製剤等を添加することが望ましい。
【0039】
本発明に用いる混合槽としては、通気しながら槽内の内容物を水平方向に撹拌することができるものであればどのようなものでも使用し得る。例えば、通気撹拌機構を備えたものが挙げられる。通気撹拌機構としては、通気量、通気により生じる気泡の大きさ、撹拌の速さ等を調整しうるものが好ましい。また、撹拌翼や邪魔板を備えたものであってもよいが、通気管や散気管等により撹拌できる場合には撹拌翼等を備えていなくとも良い。
【0040】
また混合槽として、上述の通気撹拌機構を備えた培養タンク等を用いることもできる。培養タンクを用いる場合には、該タンク内に、好気性微生物、汚泥活性化媒体(好ましくは返送汚泥)及びバルキング防除剤を添加して、好気性微生物を培養するのが好ましい。得られる汚泥活性化物は、活性汚泥による汚水の処理効果を高め、かつバルキングの防除効果に優れている。なお、返送汚泥等の粘度が高い場合や液量が少なく混合槽への汚泥活性化媒体の定量導入が困難な場合には高濃度定量ポンプを使用することもできる。
【0041】
混合槽内の内容物を水平方向に撹拌する方法としては、前記曝気槽内の内容物を水平方向に撹拌する方法と同様のものが採用できる。混合槽内の内容物を水平方向に撹拌する撹拌装置を設置した一例(概要図)を図2に示す。この混合槽7の中央部には撹拌装置が一つ設置されている。図2中、左端(矢印)から返送汚水が送り込まれる。混合槽7内はバルキング剤及び所望により他の添加剤が添加されている。また混合槽7内の底部には、外部から空気(酸素)を取り込んで、混合槽7の底部から空気をバブリングさせる散気装置6が設置されている。混合槽の通気は、具体的には、処理施設の送気配管より分岐した通気管及び曝気ブロアーや水中曝気レーターを装備したり、曝気量が調節可能な通気装置や、細かい気泡で全面曝気ができ、通気量に見合ったディフィーザー、散気管等の散気装置を設けることにより行うことができる。
【0042】
混合槽の容量は、適用する処理施設の規模によるが、通常は2〜5m程度の容積のものが用いられ、かかる混合槽における通気能力としては、通常、混合槽の容積の4倍/時間程度が必要である。また、混合槽の設置場所は施設の状況等により異なるが、通常は曝気槽の汚水原水流入側付近で、作業等に便利で安全な場所が好ましい。
【0043】
本発明においては、効率よく汚泥活性化物を得るために、混合槽にバルキング防除剤を定期的に補給することが好ましく、バルキング防除剤を酵素製剤及び/又は好気性微生物とともに定期的に補給することがより好ましい。特に前記汚泥活性化媒体として返送汚泥を用いる場合には、バルキング防除剤を混合槽に定期的に補給するのが好適である。また、これらバルキング防除剤や酵素製剤、好気性微生物(製剤)が粉立ちを抑止するために一定量ずつ水溶性フィルムにパックされている場合には、混合槽にそのまま投入することができる。バルキング防除剤の混合槽への投入量は、その種類にもよるが毎日10〜3000g/m程度、好ましくは400〜2000g/m程度である。
【0044】
混合槽におけるバルキング防除剤と汚泥活性化媒体との接触は、通気撹拌条件下で行うことが好ましい。そして、汚泥活性化媒体の混合槽への導入は回分(バッチ)式又は連続式のいずれでも良く、連続式の場合、汚泥活性化媒体は混合槽の有効容積の1/2程度を24時間で連続的に導入することが望ましい。いずれにしても、混合槽中でのバルキング防除剤と汚泥活性化媒体との接触時間は24〜96時間程度が必要である。24時間より少ないと、曝気槽中の活性汚泥を活性化することができる汚泥活性化物が得られず、96時間を超えても、曝気槽中の活性汚泥を活性化することができる汚泥活性化物が得られない。
【0045】
混合槽から得られる汚泥活性化物の曝気槽へ流入は定量流入であるのが好ましい。定量流入することにより、安定した汚水処理を実現することができる。定量流入は、バルキング防除剤を配合して一緒に流入しても、バルキング防除剤とは別に流入してもよい。また、処理施設の状況によっては、返送汚泥又は流入汚水原水に流入してこれらと共に曝気槽に流入することも可能である。但し、流入汚水原水に流入する場合は、pHの変動等により汚泥活性化物の活性が低下することがないことをあらかじめ確認しておく必要がある。定量流入する量は、処理の規模により適宜設定すればよい。また、定量流入としては、連続流入であっても、間歇流入であっても良いが、汚泥活性化物の流入を継続、例えば少なくとも5日以上継続することが特に望まれる
【0046】
混合槽から得られる汚泥活性化物を曝気槽へ流入させる場所としては、曝気槽内で滞留時間がとれる場所、例えば曝気槽の原水流入側が望ましいが、流入原水に流入させることも可能である。また汚泥活性化物は、曝気槽内の滞留時間が取れる場所に流入させるのが好ましい。曝気槽内の滞留時間が取れる場所は、具体的には、第1次沈澱槽から汚水が曝気槽に流入する側である。また、前記図1(b)に示すように、曝気槽が複数個設置されている場合には、第1次沈澱槽から汚水が流入する側の曝気槽である。
【0047】
本発明の汚水処理方法を実施するための汚水処理施設であって、混合槽を有するものの例を図3(a)〜(c)に示す。図3(a)〜(c)中、1は第1次沈殿槽、2は曝気槽、3は最終沈殿槽、4は活性汚泥の返送手段、7は混合槽である。また、混合槽7には、槽内の内容物を水平方向に撹拌する撹拌装置5’が取り付けられている。
【0048】
図3(a)に示す施設では、返送汚泥の一部を汚泥活性化媒体として混合槽7に移送し、得られた汚泥活性化物を混合槽7からバルキング防除剤とともに曝気槽2へ連続定量流入するようになっている。図3(b)に示す施設では、汚水原水の一部を汚泥活性化媒体として混合槽7に移送し、得られた汚泥活性化物を混合槽7からバルキング防除剤とともに曝気槽2へ連続定量流入させるようになっている。また、図3(c)に示す施設では、曝気槽水の一部を汚泥活性化媒体として混合槽7に移送し、得られた汚泥活性化物を混合槽7からバルキング防除剤とともに曝気槽2へ連続定量流入させるようになっている。
【0049】
図3(a)〜(c)に示す汚水処理施設によれば、バルキングの発生を確実に防止できるとともに、混合槽へのバルキング防除剤並びに酵素製剤及び/又は好気性微生物の補給量は、曝気槽に直接投入して同じ効果を得るのに要する補給量に比してきわめて少量で済み、格段に経済的なものとなっている。
【0050】
【実施例】
以下に、実施例を掲げて本発明をさらに具体的に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。
【0051】
(バルキングの発生)
容量2リットルの曝気槽と、容量0.5リットルの沈殿槽とを有する汚水処理装置の曝気槽に、人工合成廃水(グルコース870mg/l、ペプトン250mg/l、塩化ナトリウム300mg/l、リン酸二カリウム39mg/l、硝酸アンモニウム43mg/l)を連続的に供給し、通気条件下に活性汚泥を培養した。
【0052】
合成廃水の流入量1リットル/日、MLSS濃度2,000mg/リットル、室温20〜25℃の条件で糸状性バルキングを発生させ、以下の実験を行った。このとき発生していた糸状性微生物は、TYPE021N、スフェロチルス ナタンス、TYPE1701、TYPE1702であった。糸状性微生物の識別は、Eikelboom D.H.Filamentous organismsobserved in activated sludge.Water Research vol.9:365−388(1975)に記載された方法で行った。
【0053】
(試験方法)
試験区として、以下の実施例1〜3及び比較例1,2を設けた。
(a)実施例1
前述のバルキング防除剤を40mg/日の割合で毎日曝気槽に添加し、該曝気槽内を水平方向に撹拌した区
(b)実施例2
磁気撹拌子を入れた300mlの三角フラスコに曝気槽水100mlをとり、そこに前述のバルキング防除剤40mgを添加し、内容物をマグネッチックスターラーを使用して48時間水平方向に撹拌した後、その混合物を毎日曝気槽に添加した区(曝気槽内は、水平方向に撹拌していない)
(c)実施例3
磁気撹拌子を入れた300mlの三角フラスコに曝気槽水100mlをとり、そこに前述のバルキング防除剤40mgを添加し、内容物をマグネッチックスターラーを使用して48時間水平方向に撹拌した後、その混合物を毎日曝気槽に添加し、該曝気槽内を、先端部にプロペラ型の攪拌翼が取り付けられた攪拌装置を使用して水平方向に撹拌した区
【0054】
(d)比較例1
薬剤を何も添加しない区
(e)比較例2
5−ニトロイミダゾ−ルを有効成分とするバルキング防除剤(日本曹達(株)製、商品名:バルキック)を40mg/日の割合で毎日曝気槽に添加した区
【0055】
バルキング防止効果の判定は、顕微鏡観察による糸状性微生物の生育判断(非常に多い場合を「++」、多い場合を「+」、非常に少ない通常の場合を「±」で評価した)により行った。結果を第1表に示す。
【0056】
【表1】

Figure 2004344741
【0057】
第1表から、曝気槽にバルキング防除剤を添加し、曝気槽内を水平方向に撹拌した場合(実施例1)、曝気槽水とバルキング防除剤を混合槽内で48時間水平方向に撹拌して得られた混合物を曝気槽に添加した場合(実施例2)、及び曝気槽水とバルキング防除剤を混合槽内で48時間水平方向に撹拌して得られた混合物を曝気槽に添加し、該曝気槽内を水平方向に撹拌した場合(実施例3)では、糸状性微生物の大幅な減少が見られ、バルキングをほぼ完全に防止することができることが確認された。その一方、バルキング防除剤を添加していない比較例1では、糸状性微生物が全く減少していなかった。曝気槽にバルキング防除剤を添加したが、水平方向に撹拌をしなかった場合(比較例2)は、糸状性微生物がわずかに減少していた。
【0058】
【発明の効果】
本発明の汚水処理方法によれば、生活排水や産業排水、廃水等の汚水処理施設において、水質を悪化させることなく、また、有用なフロック形成菌の生育を阻害することなく、糸状性微生物を減少させてバルキングの発生を確実に防止し、曝気槽内の活性汚泥を恒常的に活性化し、汚水を効率的かつ経済的に処理することができる。
【図面の簡単な説明】
【図1】図1は、本発明の実施に好適な汚水処理施設の概略図である。
【図2】図2は、図1に示す汚水処理施設の混合槽の概略図である。
【図3】図3は、本発明の実施に好適な汚水処理施設の概略図である。
【図4】図4は、従来の活性汚泥法による汚水処理施設の概略図である。
【符号の説明】
1…第1次沈殿槽、2…曝気槽、2a…第1の曝気槽、2b…第2の曝気槽、3…最終沈澱槽、4…汚泥返送手段、5,5’…撹拌装置、6…散気装置、7…混合槽[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sewage treatment method capable of reliably preventing the occurrence of bulking due to filamentous microorganisms, which is the greatest obstacle in facility management, in a sewage treatment method using an activated sludge method.
[0002]
[Prior art]
BACKGROUND ART Conventionally, an activated sludge method using activated sludge has been widely used as a method for treating wastewater such as domestic wastewater, industrial wastewater, and wastewater. In this method, an organic substance-containing wastewater is aerated in the presence of activated sludge to adsorb and decompose organic substances by activated sludge, and then obtain supernatant water (treated water) by utilizing the property of sedimentation by gravity. Things.
[0003]
An example (schematic) of a sewage treatment facility using this activated sludge method is shown in FIG. The treatment facility shown in FIG. 4 includes a primary sedimentation tank 1, an aeration tank 2, a final sedimentation tank (secondary sedimentation tank) 3, and sludge return means 4. In this treatment facility, first, wastewater flows into the primary sedimentation tank 1 to remove large-sized sediment, and the wastewater from which the sediment has been removed is transferred to the aeration tank 2 containing activated sludge. Next, by aeration of the wastewater together with the activated sludge, organic substances contained in the wastewater are adsorbed and decomposed by the activated sludge. Next, the obtained treated water is transferred to the final sedimentation tank 3 to precipitate and remove activated sludge, and the supernatant water is discharged to the outside after being sterilized with chlorine as required. Further, a part of the settled activated sludge is returned to the aeration tank by the sludge return means 4 as returned sludge, and the remaining activated sludge is concentrated into a dewatered cake and incinerated.
[0004]
By the way, during the sewage treatment by the activated sludge method, a phenomenon may occur in which activated sludge is settled poorly in the final settling tank. The phenomenon that activated sludge becomes poor sedimentation is called bulking, and is the biggest problem in the activated sludge method. It is said that the cause is that the growth balance of the microflora in the activated sludge is disrupted, and the filamentous microorganisms predominate over the floc-forming bacteria.
[0005]
When bulking occurs, the activated sludge expands and becomes difficult to settle, and it becomes impossible to obtain an interface between the activated sludge and the treated water in the settling tank. Then, the activated sludge flows out together with the treated water, causing environmental pollution. Furthermore, due to the outflow of the activated sludge, the concentration of MLSS (suspended matter in the water of the aeration tank) in the aeration tank is not maintained, and the biological decomposition of the organic matter dissolved in the wastewater or the wastewater by the activated sludge becomes poor. Cause environmental pollution.
[0006]
Conventionally, as a method of coping with the occurrence of bulking, there are a method of increasing the sedimentation of activated sludge by adding an inorganic flocculant and a polymer flocculant, and a method of introducing chlorine, which is an inexpensive disinfectant. Are known. However, the addition of a flocculant temporarily solves the deterioration of the sedimentation of activated sludge, but it is only an emergency treatment and does not suppress the growth of filamentous microorganisms that cause bulking. It is not effective in preventing recurrence. In addition, since disinfectants such as chlorine have no selectivity, not only the growth of filamentous microorganisms that cause bulking, but also the growth of useful organisms in activated sludge, are greatly adversely affected. However, there is a problem that the bulking may be relapsed due to the extinguishing of useful microorganisms.
[0007]
Therefore, a method has been proposed in which various bulking control agents are charged into a sewage treatment tank when the sewage is transferred to an aeration tank and aerated together with activated sludge (Patent Documents 1 to 4). However, simply charging various bulking control agents into the sewage treatment tank may not completely suppress bulking, which has been a problem.
[0008]
[Patent Document 1]
JP-A-10-244287
[Patent Document 2]
JP-A-11-33583
[Patent Document 3]
JP-A-11-47883
[Patent Document 4]
JP-A-11-57762
[0009]
[Problems to be solved by the invention]
[0010]
The present invention has been made in view of the problems of the related art, and in a sewage treatment method using an activated sludge and a bulking controlling agent, bulking due to filamentous microorganisms which is the greatest obstacle in facility management can be surely controlled. It is an object to provide a sewage treatment method.
[0011]
[Means for Solving the Problems]
The inventor of the present invention has intensively studied a method capable of reliably controlling bulking in a sewage treatment method using the activated sludge method. As a result, they have found that by stirring the contents in the sewage treatment tank in the horizontal direction in the presence of the bulking control agent, the occurrence of bulking can be reliably controlled, and the present invention has been completed.
[0012]
Thus, according to the present invention, there is provided a sewage treatment method using an activated sludge method using at least one sewage treatment tank, wherein the contents are horizontally stirred in the sewage treatment tank in the presence of a bulking control agent. Wastewater treatment method is provided.
In the sewage treatment method of the present invention, the stirring is preferably performed in the presence of at least one selected from a cationic polymer flocculant, an inorganic flocculant, a clay mineral, an enzyme preparation and an aerobic microorganism.
[0013]
In the sewage treatment method of the present invention, the sewage treatment tank is used for culturing aerobic microorganisms provided in an aeration tank or separately provided from the aeration tank, and mixing the culture to flow into the aeration tank. It is preferably a tank. Further, in the mixing tank, it is more preferable to culture the aerobic microorganisms using one or more selected from returned sludge, raw sewage water, aeration tank water, and treated water.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the wastewater treatment method of the present invention will be described in detail.
The sewage treatment method of the present invention is a sewage treatment method using an activated sludge method, wherein the contents are stirred horizontally in a sewage treatment tank in the presence of a bulking control agent.
The sewage treatment method of the present invention may be any method that purifies sewage using activated sludge, and includes methods such as a long-time aeration method and a batch activated sludge method in addition to a standard activated sludge method. The present invention also includes a method capable of simultaneously removing organic matter (BOD) and nitrogen in wastewater, such as a circulating nitrification denitrification method.
[0015]
The wastewater targeted by the present invention contains organic matter, and is not particularly limited as long as purification is required. For example, water contaminated with organic matter such as domestic wastewater, industrial wastewater, and wastewater may be mentioned.
The activated sludge used in the present invention is obtained by aerating wastewater containing organic substances, and is an aggregate of aerobic bacteria and protozoa that continue to breathe and grow while adsorbing and decomposing organic substances in water. is there.
[0016]
The bulking control agent used in the present invention is not particularly limited as long as it selectively inhibits the growth of filamentous microorganisms and helps to improve the sedimentation of activated sludge. Specific examples thereof include dithiocarbamates described in JP-B-58-14274, iodopropargyl derivatives described in JP-A-55-11536, and bis-carboxylates described in JP-A-55-147196. Biguanide derivatives, benzalkonium chloride and benzethonium chloride described in JP-B-63-39562, chlorohexidine hydrochloride and chlorhexidine gluconate described in JP-B-1-37364, and JP-B1-49560. Acrylic acid hydrazide-based polymer compound or a polymer compound containing an amino group or a quaternary ammonium salt, an acid such as sulfamic acid or a salt thereof, a quaternary ammonium salt described in JP-A-62-168599, Killing of thiocyanates and halogenated acetoxyalkenes Agents, separately added alkyleneimine polymers and sodium hypochlorite described in JP-A-4-74595, cinnamaldehyde, anisaldehyde, eugenol described in JP-A-5-146790 A cationic reaction product of an imidazole compound and epihalohydrin described in JP-B-6-88889, an indazole derivative described in JP-A-6-170385, and a JP-A-6-63580 Isophthalonitrile derivatives, a mixture of a small amount of a coagulant and a small amount of a bactericide described in JP-A-6-71286, and a water solution obtained by reaction of an amine with epihalohydrin and the like described in JP-A-6-142676. Mixtures of a water-soluble polymer or an alkyleneimine polymer with aluminum sulfate, etc .; Methylene dithiocyanate described in 06089, tetramethylammonium chloride and propyltrimethylammonium bromide described in JP-A-7-8985, 1-alkylpyridinium halides described in JP-A-6-34389, A mixture of a water-soluble polymer obtained by reacting an epihalohydrin or the like with an amine described in JP-A-7-24490, an alkyleneimine polymer, a tetraalkylammonium halide or a 1-alkylpyridinium halide, Japanese Patent Publication No. 7-38991. Sorbic acid and a salt thereof described in JP-A-7-80492, a mixture of calcium carbonate and the like and a floc-forming bacterium described in JP-A-7-80492, and a dialkylamine and epihalohydrin described in JP-B-7-41263. Water of Soluble cationic polymers, mixtures of anionic surfactants and nonionic surfactants described in JP-A-7-116686, primary to tertiary amino acids described in JP-A-7-116687 A mixture of a cationic surfactant having a group and an amphoteric surfactant, a macrolide antibiotic described in JP-A-7-136684, and 1-hydroxy-2 described in JP-A-7-241590. Mixtures of (1H) -pyridinethione alkali metal salt and cationic polymer flocculant, aminoglycoside antibiotics described in JP-A-9-70595, naphthols described in JP-A-10-244287, Conventionally known bulking control agents such as naphthoquinones described in JP-A-11-33583. These bulking control agents can be used alone or in combination of two or more.
[0017]
Among these, those having excellent selectivity, which inhibit the growth of harmful filamentous microorganisms that cause bulking but do not inhibit the growth of useful floc-forming bacteria, are preferred. Examples of such a bulking controlling agent include those containing at least one kind of an indazole derivative or a salt thereof described in JP-A-6-170385.
[0018]
The bulking control agent is usually used as a powder, but can also be used as a liquid dissolved in water or the like. When used as a dust, the amount of addition is about 1 to 200 mg / liter, preferably about 2 to 50 mg / liter, based on the total volume of the sewage treatment tank.
The method of adding the bulking control agent to the sewage treatment tank is not particularly limited, and examples thereof include a method of adding the agent in a continuous manner, and a method of adding it twice or three times a day.
[0019]
In the present invention, it is preferable that at least one selected from a cationic polymer flocculant, an inorganic flocculant, a clay mineral, an enzyme preparation and an aerobic microorganism is added to the sewage treatment tank together with the bulking control agent. By using these additives in combination with the bulking control agent, the effect of improving the initial activated sludge settling property immediately after the addition of the bulking control agent and maintaining the bulking control period can be expected.
[0020]
Examples of the cationic polymer flocculant to be used include polyacrylates, polymethacrylates, vinylformaldehydes, dicyanamides, and the like, and examples of the inorganic coagulants include aluminum sulfate and ferric chloride. Can be Examples of the clay mineral include zeolite, vermiculite, and attapulgite. The addition amount of the cationic polymer flocculant is usually about 10 to 50 mg / liter based on the total capacity of the sewage treatment tank, and the addition amount of the inorganic coagulant and clay mineral is based on the total capacity of the sewage treatment tank. On the other hand, it is usually about 10 to 200 mg / liter.
[0021]
Examples of the enzyme preparation used include preparations containing one or more enzymes such as amylase, protease, cellulase, and lipase. The enzyme preparation may be a culture of aerobic microorganisms or other microorganisms, or may be extracted from plants or the like. The enzyme preparation may be a product obtained by isolating and purifying an enzyme component from these microorganisms, or a mixture thereof.
[0022]
As the aerobic microorganism, any microorganism such as bacteria, mold, and yeast can be used as long as it can be proliferated by aeration culture. These microorganisms may be used as mixed bacteria. Among these, microorganisms which have a high growth rate and produce a large amount of extracellular enzymes are preferred. Examples of such microorganisms include Bacillus subtilis, activated sludge such as zooglare, oil-decomposing bacteria when the raw water contains a large amount of oil, and various types of hard-to-decompose bacteria when the raw water contains a lot of hardly decomposable substances. Examples can be given.
These enzyme preparations and aerobic microorganisms are preferably added to a mixing tank prepared separately from the aeration tank, as described later.
[0023]
The sewage treatment method of the present invention is characterized in that contents are horizontally stirred in a sewage treatment tank in the presence of a bulking control agent.
The sewage treatment tank used in the present invention is not particularly limited as long as it has a shape capable of stirring in the horizontal direction, but is preferably a cylindrical shape having good stirring efficiency in the horizontal direction. Activated sludge is an aggregate of aerobic microorganisms, and the sewage treatment tank used is equipped with a device (aeration device) that supplies oxygen (air) necessary for the mixing and decomposition reaction of aerobic microorganisms. preferable. Specific examples include an aeration tank for aerating sewage in the presence of activated sludge and a mixing tank for flowing a culture of an enzyme agent or an aerobic microorganism into the aeration tank.
[0024]
In the present invention, agitating in the horizontal direction means that a mixture containing at least a bulking control agent (contents in the sewage treatment tank) is forcedly convected in the horizontal direction by mechanical stirring in the sewage treatment tank. Say. In addition, as long as it is capable of convection in the horizontal direction, it may be convection in multiple directions, such as a spiral shape or a combination of the horizontal direction and the vertical direction.
[0025]
As a method of stirring in the horizontal direction, for example, a method by radiation type stirring in which a stirring blade attached to the tip of a vertically provided shaft is rotated and a flow of water due to the centrifugal action of rotation is strongly generated in the radial direction of the blade. A method using an agitating blade such as a method using an axial flow type agitator that can simultaneously generate an axial flow by rotating the agitating blade by a thrust in a rotational axis direction; a jet type by a horizontal jet from a jet nozzle A method using stirring; a method using a stirrer rotated by magnetic force; and the like. Among these, the method of stirring using a stirring blade is preferable because it is possible to stir vigorously and mechanically and violently in the horizontal direction and to use existing equipment as it is.
[0026]
The method using a stirring blade can be performed using a stirring device having a stirring motor, a stirring shaft, and a stirring blade.
The stirring blade to be used is not particularly limited, and examples thereof include a paddle type, a propeller type, a turbine type, a blue-margin type, an squid type, and modified types thereof. In addition, the size and the number of stages of the stirring blade are not particularly limited. Considering the size (width and height) of the aeration tank to be used, an appropriate size and number of stages are used so that the effect of controlling bulking is best exhibited. Can be selected.
[0027]
The installation position and the number of the stirring devices are not particularly limited as long as uniform stirring in the horizontal direction is ensured, and one stirring device may be installed at an appropriate position in the sewage treatment tank. May be installed. When a plurality of sewage treatment tanks are installed, a stirrer may be installed in all sewage treatment tanks or may be installed only in a specific sewage treatment tank.
[0028]
The stirring conditions such as the stirring speed of the stirring device are not particularly limited as long as the desired bulking control effect can be obtained, and appropriate conditions can be set.
The stirring time is usually 1 to 24 hours, preferably 2 to 10 hours. The temperature during stirring is usually 0 to 40 ° C, preferably 10 to 35 ° C.
[0029]
The details of the reason why bulking can be reliably prevented by stirring the contents in the sewage treatment tank in the horizontal direction are not clear, but when stirring in the sewage treatment tank is only bubbling that causes vertical convection Cannot achieve the same effect, the following can be considered. That is, by horizontally stirring the contents in the sewage treatment tank, the filamentous microorganisms undergo mechanical damage such as cutting, bending, twisting, rupture of the cell membrane, etc. It is possible to suppress the occurrence of bulking, which is killed or becomes a fine hyphal fragment, and the addition of a bulking control agent alone was insufficient.
[0030]
According to the present invention, a synergistic effect of the action of a bulking control agent (inhibition of the growth of filamentous microorganisms) and mechanical damage due to horizontal agitation kills filamentous microorganisms in a sewage treatment tank or produces fine hyphal fragments. By doing so, the occurrence of bulking can be prevented and the sedimentation of activated sludge can be improved.
[0031]
The sewage treatment method of the present invention can be implemented, for example, by a sewage treatment facility shown in FIGS. 1 (a) and 1 (b). 1 (a) and 1 (b), 1 is a first settling tank, 2 is an aeration tank, 2a is a first aeration tank, 2b is a second aeration tank, 3 is a final settling tank, 4 is an activated sludge tank. Return means 5 is a stirring device.
[0032]
In the sewage treatment facility shown in FIG. 1 (a), first, sewage flows into a primary sedimentation tank, and large trash is removed. Next, the sewage from which the large trash has been removed is sent to the aeration tank 2.
[0033]
The aeration tank 2 may be composed of a single tank as shown in FIG. 1 (a), or may be one in which a plurality of tanks are connected as shown in FIG. 1 (b). May be provided with a partition plate inside. Furthermore, as in the case where the purpose is to remove nitrogen simultaneously with the decomposition of organic matter, it may be composed of an aeration tank that performs only agitation without aeration, and an aeration tank that performs aeration with a diffuser. . The size of the aeration tank or the mixing tank is not particularly limited, and an appropriate tank can be selected and used depending on the amount of wastewater to be treated.
[0034]
In the aeration tank 2, the sewage fed from the first settling tank 1 is horizontally stirred by the stirrer 5 together with the activated sludge and the bulking control agent while fresh air is constantly bubbled by the diffuser 6. Is done. During this time, the organic matter contained in the sewage is adsorbed and decomposed by the activated sludge, and the filamentous microorganisms are killed or become fine hyphal fragments due to the synergistic effect of the effect of the bulking control agent and the effect of horizontal stirring. , The occurrence of bulking is reliably prevented.
[0035]
The sewage in which the organic matter has been decomposed is transferred to the final settling tank 3 together with the activated sludge. In the final sedimentation tank 3, it is separated into supernatant water and activated sludge by standing and gravity separation. Part of the separated activated sludge is returned to the aeration tank 2 by the activated sludge return means 4, and is again subjected to sewage treatment. Excess activated sludge is incinerated after dehydration. On the other hand, the supernatant water is sterilized by a chlorine sterilizer (not shown) and then discharged to the outside.
[0036]
In the sewage treatment facility shown in FIG. 1B, first, in a first aeration tank 2a, a mixture containing sewage, activated sludge, and a bulking control agent is allowed to stay for a certain period of time under aeration conditions, so that organic matter contained in the sewage is removed. Is sufficiently decomposed by activated sludge. Next, the treated wastewater is transferred to the second aeration tank 2b, and is stirred in the horizontal direction by the stirring device 5 in the second aeration tank 2b. In the second aeration tank 2b, the sewage treated in the first aeration tank 2a is agitated in the horizontal direction, whereby the occurrence of bulking can be reliably prevented. According to the apparatus shown in FIG. 1 (b), the amount of activated sludge sent to the final settling tank 3 can be reduced, and the burden of the operation of separating, collecting and disposing activated sludge can be reduced.
[0037]
In the sewage treatment method of the present invention, the activated sludge obtained by horizontally stirring the bulking control agent and the sludge activating medium in a mixing tank prepared separately from the aeration tank is added to the aeration tank. You may do so. This method is particularly preferable because the installation of the stirring device is simple and the efficiency of sewage treatment with activated sludge can be further increased.
[0038]
As the sludge activation medium to be used, returned sludge, sewage raw water, aeration tank water, treated water, or one or more kinds of treated water can be mentioned. Of these, the use of returned sludge is preferred from the viewpoint of the activation efficiency of activated sludge, that is, the activation efficiency per amount of use of the bulking control agent. In addition, in facilities where raw sewage flows in all year round and the raw water concentration is stable, if the raw sewage water may contain filamentous microorganisms that cause bulking, aeration where bulking has not yet occurred In the case where the purpose is to prevent occurrence of bulking in the tank, it is preferable to use raw sewage as a sludge activating medium. When using raw sewage, foaming may occur, so it is desirable to perform a foam removal treatment or a defoaming treatment. On the other hand, if the mixing tank to be used is small, return sludge, raw sewage water, aeration tank water cannot be used due to special circumstances, or if a special treatment method such as a biofilm method is used, use tap water or treated water. Is preferred. When tap water or the like is used, it is desirable to add an enzyme / microbial preparation or the like to the sludge activation medium.
[0039]
As the mixing tank used in the present invention, any mixing tank can be used as long as the contents in the tank can be agitated in the horizontal direction while being ventilated. For example, those provided with a ventilation stirring mechanism can be mentioned. As the ventilation stirring mechanism, a mechanism capable of adjusting the amount of ventilation, the size of bubbles generated by ventilation, the speed of stirring, and the like is preferable. Further, a stirring blade or a baffle plate may be provided, but when stirring can be performed by a ventilation pipe, a diffuser pipe, or the like, the stirring blade or the like need not be provided.
[0040]
Further, as the mixing tank, a culture tank or the like provided with the above-described aeration stirring mechanism can be used. When a culture tank is used, it is preferable to add an aerobic microorganism, a sludge activation medium (preferably returned sludge) and a bulking control agent to the tank, and culture the aerobic microorganism. The obtained activated sludge enhances the treatment effect of sewage by activated sludge and is excellent in controlling bulking. In addition, when the viscosity of the returned sludge or the like is high or when the amount of the liquid is small and it is difficult to introduce a constant amount of the sludge activating medium into the mixing tank, a high-concentration quantitative pump can be used.
[0041]
As a method of stirring the contents in the mixing tank in the horizontal direction, the same method as the method of stirring the contents in the aeration tank in the horizontal direction can be adopted. FIG. 2 shows an example (schematic diagram) in which a stirrer for stirring the contents in the mixing tank in the horizontal direction is installed. One stirring device is installed at the center of the mixing tank 7. In FIG. 2, returned sewage is sent in from the left end (arrow). In the mixing tank 7, a bulking agent and, if desired, other additives are added. A diffusing device 6 is provided at the bottom of the mixing tank 7 for taking in air (oxygen) from the outside and bubbling the air from the bottom of the mixing tank 7. For the ventilation of the mixing tank, concretely, a ventilation pipe branched from the air supply pipe of the treatment facility, an aeration blower or an underwater aerator, a ventilation device with an adjustable aeration amount, or fine air bubbles are used for the entire aeration. It can be performed by providing an air diffuser such as a diffuser or an air diffuser corresponding to the amount of ventilation.
[0042]
The capacity of the mixing tank depends on the scale of the processing facility to be applied, but is usually 2 to 5 m. 3 A volume of about a volume is used, and the ventilation capacity of such a mixing tank usually needs to be about 4 times / hour of the volume of the mixing tank. The installation location of the mixing tank varies depending on the condition of the facility and the like, but usually, a convenient and safe place near the inflow side of the raw water from the aeration tank is preferable.
[0043]
In the present invention, in order to obtain an activated sludge efficiently, it is preferable to periodically replenish the mixing tank with a bulking control agent, and to replenish the bulking control agent together with an enzyme preparation and / or an aerobic microorganism. Is more preferred. In particular, when returning sludge is used as the sludge activating medium, it is preferable to periodically supply the mixing tank with the bulking control agent. When a certain amount of these bulking control agent, enzyme preparation, or aerobic microorganism (preparation) is packed in a water-soluble film in order to suppress dusting, they can be directly introduced into a mixing tank. The amount of the bulking control agent to be mixed into the mixing tank is 10 to 3000 g / m daily depending on the type. 3 Degree, preferably 400 to 2000 g / m 3 It is about.
[0044]
The contact between the bulking control agent and the sludge activating medium in the mixing tank is preferably performed under aeration and stirring conditions. The introduction of the sludge activating medium into the mixing tank may be of a batch (batch) type or a continuous type. In the case of the continuous type, the sludge activating medium can reduce the effective volume of the mixing tank by about 1/2 in 24 hours. It is desirable to introduce continuously. In any case, the contact time between the bulking control agent and the sludge activating medium in the mixing tank needs to be about 24 to 96 hours. If less than 24 hours, an activated sludge that can activate the activated sludge in the aeration tank cannot be obtained. Even if it exceeds 96 hours, an activated sludge that can activate the activated sludge in the aeration tank can be obtained. Can not be obtained.
[0045]
The inflow of the activated sludge obtained from the mixing tank into the aeration tank is preferably a quantitative inflow. Stable sewage treatment can be realized by flowing in a fixed amount. The fixed inflow may be carried out together with a bulking control agent, or may flow separately from the bulking control agent. Further, depending on the condition of the treatment facility, it is possible to flow into the returned sludge or the inflowed sewage raw water and flow into the aeration tank together therewith. However, when flowing into the incoming sewage raw water, it is necessary to confirm in advance that the activity of the activated sludge does not decrease due to a change in pH or the like. The amount flowing in quantitatively may be appropriately set according to the scale of processing. In addition, the constant inflow may be a continuous inflow or an intermittent inflow, but it is particularly desired that the inflow of the activated sludge is continued, for example, at least 5 days or more.
[0046]
As a place where the activated sludge obtained from the mixing tank flows into the aeration tank, a place where a residence time is allowed in the aeration tank, for example, a raw water inflow side of the aeration tank is desirable, but it is also possible to flow into the inflow raw water. It is preferable that the activated sludge is allowed to flow into the aeration tank at a place where the residence time is sufficient. The place where the residence time can be taken in the aeration tank is, specifically, on the side where the wastewater flows into the aeration tank from the primary sedimentation tank. Further, as shown in FIG. 1B, when a plurality of aeration tanks are installed, the aeration tank is on the side where the wastewater flows in from the primary sedimentation tank.
[0047]
FIGS. 3A to 3C show an example of a sewage treatment facility for implementing the sewage treatment method of the present invention, which has a mixing tank. 3 (a) to 3 (c), 1 is a primary sedimentation tank, 2 is an aeration tank, 3 is a final sedimentation tank, 4 is activated sludge return means, and 7 is a mixing tank. Further, the mixing tank 7 is provided with a stirrer 5 'for stirring the contents in the tank in the horizontal direction.
[0048]
In the facility shown in FIG. 3A, a part of the returned sludge is transferred to the mixing tank 7 as a sludge activating medium, and the obtained activated sludge is continuously and quantitatively flown from the mixing tank 7 into the aeration tank 2 together with the bulking control agent. It is supposed to. In the facility shown in FIG. 3B, a part of the raw sewage is transferred to the mixing tank 7 as a sludge activating medium, and the obtained activated sludge is continuously and quantitatively flown from the mixing tank 7 into the aeration tank 2 together with the bulking control agent. It is made to let. In the facility shown in FIG. 3 (c), a part of the water of the aeration tank is transferred to the mixing tank 7 as a sludge activating medium, and the obtained activated sludge is transferred from the mixing tank 7 to the aeration tank 2 together with the bulking control agent. It is designed to continuously flow in a fixed amount.
[0049]
According to the sewage treatment facilities shown in FIGS. 3A to 3C, the occurrence of bulking can be reliably prevented, and the amount of the bulking control agent and the enzyme preparation and / or aerobic microorganisms supplied to the mixing tank can be aerated. The replenishment required is very small compared to the replenishment required to achieve the same effect by direct injection into the tank, making it much more economical.
[0050]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the technical scope of the present invention is not limited to these Examples.
[0051]
(The occurrence of bulking)
In an aeration tank of a sewage treatment apparatus having an aeration tank having a capacity of 2 liters and a sedimentation tank having a capacity of 0.5 liters, artificially synthesized wastewater (glucose 870 mg / l, peptone 250 mg / l, sodium chloride 300 mg / l, Activated sludge was cultured under aeration conditions by continuously supplying 39 mg / l of potassium and 43 mg / l of ammonium nitrate.
[0052]
Filamentous bulking was generated under the conditions of a synthetic wastewater inflow rate of 1 liter / day, an MLSS concentration of 2,000 mg / liter, and a room temperature of 20 to 25 ° C., and the following experiment was performed. The filamentous microorganisms generated at this time were TYPE021N, spherothyls natans, TYPE1701, and TYPE1702. Identification of filamentous microorganisms is described in Eikelboom D. et al. H. Filamentous organsmsobserved in activated sludge. Water Research vol. 9: 365-388 (1975).
[0053]
(Test method)
Examples 1 to 3 and Comparative Examples 1 and 2 below were provided as test plots.
(A) Example 1
The above-mentioned bulking control agent was added to the aeration tank at a rate of 40 mg / day every day, and the inside of the aeration tank was stirred horizontally.
(B) Example 2
100 ml of aeration tank water was placed in a 300 ml Erlenmeyer flask containing a magnetic stirrer, 40 mg of the above-mentioned bulking control agent was added thereto, and the contents were stirred horizontally for 48 hours using a magnetic stirrer. The area where the mixture was added to the aeration tank every day (the inside of the aeration tank was not stirred horizontally)
(C) Example 3
100 ml of aeration tank water was placed in a 300 ml Erlenmeyer flask containing a magnetic stirrer, 40 mg of the above-mentioned bulking control agent was added thereto, and the contents were stirred horizontally for 48 hours using a magnetic stirrer. The mixture was added to the aeration tank daily, and the inside of the aeration tank was stirred horizontally using a stirrer equipped with a propeller-type stirring blade at the tip.
[0054]
(D) Comparative Example 1
Section where no drug is added
(E) Comparative example 2
A section in which a bulking control agent (manufactured by Nippon Soda Co., Ltd., trade name: VALKICK) containing 5-nitroimidazole as an active ingredient was added to an aeration tank every day at a rate of 40 mg / day.
[0055]
The evaluation of the anti-bulking effect was carried out by microscopic observation of the growth of filamentous microorganisms (evaluated as "++" for very large cases, "+" for large cases, and "±" for very small normal cases). . The results are shown in Table 1.
[0056]
[Table 1]
Figure 2004344741
[0057]
From Table 1, when the bulking control agent was added to the aeration tank and the inside of the aeration tank was stirred horizontally (Example 1), the water of the aeration tank and the bulking control agent were horizontally stirred in the mixing tank for 48 hours. When the mixture obtained in (1) was added to the aeration tank (Example 2), and the mixture obtained by horizontally stirring the aeration tank water and the anti-bulking agent in the mixing tank for 48 hours was added to the aeration tank. When the inside of the aeration tank was agitated in the horizontal direction (Example 3), the number of filamentous microorganisms was significantly reduced, and it was confirmed that bulking could be almost completely prevented. On the other hand, in Comparative Example 1 to which no bulking control agent was added, the number of filamentous microorganisms was not reduced at all. When the bulking control agent was added to the aeration tank, but the stirring was not performed in the horizontal direction (Comparative Example 2), the number of filamentous microorganisms was slightly reduced.
[0058]
【The invention's effect】
According to the sewage treatment method of the present invention, in a sewage treatment facility for domestic wastewater, industrial wastewater, wastewater, etc., without deteriorating the water quality, and without inhibiting the growth of useful floc-forming bacteria, filamentous microorganisms By reducing the amount, the occurrence of bulking can be reliably prevented, the activated sludge in the aeration tank is constantly activated, and the wastewater can be treated efficiently and economically.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a sewage treatment facility suitable for implementing the present invention.
FIG. 2 is a schematic view of a mixing tank of the sewage treatment facility shown in FIG.
FIG. 3 is a schematic diagram of a sewage treatment facility suitable for carrying out the present invention.
FIG. 4 is a schematic view of a conventional sewage treatment facility by an activated sludge method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Primary sedimentation tank, 2 ... Aeration tank, 2a ... First aeration tank, 2b ... Second aeration tank, 3 ... Final sedimentation tank, 4 ... Sludge return means, 5,5 '... Stirring device, 6 ... aeration device, 7 ... mixing tank

Claims (4)

少なくとも一つの汚水処理槽を用いる、活性汚泥法による汚水処理方法であって、バルキング防除剤の存在下、汚水処理槽内で内容物を水平方向に撹拌することを特徴とする汚水処理方法。A sewage treatment method using an activated sludge method using at least one sewage treatment tank, wherein contents are horizontally stirred in the sewage treatment tank in the presence of a bulking control agent. 前記撹拌を、さらにカチオン系高分子凝集剤、無機凝集剤、粘土鉱物、酵素製剤及び好気性微生物から選ばれる少なくとも1種の存在下で行うことを特徴とする請求項1に記載の汚水処理方法。The sewage treatment method according to claim 1, wherein the stirring is further performed in the presence of at least one selected from a cationic polymer flocculant, an inorganic flocculant, a clay mineral, an enzyme preparation, and an aerobic microorganism. . 前記汚水処理槽が、曝気槽、又は該曝気槽とは別個に設けられた、好気性微生物の培養物を培養し、この培養物を曝気槽に流入するための混合槽であることを特徴とする請求項1又は2に記載の汚水処理方法。The sewage treatment tank is an aeration tank, or provided separately from the aeration tank, cultivates a culture of aerobic microorganisms, characterized in that it is a mixing tank for flowing the culture into the aeration tank. The sewage treatment method according to claim 1 or 2, wherein 前記混合槽において、返送汚泥、汚水原水、曝気槽水及び処理水から選ばれる1種又は2種以上を用いて好気性微生物を培養することを特徴とする請求項3に記載の汚水処理方法。The sewage treatment method according to claim 3, wherein the aerobic microorganism is cultured in the mixing tank using one or more selected from returned sludge, raw sewage water, aeration tank water, and treated water.
JP2003143254A 2003-05-21 2003-05-21 Wastewater treatment method Expired - Lifetime JP4854918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003143254A JP4854918B2 (en) 2003-05-21 2003-05-21 Wastewater treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003143254A JP4854918B2 (en) 2003-05-21 2003-05-21 Wastewater treatment method

Publications (2)

Publication Number Publication Date
JP2004344741A true JP2004344741A (en) 2004-12-09
JP4854918B2 JP4854918B2 (en) 2012-01-18

Family

ID=33531094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003143254A Expired - Lifetime JP4854918B2 (en) 2003-05-21 2003-05-21 Wastewater treatment method

Country Status (1)

Country Link
JP (1) JP4854918B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111666A (en) * 2005-10-24 2007-05-10 Hymo Corp Method of preventing flow out of activated sludge
JP2010151465A (en) * 2008-12-24 2010-07-08 Dkk Toa Corp Salt measuring device of structure surface
JP2011152505A (en) * 2010-01-27 2011-08-11 Kubota Corp Biological treatment vessel
JP2019037975A (en) * 2017-08-28 2019-03-14 日本化薬株式会社 Defoaming agent composition for excreta treatment liquid and method for using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671286A (en) * 1992-08-28 1994-03-15 Kankyo Eng Kk Agent and method for preventive bulking
JPH07990A (en) * 1993-06-18 1995-01-06 Kankyo Eng Kk Treatment of waste water
JPH07100483A (en) * 1991-09-04 1995-04-18 Mizusawa Ind Chem Ltd Method for treating activated sludge and treating agent for it
JPH1147783A (en) * 1997-07-30 1999-02-23 Nippon Soda Co Ltd Activation of activated sludge
JPH1157762A (en) * 1997-08-19 1999-03-02 Nippon Soda Co Ltd Aerobic treating method of sewage
JPH11123393A (en) * 1997-10-20 1999-05-11 Katayama Chem Works Co Ltd Agent and method for preventing bulking of activated sludge
JPH11253986A (en) * 1998-03-11 1999-09-21 Ngk Insulators Ltd Bulking prevention in activated sludge treatment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07100483A (en) * 1991-09-04 1995-04-18 Mizusawa Ind Chem Ltd Method for treating activated sludge and treating agent for it
JPH0671286A (en) * 1992-08-28 1994-03-15 Kankyo Eng Kk Agent and method for preventive bulking
JPH07990A (en) * 1993-06-18 1995-01-06 Kankyo Eng Kk Treatment of waste water
JPH1147783A (en) * 1997-07-30 1999-02-23 Nippon Soda Co Ltd Activation of activated sludge
JPH1157762A (en) * 1997-08-19 1999-03-02 Nippon Soda Co Ltd Aerobic treating method of sewage
JPH11123393A (en) * 1997-10-20 1999-05-11 Katayama Chem Works Co Ltd Agent and method for preventing bulking of activated sludge
JPH11253986A (en) * 1998-03-11 1999-09-21 Ngk Insulators Ltd Bulking prevention in activated sludge treatment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007111666A (en) * 2005-10-24 2007-05-10 Hymo Corp Method of preventing flow out of activated sludge
JP2010151465A (en) * 2008-12-24 2010-07-08 Dkk Toa Corp Salt measuring device of structure surface
JP2011152505A (en) * 2010-01-27 2011-08-11 Kubota Corp Biological treatment vessel
JP2019037975A (en) * 2017-08-28 2019-03-14 日本化薬株式会社 Defoaming agent composition for excreta treatment liquid and method for using the same
JP7308599B2 (en) 2017-08-28 2023-07-14 日本化薬株式会社 Defoaming agent composition for manure treatment liquid and method for using the same

Also Published As

Publication number Publication date
JP4854918B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
CN101132994B (en) Waste gas/waste water treatment equipment and method of treating waste gas/waste water
CN100575278C (en) Wastewater treatment equipment and method of wastewater treatment
US5423988A (en) Method and apparatus for treating developer-containing waste water at multiple biological treatment stages
US6039875A (en) Composition and method for removing suspended solids from wastewater
JP3729332B2 (en) Wastewater treatment apparatus including upflow anaerobic reactor and wastewater treatment method using the same
Mohammed et al. Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions
JP3699570B2 (en) Aerobic treatment method of sewage
Griebe et al. Analysis of biofilm disinfection by monochloramine and free chlorine
JP2006181393A (en) Non-sludge high-speed wastewater treatment system
JP4854918B2 (en) Wastewater treatment method
JP2008049343A (en) Organic waste water treatment device
TWI557080B (en) Biological treatment method and device for organic waste water
JPH11147801A (en) Bactericide for active sludge, sterilization of active sludge by using the same and treatment of organic waste water
JP3958409B2 (en) Activation method of activated sludge
KR100403864B1 (en) A wastewater treatment methods
KR102289941B1 (en) water treating apparatus for sewage and wastewater
JP5095882B2 (en) Waste nitric acid treatment method
JP6852214B2 (en) Sewage treatment system
KR20060109635A (en) Advanced swage and waste water treatment method and apparaters use of selected and cultured bacillus species bacteria
CN1880242A (en) Waste water treatment process of almond processing factory
JP4351504B2 (en) Organic wastewater treatment equipment
US20200189945A1 (en) Apparatus for the bio-remediation of a waste water composition
Chauret et al. Effect of disinfectants on microbial ecology in model distribution systems
CN218089110U (en) MBR membrane method sewage treatment system
CN215712481U (en) Medical wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4854918

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term