JP2004344720A - Co2低減方法および人工光合成誘起物ならびにco2低減装置 - Google Patents

Co2低減方法および人工光合成誘起物ならびにco2低減装置 Download PDF

Info

Publication number
JP2004344720A
JP2004344720A JP2003142469A JP2003142469A JP2004344720A JP 2004344720 A JP2004344720 A JP 2004344720A JP 2003142469 A JP2003142469 A JP 2003142469A JP 2003142469 A JP2003142469 A JP 2003142469A JP 2004344720 A JP2004344720 A JP 2004344720A
Authority
JP
Japan
Prior art keywords
tourmaline
artificial photosynthesis
titanium oxide
artificial
inducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003142469A
Other languages
English (en)
Inventor
Saburo Saito
三郎 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HASSHIN TECH KK
Original Assignee
HASSHIN TECH KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HASSHIN TECH KK filed Critical HASSHIN TECH KK
Priority to JP2003142469A priority Critical patent/JP2004344720A/ja
Publication of JP2004344720A publication Critical patent/JP2004344720A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

【課題】外部光源が不要で、太陽光が遮断された空間でもCOを低減し、Oを発生させるCO低減方法および人工光合成誘起物ならびにCO低減装置を提供する。
【解決手段】水の存在下でCOを含む気体を人工光合成誘起物14の表層の光触媒酸化チタン14aに接触し、この状態で光触媒酸化チタン14aをセラミックスボール14aを構成するセラミックスとトルマリンとの相乗効果で生じた電磁波により励起し、人工光合成を起こす。これにより、人工光合成型の光触媒反応で生じた電子と正孔とにより、COの還元と水の酸化反応とが促される。その結果、外部光源が不要で、太陽光が遮断された空間でも人工光合成を起こし、COを低減できるとともに、Oを発生させることができる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
この発明は、CO低減方法および人工光合成誘起物ならびにCO低減装置、詳しくは例えば内燃機関から排気通路を通して排出される排気ガスに含まれるCOを発生させる物質またはCOそのものを低減する技術に関する。
【0002】
【従来の技術】
例えば、自動車のガソリンエンジンの排気ガス中には、COが十数%含まれている。COは空気より重く、地球温暖化を招く物質である。エンジンの排気系から大気解放されたCOは、地表付近で厚いCO層を形成する。それが太陽光により熱せられ、その熱がCO層内で留まる温暖効果によって、地表の温度が高まる。
COは、例えば自然界における葉緑体の光合成により低減されることが知られている。光合成とは、葉緑体内で光吸収により発生した電子と正孔とが、COの還元と水の酸化反応とを促すことで起きる、COと水から有機物とOを生成する反応である。
【0003】
近年、クリーンな太陽光エネルギーを化学エネルギーに変換し、環境浄化や化学物質を合成することが可能な光触媒が注目されている。例えば、酸化チタンやMo酸化物などが挙げられる。最近では、未だ理論は確立されていないものの、光触媒の一種である光触媒酸化チタンの新規な機能として、非特許文献1に記載したような人工光合成が発見されている。
人工光合成の原理は、以下のように推論される。すなわち、光触媒酸化チタンに対して、そのバンドギャップよりも大きいエネルギーを有する380nm以下の紫外光領域の光を照射する。これにより、その伝導帯に電子が発生するとともに、価電子帯に正孔が発生する。このうち、電子は高い還元力を有し、正孔は高い酸化力を有して、光触媒酸化チタンの光触媒反応を励起する。その結果、前述した葉緑体の光合成と同じように、これらの電子と正孔とにより、COの還元と水の酸化反応とを促すものと考えられる。
【0004】
ところで、従前の人工光合成では、380nm以下の紫外光領域の光を照射しなければならかった。そのため、紫外線を放出する光源が必要であった。そこで、従来、太陽光や可視光(波長400〜800nm)でも作動する光触媒酸化チタンが開発されている。例えば、石英板などの担体の表面に、光触媒酸化チタンの薄膜を形成した薄膜状光触媒酸化チタンがそれである。反応物の濃度が希薄であるため、蛍光灯などの光源でも十分に光触媒反応が発生する。酸化チタン薄膜の調整には、例えばマグネトロンスパッタ法などを採用することができる。
また、太陽光や可視光により光触媒反応を誘起する別の光触媒酸化チタンとして、例えばゼオライト骨格またはメソ多孔質シリカに、四配位の酸化チタンを高分散させた状態で担持したものが知られている(非特許文献1)。
四配位酸化チタンは、それまでの六配位酸化チタンより高い光触媒反応性を有している。それをゼオライトの骨格内に組み込んだり、メソ型の多孔質シリカの細孔内に組み込んで高分散させることで、太陽光や可視光による光触媒反応を可能にした。
【0005】
【非特許文献1】「第5回佐賀県シンクロトロン光利用シンポジウムのテキスト:酸化チタン光触媒の開発動向と将来展望」 佐賀県シンクロトロン光応用研究施設利用研究フォーラム、平成15年3月11日、P1〜P27
【0006】
【発明が解決しようとする課題】
しかしながら、これらの従来のCO低減方法では、太陽光や可視光による光触媒反応であり、外部光源が絶たれ、太陽光が遮断された空間で人工光合成を行うことはできなかった。
【0007】
【発明の目的】
この発明は、外部光源が不要で、しかも太陽光が遮断された空間であっても人工光合成を起こし、COを低減するとともにOを発生させることができるCO低減方法および人工光合成誘起物ならびにCO低減装置を提供することを目的としている。
また、この発明は、近赤外線、赤外線または遠赤外線の出力を高めることができるCO低減方法および人工光合成誘起物ならびにCO低減装置を提供することを目的としている。
さらに、この発明は、低コスト化を図ることができるCO低減方法および人工光合成誘起物ならびにCO低減装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、水の存在下でCOを含む気体を、人工光合成型の光触媒反応を起こす光触媒酸化チタンに接触させ、この接触状態のまま、該光触媒酸化チタンを、近赤外線、赤外線または遠赤外線を発生させるセラミックスとトルマリンとの相乗効果で生じた電磁波により励起し、人工光合成を起こさせてCOを低減するCO低減方法である。
COの発生源は限定されない。例えば、各種の燃焼機が挙げられる。燃焼機としては、例えば、ガソリンエンジンやディーゼルエンジンなどの内燃機関、ごみ処理施設、軽油やA重油などを燃料とする自家発電機、ボイラなどを採用することができる。
光触媒酸化チタンの種類は限定されない。純粋な酸化チタンの他、含水酸化チタン、水和酸化チタン、メタチタン酸、オルトチタン酸、水酸化チタンなどでもよい。また、四配位酸化チタン、六配位酸化チタンの何れでもよい。ただし、四配位酸化チタンの方が、前述したように高い光触媒反応性を有しているので、好ましい。
【0009】
ここでいう光触媒酸化チタンは、少なくとも近赤外線、赤外線または遠赤外線の照射により、人工光合成型の光触媒反応を誘起する物質である。ただし、これらの赤外線系だけでなく、ガンマ線、X線、紫外線、可視光線(太陽光を含む)を照射したときにも光触媒反応を誘起する物質でもよい。
人工光合成時の気体の温度は限定されない。ただし、葉緑体の光合成が活発となる温度と同じ、10〜35℃が好ましい。
セラミックスの種類は限定されない。要は、トルマリンとの相乗効果で生じた電磁波により光触媒酸化チタンを励起し、光触媒酸化チタンに対して人工光合成型の光触媒反応を起こさせる物質であればよい。例えば、後述するπ化セラミックスを採用することができる。
トルマリンの種類は限定されない。要は、セラミックスとの相乗効果で生じた電磁波により光触媒酸化チタンを励起し、光触媒酸化チタンに対して人工光合成型の光触媒反応を起こさせる物質であればよい。トルマリンとしては、例えばピンク色のトルマリーナホーザ、黒色のトルマリーナプレット、緑色のトルマリーナベルジェ、青色のトルマリーナアズー、赤色のトルマリーナフビリッタ、褐色のトルマリーナマフォンなどを採用することができる。トルマリンは単体でもよいし、混合物でもよい。
【0010】
請求項2に記載の発明は、前記セラミックスとして、SiO、Al、Fe、TiO、CaO、MgO、KO、NaO、MnOを混合したπ化セラミックスを採用した請求項1に記載のCO低減方法である。
各成分の添加量は限定されない。例えば、SiO(石英):82.25重量%、Al:8.59重量%、Fe:1.06重量%、TiO:0.33重量%、CaO:1.55重量%、MgO:0.37重量%、KO:2.96重量%、NaO:2.26重量%、MnO:0.02重量%、その他:0.61重量%でもよい。
【0011】
請求項3に記載の発明は、前記トルマリンとして、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用した請求項1または請求項2に記載のCO低減方法である。
【0012】
請求項4に記載の発明は、水とCOとに接触することで、人工光合成型の光触媒反応を起こす光触媒酸化チタンと、近赤外線、赤外線または遠赤外線を発生させるセラミックスと、該セラミックスとの相乗効果で発生した電磁波により、前記光触媒酸化チタンを励起するトルマリンとを備えた人工光合成誘起物である。
人工光合成誘起物の用途は限定されない。対象となる気体中に水とCOとが存在し、その気体中のCO濃度を低減する必要がある用途であればよい。もちろん、人工光合成により生成されるOを得たい用途でもよい。
光触媒酸化チタンは、例えばセラミックスとトルマリンとの混合物(担体)の表面に担持させてもよい。また、それぞれ粉体の光触媒酸化チタンとセラミックスとトルマリンとを混合し、無機のバインダを接着剤として所定形状(例えば球体、三角錐、円錐、直方体、立方体など)に成形した混合物でもよい。また、セラミックスとトルマリンの他に、添加物として近赤外線、赤外線または遠赤外線を生じないセラミックス(鉱物を含む)を添加してもよい。各混合物の大きさは限定されない。例えば粒径5〜7mmである。
混合物への光触媒酸化チタンの担持方法は限定されない。例えば、スプレーや刷毛塗りなどの塗布法、シリコン系バインダまたは有機質バインダなどによるバインダ固定法、担体の材料中に添加して混練する混練法、担体を光触媒酸化チタンの溶液に漬ける浸漬法などを採用することができる。
【0013】
請求項5に記載の発明は、前記セラミックスとして、SiO、Al、Fe、TiO、CaO、MgO、KO、NaO、MnOを混合したπ化セラミックスを採用した請求項4に記載の人工光合成誘起物である。
【0014】
請求項6に記載の発明は、前記トルマリンとして、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用した請求項4または請求項5に記載の人工光合成誘起物である。
【0015】
請求項7に記載の発明は、水とCOとの接触により人工光合成を誘起する人工光合成誘起物と、該人工光合成誘起物が収納され、水とCOを含む気体が供給されるCO処理部とを備え、前記人工光合成誘起物は、水とCOとの接触により人工光合成型の光触媒反応を起こす光触媒酸化チタンと、近赤外線、赤外線または遠赤外線を発生させるセラミックスと、該セラミックスとの相乗効果で発生した電磁波により光触媒酸化チタンを励起するトルマリンとの混合物であるCO低減装置である。
CO処理部としては、例えば各種の燃焼機の排気路が挙げられる。具体的には、内燃機関の排気管やマフラ、ごみ処理施設の排気管や煙突、軽油やA重油などを燃料とする自家発電機の排気管、ボイラの排気管などを採用することができる。
【0016】
請求項8に記載の発明は、前記セラミックスとして、SiO、Al、Fe、TiO、CaO、MgO、KO、NaO、MnOを混合したπ化セラミックスを採用した請求項7に記載のCO低減装置である。
【0017】
請求項9に記載の発明は、前記トルマリンとして、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用した請求項7または請求項8に記載のCO低減装置である。
【0018】
【作用】
請求項1〜請求項9に記載の発明によれば、水の存在下でCOを含む気体を、人工光合成型の光触媒反応を起こす光触媒酸化チタンに接触させる。そして、この接触状態のまま、光触媒酸化チタンをセラミックスとトルマリンとの相乗効果で生じた電磁波により励起する。すなわち、セラミックスからは近赤外線、赤外線または遠赤外線が発生し、トルマリン(例えば粒径0.3μm)からも0.06mA程度の微弱な静電気が発生する。また、外部から熱、圧力といったエネルギーが作用して遠赤外線などの電磁波が発生する。さらに、トルマリンからはマイナスイオンも多量に発生する(1980年代に株式会社アダン鉱山が発見)。その両物質の相乗効果により、光触媒酸化チタンの伝導帯に電子が発生するとともに、価電子帯に正孔が発生し、光触媒酸化チタンの光触媒反応を励起する。その結果、自然界における葉緑体の光合成と同じように、電子と正孔とによってCOの還元と水の酸化反応とが促される。よって、外部光源が不要で、しかも太陽光が遮断された空間であっても人工光合成を起こし、COを低減するとともに、Oを発生させることができる。
【0019】
特に、請求項2、請求項5および請求項8の発明によれば、セラミックスとしてπ化セラミックスを採用したので、近赤外線、赤外線または遠赤外線の出力を高めることができる。
【0020】
また、請求項3、請求項6および請求項9の発明によれば、トルマリンとして、安価なピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用したので、気体中のCOの低減に要するコストの高騰を抑えることができる。
【0021】
【発明の実施の形態】
以下、この発明の実施例を図面を参照して説明する。
図2において、10はこの発明の一実施例に係るCO低減装置で、このCO低減装置10は、自動車のガソリンエンジン11の排気管12の先端部に連通されたケーシング(CO処理部)13と、ケーシング13内に充填され、排気ガス中の水とCOとの接触により人工光合成を誘起する人工光合成誘起物14とを備えている。
CO低減装置10の具体的な連通位置は、排気管12のうち、マフラ15の設置位置より若干下流(排気口側)の部分である。排気管12は直径42mmである。排気管12のうち、CO低減装置10より下流部分には、排気管12より若干大径な筒体16が連通されている。筒体16は内容積450cmのステンレス製で、必要によりその内部空間に人工光合成誘起物14を充填する場合がある。
【0022】
次に、図1および図2を参照して、CO低減装置10を詳細に説明する。ケーシング13は縦65mmばつ横130mm×高さ100mmの直方体の容器で、ステンレス製である。ケーシング13内には、不燃性の金属ネット17を介して、直径5〜7mmの人工光合成誘起物14が多数充填されている。人工光合成誘起物14は、水とCOとに接触することで、人工光合成型の光触媒反応を起こす光触媒酸化チタン14aと、主に遠赤外線を発生させるπ化セラミックス(セラミックス)と、π化セラミックスとの相乗効果で発生した電磁波により、光触媒酸化チタン14aを励起するトルマリンと、粘土状鉱物と、無機物質のバインダ(トーヨーテクノ有限会社製のバインダ)とを主成分としている。
【0023】
光触媒酸化チタン14aは、四配位酸化チタンである。
π化セラミックスの配合は、SiO(石英):82.25重量%、Al:8.59重量%、Fe:1.06重量%、TiO:0.33重量%、CaO:1.55重量%、MgO:0.37重量%、KO:2.96重量%、NaO:2.26重量%、MnO:0.02重量%、その他:0.61重量%である。トルマリンには、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用している。π化セラミックスとトルマリンとの粒径は1〜200μm、好ましくは20〜30μmである。
人工光合成誘起物14の全体における、トルマリン(前記混合物、以下同じ)とπ化セラミックスとの混合物が占める割合は60重量%、粘土状鉱物20重量%、バインダ20重量%である。
【0024】
以下、人工光合成誘起物14の製造方法を説明する。
まず、π化セラミックスとトルマリンとを粉砕機に投入し、所定の粒径に達するまで粉砕する。粉砕機としては、例えばボールミル、ロッドミルを採用することができる。
その後、π化セラミックスとトルマリンとの混合物(粉体)を、所定量の水と水ガラスとともに顆粒機に投入する。次いで、顆粒機内でこれらを所定時間攪拌する。これにより、混合物は徐々に顆粒状となる。顆粒工程の仕上げ段階では並1次反応が発生し、混合物から直径5〜7mmのセラミックスボール14bが得られる。次に、各セラミックスボール14bを150℃で加熱し、水分を除去後、700℃で焼結する。焼結されたセラミックスボール14bは、水に株式会社アバン製の光触媒酸化チタン14aを分散させた1.0重量%の酸化チタン溶液(ゾル状)に15〜30分間浸漬する。次いで、酸化チタン溶液の液面からセラミックスボール14bを引き上げると、光触媒酸化チタン14aが空気に接触し、光触媒酸化チタン14aがセラミックスボール14bの表面にイオン結合し、薄膜が形成される。結合した光触媒酸化チタン14aの分量は、セラミックスボール14bの8〜15重量%である。その後、得られたものを所定時間乾燥することで、球形状を有する人工光合成誘起物14が製造される。
【0025】
次に、CO低減装置10を利用した排気ガス中のCO低減方法を説明する。
図2に示すように、自動車のエンジンから排出された排気ガスは、エンジンの排気側に連通された排気管12を通し、マフラ15により消音および温度低下された後、大気解放される。その途中、マフラ15を通過した排気ガスがCO低減装置10に供給され、ここで人工光合成が誘起される。
以下の説明は、一実施例における人工光合成の仮説である。排ガス中に含まれる水分とCOとは、ケーシング13内で人工光合成誘起物14の表面を被覆する光触媒酸化チタン14aの薄膜と接触する。このとき、光触媒酸化チタン14aは、セラミックスボール14bを構成するセラミックスとトルマリンとの相乗効果で生じた電磁波により励起されている。具体的には、セラミックスからは近赤外線、赤外線または遠赤外線が発生し、トルマリン(例えば粒径0.3μm)からも0.06mA程度の微弱な静電気が発生する。また、外部から熱、圧力といったエネルギーが作用して遠赤外線などの電磁波が発生する。さらに、トルマリンからはマイナスイオンも多量に発生する。これらの作用により、光触媒酸化チタン14aの伝導帯に電子が発生し、価電子帯に正孔が発生して、光触媒酸化チタン14aの光触媒反応が励起される。その結果、自然界における葉緑体の光合成と同じように、電子と正孔とによるCOの還元と水の酸化反応とが促される。よって、外部光源が不要で、しかも太陽光が遮断された空間であっても人工光合成を起こし、COを低減するとともにOを発生させることができる。
【0026】
一実施例では、遠赤外線を発生させるセラミックスとして、遠赤外線の出力が高まる物質を混合したπ化セラミックスを採用している。そのため、他のセラミックスに比べて、高い出力の遠赤外線を発生させることができる。
また、トルマリンとして、安価なピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用している。これにより、高価なトルマリンのコスト低減を図ることができる。
【0027】
ここで、実際に自動車のガソリンエンジンの排気管の先端部に一実施例のCO低減装置を装着し、アイドリング時における排気ガス中に含まれるCO量とO量とを評価した際の結果を報告する。自動車の使用台数は4台で、それぞれ型式などが異なる。
【0028】
【表1】
Figure 2004344720
【0029】
表1から明らかなように、人工光合成誘起物が有しない比較例に比べて、人工光合成誘起物を有する試験例は、排気ガス中のCOの濃度が低減し、かつ排ガス中のOの濃度が高まった。これは、排気ガス中に含まれる水とCOとから、人工光合成誘起物を利用した人工光合成が誘起された結果であると推察される。なお、試験例17では外部から筒体に水をかけるとともに、エアコンプレッサから空気を吹き付けることで冷却し、排気ガスの温度を下げた。
【0030】
【発明の効果】
請求項1〜請求項9に記載の発明によれば、水の存在下でCOを含む気体を、人工光合成型の光触媒反応を起こす光触媒酸化チタンに接触させ、その状態のまま、光触媒酸化チタンを、セラミックスとトルマリンとの相乗効果で発生した電磁波により励起し、人工光合成を起こす。これにより、自然界における葉緑体の光合成と同じように、人工光合成型の光触媒反応により発生した電子と正孔とにより、COの還元と水の酸化反応とが促される。よって、外部光源が不要で、しかも太陽光が遮断された空間であっても人工光合成を起こし、COを低減するとともにOを発生させることができる。
【0031】
特に、請求項2、請求項5および請求項8の発明によれば、セラミックスとしてπ化セラミックスを採用したので、近赤外線、赤外線または遠赤外線の出力を高めることができる。
【0032】
また、請求項3、請求項6および請求項9の発明によれば、トルマリンとして、安価なピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用したので、気体中のCOの低減に要するコスト削減を図ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例に係る人工光合成誘起物の拡大断面図である。
【図2】この発明の一実施例に係るCO低減装置の使用状態の斜視図である。
【符号の説明】
10 CO低減装置、
13 ケーシング(CO処理部)、
14 人工光合成誘起物、
14a 光触媒酸化チタン。

Claims (9)

  1. 水の存在下でCOを含む気体を、人工光合成型の光触媒反応を起こす光触媒酸化チタンに接触させ、
    この接触状態のまま、該光触媒酸化チタンを、近赤外線、赤外線または遠赤外線を発生させるセラミックスとトルマリンとの相乗効果で生じた電磁波により励起し、人工光合成を起こさせてCOを低減するCO低減方法。
  2. 前記セラミックスとして、SiO、Al、Fe、TiO、CaO、MgO、KO、NaO、MnOを混合したπ化セラミックスを採用した請求項1に記載のCO低減方法。
  3. 前記トルマリンとして、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用した請求項1または請求項2に記載のCO低減方法。
  4. 水とCOとに接触することで、人工光合成型の光触媒反応を起こす光触媒酸化チタンと、
    近赤外線、赤外線または遠赤外線を発生させるセラミックスと、
    該セラミックスとの相乗効果で発生した電磁波により、前記光触媒酸化チタンを励起するトルマリンとを備えた人工光合成誘起物。
  5. 前記セラミックスとして、SiO、Al、Fe、TiO、CaO、MgO、KO、NaO、MnOを混合したπ化セラミックスを採用した請求項4に記載の人工光合成誘起物。
  6. 前記トルマリンとして、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用した請求項4または請求項5に記載の人工光合成誘起物。
  7. 水とCOとの接触により人工光合成を誘起する人工光合成誘起物と、
    該人工光合成誘起物が収納され、水とCOを含む気体が供給されるCO処理部とを備え、
    前記人工光合成誘起物は、水とCOとの接触により人工光合成型の光触媒反応を起こす光触媒酸化チタンと、近赤外線、赤外線または遠赤外線を発生させるセラミックスと、該セラミックスとの相乗効果で発生した電磁波により光触媒酸化チタンを励起するトルマリンとの混合物であるCO低減装置。
  8. 前記セラミックスとして、SiO、Al、Fe、TiO、CaO、MgO、KO、NaO、MnOを混合したπ化セラミックスを採用した請求項7に記載のCO低減装置。
  9. 前記トルマリンとして、ピンク色のトルマリーナホーザ、黒色のトルマリーナプレットとの混合物を採用した請求項7または請求項8に記載のCO低減装置。
JP2003142469A 2003-05-20 2003-05-20 Co2低減方法および人工光合成誘起物ならびにco2低減装置 Pending JP2004344720A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003142469A JP2004344720A (ja) 2003-05-20 2003-05-20 Co2低減方法および人工光合成誘起物ならびにco2低減装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003142469A JP2004344720A (ja) 2003-05-20 2003-05-20 Co2低減方法および人工光合成誘起物ならびにco2低減装置

Publications (1)

Publication Number Publication Date
JP2004344720A true JP2004344720A (ja) 2004-12-09

Family

ID=33530548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003142469A Pending JP2004344720A (ja) 2003-05-20 2003-05-20 Co2低減方法および人工光合成誘起物ならびにco2低減装置

Country Status (1)

Country Link
JP (1) JP2004344720A (ja)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142606A (ja) * 2006-12-07 2008-06-26 New Industry Research Organization 光触媒用組成物、光触媒用材料およびその製造方法
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
CN102836729A (zh) * 2012-09-06 2012-12-26 中国地质大学(北京) 一种TiO2/黑电气石复合光催化材料的制备方法
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US8592633B2 (en) 2010-07-29 2013-11-26 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
JP2013252991A (ja) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> 二酸化炭素還元方法
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US9309599B2 (en) 2010-11-30 2016-04-12 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
CN106732730A (zh) * 2016-12-29 2017-05-31 苏州科技大学 氧化锰协同氮杂石墨烯于近红外光脱氮中的应用
CN109731469A (zh) * 2019-03-05 2019-05-10 广州亿净王环保科技有限公司 一种压片车载负离子空气净化甲醛宝盒的制备方法
CN110270383A (zh) * 2019-03-01 2019-09-24 湖北格瑞乐环保工程有限公司 一种治理室内污染用纳米光催化植物生物触媒及制备方法
CN112979021A (zh) * 2021-02-25 2021-06-18 西南石油大学 一种Fe0/TiO2-电气石催化臭氧化处理难降解有机废水的方法
WO2024028466A1 (de) * 2022-08-05 2024-02-08 Fachhochschule Salzburg Gmbh Verfahren zur herstellung von alkohol aus kohlendioxid durch reduktion in gegenwart eines photosensibilisators

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142606A (ja) * 2006-12-07 2008-06-26 New Industry Research Organization 光触媒用組成物、光触媒用材料およびその製造方法
US8313634B2 (en) 2009-01-29 2012-11-20 Princeton University Conversion of carbon dioxide to organic products
US8986533B2 (en) 2009-01-29 2015-03-24 Princeton University Conversion of carbon dioxide to organic products
US8663447B2 (en) 2009-01-29 2014-03-04 Princeton University Conversion of carbon dioxide to organic products
US8721866B2 (en) 2010-03-19 2014-05-13 Liquid Light, Inc. Electrochemical production of synthesis gas from carbon dioxide
US10119196B2 (en) 2010-03-19 2018-11-06 Avantium Knowledge Centre B.V. Electrochemical production of synthesis gas from carbon dioxide
US8500987B2 (en) 2010-03-19 2013-08-06 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US9970117B2 (en) 2010-03-19 2018-05-15 Princeton University Heterocycle catalyzed electrochemical process
US9222179B2 (en) 2010-03-19 2015-12-29 Liquid Light, Inc. Purification of carbon dioxide from a mixture of gases
US8845877B2 (en) 2010-03-19 2014-09-30 Liquid Light, Inc. Heterocycle catalyzed electrochemical process
US8592633B2 (en) 2010-07-29 2013-11-26 Liquid Light, Inc. Reduction of carbon dioxide to carboxylic acids, glycols, and carboxylates
US8524066B2 (en) 2010-07-29 2013-09-03 Liquid Light, Inc. Electrochemical production of urea from NOx and carbon dioxide
US8845878B2 (en) 2010-07-29 2014-09-30 Liquid Light, Inc. Reducing carbon dioxide to products
US8961774B2 (en) 2010-11-30 2015-02-24 Liquid Light, Inc. Electrochemical production of butanol from carbon dioxide and water
US9309599B2 (en) 2010-11-30 2016-04-12 Liquid Light, Inc. Heterocycle catalyzed carbonylation and hydroformylation with carbon dioxide
US9090976B2 (en) 2010-12-30 2015-07-28 The Trustees Of Princeton University Advanced aromatic amine heterocyclic catalysts for carbon dioxide reduction
US8562811B2 (en) 2011-03-09 2013-10-22 Liquid Light, Inc. Process for making formic acid
US8658016B2 (en) 2011-07-06 2014-02-25 Liquid Light, Inc. Carbon dioxide capture and conversion to organic products
JP2013252991A (ja) * 2012-06-06 2013-12-19 Nippon Telegr & Teleph Corp <Ntt> 二酸化炭素還元方法
CN102836729A (zh) * 2012-09-06 2012-12-26 中国地质大学(北京) 一种TiO2/黑电气石复合光催化材料的制备方法
CN106732730A (zh) * 2016-12-29 2017-05-31 苏州科技大学 氧化锰协同氮杂石墨烯于近红外光脱氮中的应用
CN106732730B (zh) * 2016-12-29 2019-08-30 苏州科技大学 氧化锰协同氮杂石墨烯于近红外光脱氮中的应用
CN110270383A (zh) * 2019-03-01 2019-09-24 湖北格瑞乐环保工程有限公司 一种治理室内污染用纳米光催化植物生物触媒及制备方法
CN109731469A (zh) * 2019-03-05 2019-05-10 广州亿净王环保科技有限公司 一种压片车载负离子空气净化甲醛宝盒的制备方法
CN112979021A (zh) * 2021-02-25 2021-06-18 西南石油大学 一种Fe0/TiO2-电气石催化臭氧化处理难降解有机废水的方法
WO2024028466A1 (de) * 2022-08-05 2024-02-08 Fachhochschule Salzburg Gmbh Verfahren zur herstellung von alkohol aus kohlendioxid durch reduktion in gegenwart eines photosensibilisators

Similar Documents

Publication Publication Date Title
JP2004344720A (ja) Co2低減方法および人工光合成誘起物ならびにco2低減装置
CN104763572B (zh) 等离子设备
CN106726628B (zh) 负离子远红外纳米多功能材料
JP3772961B2 (ja) ダイオキシンを含有する排ガスの処理方法及びダイオキシン抑制用複合触媒
JP6387491B2 (ja) 処理装置
JP2009036199A (ja) 排ガスの物質浄化装置
KR101735789B1 (ko) 질소산화물과 입자상 물질을 동시에 제거하기 위한 부동액 첨가제 및 이를 포함하는 부동액
CN110479246B (zh) 一种微波紫外场中的烟气脱硫脱硝还原催化剂及制备工艺
JPH0615143A (ja) 窒素酸化物分解装置のプラズマ反応容器
Yang et al. Experimental and theoretical-based study of heavy metal capture by modified silica-alumina-based materials during thermal conversion of coal at high temperature combustion
JP2001221109A (ja) 内燃機関及び自動車
JP2004033966A (ja) 廃棄物処理方法及び装置
KR101896906B1 (ko) 연료절감 및 엔진의 성능을 향상시키기 위한 활성화 바디 및 그 제조방법
CN103611524A (zh) 一种光热耦合吸附反应型消毒材料
CN108413419B (zh) 一种微波催化燃烧废气处理装置及载体的制备方法
TWI679275B (zh) 強化燃燒效率的方法及設備
US20230149989A1 (en) System for recycling general waste containing waste plastic, method for recycling general waste, and far infrared radiation catalytic reduction device used with system for recycling general waste
KR101864876B1 (ko) 엔진 기능 강화와 연비 향상을 위한 엔진오일 첨가제
CN1829396B (zh) 一种稀土纳米钛膜电热管
JP2004337766A (ja) 自動車の室内空気環境および燃料燃焼特性の改善方法
CN206315678U (zh) 一种光催化voc处理装置
KR102280789B1 (ko) 내연기관의 흡배기 연비개선, 출력증강 및 매연정화장치
Akdemir et al. Effect of Induction Heating Aided Dielectric Barrier Discharge on the Elimination of SO2, NO X, and CO Gases
CN113003974B (zh) 一种炉渣灰活性激发剂及其激发炉渣灰活性的方法
Zhang et al. Simulation of microwave electrodeless ultraviolet device and catalytic oxidation of toluene